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Abstract—In  this paper] we consider the k-set agreement within a round due to asynchrony (i.e., non-timelinesshea
problem in distributed message-passing systems using a md-  than solely due to failures. The seminal work by Santoro
based approach: Both synchrony of communication and failues 5,4 Wigmayer[[15],[[16] unified the treatment of asynchrony
are captured just by means of the messages that arrive within and failures by‘conshidering synchronous processes thgt onl
a round, resulting in round-by-round communication graphs . e X > )
that can be characterized by simple communication predicas. Suffer from “end-to-end communication failures”. This ade
We introduce the weak communication predicatePscs(k) and also underlies th&Round-by-Roundailure detector (RRFD)
show that it is tight for k-set agreement, in the following sense: approach by Gafni[10], which assumes a local RRFD that tells
We (i) prove that there is no algorithm for solving (k—1)-set \yhather a process shall wait for a round message from some
agreement in systems characterized bPsrs(k), and (if) present a other process or not. The actual reason why a receiver oces
novel distributed algorithm that achievesk-set agreement in runs P : y g ® -
where Ps.s(k) holds. Our algorithm uses local approximations of d0€s not get a message from the sender process is considered
the stable skeleton graph, which reflects the underlying pggetual irrelevant here. The Heard-Of (HO) model [3]J [4] integsate
synchrony of a run. We prove that this approximation is correct  thjs unified treatment of failures and asynchronylofi [155][1
in all runs, regardless of the_ communication predicate, andshow with a flexible way of describing guarantees about commu-
Lhat gr?jph-thelor;cnc properties of FP,; st?’lzl)ehsligleton grah can i ation. The basic entity of this model are communication-

e used to solvek-set agreement i olds. . . ' _ >

e closed rounds and HO predicates, which specify conditions o

I. INTRODUCTION the collection of heard-of sets: For each roundnd process

The quest of finding minimal synchrony requirements fd¢» #O(p,) denotes the set of processes thdtears of (i.e.,
circumventing the impossibility of distributed agreemprab- "€ceives a message from) in round
lems like consensus|[9] has always been a very active rdsearc
topic in distributed computing. Since the exact solvapilit In this paper, we will use properties of communication
border of consensus has been researched exhaustivelygseegraphs for studyingk-set agreement in message passing
[2], [6], [12], the attention has shifted to weaker agreemensystems with very weak synchrony requirements.khset
problems, in particulark-set agreemenit [1].[11]. [14], which agreement, correct processes must output a single valed bas
allows the processes in a distributed system to agree onsit nan values proposed locally, with no more th&ndifferent
k different values. Fok > 1, the problem itself is possibly values being output system-wide.
not as interesting as consensis={ 1) from a practical point
of view, except for partitionable systems that need to reach . o ] )
consensus in every partition. In any cakeset agreement is Detailed contnbgUons:W(_e introduce an algorithm for
highly relevant from a theoretical perspective, as it aflw  ~-S€t agreement, WhICh expl0|ts a natural corresponden_ce be
study what level of agreement can be achieved in a faulfY8€n communication predicates and round-by-round “ymel
tolerant distributed system. This question is definitelgvant COMMunication” graphgj” in a run; " contains an edge
in practice, e.g., for name-space reduction (renaming) af — P) when processp hears of ¢ in round r. Our
similar problems. algorithm incorporates a generic method for approximating
One way to model synchrony requirements is through ti{e stable skeletorj"'>, which is the intersection of alf”
use of round models. Round-based distributed algorithi@8d reflects the underlying perpetual synchrony of a run. We
execute in a sequence of communication-closed roundshwhfSo introduce the class of communication predic@es(),
consist of message exchanges and processing steps. YWHISh guarantees that at least two processes in every sobset
classic partially synchronous models of Dwork et. al. [76le processes hear from a common process, in every round.

were probably the first to allow some messages not to arrii$ing the graph-theoretic properties Gf' > guaranteed by
the predicatePq{ k), we show that our algorithm solveés
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Il. COMPUTING MODEL AND PROBLEM DEFINITION processes, it follows that the number of possible distitadile

