
ar
X

iv
:1

10
2.

44
23

v1
 [

cs
.D

C
]

22
 F

eb
 2

01
1

Solving k-Set Agreement with
Stable Skeleton Graphs

Martin Biely∗, Peter Robinson‡, and Ulrich Schmid†

∗ EPFL, Switzerland,biely@ecs.tuwien.ac.at
† ECS Group, Technische Universität Wien, Austria,s@ecs.tuwien.ac.at

‡ Division of Mathematical Sciences, Nanyang TechnologicalUniversity, Singapore,peter.robinson@ntu.edu.sg

Abstract—In this paper1 we consider the k-set agreement
problem in distributed message-passing systems using a round-
based approach: Both synchrony of communication and failures
are captured just by means of the messages that arrive within
a round, resulting in round-by-round communication graphs
that can be characterized by simple communication predicates.
We introduce the weak communication predicatePsrcs(k) and
show that it is tight for k-set agreement, in the following sense:
We (i) prove that there is no algorithm for solving (k−1)-set
agreement in systems characterized byPsrcs(k), and (ii) present a
novel distributed algorithm that achievesk-set agreement in runs
wherePsrcs(k) holds. Our algorithm uses local approximations of
the stable skeleton graph, which reflects the underlying perpetual
synchrony of a run. We prove that this approximation is correct
in all runs, regardless of the communication predicate, andshow
that graph-theoretic properties of the stable skeleton graph can
be used to solvek-set agreement ifPsrcs(k) holds.

I. I NTRODUCTION

The quest of finding minimal synchrony requirements for
circumventing the impossibility of distributed agreementprob-
lems like consensus [9] has always been a very active research
topic in distributed computing. Since the exact solvability
border of consensus has been researched exhaustively, see e.g.,
[2], [6], [12], the attention has shifted to weaker agreement
problems, in particular,k-set agreement [1], [11], [14], which
allows the processes in a distributed system to agree on at most
k different values. Fork > 1, the problem itself is possibly
not as interesting as consensus (k = 1) from a practical point
of view, except for partitionable systems that need to reach
consensus in every partition. In any case,k-set agreement is
highly relevant from a theoretical perspective, as it allows to
study what level of agreement can be achieved in a fault-
tolerant distributed system. This question is definitely relevant
in practice, e.g., for name-space reduction (renaming) and
similar problems.

One way to model synchrony requirements is through the
use of round models. Round-based distributed algorithms
execute in a sequence of communication-closed rounds, which
consist of message exchanges and processing steps. The
classic partially synchronous models of Dwork et. al. [7]
were probably the first to allow some messages not to arrive

1Peter Robinson has been supported by the Austrian Science
Foundation (FWF) project P20529 and Nanyang Technological
University grant M58110000.

within a round due to asynchrony (i.e., non-timeliness), rather
than solely due to failures. The seminal work by Santoro
and Widmayer [15], [16] unified the treatment of asynchrony
and failures by considering synchronous processes that only
suffer from “end-to-end communication failures”. This idea
also underlies theRound-by-Roundfailure detector (RRFD)
approach by Gafni [10], which assumes a local RRFD that tells
whether a process shall wait for a round message from some
other process or not. The actual reason why a receiver process
does not get a message from the sender process is considered
irrelevant here. The Heard-Of (HO) model [3], [4] integrates
this unified treatment of failures and asynchrony of [15], [16]
with a flexible way of describing guarantees about commu-
nication. The basic entity of this model are communication-
closed rounds and HO predicates, which specify conditions on
the collection of heard-of sets: For each roundr and process
p, HO(p, r) denotes the set of processes thatp hears of (i.e.,
receives a message from) in roundr.

In this paper, we will use properties of communication
graphs for studyingk-set agreement in message passing
systems with very weak synchrony requirements. Ink-set
agreement, correct processes must output a single value based
on values proposed locally, with no more thank different
values being output system-wide.

Detailed contributions:We introduce an algorithm for
k-set agreement, which exploits a natural correspondence be-
tween communication predicates and round-by-round “timely
communication” graphsGr in a run; Gr contains an edge
(q → p) when processp hears of q in round r. Our
algorithm incorporates a generic method for approximating
the stable skeletonG∩∞, which is the intersection of allGr

and reflects the underlying perpetual synchrony of a run. We
also introduce the class of communication predicatesPsrcs(k),
which guarantees that at least two processes in every subsetof
k+1 processes hear from a common process, in every round.
Using the graph-theoretic properties ofG∩∞ guaranteed by
the predicatePsrcs(k), we show that our algorithm solvesk-
set agreement in all runs wherePsrcs(k) holds. Moreover, we
also show thatPsrcs(k) is “tight” for k-set agreement, as it is
too weak for solvingk − 1-set agreement.

http://arxiv.org/abs/1102.4423v1

II. COMPUTING MODEL AND PROBLEM DEFINITION

We consider distributed computations of a set of processes
Π communicating by message passing. Moreover, we consider
that the computation is organized in an infinite sequence of
communication-closed [8] rounds; that is, any message sentin
a round can be received only in that round. As in the models
of Gafni[10] and Charron-Bost and Schiper [4], we will
express assumptions about the synchrony and the reliability of
communication in a system by a predicate that characterizes
the set of edges in the communication graph of each round.
Intuitively speaking, there is an edge from processp to q in
the communication graph of roundr is q receivedp’s roundr
message. We will in fact name a system by its predicate, that
is, in a systemP the collections of communication graphs
of each run of an algorithm in that system will must fulfill
predicateP .

