

Achieving Target MTTF by Duplicating Reliability-Critical
Components in High Performance Computing Systems

Nithin Nakka‡, Alok Choudhary†, Gary Grider§, John Bent§, James Nunez§ and Satsangat Khalsa§

‡Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
nakka@crhc.illinois.edu

†Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, USA
choudhar@eecs.northwestern.edu

§Los Alamos National Laboratories, Albuquerque, New Mexico, U.S.A.
{ggrider, johnbent, jnunez, satsang}@lanl.gov

Abstract
Mean Time To failure, MTTF, is a commonly
accepted metric for reliability. In this paper we
present a novel approach to achieve the desired
MTTF with minimum redundancy. We analyze the
failure behavior of large scale systems using failure
logs collected by Los Alamos National Laboratory.
We analyze the root cause of failures and present a
choice of specific hardware and software components
to be made fault-tolerant, through duplication, to
achieve target MTTF at minimum expense. Not all
components show similar failure behavior in the
systems. Our objective, therefore, was to arrive at an
ordering of components to be incrementally selected
for protection to achieve a target MTTF. We propose
a model for MTTF for tolerating failures in a specific
component, system-wide, and order components
according to the coverage provided. Systems grouped
based on hardware configuration showed similar
improvements in MTTF when different components in
them were targeted for fault-tolerance.

1 Introduction
Computers are being employed increasingly in highly
mission- and life-critical and long-running
applications. In this scenario, there is a corresponding
demand for high reliability and availability of the
systems. Since failures are inevitable in a system, the
best use of the bad bargain is to employ fault-
detection and recovery techniques to meet the
requirements. Mean Time to Failure (MTTF) is an
important well-accepted measure for the reliability of
a system. MTTF is the time elapsed, on an average,
between any two failures in the component being
studied.
Broadly speaking, two types of applications demand
high reliability – (i) those which can be stopped and
their state captured at a suitable point and their
execution resumed at a later point in time from the
captured state, also called the checkpointed state, (ii)
those programs that cannot be interrupted and need to
execute for a minimum amount of time, till the
application (or the mission) is completed. Most long-
running scientific applications are examples of

applications in the former category. They require
efficient mechanisms to take checkpoints of the entire
state of the application at a suitable point, and
effective techniques to detect failures so as to roll
back execution to the checkpointed state. For
applications in the latter category, such as systems
and software for flight, or spacecraft control, a time
for the length of the mission (or mission time) is pre-
determined and appropriate fault-tolerance
techniques need to be deployed to ensure that the
entire system does not fail within the mission time.
The mission time of a flight system directly
determines the length of its travel and is a highly
critical decision point.
The MTTF of a system is an estimate of the time for
which the system can be expected to work without
any failures. Therefore, for applications that can be
checkpointed MTTF could be used to determine the
checkpointing interval, within which the
application’s state must be checkpointed. This would
ensure that the checkpoint state itself is not corrupted
and hence by rolling back to this state on detecting a
failure the application will continue correct
execution. For applications of the latter category, the
MTTF can be used to determine the mission time,
before which the system executes without any failure.
Understanding the failure behavior of a system can
greatly benefit the design of fault-tolerance and
reliability techniques for that as well as other systems
with similar characteristics and thereby increasing
their MTTF. Failure and repair logs are a valuable
source of field failure information. The extent to
which the logs aid in reliable design depends on the
granularity at which the logging is performed.
System level logs could assist in system-wide
techniques such as global synchronous checkpointing
etc. However, logging at a finer granularity, like that
at the node-level, improves the effectiveness of
techniques applied at the node level. An important
observation that we make in this paper is that, “All
components in a system are not equal” (either by
functionality or by failure behavior).
Component-level reliability information also helps in
designing and deploying techniques such as

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.311

1566

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.311

1562

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.311

1562

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.311

1562

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.311

1562

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.311

1567

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.311

1567

duplication selectively to the most critical portions of
the system. This decreases setup, maintenance and
performance costs for the system. Although a
technique for achieving a target MTTF has been
presented in [3], it does not analyze the root cause of
the failures to identify the critical components as in
this work. Furthermore, with a framework for
selective fault-tolerance in place the techniques could
be customized to meet the specific reliability
requirements of the application. In this paper we
show how component-level selective fault-tolerance
can be customized to meet an application’s target
MTTF.
The key contributions of this work are:
1. Analysis of failures in specific components and

their correlation with system configuration.
2. Data-driven estimation of the coverage provided

for fault tolerance in components in the system.
3. A methodology for selecting an optimal or near-

optimal subset of components to be duplicated to
achieve the MTTF requirements of the
application.