We consider distributed computations of a set of processd¢letons must also be finite. Consequently, the subgraph
II communicating by message passing. Moreover, we consifperty 1) implies that there is some roung wheng" >
that the computation is organized in an infinite sequence legsstabilized i.e., Vr > rer: g7 = G,
communication-closed[8] rounds; that is, any messageisent AS mentioned in the introduction, our algorithm will solve
a round can be received only in that round. As in the moddisSet agreement by approximating the stable skeleton of a
of Gafni[L0] and Charron-Bost and Schipérl [4], we wilfun. The first step in this effort is to use the locally avail-
express assumptions about the synchrony and the reladilit able information about the communication graph, which is
communication in a system by a predicate that characteri#@ptured by the notion of timely neighbourhoods. Tineely
the set of edges in the communication graph of each rourighborhood op, denoted a$>T'(p, r), is the set of processes
Intuitively speaking, there is an edge from proces® ¢ in that proces® has perceived agerpetually timelyuntil round
the communication graph of roundis ¢ receivedp's roundr - In other words,p has received a message from every
message. We will in fact name a system by its predicate, tH4Pcess inPT(p,r) in every round up to and including,
is, in a systemP the collections of communication graphd-€- P7(p,7) == {¢| (¢ —p) € G""}. Analogously to [(1)
of each run of an algorithm in that system will must fulfiliand [2), we have
predicateP.

. . . PT(p,r) 2 PT(p,7+1) )
We now formally define computations in our round model.
As in the aforementioned models, an algorithm is composggd define
of two functions: The sending function determines, for each
procesg and round- > 0, the messagg broadcasts in round PT(p) := ﬂ PT(p,r). 4)
r based on the’s state at the beginning of round The >0

transition function determines, for eagtand roundr and the We will make heavy use of the standard graph-theoretic

vector of messages receivedrinthe state at the end of roundgtion of astrongly connected componeoit G"". Note that

r, 1.e., at the beginning of round+ 1. Clearly, arun of an \ye implicitly assume that strongly connected components

algorithm is completely determined by thg |n|fual statedhd 4.0 always nonempty and maximal. We use the superscript

processes and the sequence of communication graphs.  npotationc when talking about atrongly connected compo-
For each round,, we denote theommunication grapiy ant ofG"". Moreover, we writeC?, to denote the (unique)

g" = (V,E"), where each node of the sét is associated grongly connected component@f'” that contains process
with one process fronil, and whereE" is the set of directed ;, \oundr. The strongly connected componefjf C G"

timely edgegor roundr. There is an edge fromto ¢, denoted ,5¢ containg in a run is defined analogously @l (2) as
as (p — q), if and only if ¢ receivesp’s round » message

(in roundr)@ To simplify the presentation, we will denote a C,C = ﬂ Cpe

process and the associated node in the communication graph >0

by the same symbols. However, as we differentiate betweenyote that wherp and ¢ are strongly connected i@™", then
andII, we will always be able to resolve possible ambiguitiegey are also strongly connected in 0", for 0 < ' < r.
by stating from which set a node or process is taken. We Withom property[(ll) 05" ", we immediately have

write p € G" and (p — ¢) € G instead ofp € V resp.

(p—q) €E". vr>0:Cy 2 Crt (5)
We are primarily interested in the roumdskeletong™ " of
G", which we define as the subgraph consisting of the ed

that have been timely in all rounds up to roundrFormally,
G = (V,E"") where E"" := (y_,.c, E". The crucial
property of E7" is that once an edge is untimely in som
roundr, it cannot be ing""’, for any+’ > r. That is,Vr >

We will also usedirected pathsn G™'", where we assume that
Pnodes on a path are distinct.
Let C" C G"" be a strongly connected componentClf
has no incoming edges from agye G"'" \ C", we sayC" is
% root component in round. Formally,

0: EN" D EN"+1 which implies the subgraph relation Vpel ' VgeG"":(q — p)eGm=qeC.
vr>0:G"" 2 gnrtL (1)  Figure[Ib shows a graph withroot component$ps, pa, ps}
We are particularly interested in tiséable skeleton of a ryn and{p1,p2}.
which we define as the intersectbaver all rounds, i.e., Regarding the relation to the existing round-by-round mod-
Aoo . Ar els, we shortly recall what their predicates are based on: In
GN> = ey 677 )

the Heard-Of model]4], for each roundand each procegs
Considering that a ruma consists of infinitely many rounds, the setHO(p,r) contains those processes thpahears from,
whereas our system consists of only a finite number pé., receives a message from, in roundn the case of the
2Since we consider communication-closed rounds, a messagénsround Round-by-Round I.:aU|t Detectois LlO], the outpu'gobn‘ fault
» cannot be received in any later round. detector in round is referred to byD(p,r). In each round,
3For simplicity, we selG NG’ == (VNV/,ENE'). procesg waits until it receives a message from every process



that is not contained i (p, r). While it is possible thap also k£ + 1 nodes contains distinct nodesand ¢, such that, for
receives a round message from a processin(p, r), we will some node, edgesp — ¢) and(p — ¢’) exist (one of which
consider that this is never the case. From this it is evideait t may be a self-loop). FigufeLb shows the stable skeletorhgrap
we have the following correspondence between our skeletona run wherePgs{ k) holds fork = 3.

