
Evaluation of likelihood functions for data analysis on Graphics Processing Units

Sverre Jarp, Alfio Lazzaro, Julien Leduc, Andrzej Nowak and Felice Pantaleo

CERN openlab

European Organization for Nuclear Research, CERN

Geneva, Switzerland

Emails: {sverre.jarp, alfio.lazzaro, julien.leduc, andrzej.nowak, felice.pantaleo}@cern.ch

Abstract—Data analysis techniques based on likelihood func-
tion calculation play a crucial role in many High Energy
Physics measurements. Depending on the complexity of the
models used in the analyses, with several free parameters,
many independent variables, large data samples, and complex
functions, the calculation of the likelihood functions can require
a long CPU execution time. In the past, the continuous gain
in performance for each single CPU core kept pace with the
increase on the complexity of the analyses, maintaining reason-
able the execution time of the sequential software applications.
Nowadays, the performance for single cores is not increasing
as in the past, while the complexity of the analyses has grown
significantly in the Large Hadron Collider era. In this context
a breakthrough is represented by the increase of the number
of computational cores per computational node. This allows
to speed up the execution of the applications, redesigning
them with parallelization paradigms. The likelihood function
evaluation can be parallelized using data and task parallelism,
which are suitable for CPUs and GPUs (Graphics Processing
Units), respectively. In this paper we show how the likelihood
function evaluation has been parallelized on GPUs. We describe
the implemented algorithm and we give some performance
results when running typical models used in High Energy
Physics measurements. In our implementation we achieve a
good scaling with respect to the number of events of the data
samples.

Keywords-Likelihood; analysis; parallelization; GPUs

I. INTRODUCTION

With the start-up of the Large Hadron Collider at CERN,

the High Energy Physics (HEP) community has the great

opportunity to look for possible effects predicted by several

physics models, such as Higgs boson or SUSY particles,

or totally unpredicted effects [1]. The real challenge is

to extract such new phenomena from the data collected

by the experiments, since they can be very rare and their

contribution small if compared to the total amount of data.

Data are a collection of independent events, an event being

the measurement of a set of variables (energies, masses,

spatial and angular variables...) recorded in a brief span of

time by the physics detectors. The events can be classified in

different species, which are generally denoted with signals,

for the events of interest for their physics phenomena, and

backgrounds, all that remains.

Over the last few years many complex techniques have

been used to discriminate signal and background events,

like maximum likelihood fits, neural networks, and boosted

decision trees [2], [3]. The discrimination is obtained using

particular variables (discriminant variables), or more in

general combination of these variables, which have different

characteristics for signal and background events. These

techniques are implemented in several software applica-

tions, developed inside the HEP community, mainly as

sequential algorithms. Increasing the number of events and

variables in the samples and using advanced algorithms

for discrimination require high CPU performance for the

execution of such programs. In the past, the continuous gain

in performance for each single CPU core kept pace with

the increase on the complexity of the analyses. Therefore

the execution time of the applications remained reasonable,

without requiring parallel implementations of the algorithms.

Nowadays, the performance of a single core is not increas-

ing as in the past, while the complexity of the analyses

has grown significantly. However, currently we have more

computational units available in each single computational

node, which can cooperate to execute the same application.

CPU vendors like Intel and AMD are developing multi-

cores. Currently we have up to 12 cores implemented in

a single socket. Furthermore, Graphics Processing Units

(GPUs) are also emerging as systems particularly suitable

for intensive floating point algorithms which can benefit

from their massive parallelization design. Therefore, it is

clear that the existing HEP software applications for data

analysis have to be redesigned to become parallel in order

to take full advantage of the new computational systems.

This is mandatory to speed up the execution time of these

applications.

In this work we describe a strategy for the parallelization

of a data analysis software based on the calculation of

likelihood functions, e.g., in maximum likelihood fits. The

common software used in HEP for likelihood-based analyses

is RooFit [4], which is part of the general data analysis

framework ROOT [5]. These analyses allow the estimation

of unknown parameters using a given sample of data. An

example of such parameters is given by the number of

events belonging to each species and the parameters which

characterize the probability density functions (PDFs) of

the input variables, that can be related to the prediction

obtained from physics models. Currently RooFit implements

an algorithm for the evaluation of the likelihood function

which cannot take fully advantage from the vectorization

and other code optimizations (like function inlining) due to

its implementation based on C++ virtual methods [6]. To

overcome these limitations, we have designed and imple-

mented a new algorithm on CPUs, and parallelized it using

a data parallelism paradigm implemented with OpenMP. In

this paper we focus on the implementation of this algorithm

on GPUs. Using the new algorithm, we are able to exploit

data and task parallelism paradigms on GPUs, so that we can

achieve a more fine-grain parallelism. For the comparison of

the performance between CPU and GPU implementations,

we take as reference the optimized parallel OpenMP im-

plementation, which guarantees a fair comparison between

CPU and GPU implementations.

Existing works in the literature report on the paralleliza-

tion implemented on GPUs of the evaluation of likelihood

functions in some specific scientific fields, such as phylo-

genetic analysis [7] and medical image reconstruction [8].

To the best of our knowledge, however, no previous work

describes the GPU implementation of the evaluation of

likelihood functions for general use in the case of maximum

likelihood fit analyses. The goal of our work is to provide a

general infrastructure for parallelization inside the RooFit

packages so that users can use it for their specific data

analysis.