2 Description of Systems under study
and data sets

Los Alamos National Laboratory has collected and
published data regarding the failure and usage of 22
of their supercomputing clusters. This data was
previously analyzed by Schroeder et. al. [8] from
CMU to study the statistics of the data in terms of the
root cause of the failures, mean time between failures
and the mean time to repair.
The failure data for a single system includes the
following fields:
node number: This node numbering is provided by
Los Alamos so as to maintain consistency among all
systems in terms of node numbering for easier
comparison of systems.
install date: Date that the node was installed in the
system. Since the systems under study were upgraded
during the period of study, this field can vary for
nodes within a system
production date: Date, after the installation date,
where the node has been tested for initial burn-in
effects and known operational failures, so that the
node could be used to run production applications.
decommission date: Date that the node was removed
from the system.
Problem Started (mm/dd/yy hh:mm): The time of
occurrence of the failure event. This is logged by an
automated fault detection engine.
Problem Fixed (mm/dd/yy hh:mm): The time at which
the failure was repaired and the system restored. This
is logged by the administrators and repair staff.

Root cause: Determined by the administrators or
maintenance personnel of the systems. This field
provides information on the specific component of
the node/system that caused the failure. The root
causes are broadly classified into Facilities,
Hardware, Operator Error (or Human Error),
Network Error, and Software. Those failures whose
root cause could not be resolved are placed in the
Undetermined category. In this analysis we consider
failures for all systems together as well as for each
system at a time. The first approach provides insight
on the failure rate of each of the component
irrespective of the type of system they are part of. By
conditioning this analysis with the system, we can
understand how the failure behavior of each of the
components changes with the specific type and
configuration of the system.
Each of the six broad categories, are further classified
into sub-categories or components. The failure
analysis traces the root cause of each failure to one of
these sub-categories/components.
Table 1 tabulates the failure categories and their
corresponding set of sub-categories/components (For
brevity we will refer to sub-categories/components as
sub-components for the following discussion).

Table 1: Failure Categories and subcomponents
Failure

Category
Failing Sub Category or Sub

Component
Operator Error Human Error
Network Error Network
Undetermined Security,Unresolvable,Undetermined

Facilities Environment,Chillers,Power
Spike,UPS,Power Outage

Software Compilers and libraries, Scratch Drive,
Security Software, Vizscratch FS, …

Hardware WACS Logic, SSD Logic, Site Network
Interface, KGPSA, SAN Fiber Cable, …

3 Related Work
There has been significant study over the past few
decades on analyzing failure logs from large-scale
computers to understand the failure behavior of such
systems and possibly use the knowledge in improving
system design. Plank et. al. [1] derive an optimal
checkpointing interval for an application using the
failures logs obtained from networks of workstations.
They derive the failure rate of the machines using the
time between failures observed in the logs. In another
study, Nath et. al. [2] study real-world failure traces
to recommend design principles that can be used to
tolerate correlated failures. Particularly they have
used it in recommending data placement strategies
for correlated failures.
Previous work in analyzing the failure data set used
in this paper aimed at optimizing node level