We now formally define computations in our round model.
As in the aforementioned models, an algorithm is composed
of two functions: The sending function determines, for each
processp and roundr > 0, the messagep broadcasts in round
r based on thep’s state at the beginning of roundr. The
transition function determines, for eachp and roundr and the
vector of messages received inr, the state at the end of round
r, i.e., at the beginning of roundr + 1. Clearly, arun of an
algorithm is completely determined by the initial states ofthe
processes and the sequence of communication graphs.

For each roundr, we denote thecommunication graphby
Gr = 〈V,Er〉, where each node of the setV is associated
with one process fromΠ, and whereEr is the set of directed
timely edgesfor roundr. There is an edge fromp to q, denoted
as (p → q), if and only if q receivesp’s round r message
(in roundr).2 To simplify the presentation, we will denote a
process and the associated node in the communication graph
by the same symbols. However, as we differentiate betweenV
andΠ, we will always be able to resolve possible ambiguities
by stating from which set a node or process is taken. We will
write p ∈ Gr and (p → q) ∈ Gr instead ofp ∈ V resp.
(p→ q) ∈ Er.

We are primarily interested in the roundr skeletonG∩ r of
Gr, which we define as the subgraph consisting of the edges
that have been timely in all rounds up to roundr. Formally,
G∩ r := 〈V,E∩ r〉 whereE∩ r :=

⋂

0<r′6r E
r. The crucial

property ofE∩ r is that once an edge is untimely in some
roundr, it cannot be inG∩ r′ , for any r′ > r. That is,∀r >
0: E∩ r ⊇ E∩ r+1, which implies the subgraph relation

∀r > 0: G∩ r ⊇ G∩ r+1. (1)

We are particularly interested in thestable skeleton of a run,
which we define as the intersection3 over all rounds, i.e.,

G∩∞ :=
⋂

r∈N+ G∩ r. (2)

Considering that a runα consists of infinitely many rounds,
whereas our system consists of only a finite number of

2Since we consider communication-closed rounds, a message sent in round
r cannot be received in any later round.

3For simplicity, we setG ∩G′
:= 〈V ∩ V ′, E ∩E′〉.

processes, it follows that the number of possible distinct stable
skeletons must also be finite. Consequently, the subgraph
property (1) implies that there is some roundrST whenG∩∞

hasstabilized, i.e., ∀r > rST : G
∩ r = G∩∞.

As mentioned in the introduction, our algorithm will solve
k-set agreement by approximating the stable skeleton of a
run. The first step in this effort is to use the locally avail-
able information about the communication graph, which is
captured by the notion of timely neighbourhoods. Thetimely
neighborhood ofp, denoted asPT (p, r), is the set of processes
that processp has perceived asperpetually timelyuntil round
r. In other words,p has received a message from every
process inPT (p, r) in every round up to and includingr,
i.e., PT (p, r) := {q | (q → p) ∈ G∩ r} . Analogously to (1)
and (2), we have

PT (p, r) ⊇ PT (p, r + 1) (3)

and define

PT (p) :=
⋂

r>0

PT (p, r). (4)

We will make heavy use of the standard graph-theoretic
notion of astrongly connected componentof G∩ r. Note that
we implicitly assume that strongly connected components
are always nonempty and maximal. We use the superscript
notationCr when talking about astrongly connected compo-
nent ofG∩ r. Moreover, we writeCrp to denote the (unique)
strongly connected component ofG∩ r that contains processp
in round r. The strongly connected componentC∞p ⊆ G

∩∞

that containsp in a run is defined analogously to (2) as

C∞p :=
⋂

r>0

Crp.

Note that whenp andq are strongly connected inG∩ r, then
they are also strongly connected in allG∩ r′ , for 0 < r′ 6 r.
From property (1) ofG∩ r, we immediately have

∀r > 0: Crp ⊇ C
r+1
p . (5)

We will also usedirected pathsin G∩ r, where we assume that
all nodes on a path are distinct.

Let Cr ⊆ G∩ r be a strongly connected component. IfCr

has no incoming edges from anyq ∈ G∩ r \ Cr, we sayCr is
a root component in roundr. Formally,

∀p ∈ Cr ∀q ∈ G∩ r : (q → p) ∈ G∩ r ⇒ q ∈ Cr.

Figure 1b shows a graph with2 root components{p3, p4, p5}
and{p1, p2}.

Regarding the relation to the existing round-by-round mod-
els, we shortly recall what their predicates are based on: In
the Heard-Of model [4], for each roundr and each processp,
the setHO(p, r) contains those processes thatp hears from,
i.e., receives a message from, in roundr. In the case of the
Round-by-Round Fault Detectors [10], the output ofp’s fault
detector in roundr is referred to byD(p, r). In each roundr,
processp waits until it receives a message from every process

that is not contained inD(p, r). While it is possible thatp also
receives a roundr message from a process inD(p, r), we will
consider that this is never the case. From this it is evident that
we have the following correspondence between our skeleton
graphs and the HO/RbR model:

(p→ q) ∈ E∩ r ⇐⇒

{

∀r′ 6 r : p ∈ HO(q, r′)
∀r′ 6 r : p 6∈ D(q, r′)

(6)

Thus a process can determine its timely neighbourhood in
the two models as follows:

PT (p, r) =

{
⋂

0<r′6r HO(p, r′)

Π \
(

⋃

0<r′6r D(p, r′)
) (7)

As in the HO-model, we model a crashed processes by
an “internally correct” process that no other process receives
messages from after it has crashed [4, Sec. 2.2]. This mod-
elling allows us to require that all processes decide. For a
more detailed discussion on the relation between models where
crashed processes actually stop and the HO-model, we refer
to [13].

A. k-Set Agreement

The k-set agreementproblem was introduced in [5]. Every
processp starts with a proposal valuev and must eventually
and irrevocably decide on some value adhering to the follow-
ing three constraints:

k-Agreement: Processes must decide on at mostk different
values.