graphs and the HO/RbR model: At a first glance, it might appear that the perpetual nature
. Vr' <r:pe HO(q, 1) of Psie(k) is an unnecessarily strong restriction. To see why
p—q ek = / ) ) (6) some (possibly weak) perpetual synchrony is necessary, con
Vr' <r:p g D(q,7") ) ) o )
T _ sider the predicat®Psrc{ k) that satisfies[(8) just eventually,
Thus a process can determine its timely neighbourhooddnd suppose that there is an algorithn that solvesk-
the two models as follows: set agreement in systeiPscdk). Due to its “eventual”
Nowrrer HO(p, 1) nature 0 Psicd k) allows runs whereveryprocess forms a root
PT(p,7) = O<rsr , (7) component by itself, i.e., hears from no other process, for a
I\ Uo<r'<r D(p,r )) finite number of rounds. Moreover, for akythe (infinite) run,

As in the HO-model, we model a crashed processes Were asingle process forms a root component_fo_rever ar_ld
an “internally correct” process that no other process wei thu§ has 'Fo Qeqde on |ts_ own input valu.e,_ is admissible. gJsin
messages from after it has crash&dl [4, Sec. 2.2]. This m&qSimple indistinguishability argument, it is easy to shbatt
elling allows us to require that all processes decide. ForPsocesses decide ondifferent values. _ _
more detailed discussion on the relation between modelsavhe The following result will be instrumental in Sectidn IV,

crashed processes actually stop and the HO-model, we réfiere we show how to solve-set agreement wittPsred k).
to [13]. Note that Theoreni]l is independent of the algorithm em-

ployed.
A. k-Set Agreement Theorem 1:There are at mosk root components in any
The k-set agreemenproblem was introduced in[5]. Every run that is admissible in systeMcd k).
processp starts with a proposal value and must eventually

. . . Proof: Assume by contradiction that there is a rarof
and irrevocably decide on some value adhering to the follow- . ’ o
. S some algorithmA that is admissible in systefs.{k), where
ing three constraints:

_ ) . there is a set of > k + 1 disjoint root component®2 =
k-Agreement: Processes must decide on at rhabtferent {Coo Co?} containing processes, . . ., pr1, . - . pe. Let

s Cp
values. r be the round where every strongly connected root component

Validity: If a process decides on, thenv was pro- coo ¢ p hag stabilized, i.ei: C,, = C;°. That is, any two

Di i i
~ Pposed by some process. _ distinct root components it must already be disjoint from
Termination: Every process must eventually decide.

roundr on. Sincex satisfiesPsck) and?¢ > k+1, there must
Note that the:-set agreement problem was shown to be II'Tb'e a 2-source such that, for two distinct processes p; €

possible in the asynchronous system model (seel[1], [14]) [1 {p1,...,prs1}, itholds thatp € (PT(p;) N PT(p;)) . By (6),

if f > k processes can crash. Recalling the correspondeia®|lows that the edges; = (p — p;) ande; = (p — p;) are

between crashed processes and process that no one heaig gf) . Considering thaC’; andC}, are root components by

it is not surprising that this impossibility also holds fdret assumption, i.e., do not have incoming edges, it must be that

systemPye :: TRUE, whereall runs are admissible. e; € Cr ande; € Ch , and thereforg € C7 N C} . This,

however, contradicts the fact that) and Cy, are Jdisjoint,

Il. ATIGHT COMMUNICATION PREDICATE FOREK-SET .
which completes our proof. ]

AGREEMENT

In this section, we introduce a predicate that, togethe wily - |mpossibility of(k—1)-Set Agreement
Algorithm [I in Section[1V, is sufficient for solving:-set _
agreement. We will now show thatPsqk) doesnot allow to solve
For a runa, predicatePscqk) requires that in every sef (k—l)—set_agreemer_n. More specifically, we will prove this
of k + 1 processes, there are two procesgeg that receive PY @ssuming the existence of such an algorithmand then
timely messages from the same common progesa every construct a run fuIﬁII_mgPsrcs(k) where processes decide on
round. We say that is a2-sourceandg, ¢’ aretimely receivers F (instead ofk — 1) different values.
of p in a. Theorem 2:Consider anyk such thatl < k£ < n. There

Pacp,S) = Ja.q' € S.q £ ¢+ p € (PT(g) N PT(q)) ;isrrlzka;lgorithmA that solves(k—1)-set agreement in system
Poredk) 2 VS, 15| =k +1 3p € IL: Parclp, 5) ® Proof: Assume for the sake of a contradiction that such

Note thatp is not required to be distinct fromg and ¢’: an algorithmA exists. Suppose that all processes start with