This paper is organized as follows. In Section II we

provide an overview of the maximum likelihood data anal-

ysis technique, a description of the RooFit package, and

a detailed description of the implemented algorithms used

for the likelihood function evaluation (the current available

RooFit algorithm and our optimized algorithm). In Sec-

tion III we give details on the parallelization of the new

algorithm and in Section IV we describe the implementation

of the parallelized algorithm on the GPU. Section V reports

the results from tests with a benchmark analysis on a

nVidia GeForce GTX 470 GPU. Conclusion are reported

in Section VI.

II. LIKELIHOOD FUNCTION ANALYSIS

We consider a multidimensional random vector

x̂ = (x1, . . . , xn) described by a distribution function

P(x̂|θ̂), where θ̂ is a set of p real parameters. We assume

P(x̂|θ̂) to be well known except for the set of parameters

θ̂. So, the P(x̂|θ̂) expression represents, after normalizing

it, the hypothesized PDF for the x̂ variables. If we then

perform an experiment where a measurement has been

repeated N times, supplying x̂ = x̂1, . . . , x̂N values. The

joint PDF of x̂ is, by independence,

f(x̂|θ̂) =
N
∏

i=1

P(x̂i|θ̂). (1)

Note that, when the variables are uncorrelated, the PDF can

be factorized as product of single PDFs dependent on each

variable, such as:

P(x̂i|θ̂) =
n
∏

v=1

Pv(xv
i |θ̂). (2)

When the variables x̂ are replaced by the observed data

x̂, then f is no longer a PDF, and it is usual to denote it by

L, being the likelihood function, which is now a function of

θ̂ only: L(θ̂) = f(x̂|θ̂).
An important case where the likelihood function is used

is the estimation of the parameters, using the maximum

likelihood (ML) method. The estimate of θ̂ is the set of values

of parameters for which L(θ̂) has its maximum, given the

particular data sample of measurements x̂. The procedure to

find the maximum represents the fitting procedure. We can

use the ML method to estimate the number of events in a

data sample belonging to the different species, i.e. signals or

backgrounds. Considering s different species, and defining

with nj the number of events belonging to species j and with

Pj(x̂|θ̂j) the PDF for the species j, the likelihood function

becomes:

L =
e
−

∑

s

j=1
nj

N !

N
∏

i=1

s
∑

j=1

njPj(x̂i|θ̂j). (3)

In this expression we have introduced the extended term to

take into account that the number of observations N in the

sample is itself a Poisson random variable with a mean value
∑s

j=1
nj . So this function is called the extended likelihood

function. It has to be maximized as a function of the free

parameters nj and the possible free parameters θ̂j of the

PDFs [2].

The likelihood function applies also for interval estimation

of the parameters. In this case we refer to likelihood based

confidence intervals, and the multidimensional extension

called profile likelihood. Unlike the maximum likelihood

method, where we estimate the values of θ̂, in the interval

estimation we want to find the region θ̂a ≤ θ̂ ≤ θ̂b, which

contains the true value θ̂0 with probability β. Such a region

is called confidence region for θ̂ with probability content β.

The confidence region is given by

lnL(θ̂) = lnLmax −
1

2
χ2

β , (4)

where Lmax corresponds to the likelihood function value

at its maximum as function of θ̂. The borders of the

region are the values of set of parameters θ̂ which satis-

fies this equation. So for one standard deviation error we

have lnL(θ̂) = lnLmax − 1/2 [2].

A. Numerical Considerations

The search of a maximum for L and the confidence region

estimation as a function of the unknown parameters can

be carried out numerically. Usually, it is used to minimize

the equivalent function − ln(L), the negative log-likelihood

(NLL), which has a direct connection with the confidence

region estimation (4), (we omit the N ! term in the expres-

sion, which does not depend on the parameters). So the NLL
to be minimized has the form:

NLL =
s

∑

j=1

nj −
N
∑

i=1

ln
s

∑

j=1

njPj(x̂i|θ̂j)

 , (5)

that is, a sum of logarithms.

The most common method used in the HEP community to

find the minimum of NLL is based on the MIGRAD algo-

rithm inside the MINUIT package [9]. MIGRAD performs

the minimization of a function using the variable metric

method [10]. This method involves the calculation of the

derivatives of the NLL for each free parameter. Since very

often we are faced with minimizing a function for which no

derivatives are provided, MIGRAD is able to estimate the

derivatives of the function by finite differences. Details of

the implementation of the method used in MIGRAD can be

found elsewhere [9].

MINUIT uses the special algorithm, MINOS, for the

profile likelihood determination. In this case, MINOS allows

to determine the values of the parameters which satisfy (4),

requiring to follow the log-likelihood all the way out to the

edge of the confidence region in any number of dimensions.

This is done applying several times MIGRAD for each

parameter of interest [9].

These algorithms require several calls to the NLL as

described in (5), which requires itself the calculation of the

corresponding PDFs for each variable and each event of the

data sample. Hence, depending on the complexity of the

NLL function, the procedures can be very time-consuming.

B. NLL Evaluation

RooFit package is formed by a set of classes constructed

on ROOT framework dedicated to likelihood-based analyses.

This software has been developed with an object oriented

coding technique, using the C++ language. We should un-

derline that all floating point operations are performed in

double precision.

All classes for PDFs inherit from a common abstract class

(class RooAbsPdf), which provides the common interface.