Validity: If a process decides onv, then v was pro-
posed by some process.

Termination: Every process must eventually decide.

Note that thek-set agreement problem was shown to be im-
possible in the asynchronous system model (see [1], [11], [14])
if f > k processes can crash. Recalling the correspondence
between crashed processes and process that no one hears of,
it is not surprising that this impossibility also holds for the
systemPtrue :: TRUE, whereall runs are admissible.

III. A T IGHT COMMUNICATION PREDICATE FORk-SET

AGREEMENT

In this section, we introduce a predicate that, together with
Algorithm 1 in Section IV, is sufficient for solvingk-set
agreement.

For a runα, predicatePsrcs(k) requires that in every setS
of k + 1 processes, there are two processesq, q′ that receive
timely messages from the same common processp, in every
round. We say thatp is a2-sourceandq, q′ aretimely receivers
of p in α.

Psrc(p, S) :: ∃q, q
′ ∈ S, q 6= q′ : p ∈ (PT (q) ∩ PT (q′))

Psrcs(k) :: ∀S, |S| = k + 1 ∃p ∈ Π: Psrc(p, S) (8)

Note that p is not required to be distinct fromq and q′:
Psrcs(k) still holds if p = q, i.e., p always perceives itself
in a timely fashion. Regarding communication graphs, this
predicate ensures that any induced sub-graphS of G∩∞ with

k + 1 nodes contains distinct nodesq and q′, such that, for
some nodep, edges(p→ q) and(p→ q′) exist (one of which
may be a self-loop). Figure 1b shows the stable skeleton graph
in a run wherePsrcs(k) holds fork = 3.

At a first glance, it might appear that the perpetual nature
of Psrcs(k) is an unnecessarily strong restriction. To see why
some (possibly weak) perpetual synchrony is necessary, con-
sider the predicate♦Psrcs(k) that satisfies (8) just eventually,
and suppose that there is an algorithmA that solvesk-
set agreement in system♦Psrcs(k). Due to its “eventual”
nature,♦Psrcs(k) allows runs whereeveryprocess forms a root
component by itself, i.e., hears from no other process, for a
finite number of rounds. Moreover, for anyk, the (infinite) run,
where asingle process forms a root component forever and
thus has to decide on its own input value, is admissible. Using
a simple indistinguishability argument, it is easy to show that
processes decide onn different values.

The following result will be instrumental in Section IV,
where we show how to solvek-set agreement withPsrcs(k).
Note that Theorem 1 is independent of the algorithm em-
ployed.

Theorem 1:There are at mostk root components in any
run that is admissible in systemPsrcs(k).

Proof: Assume by contradiction that there is a runα of
some algorithmA that is admissible in systemPsrcs(k), where
there is a set ofℓ > k + 1 disjoint root componentsR =
{

C∞p1
, . . . , C∞pℓ

}

containing processesp1, . . . , pk+1, . . . , pℓ. Let
r be the round where every strongly connected root component
C∞pi
∈ R has stabilized, i.e.,∀i : Crpi

= C∞pi
. That is, any two

distinct root components inR must already be disjoint from
roundr on. Sinceα satisfiesPsrcs(k) andℓ > k+1, there must
be a 2-sourcep such that, for two distinct processespi, pj ∈
{p1, . . . , pk+1}, it holds thatp ∈ (PT (pi) ∩ PT (pj)) . By (6),
it follows that the edgesei = (p→ pi) andej = (p→ pj) are
in G∩ r. Considering thatCr

pi
andCr

pj
are root components by

assumption, i.e., do not have incoming edges, it must be that
ei ∈ Cr

pi
and ej ∈ Cr

pj
, and thereforep ∈ Cr

pi
∩ Cr

pj
. This,

however, contradicts the fact thatCr
pi

and Cr
pj

are disjoint,
which completes our proof.

A. Impossibility of(k−1)-Set Agreement

We will now show thatPsrcs(k) doesnot allow to solve
(k−1)-set agreement. More specifically, we will prove this
by assuming the existence of such an algorithmA, and then
construct a run fulfillingPsrcs(k) where processes decide on
k (instead ofk − 1) different values.

Theorem 2:Consider anyk such that1 < k < n. There
is no algorithmA that solves(k−1)-set agreement in system
Psrcs(k).

Proof: Assume for the sake of a contradiction that such
an algorithmA exists. Suppose that all processes start with
pairwise distinct input values. Consider the runα and a fixed
set L of k − 1 processes that only hear from themselves,
formally speaking,∀p ∈ L : PT (p) = {p} . Moreover, there

is one processs such that every process not inL only hears
from itself ands, i.e.,

∀p ∈ Π \ L : PT (p) = {p, s} .

Since, byvalidity and termination, processes eventually have
to decide on some input value and processes inL∪{s} cannot
learn any other process’ input value, they have to decide on
their own value. Thus, we havek different decision values, as
we have assumed a unique input value for each process, and
therefore a violation of(k−1)-agreement.

What remains to be shown is that this runα actually fulfills
Psrcs(k). Recall equation (8), i.e., the definition ofPsrcs, and
consider for any setS of sizek+ 1 the setP = S \L. Since
|S \L| > 2, the setP contains at least two distinct processes
that permanently hear froms (one of which may bes). That
is, processs is the required2-source for any setS of k + 1
processes.