1567156315631563156315681568

redundancy [3]. In [3] only node-level redundancy
was optimized but the root cause of the failures was
not considered to identify the critical sub-components
of the system as has been done in the present work.
The metric used in [3] was erroneously referred to as
Mean Time To Failure (MTTF), even though the
theory, analysis and results were presented for the
metric Mean Time Between Failure (MTBF). It is to
be noted that MTBF is not the same as the MTTF.
Apart from the MTTF itself, MTBF includes the time
required to repair the previous failure. MTTR is
defined as the Mean Time To Repair a failure.
Therefore, MTBF = MTTF + MTTR. In this paper,
we perform the analysis and present the results for
the metric MTTF.
Prior work in analyzing failure rates tried to arrive at
reasonable curves that fit the failure distribution of
the systems [4]-[7]. Schroeder and Gibson [8] have
presented the characteristics of the failure data that
has been used in this study as well. However, a
limitation of these studies is that they do not evaluate
how system design choices could be affected by the
failure characteristics that they have derived from the
data. In this work we specifically attempt to
understand the failure behavior and use that
knowledge in the design of an optimal component-
level fault-tolerance strategy with the aim of
increasing the overall availability of the system at the
least cost.
There is also interesting research work in
understanding the correlations between system
parameters and failure rate. Sahoo et. al. [5] show
that the workload of the system is closely correlated
with its failure rate, whereas Iyer [9] and Castillo
[10] bring out the correlation between workload
intensity and the failure rate. In our study we study
the dependency of failure rate on network
configuration, which in turn determines the workload
characteristics of the system. For example, a fat tree
topology necessitates higher communication and
computation bandwidth and load at the higher levels
of the tree structure.
Oliner and Stearley [11] have analyzed system logs
from five supercomputers and critically evaluate the
interpretations of system administrators from patterns
observed in the logs. They propose a filtering
algorithm to identify alerts from system logs. They
also recommend enhancements to the logging
procedures so as to include information crucial in
identifying alerts from non-alerts.
Lan et. al. [12][13] have proposed a machine-learning
based automatic diagnosis and prognosis engine for
failures through their analysis of the logs on Blue
Gene/L systems deployed at multiple locations. Their
goal is to feed the knowledge inferred from the logs

to checkpointing and migration tools [14][15] to
reduce the overall application completion time.
Oliner et. al. [16] derive failure distributions from
multiple supercomputing systems and propose novel
job-scheduling algorithms that take into account the
occurrence of failures in the system. They evaluated
the impact of this on the average bounded slowdown,
average response time and system utilization. In our
study we have utilized failure and repair time
distributions to propose a novel approach to selective
fault-tolerance. The metric of evaluation used is the
mean time to failure (MTTF) of the system.
Duplication, both at the system- and node- level has
been a topic of active and extensive research in the
micro-architecture and fault –tolerant computing
areas. Error Detection Using Duplicated Instructions
(EDDI) [20] duplicates original instructions in the
program but with different registers and variables.
Duplication at the application level increases the code
size of the application in memory. More importantly,
it reduces the instruction supply bandwidth from the
memory to the processor. Error Detection by Diverse
Data and Duplicated Instructions (ED4I) [21] is a
software-implemented hardware fault tolerance
technique in which two “different” programs with the
same functionality are executed, but with different
data sets, and their outputs are compared. The
“different” programs are generated by multiplying all
variables and constants in the original program by a
diversity factor k.
In the realm of commercial processors the IBM G5
processor [22] has extra I- and E- units to provide
duplicate execution of instructions. To support
duplicate execution, the G5 is restricted to a single-
issue processor and incurs 35% hardware overhead.
In experimental research, simultaneous
multithreading (SMT) [23] and the chip
multiprocessor (CMP) architectures have been ideal
bases for space and time redundant fault-tolerant
designs because of their inherent redundancy. In
simultaneously and redundantly threaded (SRT)
processor, only instructions whose side effects are
visible beyond the boundaries of the processor core
are checked [24]-[26]. This was subsequently
extended in SRTR to include recovery [19]. Another
fault-tolerant architecture is proposed in the DIVA
design [17][18]. DIVA comprises an aggressive out-
of-order superscalar processor along with a simple in-
order checker processor. Microprocessor-based
introspection (MBI) [27] achieves time redundancy
by scheduling the redundant execution of a program
during idle cycles in which a long-latency cache miss
is being serviced. SRTR [19] and MBI [27] have
reported up to 30% performance overhead. These
results counter the widely-used belief that full