It includes the virtual methods:

– evaluate: it provides the non-normalized value (for

internal use to the class, i.e. protected method to the

class);

– getVal: it provides the normalized value, so essen-

tially the value obtained from evaluate divided by

PDF normalization integral;

– getLogVal: it provides the logarithm of the normal-

ized value obtained using getVal.

By design, outside the class we can access only the nor-

malized value obtained using getVal or its logarithm

using getLogVal. Combinations of PDFs are possible with

classes for adding, multiplying and convoluting basic PDFs.

Finally, RooFit provides a class for the NLL calculation

(class RooNLLVar), which basically does the reading of

the data (by means of the class RooAbsData), and the

loop over the events to calculate the NLL sum term with the

corresponding calls to getLogVal of the total PDF.

Data are organized in memory like a matrix where the

columns contain the values for each variable, and the rows

represent the values of the variables belonging to each event

(see Fig. 1). This structure has the advantage of keeping

the values of the variables belonging to the same event in

adjacent memory location. In order to calculate the NLL

from the formula (5), the current available RooFit algorithm

consists of the following steps (in order):

1) For a given set of values of parameters of the model,

loop over the events i = 1...N :

• read the values of the variables for event i, i.e.

read the row i of the data matrix;

• calculate the PDFs P’s for the event i (this

step requires the calculation and caching of the

normalization integrals of the PDFs);

• combine, by means of addition and multiplication,

the results of the individual PDFs to calculate the

total PDF value for the event i;
• calculate the logarithm of the total PDF value;

• calculate the partial term of the sum in the NLL

and accumulate this value to calculate the final

value of the sum.

2) Finalize the calculation of NLL by including the ex-

tended term contribution.

3) Iterate the calculation of NLL for a choice of the values

of the model parameters.

The key part of this procedure is the calculation of all PDFs

for each event, and then there is a single loop over all

events (performed inside the class RooNLLVar). Since this

is done by having recourse to calls of the virtual methods

evaluate and getVal of each PDF, this algorithm does

not allow particular code optimization, like inlining and

vectorization, and it introduces the obvious overhead due

to the virtual method calls (there are two calls to virtual

methods per each PDF and per each event, plus a call to the

virtual method getLogVal per each event).

var
1

var
2

! var
n

1

2

!

N

Variables

E
v
e
n
ts

Figure 1. Data representation as matrix, where the variables are organized
in columns and events in rows.

In order to take benefit from code optimization, we

redesigned the algorithm to reduce the number of calls to

virtual methods. Furthermore, the data are stored differently:

the values of each variable are organized in independent

arrays, so that we can profit from the coalescing of memory

accesses for each variable. This is particularly useful in

the CPU cache memories data access when calculating the

values for an individual PDF. The new algorithm follows

a different procedure for the first step with respect to the

RooFit algorithm described above:

• For a given set of values of the parameters and a

given PDF, we evaluate the PDF on each event of the

data sample (which means calculate the PDF on the

corresponding arrays of variables), and we save the

results of this calculation in an array. So we do a loop

over all events i = 1...N and calculate the PDF for

each of them.

• Repeat the previous step for all PDFs, so we end

up with several arrays of partial results (an array for

each PDF). Each array of results is composed by N
elements, i.e. a result for each event.

• Combine, by means of addition and multiplication, all

arrays of partial results, corresponding to each event,

providing a final array of results, i.e. the array of results

of the total PDF.

• Calculate the logarithm of the total PDF results.

• Do the sum of the total PDF results.

The key part of this procedure is the calculation of each

PDF for all events, so that instead of one single global loop

over the events, now we have independent local loops for

each PDF (and their combinations). To implement this new

algorithm, we implement a new virtual method evaluate

for each PDF class with a reference to the data sample

as parameter. Inside this method we perform the local

loop over all values of the variables of the corresponding

PDF, storing the results of the calculations in an array

of partial results. Since the virtual method evaluate is

called just once, and then within local loops we perform the

calculations of the mathematical functions for all events, we

can conclude that the number of calls to virtual methods per

PDF does not depend by the number of events. Actually,

the mathematical function itself is declared inside an inline

method (evaluateLocal), which is made private to the

PDF class. Furthermore, thanks to the new data structure

organized as arrays for each variable, this code can easily

be vectorized. An example of implementation for a PDF is

shown in Fig. 2. As consequence of the new implementation

of the method evaluate, we implement new virtual meth-

ods getVal and getLogVal in the class RooAbsPdf

which do the loops over the partial results to apply the

normalization and calculate the logarithm, respectively (see

Fig. 3). The loop over the final results of the total PDF to

calculate the NLL sum term and the extended term is done in

the usual class RooNLLVar. Finally, we modify the classes

RooAbsData and RooAbsPdf so that they can manage

the arrays of data and the arrays of results, respectively,

using C arrays. Indeed, we should note that a drawback of

this new algorithm is that we have to manage all the arrays

for the temporary results.

Optimizing the implementation of the new algorithm, we

are able to reach a speed-up of 4.5x in a common data

analysis with respect to the original RooFit implementa-

tion [11]. In the next section we will briefly show how the

new algorithm can be parallelized using OpenMP for the

CPUs, and then we will focus on its implementation for the

GPUs.