IV. A PPROXIMATING THE STABLE SKELETON GRAPH AND

SOLVING k-SET AGREEMENT

In this section, we present and analyze an algorithm that
solvesk-set agreement with predicatePsrcs(k). Algorithm 1
employs a generic approximation of the stable skeleton graph
of the run, which works as follows:

First, every processp keeps track of the processes it has
perceived as timely until roundr in the setPTp, updated in
Line 9. Lemma 3 will show thatPTp satisfies the definition of
PT (p, r), for all roundsr. In addition, every processp locally
maintains an approximation graphGp of the stable skeleton,
denotedGr

p for round r, which is broadcast in every round.
If a processq receives such a graphGr

p from some processp
in its timely neighborhoodPT (q, r), it adds the information
contained inGr

p to its own local approximationGr
q. Note that,

in contrast to the stable skeleton graphG∩ r, the approximation
graph Gp is actually aweighted directed graph. The edge
labels ofGp correspond to the round number when a particular
edge was added by some process, i.e., the edge(q′

r
→ q) is in

Gp if, and only if, q′ ∈ PT (q, r) (cf. Lemma 3(b)). To prevent
outdated information from remaining in the approximation
graph permanently, every processp purges all edges inGr

p that
were initially added more thann−1 rounds ago. Figures 1c-1h
show this approximation mechanism at work.

For k-set agreement, processp only considers proposal
values for its estimated decision valuexp that were sent by
processes in its current timely neighborhood, i.e., inPTp. This
ensures thatp and q will have a common estimated decision
value xp = xq in roundn, if they are in the same strongly
connected component (cf. Lemma 14). To determine when to
terminate,p analyzes its approximation graph in every round
r > n and decides ifGr

p is a strongly connected graph.

Why is this decision safe with respect to the agreement
property? Using our graph approximation results, we will show
in Lemma 15 that any strongly connected approximation graph
contains at least one root component in the stable skeleton
graph. Furthermore, if two processes decide on different

Algorithm 1 Approximating the stable skeleton graph and
solvingk-set agreement withPsrcs(k)

Variables and Initialization:
1: PTp ∈ 2Π initially Π
2: xp ∈ N initially vp // Estimated decision value
3: Gp := 〈Vp, Ep〉 initially 〈{p} , ∅〉 // weighted digraph
4: decidedp ∈ {0, 1} initially 0 // is 1 iff p has decided

Round r: sending functionSr

p:
5: if decidedp = 1 then
6: send(decide, xp, Gp) to all processes
7: else
8: send(prop, xp, Gp) to all processes

Round r: transition functionT r

p :
9: updatePTp

10: if received(decide, xq,) from q ∈ PTp and decidedp = 0
then

11: xp ← xq

12: decide onxp

13: decidedp ← 1

14: // Approximate stable skeleton graph:
15: Gp ← 〈{p} , ∅〉
16: for q ∈ PTp do
17: add directed edge(q

r
→ p) to Ep

18: Vp ← Vp ∪ Vq

19: for every pair of nodes(pi, pj) ∈ Vp × Vp do
20: Ri,j ← {re | ∃q ∈ PTp : (pi

re→ pj) ∈ Eq}
21: if Ri,j 6= ∅ then
22: rmax ← max(Ri,j)
23: Ep ← Ep ∪ {(pi

rmax→ pj)}
24: discard all(pi

re→ pj) from Ep wherere 6 r − n
25: discardpi 6= p from Vp if p is unreachable frompi in Gp

26: if decidedp = 0 then
27: xp ← min {xq | q ∈ PTp}
28: if r > n andGp is strongly connectedthen
29: decide onxp

30: decidedp ← 1

values, it follows that their approximated graphs in the rounds
of their respective decision are disjoint. Since Theorem 1
confirms that there are at mostk root components in any run
wherePsrcs(k) holds, there can be in fact at mostk different
decision values.

A. Approximation of the Stable Skeleton Graph

Throughout our analysis, we denote the value of variable
var of processp at the end of roundr asvarrp. When we use
the subgraph relation(⊆) between graphsCrp andGr

p, we mean
the standard subgraph relation betweenCrp and theunweighted
version ofGr

p. We first state some obvious facts that follow
directly from the code of the algorithm:

Observation 1:For any roundr > 0 it holds thatp ∈ Gr
p

and that no edge(q′
s
→ q) ∈ Gr

p hass 6 r − n.

Note that, after the initial assignment,p only updates
variable PTp in Line 9, which is equivalent to (7). From
this and the inspection of Lines 15 and 17, Lemma 3 follows
immediately:

p1 p2p3

p4 p5 p6

(a) G∩ 2

p1 p2p3

p4 p5 p6

(b) G∩∞

p1 p2p3

p4 p5 p6

1

1

(c) G1
p6

p1 p2p3

p4 p5 p6

2

2

1

1

(d) G2
p6

p1 p2p3

p4 p5 p6
3

2

1

1

(e) G3
p6

p1 p2p3

p4 p5 p6
4

3

2

2

1

1

1

(f) G4
p6

p1 p2p3

p4 p5 p6
5

4
3

2

2

(g) G5
p6

p1 p2p3

p4 p5 p6
6

5
4

3

(h) G6
p6

Fig. 1: A system of6 processes wherePsrcs(3) holds. The stable skeleton graph for round2 is depicted in Figure 1a; 1b shows
the stable skeleton graph for the entire run. For simplicity, we omit self-loops, i.e.,∀pi : pi ∈ PT (pi). Figures 1c-1h show
processp6’s approximation ofG∩∞ during rounds1 to 6.

Lemma 3: It holds thatq ∈ PT (p, r) if, and only if, all of
the following are true:
(a) q ∈ PT r

p ,
(b) p adds a directed edgeq

r
→ p to Gr

p by executing Line 17
in roundr, and

(c) for anyr′ 6= r, there is no other edgeq
r′

→ p in Gr
p.

The following lemma shows that the approximation graph
Gpℓ+1

accurately reflects the timely neighborhood of a process.
That is, if p1 is connected topℓ+1 through a path of length
ℓ, thenpℓ+1 will add the timely neighborhood information of
p1 to its approximated graph by roundℓ.