1568156415641564156415691569

duplication at the processor-level incurs little or no
performance overhead.
SLICK [28] is an SRT-based approach to provide
partial replication of an application. The goals of this
approach are similar to ours. However, unlike this
approach we do not rely on a multi-threaded
architecture for the replication. Instead, this paper
presents modifications to a general superscalar
processor to support partial or selective replication of
the application.
As for research and production systems employing
system-level duplication, the space mission to land
on the moon used a TMR enhanced computer system
[29]. The TANDEM, now HP, Integrity S2 computer
system [30] provided reliability through the concept
of full duplication at the hardware level. The AT&T
No.5 ESS telecommunications switch [31], [32] uses
duplication in its administrative module consisting of
the 3B20S processor, an I/O processor, and an
automatic message accounting unit, to provide high
reliability and availability. The JPL STAR computer
[33] system for space applications primarily used
hardware subsystem fault-tolerant techniques, such as

functional unit redundancy, voting, power-spare
switching, coding, and self-checks.

4 Approach
This section describes our approach for analyzing the
data and building a model used for selective
component-level fault-tolerance. The records for a
single component are ordered according to the time
of occurrence of the failure, as given by the “Prob
Started field”. The time elapsed between the repair of
one failure and the occurrence of the next failure in
this ordered list gives the time to failure for the
second failure (In case of the first failure the time to
failure is the time from the installation of the
component to the failure). Following this procedure
the times to failure for each failure for the component
are calculated. The average of all these times is used
as an estimate for the mean time to failure (MTTF)
for the component. Time To Failure (TTF) for a fault
i is given by:

���� � ���	
�������� � ������������������
���� � ���	
�������� � ���	
�����������

�	��� � � � �

and therefore,

���� ��
� ����
�
���

�

��
��	
�������� � ������������������ � !��	
�������� � ���	
���������"

�
��# �

�

��
��	
�������� � ������������������ � $��	
�������� �� !��	
���������� �	%��������"&

�
��# �

�

� �
��	
�������� � ������������������ � $!��	
�������� � ��	
����������" � �	%��������&

�
��# �

�

��
��	
�������� � ������������������ ��	
�������� ����	
�������� � � �	%������

���
��� �

�

��
��	
�������� � ������������������ � � �	%������

���
��� �

�

MTTF is calculated as:

���� �
�	���'���	� 	� ��(�� � �	��)	%����� �	� �� ���(���

*(�
�� 	� ���(��� 	
���+�� !�"
 Eq. 1

The period of study of a system is its production
time, defined elsewhere as the time between its
installation and its decommissioning or the end of the
observation period, whichever occurs first. Total
downtime for all failures is the sum of the downtimes
of all failures observed for the system.
The “Downtime” field provides the time required by
the administrators to fix the failure and bring the
system back to its original state. It can be calculated
as the difference between the “Prob Ended” and
“Prob Started” fields. This is the repair time for this
failure. Averaging this field over all the records for a
single component provides an estimate for the mean
time to repair (MTTR) for this component. Time To
Repair (TTR) for a failure

 ��,� � !��	
������"� � �!��	
�������"�.
Therefore, Mean Time To Repair is given by

���, ��
� ��,�
�
���

�

4.1 Introducing component protection
From the previous analysis procedures, the MTTF
and the MTTR for a component have been estimated.
Now, we introduce a methodology to understand the
effect on component failure if we augment it with a
spare component. Figure 1 shows the states through
which a duplicated component transitions on failure
and repair events. When both the original and the
spare component are working correctly the system is
in state “2”. It is assumed that, after a failure is
detected in the component, the system has the
reconfiguration capability to fail over to the spare