// Inline method for the Gaussian PDF calculation,

// defined inside the class RooGaussian

inline double evaluateLocal(const double x,

const double mu,

const double sigma) const

{

return std::exp(-0.5*std::pow((x-mu)/sigma,2));

}

// Virtual method for the calculation of the

// Gaussian PDF on a single event

// (this is the current RooFit implementation)

virtual double evaluate() const

{

return evaluateLocal(m_x->getVal(),

m_mu->getVal(),

m_sigma->getVal());

}

// Virtual method for the calculation of the

// Gaussian PDF on all events

// (new implemented algorithm)

virtual bool evaluate(const RooAbsData& data)

{

// retrive the data array of values for the variable

const double *dataArray = data.GetDataArray(*m_x);

// check if there is an array for the variable

if (dataArray==0)

return false;

// retrive the number of events

int nEvents = data.GetEntries();

// retrive the array for the partial results

double *resultsArray = GetResultsArray();

// loop over the events to calculate the Gaussian

for (int idx = 0; idx<nEvents; ++idx) {

resultsArray[idx] = evaluateLocal(dataArray[idx],

m_mu->getVal(),m_sigma->getVal());

}

return true;

}

Figure 2. Representative parts of the methods for the evaluation of the
Gaussian PDF, implemented in the RooGaussian class in RooFit. We show
the original RooFit implementation and our new implementation. Similar
implementation is used for all basic PDFs.

III. PARALLELIZATION STRATEGY

The parallelization of the implementation of the new

algorithm is relatively straight-forward, since the iterations

// Original RooFit implementation

double RooAbsPDf::getVal()

{

// Apply the normalization

return evaluate()/GetIntegral();

}

// Original RooFit implementation

double RooAbsPdf::getLogVal()

{

return std::log(getVal());

}

// New implemented algorithm

double* RooAbsPdf::getVal(const RooAbsData& data)

{

// Call the evaluate method, defined in the PDF

if (!evaluate(data))

return 0;

// Retrive the normalization integral

double integral = GetIntegral();

// retrive the number of events

int nEvents = data.GetEntries();

// retrive the array for the partial results

double *resultsArray = GetResultsArray();

// Apply the normalization

if (integral!=1.)

for (int idx = 0; idx<nEvents; ++idx) {

resultsArray[idx] /= integral;

}

return resultsArray;

}

// New implemented algorithm

double* RooAbsPdf::getLogVal(const RooAbsData& data)

{

// Do the calculation of the normalized PDF

if (0==getVal(data))

return 0;

// retrive the number of events

int nEvents = data.GetEntries();

// retrive the array for the partial results

double *resultsArray = GetResultsArray();

// Do the Log of the results

for (int idx = 0; idx<nEvents; ++idx) {

resultsArray[idx] = std::log(resultsArray[idx]);

}

return resultsArray;

}

Figure 3. Representative parts of the methods for the evaluation of a
PDF, implemented in the RooAbsPdf class in RooFit. We show the original
RooFit implementation and our new implementation.

in the loops inside the methods evaluate, getVal, and

getLogVal are independent. Therefore, we can parallelize

them on CPUs via the #pragma omp parallel for

OpenMP directive. Arrays of data and results are shared

among the threads, so that there is a negligible increment

in the global memory footprint of the application. The

application scales with the number of threads as expected

by the Amdahl’s law, being limited by the not parallelizable

part (mainly the calculation of the normalization integrals

and the handling of the data) [11]. Because of the strategy

adopted for the parallelization, we denote it as event-level

strategy.

To efficiently exploit the GPU architecture, the number

of threads must be maximized. For this reason we have

extended the strategy of the parallelization to also include

the evaluation in parallel of several PDFs. This solution

adds a further degree of parallelism, since the PDFs can

be calculated independently. More explicitly, for a given

PDF, we evaluate it in parallel over the events of the data

sample, as explained in the event-level strategy. Then in

parallel we execute this procedure for the several PDFs.

After that we combine properly all partial results of the

arrays, corresponding to each event, providing a final array

of results.

To explain better the strategy, we show here how it works

for a simple example. We consider two variables, x1 and

x2, and a single species, with the following total PDF:

P = P1(x1)×
[

P2(x2) + P3(x2)
]

, (6)

that is a sum of two PDFs and the product with another PDF

(so, basically, we have 5 PDFs in total). We have to evaluate

this expression on the data sample composed by N events

to calculate the NLL function. The execution steps are:

1) start the parallel calculation for P1, P2, P3;

2) for each PDF, make parallel calculation of the results

on the data;

3) synchronize the results calculation for P2 and P3,

producing two arrays of results of N elements, V̂ 2

and V̂ 3, respectively;

4) combine the results in V̂ 2 and V̂ 3 in a single array of

results V̂ S , corresponding to the sum PS = P2+P3;

5) synchronize the results calculation of P1 and PS in

the two corresponding arrays, V̂ 1 and V̂ S , respec-

tively;

6) combine the results in V̂ 1 and V̂ S in a single array of

results V̂ , corresponding to the product P = P1×PS ;

7) do the logarithms of the results in V̂ and then calculate

the final sum for the NLL.

We can define this strategy as based on PDF-event paral-

lelism.