Psred k) still holds if p = ¢, i.e., p always perceives itself pairwise distinct input values. Consider the rurand a fixed

in a timely fashion. Regarding communication graphs, thiet L of £ — 1 processes that only hear from themselves,

predicate ensures that any induced sub-grgigf G > with  formally speakingvp € L: PT(p) = {p}. Moreover, there



is one process such that every process not inonly hears Algorithm 1 Approximating the stable skeleton graph and
from itself ands, i.e., solving k-set agreement wittPsrcs(k)

Variables and Initialization:
Vp € I\ L: PT(p) = {p, s}. i PT, € 2% initially 1T
. - S 2. Tp € N initially v, / Estimated decision value
Since, byvalidity andtermination processes eventually have | . ._ (V,, E,) initially ({p},0) I weighted digraph
4z

. . . p

to decide on some input value and processesli{ s} cannot decided, € {0,1} initially 0 / is 1 iff p has decided
learn any other process’ input value, they have to decide on 4 ding functionS™
their own value. Thus, we havedifferent decision values, as ?c:i”er;id& sinl'?r?e#mt'onsp'
we have assgme_d a unique input value for each process, and send(dgcidq 2y, G,p) 1o all processes
therefore a violation of k—1)-agreement 2. else

What remains to be shown is that this raractually fulfills - send(prop,z,, Gy) to all processes
Psrcs(_k). Recall equa‘uon[]S), i.e., the definition B%cs _and Round r: transition function:
consider for any sef of sizek + 1 the setP = S\ L. Since updatePT,,
IS\ L| > 2, the setP contains at least two distinct processes.. if received (decide,z,,_) from ¢ € PT, and decided, = 0
that permanently hear from (one of which may be). That then
is, processs is the required2-source for any sef of k +1 1+ Zp < g

12; decide onx),
processes. B decided, — 1

IV. APPROXIMATING THE STABLE SKELETON GRAPH AND .. J Approximate stable skeleton graph:
SOLVING k-SET AGREEMENT s Gy ({p},0)

. . . 16, fOr qec PTp do
In this section, we present and analyze an algorithm that add directed edgég - p) to E,

solvesk-set agreement with predicaf k). Algorithm [1 1; V, « V, UV,
employs a generic approximation of the stable skeletontgrap.. for every pair of nodegp;, p;) € V, x V, do

of the run, which works as follows: 20 Rij {re|3q € PTy: (pi % pj) € By}
First, every procesp keeps track of the processes it has::  if Ri; # 0 then
perceived as timely until round in the setPT),, updated in *: Tmax < max(Ri ;)

Line[d. Lemmd B will show thaPT}, satisfies the definition of . L;” T E",_L; {(pif mzé’j)}h _

PT(p,r), for all roundsr. In addition, every processlocally d:zgg:d;l ;P;) frozr)ri)vr??p o ﬂvnrifcﬁa5|g 1;07;@,- o
maintains an approximation gragh, of the stable skeleton, ' ? ' !
denotedG, for roundr, which is broadcast in every round.zs: if decided, :{0 tfllen )

If a process; receives such a graphi; from some procesg *:  Tr <" MURTq [ € PTh

in its timely neighborhoodPT (¢, r), it adds the information ** ifr 2 n and G, is strongly connectethen

. ; . o decide onz
contained in), to its own local approximatiot;. Note that, ;: decided, o1

o

p
in contrast to the stable skeleton gra@h”, the approximation

graph G, is actually aweighteddirected graph. The edge ) ) _ )

labels ofG,, correspond to the round number when a particul@lues, it follows that their approximated graphs in thenas
edge was added by some process, i.e., the éggé ¢) is in of the|r respective decision are disjoint. Smce_ Theofedm 1
G, if, and only if, ¢’ € PT(q,r) (cf. LemmaB(b)). To prevent confirms that there are at molstroot_ components in any run
outdated information from remaining in the approximation€réPscs(k) holds, there can be in fact at mastdifferent
graph permanently, every procgspurges all edges i} that decision values.

were initially added more tham—1 rounds ago. Figuréslicilh

show this approximation mechanism at work. A. Approximation of the Stable Skeleton Graph

For k-set agreement, procegs only considers proposal  Throughout our analysis, we denote the value of variable
values for its estimated decision valug that were sent by , ... of proces at the end of round asvar”. When we use
processes in its currer_1t timely neighborhood3 i.ePif,. Th_is_ the subgraph relatiofC) between graphg; aﬁ)’ldG;, we mean
ensures thap andg will have a common estimated decisione standard subgraph relation betwégrand theunweighted

value z, = x, in roundn, if they are in the same stronglyersjon of Gj. We first state some obvious facts that follow
connected component (cf. Lemina 14). To determine Whe”dﬁectly from the code of the algorithm:

terminate,p analyzes its approximation graph in every round ] ] .
r > n and decides if5, is a strongly connected graph. Observation 1:For any round- > 0 it holds thatp € G,