Lemma 4:Suppose that there exists a directed path

Γ = (p1 → . . .→ pℓ+1)

in G∩ r for roundr > n, whereΓ has lengthℓ 6 n− 1. Then,
∀q ∈ PT (p1, r − ℓ) it holds that
(a) edge(q

rq
→ p1) is in Gr

pℓ+1
wherer > rq > r − ℓ, and

(b) Gr
pℓ+1

contains no other edges fromq to p1.
Proof: Consider an arbitraryq ∈ PT (p1, r−ℓ). The proof

proceeds by induction over the edges of pathΓ indexed byk.
That is, we show that for allk, with 0 6 k 6 ℓ, it holds that
there is an edgee = (q

rk→ p1) in Gr−ℓ+k
p1+k

wherer − ℓ+ k >

rk > r − ℓ.
For the base case (k = 0), we have to show that the edgee

is in Gr−ℓ
p1

, but this already follows fromq ∈ PT (p1, r − ℓ),
by Lemma 3.

For the induction step, we assume that the statement holds
for somek < ℓ and then show that it holds fork+1 as well.
In roundr − ℓ + (k + 1) processp1+k broadcasts its current
graph estimate, i.e.,Gr−ℓ+k

p1+k
to all. We know thatp1+(k+1)

will receive this message since(p1+k → p1+(k+1)) is in the
pathΓ ⊆ G∩ r, which means that

p1+k ∈ PT (p1+(k+1), r − ℓ+ (k + 1)).

By the induction hypothesis, the edge(q
rk→ p1) is in Gr−ℓ+k

p1+k

and therefore will be among the edges thatp1+(k+1) considers
in Line 20. This in turn implies thatp1+(k+1) will add an edge

q
rk+1
→ p1 to its graphGr−ℓ+(k+1)

p1+(k+1)
in Line 23, wherebyrk+1

is calculated in Line 22 such thatrk+1 > rk. Moreover, by
induction hypothesis we haverk > r − ℓ > r − n, which
ensures that the edge will not be discarded in Line 24. Since
the code following the for-loop in Line 19 is executed exactly

once for every edge, no other edgeq
r′

→ p1 is added to
G

r−ℓ+(k+1)
p1+(k+1) . This completes the proof our lemma.
The next lemma shows that the approximation graph of

correctly (over)estimates the strongly connected component
from roundn on:

Lemma 5:Let r > n and consider the strongly connected
componentCrp containingp in G∩ r. Then, it holds thatGr

p ⊇
Crp.

Proof: Consider any edge(q′ → q) ∈ Crp. SinceCrp is
strongly connected, there is a directed path between any pair of
processes inCrp, in particular there is a path of lengthℓ 6 n−1
from q to p. By the definition ofCrp we know thatq always
perceivesq′ as timely in all rounds up to roundr, which means
that q′ ∈ PT (q, r − ℓ). Then, by applying Lemma 4, we get

that the edge(q′
r′

→ q) is in Gr
p, for somer′ > r − ℓ, which

shows thatCrp is a subgraph ofGr
p.

Lemma 3 showed that the timely neighborhood is eventually
in the approximated graph. We now show that our approxima-
tion contains only valid information:

Lemma 6:Let r > 1 and suppose that there is an edge
e = (q′

s
→ q) in the approximated stable skeleton graphGr

p

of processp. Then it holds thatq′ ∈ PT (q, s).
Proof: Note that processes only add edges to their ap-

proximation graphs in Line 17 or in Line 23. If an edge is
added via Line 23, then this edge has previously been added

by another process by executing Line 17. Therefore, every
edge must have been added by some process via Line 17. In
case ofe, this process can only beq. By Lemma 3 this happens
in rounds andq′ ∈ PT (q, s).
The following Lemma 7 is in some sense the converse result
of Lemma 5, as it states that the approximated graph must
approachCrp from below, if it is strongly connected:

Lemma 7:Let r > 1 and consider the strongly connected
componentCrp. If the approximated skeleton graphGr+n−1

p is
strongly connected, thenCrp ⊇ Gr+n−1

p .
Proof: Consider any edge

e = (q′
r′

→ q) ∈ Gr+n−1
p .

By Lemma 6, we know thatq′ ∈ PT (q, r′). It follows by
the subset property (3) thatq′ ∈ PT (q, r), as Observation 1
implies

r′ > (r + n− 1)− n = r − 1.

Therefore, there is an edge(q′ → q) in G∩ r.
It follows thatGr+n−1

p is isomorphic to a (not necessarily
maximal) strongly connected componentSr in G∩ r. Because
Crp andSr both containp, their intersection is nonempty, i.e.,
Crp ⊇ Gr+n−1

p .
As a final result about the approximated skeleton graph, we
show that once the approximationGp is strongly connected in
roundr > n, it is closed w.r.t. strongly connected components.
This means thatGp can be partitioned into disjoint strongly
connected components inG∩∞.

Theorem 8:Suppose thatR > n. If the approximated
skeleton graphGR

p is strongly connected, then it contains the
strongly connected componentC∞q of everyq ∈ GR

p .

Proof: Consider anyq ∈ GR
p and its strongly connected

componentC∞q . From (5) and Lemma 7 it follows that

q ∈ GR
p ⊆ C

R−n+1
p ⊆ C1p ,

i.e., q ∈ C1p ∩ C
1
q . Moreover, due to the well-known fact that

two maximal strongly connected components in a digraph are
either disjoint or equivalent, we get thatC1q = C1p .