The advantage of the PDF-event parallel strategy is the

possibility to have more fine-grain parallelism with respect

to the event-level strategy described above. We separate

the execution in tasks. For a given event, there are tasks

carrying out the evaluation and normalization of a given

PDF, the combination of the results, and the calculation of

the logarithm of the final results. The algorithm requires

intermediate synchronizations between the tasks, which do

not introduce significant overhead (in any case we do

synchronize all tasks at the end of the evaluation for the final

NLL calculation). Tasks belonging to PDFs which are part

of composite PDFs are grouped is common streams, so that

can be synchronized independently. Using this technique,

the strategy for the parallelism is very suitable for massive

parallel computation systems based on task parallelism, i.e.

GPUs.

Returning to the previous example, we have in that case

N ×9 tasks to execute, which are divided in: N ×6 tasks to

calculate the results of the 3 PDFs (N×3 for the evaluation

of the functions and N ×3 for their normalization), N tasks

for the sum PDF, N tasks for the product PDF, N tasks for

the logarithm calculations.

IV. GPU CODE IMPLEMENTATION

In this section we describe the GPU implementation of

the PDF-event parallel algorithm inside the RooFit package.

We added the new implementation together with the CPU

event-level parallel algorithm implementation, so that data

analysts can indifferently choose which algorithm to use for

their data analyses.

For the GPU implementation we use C for CUDA lan-

guage provided by nVidia. The software application was

implemented in a Linux environment using CUDA toolkit

v3.2. These rules were followed during the development of

the code:

• All data in the calculation are in double precision

floating point numbers.

• Same source code must compile using host compil-

ers (e.g. Intel C++ Compiler) and using nVidia C

Compiler (i.e. nvcc). This implies that device-related

code must be enclosed inside #ifdef ... #endif

statements, to protect it when compiling the application

using host compilers. In this case only the event-level

parallel algorithm will be available on the host.

• Data analysts can choose the host or device algorithm

by using a flag at runtime. They do not need to change

their applications, i.e. there is a common interface for

the user to the two implementations.

The first modification of the code is made inside

RooAbsData and RooAbsPdf classes so that they can

manage the arrays of input data sample and the arrays of

partial results on the device, using C arrays. The former

class takes care of copying the host data to the device global

memory, and vice versa for the latter, using synchronous

functions. The dimension of the data sample is given by

the number of variables times the number of events, where

each variable is of double type. The arrays of input data

are read-only during the entire execution of the application,

so we can copy them once to the device memory at the

beginning and then use them for all NLL calculations. The

arrays of partial results can be kept resident in the device

memory, except for the array of the final results which has

to be copied to the host memory for the final sum of the

NLL. Of course all temporary arrays can be cached in the

device memory, avoiding to calculate them again in case

the PDF does not change in consecutive calls. With this

implementation we are able to strongly reduce the time spent

for the communication between host and device memories.

We implemented a CUDA kernel for each method

evaluate, which takes care of the tasks for the evalu-

ation of the corresponding PDF function. The call to this

kernel is done by the method evaluate itself. Inside the

same method we also implement the event-level parallel

algorithm with OpenMP, with a flag used for choosing

which algorithm to execute. Each task gets evaluated by

a CUDA thread, i.e. there is a correspondence one to one

between tasks and threads. The fact that a task represents

the calculation on a single event, and that the variables of

the events and the partial results are organized in arrays,

allows the CUDA compiler to coalesce memory accesses

because the threads access to adjacent memory locations for

the variables and the partial results. The kernel is defined

as friend of the PDF class, so that it can access to the

private method evaluateLocal. Therefore this method

is compiled for the host and device. Following the example

of Fig. 2, we show the corresponding implementation of

the method evaluate and his CUDA kernel in Figs. 4

and 5, respectively. A similar implementation is repeated

for the methods getVal and getLogVal of the class

RooAbsPdf, where we add calls to the CUDA kernels used

for the execution of the normalization and calculation of

logarithm tasks, respectively.

Intermediate synchronizations of the results in case of

composite PDFs are done by grouping in CUDA streams

the corresponding threads belonging to the PDFs of the

composition. Creation/destruction of these streams and syn-

chronizations are performed inside the evaluate method

of the composite PDFs. For a given composite PDF, the

stream is propagated to the corresponding PDFs of the

composition as parameter of their public method getVal

and, from here, to their protected method evaluate. The

synchronization of all threads is done inside the method

getLogVal, which also requires the copy of the final

results from the device to the host memory, returning the

pointer to the host array of the final results. After that, the

class RooNLLVar performs the loop on these results for

calculating the sum term of the NLL. Finally, the data ana-

lysts can specify which implementation to use for the NLL

evaluation when they instantiate the RooNLLVar object.

This choice is then propagated all over the evaluation.

The number of threads per block of the CUDA kernels

depends on the maximum shared-memory size, number of

registers per thread, and number of threads required to use

full thread warps of the CUDA architecture. All these factors

are directly connected to the complexity of the NLL evalua-

tion, i.e. which PDFs are involved in the calculation and the

dimension of the input data sample. Therefore this number

depends on the user analyses. From our tests we have found

a very small improvement (< 1%) on the performance when

we tune this number for each kernel. So, we have decided to

simplify the procedure using for all kernels a common value

for the number of threads per block, independently by the

tasks carried out by the kernels. This number is specified

in the static method CUDA::GetNThreadsPerBlock.

The data analysts can set this number using the corre-

sponding method CUDA::SetNThreadsPerBlock (the

default values is 256). The number of blocks per kernel is

then calculated from the number of events divided by the

number of threads per block, rounded to the greatest integer

number.