Why is this decision safe with respect to the agreemefgd that no edgeg’ = q) € G, hass <7 —n.
property? Using our graph approximation results, we withgh ~ Note that, after the initial assignmenp, only updates
in Lemmé&_ b that any strongly connected approximation graphbriable P7,, in Line [9, which is equivalent to[{7). From
contains at least one root component in the stable skelethis and the inspection of Linés]15 and 17, Lenirha 3 follows
graph. Furthermore, if two processes decide on differeimimediately:



(b) gnoo

M G

@) Gj

() G,

Fig. 1: A system of processes wherBgc{3) holds. The stable skeleton graph for rouhi$ depicted in FigureZ1a; 1b shows
the stable skeleton graph for the entire run. For simplicitg omit self-loops, i.e.¥p;: p; € PT(p;). Figures_1-Ih show

processpg’s approximation ofG™ > during roundsl to 6.

Lemma 3:It holds thatq € PT(p,r) if, and only if, all of
the following are true:
(@) q € PT},
(b) p adds a directed edge— p to G, by executing Ling 117
in roundr, and
(c) for anyr’ # r, there is no other edg@—>p in G},

By the induction hypothesis, the edge~ p:) is in G}, "
and therefore will be among the edges that ;1) considers

in Line[20. This in turn implies that; ; (1) wiII add an edge
q "= py to its graphGy ST in Line [23, wherebyry

D1+ (k+1)
is calculated in Lind 22 such that,; > ry. Moreover, by

induction hypothesis we have, > r — ¢ > r — n, which

The following lemma shows that the apprOX|mat|on grap@nsures that the edge will not be discarded in Line 24. Since

G

Pet1

accurately reflects the timely neighborhood of a procesgbe code following the for-loop in LmEl9 is executed exactl

That is, if p; is connected tgy; through a path of length once for every edge, no other edge’> p, is added to

¢, thenp,1 will add the timely neighborhood information of g7 —“+ (k+1)

p; to its approximated graph by rourfd
Lemma 4:Suppose that there exists a directed path

I'= (p1 —)...—)pg+1)
in G"" for roundr > n, wherel has lengtlY < n —1. Then,
Vg € PT(p1,r — ¢) it holds that
(a) edge(q E&pl) isin G}, wherer >r, >r -/, and

(b) G},., contains no other edges fromto p;.

Proof: Consider an arbitrary € PT(py,r—¢). The proof
proceeds by induction over the edges of patimdexed byk.
That is, we show that for alt, with 0 < k£ < ¢, it holds that
there is an edge = (¢ 25 p1) in Gtk wherer — 0+ k >
re =r—4.

For the base cas& & 0), we have to show that the edge
is in G, ~¢, but this already follows frony € PT (p1,r — ¢),
by LemmaCB

For the induction step, we assume that the statement hoﬂ%

for somek < ¢ and then show that it holds fdr+ 1 as well.

In roundr — ¢ + (k + 1) processp; 4, broadcasts its current

graph estimate, i.e¢/; ‘** to all. We know thatp, 4 (1)
will receive this message Sind@1 4+ — P1yk41)) 1S in the
pathT" C G"", which means that

pi+k € PT(p1y(ky1),r — 4+ (kK +1)).

+xs1 - This completes the proof our lemma. ]

The next lemma shows that the approximation graph of
correctly (over)estimates the strongly connected compbbne
from roundn on:

Lemma 5:Let » > n and consider the strongly connected
component; containingp in G"". Then, it holds thatz; O
Cp

Proof: Consider any edgéq’ — ¢) € C;. SinceC, is
strongly connected there is a directed path between anyppai
processes i@’, in particular there is a path of lengfh< n—1
from ¢ to p. By the definition ofC; we know thatg always
perceives;’ as timely in all rounds up to round which means
that¢’ € PT(q,r — ). Then, by applying Lemm@l 4, we get
that the edgé€q’ L> q) is in G}, for somer’ > r — {, which
shows that; is a subgraph ot;. [ ]
Lemmd 3 showed that the timely neighborhood is eventually
the approximated graph. We now show that our approxima-
T contains only valid information:

Lemma 6:Let » > 1 and suppose that there is an edge
= (¢" > ¢) in the approximated stable skeleton gra@h
of processp. Then it holds that’ € PT(q, s).