1569156515651565156515701570

component instantaneously. Computation therefore
continues uninterruptedly. This state of the
component is represented by state “1” in the figure.
In the mean time, the original component is repaired.
The roles of the spare component and original
component are switched. If no other failure occurs in
the component, before the original component is
repaired, then the original component assumes the
role of the spare component, while the computation
continues on the spare component. Essentially, the
system is brought back to its pristine, fault-free state
(State “2” in the figure). However, if the next failure
for the component occurs within the mean time to
repair for that component, then it is not possible to
continue computation on that component. The
component reaches state “0”. We declare that
protecting this component cannot cover this second
failure. There are other possible transitions between
these states, shown as dotted lines in Figure 1. They
are (i) State “0” to “2”: When both the original and
spare components are repaired and the component
returns to its normal state. (ii) State “0” to “1”: When
one of the failed components (the original or the
spare) is repaired and computation continues on this
component. (iii) State “2” to “0”: When both
components fail at the same time. However, it is to be
noted that for the analysis based on the data these
transitions need not be considered. There would not
be a transition from State “2” to “0” since the data
represent failures only in one single component and
would not therefore have two simultaneous failures.
The purpose of the analysis (aided by the state
transition diagram) is to decide whether a particular
failure can be covered by protecting this component
or not. Once the component reaches State “0” it is
declared that the failure cannot be covered by
protecting it. Therefore, outward transitions from
State “0” (to States “1” and “2”) are not considered.
Based on this analysis, conducted for each
component individually, we evaluate all the failures
that are covered by providing fault-tolerance to that
component. This analysis provides an estimate of the
components, which when duplicated, provide the
most benefit in terms of improvement in the MTTF
of the system. The next part of the study is used to
achieve application requirements of MTTF.
Before choosing a component to be duplicated, let
-./.
� be the total time the system was in operation and

let �./.� be the number of failures. Then the MTTF of
the system at this time is given by ����./.� � �

0121
3

4121
3 .

Let �� be the failures in a component i that are
covered by duplicating it and let -� be the downtime
due to these �� failures. If component i is duplicated
the total time the system is in operation is given by

-./.
5 � � -./.

� -� and the number of failures is
�./.
5 � ��./.

� � ��. Therefore, the MTTF of the system
if component i is duplicated is given by ����./.5 �

�
0121
6

4121
6 � �

0121
3 507

4121
3 �47

.

If component i is to be chosen as the next best
candidate for duplication in improving the MTTF of
the system then:

0121
3 07
4121
3 �47

�8 �
0121
3 09

4121
3 �49

�:

�	����;��<����������	�
��=<	�����	���(���=��	�>

Figure 1: State transition diagram for component

failure with single fault-tolerance

We note that the fraction 0121
3 507

4121
3 �47

 is dependent not only

-� and �� but also on -./.� and �./.� . The choice of the
best component i to be chosen cannot be made only
by comparing the corresponding�-�’s and ��’s. Rather,
before making every consecutive choice for the best
component, the current -./.� and �./.� �must be noted,
and the fraction �0121

3 507

4121
3 �47

 must be calculated for each

component i that has not yet been duplicated. Then
the component j that gives the maximum value of
0121
3 509

4121
3 �49

 is chosen for duplication.

5 Root Cause Analysis
Referring to [8] we see that the 22 systems under
study are divided into 8 categories based on the types
of CPU and memory and the network configuration.
Of these we will limit our analysis to sizeable
systems (with more than 500 processors). Thus only
Systems of Type E, F and G are considered in this
analysis.
5.1 Failures for all systems
Failure data analysis independent of the system
brings out the impact of the specific Category and
sub-component where the failure occurred. For this
reason this specific focuses on the distribution of
failures from all systems and their impact. Figure 2
shows the distribution of failures across the six
categories. Figure 2 (a) shows the frequency of
occurrence of the failures, Figure 2 (b) shows the