V. TESTS

Tests are executed on the following hardware:

• CPU: Intel i7 965 @ 3.2 GHz (4 cores)

• Memory: 3x2048MB DDR3 @ 1333MHz

• Motherboard: Intel Desktop Board DX58SO

• Graphic Card: ASUS ENGTX470

The GeForce GTX 470 is based on GF100 “Fermi” archi-

tecture (compute capability 2.0). The card features reference

clock speeds of 607 MHz core clock and 837 MHz on the

1280 MB of GDDR5 memory that runs on a 320-bit memory

interface.

In the tests we look at the comparison of performances

obtained from the ratio of the execution time of the appli-

cation when running on the CPU and GPU the respective

algorithms. We take as reference for the CPU algorithm the

optimized parallel OpenMP implementation, requiring four

parallel threads for the application, so that we fully load

the available CPU. From the hardware point of view, we are

comparing two systems which can be considered commodity

systems: a single GPU, whose main target is for computer

gaming, versus a standard single socket desktop system with

4 cores. Both systems are not the top of their product

lines. Although we are just comparing the performance

in terms of the ratio between the execution time, without

considering power consumption and price of the systems,

we should consider that the target of our work is to provide

a parallel application that data analysts can run on easy

accessible system, i.e. not supercomputing facilities, such as

their desktops or even laptops. Given these considerations,

we judge our tests a fair comparison between the CPU and

GPU implementations of the application.

The system is running 64-bit Scientific Linux CERN 5.5

(SLC5), based on Red Hat Enterprise Linux 5 (server).

The default SLC5 Linux kernel (2.6.18-194.8.1.el5)

is used for all the measurements. We use the Intel C++

compiler version 11.1 for the host compilation. nVidia

video drivers version is 260.19.29 for linux-x86 64.

In the following tests we do not include the time spent

for the initialization of the application (mainly reading of

data sample and declaration of the data analysis model),

// NOTE:

// The flag __USECUDA__ allows to switch off

// the compilation of CUDA part in case

// CUDA compiler is not used

// This method is compiled for host and device

#ifdef __USECUDA__

__host__ __device__

#endif

inline double evaluateLocal(const double x,

const double mu,

const double sigma) const

{

return std::exp(-0.5*std::pow((x-mu)/sigma,2));

}

// RooAbsPdf::ImpAlgo is {kOpenMP, kGPU} and it allows

// to choose which implementation has to be executed.

// The CUDA stream is used for the

// intermediate synchronization

virtual bool evaluate(const RooAbsData& data,

RooAbsPdf::ImpAlgo impAlgo

#ifdef __USECUDA__

, cudaStream_t& stream

#endif

)

{

// retrive the data array of values for the variable

// from the host or the device

const double *dataArray = data.GetDataArray(*m_x,

impAlgo);

if (dataArray==0)

return false;

int nEvents = data.GetEntries();

// retrive the array for the partial results

// from the host or the device

double *resultsArray = GetResultsArray(impAlgo);

#ifdef __USECUDA__

// Run the CUDA implementation

if (impAlgo==RooAbsPdf::kGPU) {

// Launch the CUDA kernel as part of

// the given CUDA stream.

// CUDA::GetNBlocks(nEvents) and

// CUDA::GetNThreadsPerBlock() are static methods

// of the class CUDA used to determinate

// the number of blocks for a given number of

// events and threads per block.

KernelEvaluateGaussian<<<CUDA::GetNBlocks(nEvents),

CUDA::GetNThreadsPerBlock(),0,stream>>>

(this,m_mu->getVal(),m_sigma->getVal(),

dataArrays,resultsArray,nEvents);

return true;

}

#endif

// Loop over the events to calculate the Gaussian

// Use the default OpenMP algorithm

#pragma omp parallel for

for (int idx = 0; idx<nEvents; ++idx) {

resultsArray[idx] = evaluateLocal(dataArray[idx],

m_mu->getVal(),m_sigma->getVal());

}

return true;

}

Figure 4. This case shows the implementation in OpenMP and CUDA in
case of the methods for the evaluation of the Gaussian PDF reported in the
Fig. 2. Similar implementation is used for all basic PDFs.

// NOTE:

// The flag __USECUDA__ allows to switch off

// the compilation of CUDA part in case

// CUDA compiler is not used

#ifdef __USECUDA__

// The Kernel is declared as friend to the

// class RooGaussian, so that it can call

// the private method evaluateLocal

__global__

void KernelEvaluateGaussian(const RooGaussian *pdf,

const double mu, const double sigma,

const double *data, double *results,

const int N)

{

int idx = blockIdx.x * blockDim.x + threadIdx.x;

if (idx<N) {

results[idx] = pdf->evaluateLocal(data[idx],

mu,sigma);

}

}

#endif

Figure 5. CUDA kernel used for the evaluation of the Gaussian PDF
function. Similar implementation is used for all basic PDFs.

which is in any case a small fraction (usually less than 1%
in common data analyses) of the total execution time and

it is in common for the CPU and GPU implementations. In

case of the GPU implementation, we include in all tests the

time spent for the copy of the events from host memory

to the device memory and for the copy of the array of final

results back to the host memory. We should also mention that

calculation of the normalization integral and the final sum of

the results for the NLL calculation are execute only by the

host in sequential. Finally, we remind that we do everything

in double precision floating point operations, which gives

a penalty factor of 8x (2x) on the peak performance of the

GPU (CPU) used in our tests with respect to single precision.