Now suppose the theorem does not hold. Then there exists
someq′ ∈ C∞q such thatq′ 6∈ GR

p . Due to Lemma 5,q′ cannot
be contained inCRp , but due to (5),q′ ∈ CRq ⊇ C

∞

q . Therefore,
CRq 6= C

R
p , and thusCRq ∩ C

R
p = ∅. SinceGR

p is strongly
connected and containsq, it also contains a path

Γ = (q = pℓ → · · · → p0 = p),

such that

∀i, 0 6 i < ℓ : pi+1 ∈ PT (pi, R− i).

Let j be the minimal indexi such thatpj ∈ CRq , and let
Γj = (pj → · · · → p0) be the path remaining frompj .

As bothq′ andpj are inCRq , there is a pathΓ′ in CRq . Let
k be the length of this path. Moreover, by applying Lemma 4,
we get thatGR−j

pj
contains the outgoing edgee of q′ on this

path, labeled with some round

r′ > R− j − k. (9)

But then, by the definition ofΓ, it follows that whenGR
p

containspj — which it does — then it must also containq′,
unless some processpi (i < j) removede from its set of
edges in line 24 in roundR− i becauser′ 6 R− i−n. Since
roundR at processp(= p0) is the latest round when this can
occur, we get thatr′ 6 R− n, and thus, by (9),

R− j − k 6 r′ 6 R− n, i.e., j + k > n. (10)

Let ∆ be the subgraph obtained by concatenating pathsΓ′

andΓj . By construction,Γj andΓ′ only share nodepj , and
thus∆ is a (simple) path and must have lengthj+k 6 n−1, as
no path can exceed lengthn−1. This contradicts (10) and thus
completes the proof thatq′ is in GR

p . The proof showing that
all edges ofC∞q are inGR

p proceeds analogously, by assuming
that some edge inC∞q ending inq′ is not inGR

p .

B. k-Set Agreement

In this section, we will show that Algorithm 1 not only
approximates the stable skeleton graph, but also solvesk-set
agreement. Our previous results allow us to immediately prove
the validity and the termination properties.

Lemma 9 (Validity):If a process decides onv, thenv was
the initial value of some process.

Proof: Observe that the decision valuexp of any processp
is initially set to its proposal valuevp, which is then broadcast.
On all subsequent updates ofxp in Line 27, a valuexq that
was sent by some processq (which originated from somevq′)
is assigned, thereforevalidity holds.

Lemma 10:Every process decides at most once in any run.
Proof: Observe that no process executes Line 29 and

Line 12 in the same run. This is guaranteed by the fact that
processp cannot pass the if-conditions in Line 10 or in Line 26
afterdecidedp is set to1, which happens wheneverp decides.

Lemma 11 (Termination):Every process decides exactly
once.

Proof: Lemma 10 shows that every process decides at
most once. We will now show that every process decides at
least once. First, we will show that there is a root component
in every round. Consider the strongly connected components
that partition the set of nodes of the stable skeleton graphG∩ r

in some roundr. Such a set always exists, since the strongly
connected components form equivalence classes of nodes. It
is well known that the contraction of the strongly connected
components is a directed acyclic graph, which reveals that
there is at least one nodeCr in the contracted graph that has
no incoming edges. Clearly,Cr satisfies the definition of a
root component inG∩ r. Therefore, there is a nonempty set
Rr of strongly connected components all of which are root
components in roundr.

Let r > 1 be the earliest round whereG∩ r is stable for at
leastn − 1 rounds, i.e.,∀r′ ∈ [r, r + n − 1] : G∩ r′ = G∩ r.
Note that property (1) implies thatr exists. Now, consider any
root componentRr ∈ Rr: Clearly, since every process is in
exactly one strongly connected component, we have

∀p ∈ Rr : Crp = Rr = Rr+n−1 = Cr+n−1
p . (11)

We will now show that the approximated skeleton graph of
such a processp is in fact exactly the strongly connected
component ofp. Consider anyp ∈ Rr(= Cr+n−1

p). First, since
(r+n−1) > n, Lemma 5 and (11) imply thatRr ⊆ Gr+n−1

p .
We will now show thatRr ⊇ Gr+n−1

p , which proves that these
graphs are equal: SinceGr+n−1

p is connected by construction,
it is sufficient to show that every edge inGr+n−1

p is also inRr.

Assume in contradiction that there is an edgee = (q′
r′

→ q)
in Gr+n−1

p such thatq ∈ Rr but q′ /∈ Rr ; note that the
other way round (q′ ∈ Rr but q /∈ Rr) is impossible by
construction. Using Lemma 6 we know thatq′ ∈ PT (q, r′),
and Observation 1 implies thatr′ > (r+ n− 1)− n = r− 1,
i.e., r′ > r. Then, by definition, we have thate ∈ G∩ r, i.e.,
e is an incoming edge ofRr, contradicting the assumption
thatRr is a root component. We can therefore conclude that
Rr = Gr+n−1

p .
By assumption,Rr is a root component, which tells us that

Gr+n−1
p is strongly connected, i.e.,p will pass the if-condition

in Line 28 in roundr+n−1 and decide. Recall the contracted
stable skeleton graph of roundr+ n− 1. Since every path in
this graph is rooted at some node corresponding to a root
component in the setRr. Thus, all processes that are not in
a root component will receive a decision message by round
r + 2n− 1 and also decide, which completes our proof.

In the remainder of this section we will prove that Algo-
rithm 1 satisfies thek-agreementproperty. We will start out
with some basic invariants on decision estimates.

Observation 2 (Monotonicity):In any run of Algorithm 1
it holds that∀r > 0: xr

p > xr+1
p .

Lemma 12:If processp does not decide in Line 12, we
have that∀r > n− 1: xr

p = xr+1
p .