Proof: Note that processes only add edges to their ap-
proximation graphs in Lin€_17 or in Line_R3. If an edge is
added via Lind_23, then this edge has previously been added



by another process by executing Lihel 17. Therefore, eveByt then, by the definition of", it follows that Whent
edge must have been added by some process via[Line 17cdntainsp; —which it does—then it must also contaip),
case of, this process can only ke By Lemmd3 this happensunless some process (: < j) removede from its set of
in rounds andq’ € PT(q, s). B edges in liné24 in roun® — i because’ < R—i—n. Since
The following LemmdT is in some sense the converse restdund R at proces®(= py) is the latest round when this can
of Lemmal[5, as it states that the approximated graph mustcur, we get that’ < R — n, and thus, by[{9),

approachC; from below, if it is strongly connected:

i R—j—k<r<R-n,ie,j+k>n. (10)
Lemma 7:Let r > 1 and consider the strongly connected ) )
component. If the approximated skeleton graﬂjﬁ*nfl is Let A be the subg_raph obtained by concatenating pBths
strongly connected, theg, > G7tn1, andT';. By constructionI'; andI” only share node;, and
Proof: Consider any eagep thusA is a (simple) path and must have lengthk < n—1, as
) no path can exceed length-1. This contradictd(10) and thus
e=(qd = q) @ completes the proof that is in G[. The proof showing that
o0 i R i
By Lemmal®, we know that’ € PT(q,r’). It follows by ?r::(i%?nseogé jrigifj iﬁ d?rzoﬁieéfsa:g:?g(gjgly’ by assu;nlng
the subset property](3) that € PT(q,r), as Observatioh] 1 ge 1t g1nq P
implies B. k-Set Agreement
> (r+n—-1)-n=r-1 In this section, we will show that Algorithr] 1 not only

Therefore, there is an edde’ — ¢) in """ approximates the stable skeleton graph, but also sdiveet
It follows that G**+"~1 is isomorphic to a (not necessari|yagreement. Our previous results allow us to immediatelygro
p

maximal) strongly connected compongiitin G77. Because the validity and the termination properties.

Cr andS™ both containp, their intersection is nonempty, i.e., Lemma 9 (Validity):If a process decides on thenv was
cr o Grin—1, m the initial value of some process.

p p ) >
As a final result about the approximated skeleton graph, we - 100f: Observe that the decision valug of any procesp
show that once the approximatic, is strongly connected in is initially set to its proposal value,, which is then broadcast.

roundr > n, it is closed w.r.t. strongly connected component©" &ll subsequent updates of in Line [27, a valuer, that
This means that, can be partitioned into disjoint strongly V&S Sent by some proceggwhich originated from some)

connected components . is assigned, therefonealidity holds. ]
Theorem 8:Suppose thatR > n. If the approximated

Lemma 10:Every process decides at most once in any run.
skeleton grathf is strongly connected, then it contains the Proof: Observe that no process executes 29 and
strongly connected componetij° of everyq € Gf.

Line[12 in the same run. This is guaranteed by the fact that
_ . R ) proces® cannot pass the if-conditions in Lihel10 or in LIn€ 26
Proof: Consider any; € G, and its strongly connected i gecided, is set tol, which happens wheneverdecides.
component:°. From [5) and LemmA]7 it follows that -
g€ G}z}e C C;%—n-ﬁ-l C Czl), Lemma 11 (Termination)Every process decides exactly
once.
i.e., ¢ € C) NC,. Moreover, due to the well-known fact that  proof: LemmalT0 shows that every process decides at
two maximal strongly connected components in a digraph ast once. We will now show that every process decides at
either disjoint or equivalent, we get thé} = C}. least once. First, we will show that there is a root component
Now suppose the theorem does not hold. Then there eXig{Severy round. Consider the strongly connected components
someq’ € C;° such thay’ ¢ G . Due to Lemm&lsq’ cannot  that partition the set of nodes of the stable skeleton géiph
be contained i, but due to[(b)g’ € C)* O C°. Therefore, in some round-. Such a set always exists, since the strongly
clt # CJt, and thusCff N ¢l = 0. Since G,} is strongly connected components form equivalence classes of nodes. It
connected and contaims it also contains a path is well known that the contraction of the strongly connected
components is a directed acyclic graph, which reveals that
there is at least one nodE in the contracted graph that has
such that no incoming edges. Clearly;” satisfies the definition of a
. ) ) . root component inG"". Therefore, there is a nonempty set
Vi, 0< i< Lipivy € PT(pi, R —1). R" of strgngly connected components all of which grg root
Let j be the minimal indexi such thatp; € CF, and let components in round.
I'; = (p; — -+ — po) be the path remaining from,. Let » > 1 be the earliest round whet'" is stable for at
As bothq’ andp; are inCE, there is a pathi” in CF. Let leastn — 1 rounds, i.e.Vr’ € [r,r +n —1]: g7 = g7,
k be the length of this path. Moreover, by applying Lenitha 4ote that property({1) implies thatexists. Now, consider any
we get thatGg,—j contains the outgoing edgeof ¢’ on this root componenR” € R": Clearly, since every process is in
path, labeled with some round exactly one strongly connected component, we have