2 1

0

1st failure

Failure of original node

Mean time to repair for Node

1570156615661566156615711571

total downtime caused due to these failures, and
Figure 2 (c) shows the average downtime due to each
of the six categories. From Figure 2(a) we can see
that most of the failures occurred in hardware
components of the systems, while human error
caused the least number of errors. Figure 2(b) shows
that hardware components also had the highest
overall impact on the system in terms of their
combined contribution to the total downtime.
However, when seen on an average per failure, (as
shown in Figure 2(c)) a failure occurring in the
facilities category had a higher impact (in terms of
downtime) than one in any other category.
5.2 Failure distribution for all systems

within a category
Of the six categories Operator Error, Network Error
and Undetermined have only 1 to 3 sub-components.
Therefore, we do not consider these in our detailed
analysis for failures in sub-components. The data
shown consider only failures in Facilities, Software
and Hardware categories for all systems put together
and for individual systems within a characteristic

group. Among the 22 systems, we will focus on the
larger systems for the analysis for root cause analysis
to understand the most critical components in each
system. These large systems are further divided in
groups based on their characteristics such as CPU
type, Memory Type etc. The groups and the
constituent systems are given in Table 2.

Table 2: Grouping of systems based on
configuration

Group Systems
E 3, 4, 5, 6, 18, 19, 20, 21
F 9, 10, 11, 12, 13, 14
G 16, 2, 23

In the previous section it was determined as to which
component would provide the highest improvement
in MTTF when it is duplicated. We now analyze each
system and group failures according to the
component in which they occur. Based on this
grouping we determine the component, which when
protected, provides the best improvement in MTTF.
The set of failing components for a system are a
subset of those listed in Table 1.

(a) (b)

(c)

Figure 2: Failure Distribution for All Systems
The analytical procedure presented in Section 4.1 is
used for the components as well. In place of a
component, a component throughout the entire
system is protected against failures. For example, for

failures in CPUs, all CPUs in the system are
duplicated to cover any failures. We follow the state
diagram shown in Figure 1 to determine the coverage
of failures.

1571156715671567156715721572

(a)

(b)
Figure 3: Improvement in MTTF incrementally covering failures in different components for

(a) System 9 (b) System 10 (c) System 11 (d) System 12

10%

100%

1000%

10000%

Pe
rc

en
ta

ge
 M

TT
F

Im
pr

ov
em

en
t

Number of Nodes Duplicated

System 9 MTTF Improvement with Node Duplication

Undet-Undetermined HW-Memory Dimm HW-Interconnect Interface

HW-Interconnect Soft Error SW-Parallel File System SW-Network

SW-User code HW-Disk Drive HW-Console Network Device

HW-System Board HW-40MM Cooling Fan HE-Human Error

Net-Network HW-Power Supply Facs-Power Outage

HW-Interconnect Cable SW-Upgrade/Install OS sftw SW-Kernel software

SW-NFS HW-Other SW-Scheduler Software

10%

100%

1000%

10000%

Pe
rc

en
ta

ge
 M

TT
F

Im
pr

ov
em

en
t

Number of Nodes Duplicated

System 10 MTTF Improvement with Node Duplication

HW-Memory Dimm Undet-Undetermined HW-Interconnect Soft Error

SW-Parallel File System HW-System Board HW-Interconnect Interface

HW-Disk Drive HE-Human Error HW-Console Network Device

SW-Network SW-User code HW-Temp Probe

Facs-Power Outage SW-Upgrade/Install OS sftw Net-Network

HW-CPU SW-Kernel software HW-40MM Cooling Fan

Undet-Unresolvable SW-Scheduler Software

1572156815681568156815731573

(c)

(d)
Figure 4: Improvement in MTTF incrementally covering failures in different components for