Proof: Suppose that there is anr > n−1 such thatp sets
xr+1
p ← xq andxr

p 6= xq. This can only occur in Line 27, if the
process does not decide in Line 12. From Observation 2 and
validity (cf. Lemma 9), we know thatp did not previously
receivexq and thatxq is the initial value of some distinct
processq. Since processes forward their estimated decision
value in every round, (3) implies that the shortest path from
q to p (along whichxp has been propagated top) in G∩ r+1

has lengthr + 1. However, this is impossible asr + 1 > n
and the longest possible path has lengthn− 1.

Lemma 13:Suppose that some processp decides onxp in
round r by executing line 12. Then some processq 6= p has
decided onxp in roundr′ < r by executing Line 29.

Proof: Every process decides either in Line 29 or in
Line 12, but not both (Lemma 10). Sincep decided in Line 12
it must have received a(decide, xq,) message from some
distinct processq. If q decided in Line 29 we are done;
otherwiseq decided in Line 12 in roundr− 1, we can repeat
the same argument forq. After at mostn − 1 iterations, we
arrive at some process that must have decided using Line 29.

Lemma 14:Let Cnp be the strongly connected component of
processp in roundn. Then, it holds that∀q ∈ Cnp : x

n
q = xn

p .

Proof: First, observe that due to Lemma 13 and the fact
that no process can pass the check in Line 28 before roundn,
no process can decide before roundn. Therefore, processes
can update their estimate values until at least roundn.

Suppose that there are processesp, q ∈ Cnp , such thatxn
p 6=

xn
q . In particular we assume without loss of generality, thatxn

q

is minimal among all roundn estimation values of processes
in Crp , i.e., xn

p > xn
q .

Let rq be the round whereq first setsxq to the value
xn
q . By Observation 2 it follows thatq does not updatexq

anymore before roundn. Since Algorithm 1 satisfiesvalidity
(Lemma 9), we know that there is some processs that is
the source of this value, i.e.,s initially proposedxr

q . By the
code of the algorithm we know that in roundr processp only
considers values in Line 27 that were sent by some process
in PT (p, r). This implies that there is a sequence of pairwise
distinct processess = q1, . . . , qℓ = q, such that

∀i, (1 6 i < ℓ) : qi ∈ PT (qi+1, i). (12)

Clearly, rq = ℓ − 1. Let j 6 ℓ be such thatqj ∈ Cnp and j is
minimal, letΓq be the path inG∩ 1 induced by the sequence
s up to qj . Moreover, sinceqj ∈ Cnp , there is a pathΓp in Cnp
from qj to p. SinceCnp ⊆ G

∩ 1, Γp is a path inG∩ 1 as well.
Let Γ be the path inG∩ 1 obtained by appendingΓp to Γq. By
constructionΓ is simple, and therefore its length is bounded
by n−1. Moreover, the initial value ofs was propagated along
this path — overΓq by construction and overΓp, becausexn

q is
minimal in Cnp . This leads to processp assigning this value to
xp in some roundrp 6 n−1, which contradicts the assumption
thatxn

p > xn
q .

Lemma 15 (k-Agreement):Processes decide on at mostk
distinct values.

Proof: For the sake of a contradiction, assume that there is
a set ofℓ > k processesD = {p1, . . . , pℓ} in a runα where
pi decides onx∞

i = xri
i

4 in round ri > n and ∀pi, pj ∈
D : x∞

pi
6= x∞

pj
. By virtue of Lemma 13, we can assume that

everypi has decided by executing Line 29. Considering that
no process decides before roundn, applying Lemma 12 yields
that

∀r > n ∀pi, pj ∈ D : xr
pi
6= xr

pj
. (13)

Note that the approximated skeleton graphsGri
pi

andGrj
pj are

strongly connected in roundri resp. rj , otherwise the pro-
cesses could not have passed the if-condition before Line 29.

We will first show that the different decision values ofpi
andpj imply that their approximated skeleton graphs in rounds
ri resp.rj are disjoint. Lemma 7 reveals that these skeleton
graphs are contained within the respective strongly connected
components of an earlier round, i.e.,

Cri−n+1
pi

⊇ Gri
pi

andCrj−n+1
pj

⊇ Grj
pj

.

If these strongly connected components ofpi and pj are
disjoint, then so are the approximated skeleton graphs and

4Note thatx∞

p denotesp’s final “estimate”, i.e., the actual decision value
of processp.

we are done. Therefore, assume in contradiction that

I = Cri−n+1
pi

∩ Crj−n+1
pj

6= ∅.

We will now prove that one of these components contains
the other. Without loss of generality, suppose thatri 6 rj and
consider any nodep ∈ I ⊆ C

rj−n+1
pj . Clearly, p is strongly

connected to every node inCrj−n+1
pj . Let Z be the induced

subgraph ofCrj−n+1
pj in the skeleton graphG∩ ri−n+1. By the

subgraph property (5) and sinceri 6 rj , it follows thatZ =

C
rj−n+1
pj , and henceZ ∩Cri−n+1

pi
6= ∅. By the fact thatp ∈ I,

we know thatp ∈ Cri−n+1
pi

. That is, in the skeleton graph
G∩ ri−n+1, processp is strongly connected to all nodes in
Cri−n+1
pi

andZ. But since the strongly connected component
Cri−n+1
pi

is maximal, we actually have

Cri−n+1
pi

⊇ Z = Crj−n+1
pj

,

which means thatpj ∈ Cri−n+1
pi

. Then, Lemma 14 readily
implies that∀q ∈ Cri−n+1

pi
it holds thatxn

pi
= xn

q and, in
particular,xn

pi
= xn

pj
, which contradicts (13). We can there-

fore conclude that the intersection of the strongly connected
components, and therefore, by Lemma 7, also the intersection
of Gri

p andGrj
pj is indeed empty, i.e.,

∀pi, pj ∈ D : (Gri
pi
∩Grj

pj
) = ∅. (14)