The first synthetic test consists in understanding the device

algorithm performance. For that we do the evaluation of

the NLL with a linear polynomial as PDF in the form

ax + b, where a and b are two fixed parameters. The data

sample is composed of 1,000,000 events (one variable). We

consider a single species in (5). The application repeats

this evaluation 1000 times, forcing the calculation for each

iteration, i.e. not using cached values. The CUDA kernels

execution is organized in blocks of 512 threads. We reach

22 GFLOPS (peak performance on the GeForce GTX 470

is about 136 GFLOPS). If we do not consider the time

spent for the communications (mainly the communication

of the final results per each iteration, since the input data

sample is communicated just once at the beginning), we

reach 112 GFLOPS (82% of the peak performance).

Then we run tests with different PDFs, usually used in

HEP [2]. Also in this case we use a sample of 500,000

events (one variable), and we repeat the NLL evaluation 1000

times, forcing the calculation for each iteration. The number

of threads per block is 512. We show the comparison of

performance between the CPU and GPU implementations

in table I. Furthermore, we report the percentage of the

execution time spent by the kernels, i.e. the portion of

the application which is executed on the device. The CPU

implementation scales at 4 parallel threads with an efficiency

around 97.5% (speed-up 3.9x). We can note a relation

between the percentage of the execution time spent by the

kernels execution and the complexity of the PDFs. For

simpler PDFs (e.g. Breit-Wigner and polynomials) the total

execution time is dominated by the data transfers and the

host part of the implementation. This effect becomes less

relevant for complex PDFs (e.g. Argus PDF). Since the time

spent for the data transfer does not depend on the PDFs (it

depends on the number of events), we can conclude that we

can reach a better ratio of CPU vs GPU execution time for

complex PDFs.

We can better understand the relation between the com-

plexity of the PDFs and the ratio of executions times of

CPU and GPU applications considering a test where we

do an incremental combination of PDFs. The total PDF

is P =
∏

v G
v(x), where Gv are Gaussians with different

parameters calculated on the same variable x. We do the test

varying the number of Gaussians. The sample is composed

by 500,000 events and we repeat the NLL evaluation 1000

times, forcing the calculation for each iteration. The number

of threads per block is 512. The results are shown in

Fig. 6. We should underline that we do the evaluation of the

NLL for the same data sample, since all Gaussians depend

on the same variable. Therefore, increasing the number of

Gaussians in the product results in a corresponding increase

of the complexity of the total PDF, and hence the time

spent for its calculation. As we can see from the plot, the

GPU implementation gives better performance with respect

to the CPU implementation when increasing the number of

Gaussians in the total PDF. This can be directly correlated

to the percentage of time spent in the kernel calculation,

also shown in the plot. With 10 Gaussian PDFs the GPU

implementation runs 4x faster than the CPU implementation.

The last test we present is based on a “real” data anal-

ysis model, published in [12]. It consists in a multivariate

analysis of 3 variables (denoted by x, y, z) and 4 species

(a, b, c, d). The total PDF is the following:

naDG1,a(x)AG1,a(y)AG2,a(z) +

nbG1,b(x)BW1,b(y)G2,b(z) +

ncAR1,c(x)P
1

1,c(y)P
2

2,c(z) +

ndP
4

1,d(x)G1,d(y)AG1,d(z),

where G is Gaussian, DG is a double Gaussians (i.e. sum of

two Gaussians), AG is Asymmetric Gaussian, BW is Breit-

Wigner, AR is Argus, and Pn is polynomial of nth order.

In total there are 13 basic PDFs and 6 composite PDFs.

Table I
RESULTS OF THE EXECUTION FOR DIFFERENT PDFS. THE FIRST TWO COLUMNS ARE THE NAME AND THE FORMULA OF EACH PDF (x IS VARIABLE,

BEING THE OTHERS PARAMETERS). THIRD COLUMN REPORTS THE RATIO BETWEEN THE EXECUTION TIME OF CPU AND GPU, AND THE LAST

COLUMN IS THE PERCENTAGE OF THE EXECUTION TIME SPENT BY THE KERNELS, I.E. THE PORTION OF THE APPLICATION WHICH IS EXECUTED ON

THE DEVICE. CPU IMPLEMENTATION RUNS IN PARALLEL WITH 4 THREADS, WITH SPEED-UP ∼ 3.9X.

PDF Name Formula CPU vs GPU time ratio kernels execution time portion

Gaussian exp{−
(x−µ)2

2σ2
} 1.45 24.1%

Asymmetric Gaussian

exp{−
(x−µ)2

2σ2

l

} x ≤ µ

exp{−
(x−µ)2

2σ2
r

} x > µ

1.39 26.6%

Breit-Wigner 1
(x−x0)2+Γ2/4

1.53 17.7%

Linear Polynomial ax+ b 1.47 16.4%

Parabolic Polynomial ax2 + bx+ c 1.54 17.1%

Argus

√

(

1− x2

c2

)

exp

{

− 1
2
η

(

1− x2

c2

)

}

1.80 26.3%

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

!#

$#

%#

&#

'#

(#

$# %# &# '# (#)# *# +# ,# $!#

!
"
#
$
%
&
'
()
*
"
'
*
+,
(

-
.
/
(0
,
(1
.
/
(*
2
*
$
3
%
&
'
(%
4
*
("
#
%
&
(

5(1#3,,6#',(

-./01234#25/#6723#

8/64/9:#;670234#25/#

Figure 6. The blue line with square markers represents the ratio between the execution time of CPU and GPU implementations when executing the NLL

evaluations, whose total PDF is the product of an incremental number of Gaussians (1 to 10), calculated on a common variable (500,000 events in the
data sample). The reference CPU execution time is taken when running the application using 4 active parallel threads (speed-up 3.9x). The red line with
circle markers, which refers to the right axis, shows the time fraction for executing the kernels of the total execution time.