(a) System 9 (b) System 10 (c) System 11 (d) System 12

10%

100%

1000%

10000%

Pe
rc

en
ta

ge
 M

TT
F

Im
pr

ov
em

en
t

Number of Nodes Duplicated

System 11 MTTF Improvement with Node Duplication

Undet-Undetermined HW-Memory Dimm HW-Interconnect Soft Error

HW-Disk Drive SW-Parallel File System HW-Interconnect Interface

SW-User code HW-System Board SW-Network

HW-Power Supply Facs-Power Outage Net-Network

HW-Memory Module HW-Console Network Device HW-Heatsink bracket

HW-Temp Probe SW-Upgrade/Install OS sftw HW-IDE Cable

HW-Node Board HW-CPU HW-Riser Card

SW-Scheduler Software HE-Human Error

10%

100%

1000%

10000%

Pe
rc

en
ta

ge
 M

TT
F

Im
pr

ov
em

en
t

Number of Nodes Duplicated

System 12 MTTF Improvement with Node Duplication

HW-Memory Dimm Undet-Undetermined HW-Interconnect Soft Error

SW-Parallel File System HW-Interconnect Interface HW-System Board

HW-Disk Drive HW-CPU HW-40MM Cooling Fan

HE-Human Error Facs-Power Outage HW-Console Network Device

SW-Network SW-User code HW-Memory Module

HW-Power Supply Net-Network SW-Upgrade/Install OS sftw

HW-Node Board SW-Kernel software HW-Temp Probe

SW-Scheduler Software SW-NFS SW-Interconnect

Undet-Unresolvable

1573156915691569156915741574

As in the analysis shown in Section 4.1 let -�be the
downtime due to all failures in component i, let �� be
the number of failures occurring in component i, and
let -./.� and �./.� be the total system operation time
and failures at the time of choosing the next best
component for fault-tolerance. If component i is
chosen for protection, then the resultant MTTF is
given by: ����./.5 � �

0121
3 507

4121
3 �47

. The resultant MTTF on

protecting all components, one at a time, is
calculated. These values are compared and the
component providing the highest MTTF is chosen.
The order of choosing components for different
systems is shown in the following figures.
From Figure 3 we see that systems within a group
undergo similar types of failures. The set of failure
categories is almost the same for all systems in a
group. The curves for the improvement in MTTF of
similar systems are also similar showing that the
specific components and their order of choice is also
more or less similar across the systems in a group.
For example, for Systems 9, 10, 11, and 12 HW-
Memory Dimm (hardware) is the most critical
component, followed by HW-Interconnect (Soft
Error/Interface) and so on.

6 Conclusions and future directions
In this paper, we have presented our analysis of the
failure behavior of large scale systems using the
failure logs collected by LANL on 22 of their
computing clusters. We note that not all components
show similar failure behavior in the systems. Our
objective, therefore, was to arrive at an ordering of
components to be incrementally (one by one) selected
for duplication so as to achieve a target MTTF for the
system after duplicating the least number of
components. Using the start times and the down
times logged for the failures we derived the time to
failures and the mean time for repairs failures on a
component. Using these quantities, we arrived at a
model for the fault coverage provided by duplicating
each component and ordered the components
according to MTTF improvement provided by
duplicating each component. We analyze the failures
grouped by the components in which they occur to
understand the critical components and failures types.
We observed that systems of similar hardware and
software configurations showed similar MTTF
improvement when specific components or failure
types are targeted for fault tolerance.
The failure data from LANL provides node level
failure information even though each node has
multiple and different number of processors.
Therefore a more fine-grained logging of failures at
the processor-level could provide even higher

improvement in hardware overheads in achieving
higher levels of System-level MTTFs.
A further improvement in the analysis is to include
the cost of the component to be protected as a factor
in evaluating the necessity to duplicate it. This would
determine the most ideal choice of components for
fault-tolerance to achieve a particular target given a
certain reliability budget for the system.