" >R—j—k. 9) VpeR":Cp=R =Rt =/t (11)

F'=(g=pe— - —po=0n),



We will now show that the approximated skeleton graph of Proof: First, observe that due to Lemrhal 13 and the fact
such a proces® is in fact exactly the strongly connectedhat no process can pass the check in 28 before round
component op. Consider any € R" (= C;’“"—l). First, since no process can decide before roundTherefore, processes
(r+n—1) > n, Lemmdb and(11) imply thak” C G;f”*l. can update their estimate values until at least round

We will now show thatR™ D G7+"~1, which proves that these  Suppose that there are procesgsg < C,, such thatr) #
graphs are equal: Sing&, ™"~ is connected by construction,z7. In particular we assume without loss of generality, that

it is sufficient to show that every edged}"g’“"—1 isalsoinR”. is minimal among all round: estimation values of processes
Assume in contradiction that there is an edge: (¢ = ¢) " Cpr -8 27 > . .

in Gr+7=1 such thatg € R” but ¢’ ¢ R"; note that the Let v, be the round wherg first setsz, to the value

other way round f € R” but ¢ ¢ R") is impossible by Zq- BY Observatior R it follows that; does not update:,
construction. Using Lemmid 6 we know thgte PT(q,+/), 2anymore before round. Since Algorithnl satisfiesalidity
and Observatiofil1 implies that > (r +n—1) —n =r—1, (Lemma[9), we know that there is some procesthat is
.., > r. Then, by definition, we have thate g7, i.e. the source of this value, i.es, initially proposedz;. By the
¢ is an incoming edge oR’", contradicting the assumptionc0de of the algorithm we know that in rouncprocess only
that R" is a root component. We can therefore conclude thg@nSiders values in Ling P7 that were sent by some process

Rr — qrn—1 in PT(p,r). This implies that there is a sequence of pairwise
p : ot _ _
By assumptionR” is a root component, which tells us thaflistinct processes = i, ..., q¢ = ¢, such that
Gyt~ is strongly connected, i.ep,will pass the if-condition Vi,(1<i<0):q € PT(qit1,9). (12)

in Line[28 in roundr+n—1 and decide. Recall the contracted
stable skeleton graph of round+ n — 1. Since every path in Clearly,r, = ¢ —1. Let j < ¢ be such thay; € C; andj is
this graph is rooted at some node corresponding to a résinimal, letT’, be the path ing" " induced by the sequence
component in the seR”. Thus, all processes that are not irf UP t0 ¢;. Moreover, sincey; € Cp, there is a patii’, in C))
a root component will receive a decision message by roufi@m ¢; to p. SinceC;) € G"', T, is a path inG™ " as well.
r+2n — 1 and also decide, which completes our proofm  LetT be the path irG" ! obtained by appending, to T';. By

In the remainder of this section we will prove that Algoconstructionl is simplg, 5a_nd therefore its length is bounded
rithm [ satisfies the:-agreementproperty. We will start out PY7—1. Moreover, the initial value of was propagated along

with some basic invariants on decision estimates. this path —ovel’, by construction and ovdr,, because;; is
minimal inC;;. This leads to procegsassigning this value to

xp in some round, < n—1, which contradicts the assumption
thatz) > zj. [ |

Lemma 12:If processp does not decide in Line 12, we | emma 15 k-Agreement):Processes decide on at mdst
have thatvr > n —1: ), =z, distinct values.

Proof: Suppose that there is an> n —1 such thap sets Proof: For the sake of a contradiction, assume that there is
:c;“ < x4 andx}, # x,. This can only occur in Line 27, if the a set of¢ > k processesD = {pi,...,p¢} in a runa where
process does not decide in Linel 12. From Observailon 2 apddecides onw® = 7 B in roundr; > n and Vpi,p; €
validity (cf. Lemma[®), we know thap did not previously pD: xp? # wp°. By virtue of Lemmd 1B, we can assume that
receivex, and thatz, is the initial value of some distinct everyp; has decided by executing Liie]29. Considering that

processq. Since processes forward their estimated decisi@ process decides before roundapplying Lemm&l2 yields
value in every round[{3) implies that the shortest path frothat

Observation 2 (Monotonicity)in any run of Algorithm[L
it holds thatvr > 0: 25 > a7t

q to p (along whichz, has been propagated tj in ™" ! Vr > n Vpi,p; € Dral #al . (13)
has lengthr + 1. However, this is impossible as+1 > n o ' ! N
and the longest possible path has length 1. m Note that the approximated skeleton graglfg andG,; are

strongly connected in roung; resp.r;, otherwise the pro-

roundr by executing lindT2. Then some process: p has cesses (_:oqld not have passed .the if—condi.tign before[Lihe 29

decided ) dr’ .b ting Lind 29 p We will first show that the different decision values f
ecided onwy In roundr < 7 Dy €xecuting Lin ' _andp; imply that their approximated skeleton graphs in rounds