By Theorem 8 it follows that each of the strongly connected
approximated skeleton graphsGri

pi
can be partitioned into a set

Di of strongly connected components inG∩∞. By Theorem 1,
at mostk of the setsDi can contain a root component. Note
that (14) implies that no strongly connected component is
in two distinct setsDi, Dj . For the sake of a contradiction,
assume that (w.l.o.g.) the setDℓ corresponding toGrℓ

pℓ
does

not contain a root component. Now consider the contracted
graph of G∩∞ where the nodes are the strongly connected
components. Since the contracted graph is acyclic, it follows
that there exists a pathΓ in the (non-contracted) graphG∩∞

that ends at processpℓ ∈ Dℓ, and is rooted at some process
q ∈ C∞q whereC∞q is a root component and thus by assumption
not in Dℓ. However, by the subgraph property (1), we know
that the pathΓ is also inG∩ rℓ . But then Lemma 4 implies that
q ∈ Gri

pi
, and Theorem 8 shows thatC∞q ∈ Dℓ, i.e., one of the

components inDℓ in fact is a root component. This provides
the required contradiction.

Theorem 16:Algorithm 1 solvesk-set agreement in system
Psrcs(k).

Proof: Lemma 15 impliesk-agreement. Termination is
guaranteed by Lemma 11 and Lemma 9 shows thatvalidity
holds.

V. D ISCUSSION ANDFUTURE WORK

We have introduced the notion of communication graphs
and presented an algorithm that approximates the stable skele-
ton of a run. The algorithm is based on exchanging local
approximations of the stable skeleton, hence has a worst-case
message bit complexity that is polynomially inn. We have
also introduced a class of communication predicatesPsrcs(k)

and proved that using this approximation one can solvek-
set agreement in a system that guaranteesPsrcs(k). Note that
the algorithm actually solves consensus in sufficiently well-
behaved runs.

The one-to-one correspondence between the (at most)k root
components of the stable skeleton graph and distinct decision
values shows that these communication graphs are a promising
new tool for studying the underlying synchrony in a system.
Since our algorithm yields a correct approximation atop of
any communication predicate, part of our future work will
be devoted to finding a graph-theoretic characterization ofthe
weakest synchrony requirements for different agreement prob-
lems and further exploring the duality between communication
predicates and graph-theoretic properties.

REFERENCES

[1] E. Borowsky and E. Gafni. Generalized FLP impossibilityresult for
t-resilient asynchronous computations. InSTOC ’93: Proceedings of
the twenty-fifth annual ACM symposium on Theory of computing, pages
91–100, New York, NY, USA, 1993. ACM.

[2] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector
for solving consensus.Journal of the ACM, 43(4):685–722, June 1996.

[3] B. Charron-Bost and A. Schiper. Improving fast Paxos: being optimistic
with no overhead. In12th IEEE Pacific Rim International Symposium on
Dependable Computing (PRDC 2006), pages 287–295. IEEE Computer
Society, 2006.

[4] B. Charron-Bost and A. Schiper. The Heard-Of model: computing
in distributed systems with benign faults.Distributed Computing,
22(1):49–71, Apr. 2009.

[5] S. Chaudhuri. More choices allow more faults: set consensus problems
in totally asynchronous systems.Inf. Comput., 105(1):132–158, 1993.

[6] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchronism
needed for distributed consensus.Journal of the ACM, 34(1):77–97, Jan.
1987.

[7] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of
partial synchrony.Journal of the ACM, 35(2):288–323, Apr. 1988.

[8] T. Elrad and N. Francez. Decomposition of distributed programs
into communication-closed layers.Science of Computer Programming,
2(3):155–173, 1982.

[9] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
distributed consensus with one faulty process.Journal of the ACM,
32(2):374–382, Apr. 1985.

[10] E. Gafni. Round-by-round fault detectors (extended abstract): unifying
synchrony and asynchrony. InProceedings of the Seventeenth Annual
ACM Symposium on Principles of Distributed Computing, pages 143–
152, Puerto Vallarta, Mexico, 1998. ACM Press.

[11] M. Herlihy and N. Shavit. The asynchronous computability theorem for
t-resilient tasks. InSTOC ’93: Proceedings of the twenty-fifth annual
ACM symposium on Theory of computing, pages 111–120, New York,
NY, USA, 1993. ACM.

[12] M. Hutle, D. Malkhi, U. Schmid, and L. Zhou. Chasing the weakest sys-
tem model for implementing omega and consensus.IEEE Transactions
on Dependable and Secure Computing, 6(4):269–281, 2009.

[13] M. Hutle and A. Schiper. Communication predicates: A high-level
abstraction for coping with transient and dynamic faults. In 37th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN’07), pages 92–101, 2007.

[14] M. Saks and F. Zaharoglou. Wait-free k-set agreement isimpossible:
The topology of public knowledge.SIAM J. Comput., 29(5):1449–1483,
2000.

[15] N. Santoro and P. Widmayer. Time is not a healer. InProc. 6th Annual
Symposium on Theor. Aspects of Computer Science (STACS’89), LNCS
349, pages 304–313, Paderborn, Germany, Feb. 1989. Springer-Verlag.

[16] N. Santoro and P. Widmayer. Agreement in synchronous networks with
ubiquitous faults.Theor. Comput. Sci., 384(2-3):232–249, 2007.

	I Introduction
	II Computing Model and Problem Definition
	II-A k-Set Agreement

	III A Tight Communication Predicate for k-Set Agreement
	III-A Impossibility of (k-1)-Set Agreement

	IV Approximating the Stable Skeleton Graph and Solving k-Set Agreement
	IV-A Approximation of the Stable Skeleton Graph
	IV-B k-Set Agreement

	V Discussion and Future Work
	References