We do the test varying the number of events of the data

sample. We repeat the NLL evaluation 1000 times, forcing

the calculation for each iteration. The number of threads

per block is 512. The results are shown in Fig. 7. The

CPU implementation scales at 4 parallel threads with an

efficiency around 90% (speed-up 3.6x). We can see how

the GPUs algorithm behaves better for high number of

events, which is due to the specific characteristics of the

GPU architectures to take advantage from multiple threads.

At 10,000 events the two implementations have comparable

performance, and the GPU execution time breaks down in

36% device kernels, 60% host execution, 4% host-device

communications. Instead, at 500,000 events the GPU algo-

rithm is almost 6x faster, with execution time divided in

68% for device kernels, 21% for host execution, 11% for

host-device communications.

VI. CONCLUSION

In this paper we have described a different strategy

for the NLL evaluation with parallel execution, based on

a PDF-event parallelism. This strategy give a more fine-

grain parallelism with respect to a conventional event-based

parallel algorithm. We implement the PDF-event parallel

algorithm inside the RooFit package for a GPU device. The

performance of this implementation has been compared with

an optimized parallel OpenMP implementation on the CPU

of the event-based parallel algorithm.

We run the comparisons for different data analysis models

and number of events. The hardware at our disposal is based

on commodity systems, that can be considered, in terms of

price and power consumption, easily accessible to general

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

#!!!!" #!!!!!" #!!!!!!"

!
"
#
$%
&
'
(
)&
*
#
)+
*
,(
%
-#
./
)

0)#1#(-.)

*+,"-./"

0+,"-./"

Figure 7. Execution time of the CPU (blue line with square markers) and GPU (green line with triangle markers) implementations when executing the
NLL evaluation for a complex model as total PDF (see text for details), varying the number of events in the data sample. The CPU execution time is taken
running the application with 4 parallel threads (speed-up 3.6x).

data analysts. The CPU application is executed in parallel,

so that we can judge our tests a fair comparison between the

CPU and GPU implementations of the application. The boost

on execution time we reach with the GPU implementation

with respect to the CPU implementation depends on the

complexity of the data analysis model and the number of

events in the data sample. In a test with a complex real

model, we reach almost 6x speed-up. However, in case

of simpler models and small data sample dimensions, the

benefit in the performance from the GPU implementation

becomes less evident. Therefore it is not possible to draw a

general conclusion which can be applied in all data analyses.

The analysts can easily choose which algorithm to use

for their own data analysis in order to achieve the best

performance. The expected increase in the near future of

the data sample dimension and of the complexity of the data

analyses, that will carry out at the experiments running at

the Large Hadron Collider at CERN, leads to the conclusion

that the GPU implementation will play an important role.

For this reason we are collaborating with several groups in

the community to have a wide coverage on the analyses for

more specific tests, and we expect to officially release the

code in the next ROOT releases.

REFERENCES

[1] G. Kane and A. Pierce, Perspectives on LHC Physics, 1st ed.,
World Scientific Publishing Company, 2008.

[2] G. Cowan, Statistical Data Analysis, 1st ed., Oxford University
Press, 1998.

[3] J. Friedman, T. Hastie, and R. Tibshirani, The Elements of
Statistical Learning, 2nd ed., Springer, 2009.

[4] W. Verkerke and D. Kirkby, The RooFit Toolkit for data mod-
eling, proceedings of PHYSTAT05, Imperial College Press,
2006.

[5] R. Brun and F. Rademakers, ROOT An object oriented
data analysis framework, Nuclear Instruments and Methods
in Physics Research Section A, Volume 389, Issue 1-2, p. 81,
1997.

[6] A. Lazzaro and L. Moneta, MINUIT package parallelization
and applications using the RooFit package, J. Phys.: Conf. Ser.
219, 042044, 2010.

[7] F. Pratas et. al., Fine-grain Parallelism using Multi-core,
Cell/BE, and GPU System: Accelerating the Phylogenetic
Likelihood Function, 2009 International Conference on Parallel
Processing, pp. 9-17, 2009.

[8] L. Caucci et. al., Maximum Likelihood Event Estimation and
List-mode Image Reconstruction on GPU Hardware, 2009
Nuclear Science Symposium Conference, pp. 4072 - 4076,
2009.

[9] F. James, MINUIT - Function Minimization and Error Analysis,
CERN Program Library Long Writeup D506, 1972.

[10] W. C. Davidon, Variable Metric Method for Minimization,
SIAM J. Optim. Volume 1, Issue 1, p. 1, 1991.

[11] S. Jarp et. al., Parallelization of maximum likelihood fits
with OpenMP and CUDA, CERN-IT-2011-009, 2011, to be
published on Journal of Physics: Conference Series.

[12] B. Aubert et. al., Observation of CP Violation in B0 to η′K0

Decays, Phys. Rev. Lett. 98, 031801, 2007.