_ Proof: Every process decides either in Libel 29 or in. resp.r; are disjoint. Lemma&]7 reveals that these skeleton
!_lnelﬂ, but not bqth (LemrrlE_ILO). Sinpedecided in Lin¢ I2 graphs are contained within the respective strongly caedec
it must have received &lecide, z,,_) message from SOMe .y mnonents of an earlier round, i.e.

distinct processg. If ¢ decided in Line[29 we are done;

otherwiseq decided in Lind IR in round — 1, we can repeat Cpim"™ D Gy andCy Tt D G

the same argument far. After at mostn — 1 iterations, we

arrive at some process that must have decided using[Line
[ |

Lemma 14:Let C;L be the Strongly connected component of 4Note thatzp° denotesp’s final “estimate”, i.e., the actual decision value

procesg in roundn. Then, it holds thatq € C,: =7y = x;.  of processp.

Lemma 13:Suppose that some procgsslecides on,, in

9these strongly connected components pf and p; are
isjoint, then so are the approximated skeleton graphs and



we are done. Therefore, assume in contradiction that

I=cpimmtineytt 2.

and proved that using this approximation one can sdlve
set agreement in a system that guaranfegs(k). Note that
the algorithm actually solves consensus in sufficientlylwel

We will now prove that one of these components contaif¢haved runs.

the other. Without loss of generality, suppose tha£ r; and
consider any node € I C C,; """, Clearly, p is strongly
connected to every node ifi,’
subgraph of’;’ " in the skeleton grapt”"~"*1. By the
subgraph property {5) and sineg < r;, it follows that Z =
cy 7" and henceZ NCi~"*! # (. By the fact thap € I,
we know thatp € C[,;j*”“. That is, in the skeleton graph
Gri—ntl processp is strongly connected to all nodes in
C;;“"“ and Z. But since the strongly connected compone
Cri~m+! is maximal, we actually have

C;z n+1 2 Z = C;j n+1, [1]
which means thap, € C;;j—”“. Then, Lemmd_14 readily
implies thatvq € C;;_‘*"“ it holds thatzy, = z7 and, in
particular,zy, = Ty which contradicts[(13). We can there- [2]
fore conclude that the intersection of the strongly coneect
components, and therefore, by Leminia 7, also the interssecti&s]
of G and Gy is indeed empty, i.e.,

Vpi,p; € D: (G NGY) = 0. (14) @

By Theoreni 8 it follows that each of the strongly connected
approximated skeleton grapt: can be partitioned into a set 5]
D; of strongly connected componentsghn °°. By Theorenflll, [6]
at mostk of the setsD; can contain a root component. Note
that [14) implies that no strongly connected component i
in two distinct setsD;, D;. For the sake of a contradiction,
assume that (w.l.0.g.) the sé&t, corresponding ta77¢ does [8]
not contain a root component. Now consider the contracted
graph of G"> where the nodes are the strongly connectegb]
components. Since the contracted graph is acyclic, itvialo
that there exists a pafhi in the (non-contracted) graghi" > [10]
that ends at procegsy € Dy, and is rooted at some process
q € Cg° whereCg° is a root component and thus by assumption
not in D,. However, by the subgraph properfy (1), we knovM1
that the pati” is also inG™ ™. But then Lemm@&l4 implies that
q € G, and Theorernl8 shows thé;;>O € Dy, i.e., one of the
components inD, in factis a root component. This provides[lz]
the required contradiction. [ ]

Theorem 16:Algorithm[d solvesk-set agreement in system
Psrcs(k)-

Proof: Lemma[1b impliesk-agreement Terminationis
guaranteed by Lemmalll and Lempla 9 shows waditlity
holds. [ |

[13]

[14]
V. DiscussiON ANDFUTURE WORK [15]
We have introduced the notion of communication graphs
and presented an algorithm that approximates the stablie-skes)
ton of a run. The algorithm is based on exchanging local
approximations of the stable skeleton, hence has a wosst-ca
message bit complexity that is polynomially in We have
also introduced a class of communication predicégsy(k)

The one-to-one correspondence between the (at rhostt
components of the stable skeleton graph and distinct decisi
—n+1 | ot Z be the induced values shows that Fhese communi_cation graphs are a pramisin
new tool for studying the underlying synchrony in a system.
Since our algorithm yields a correct approximation atop of
any communication predicate, part of our future work will
be devoted to finding a graph-theoretic characterizaticthef
weakest synchrony requirements for different agreementi-pr
rI]?ms and further exploring the duality between communacati
predicates and graph-theoretic properties.
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