References
[1] J. S. Plank and W. R. Elwasif. Experimental
assessment of workstation failures and their impact on
checkpointing systems. In Proceedings of FTCS-98.
[2] S. Nath, H. Yu, P. B. Gibbons, and S. Seshan.
Subtleties in tolerating correlated failures. In Proceedings
of NSDI’06, 2006.
[3] N. Nakka, A. Choudhary, “Failure data-driven selective
node-level duplication to improve MTTF in High
Performance Computing Systems”, In Proceedings of
HPCS 2009, June 2009, Kingston, Ontario, CA.
[4] T. Heath, R. P.Martin, and T. D. Nguyen. Improving
cluster availability using workstation validation. In
Proceedings of ACM SIGMETRICS, 2002.
[5] R. K. Sahoo, R. K., A. Sivasubramaniam, M. S.
Squillante, and Y. Zhang. Failure data analysis of a large-
scale heterogeneous server environment. In Proceedings of
Dependable Systems and Networks, June 2004.
[6] D. Tang, R. K. Iyer, and S. S. Subramani. Failure
analysis and modelling of a VAX cluster system. In Fault
Tolerant Computing Systems, 1990.
[7] J. Xu, Z. Kalbarczyk, and R. K. Iyer. Networked
Windows NT system field failure data analysis. In Proc. of
the PRDC, 1999.
[8] B. Schroeder and G. Gibson. A large-scale study of
failures in high-performance-computing systems. In
Proceedings of the DSN, Philadelphia, PA, June 2006.
[9] R. K. Iyer, D. J. Rossetti, and M. C. Hsueh.
Measurement and modeling of computer reliability as
affected by system activity. ACM Transactions on
Computing Systems, Vol. 4, No. 3, 1986.
[10] X. Castillo and D. Siewiorek. Workload,
performance, and reliability of digital computing systems.
In the 11th FTCS, 1981.
[11] Adam J. Oliner, Jon Stearley: What Supercomputers
Say: A Study of Five System Logs. In Proceedings of the
DSN, Edinburgh, UK, June 2007, pp. 575-584.
[12] Z. Lan, Y. Li, P. Gujrati, Z. Zheng, R. Thakur, and J.
White, "A Fault Diagnosis and Prognosis Service for
TeraGrid Clusters", In Proceedings of TeraGrid'07 , 2007.
[13] P. Gujrati, Y. Li, Z. Lan, R. Thakur, and J.
White,"Exploring Meta-learning to Improve Failure
Prediction in Supercomputing Clusters", In Proceedings of
ICPP, 2007.
[14] Y. Li and Z. Lan, "Using Adaptive Fault Tolerance to
Improve Application Robustness on the TeraGrid", In
Proceedings of TeraGrid'07 , 2007.
[15] Z. Lan and Y. Li, "Adaptive Fault Management of
Parallel Applications for High Performance Computing",
IEEE Transactions on Computers , 57(12), pp. 1647-1660.
[16] A. J. Oliner, R. K. Sahoo, J. E. Moreira, M. Gupta,
and A. Sivasubramaniam. Fault-aware job scheduling for

1574157015701570157015751575

Bluegene/L systems. In Proceedings of the 18th IPDPS,
2004.
[17] C. Weaver and T. Austin. “A fault tolerant approach
to microprocessor design,” in Proceedings of DSN, July
2001, pp. 411-420.
[18] T. Austin, “DIVA: A reliable substrate for deep
submicron microarchitecture design,” in Proceedings of the
Thirty-Second International Symposium on
Microarchitecture, November 1999, pp. 196-207.
[19] T. Vijaykumar, I. Pomeranz, and K. Cheng,
“Transient fault recovery using simultaneous
multithreading,” in Proceedings of the Twenty-Ninth
Annual International Symposium on Computer
Architecture, May 2002, pp. 87-98.
[20] N. Oh, P.P. Shirvani, and E.J. McCluskey, “Error
detection by duplicated instructions in super-scalar
processors,” IEEE Transactions on Reliability, vol. 51(1),
pp. 63-75, Mar. 2002.
[21] N. Oh, S. Mitra, and E.J. McCluskey, “ED4I: Error
Detection by Diverse Data and Duplicated Instructions,”
IEEE Transactions on Computers, vol. 51(2), pp. 180-199,
Feb. 2002.
[22] T. Slegel, et al. “IBM’s S/390 G5 microprocessor
design,” IEEE Micro, vol. 19(2), pp. 12–23, 1999.
[23] D. M. Tullsen, S. J. Eggers, and H. M. Levy,
“Simultaneous multithreading: Maximizing on-chip
performance,” in Proceedings of the Twenty-Second
International Symposium on Computer Architecture, June
1995, pp. 392-403.
[24] E. Rotenberg, “AR-SMT: A microarchitectural
approach to fault tolerance in microprocessors,” in
Proceedings of the Twenty-Ninth International Symposium
on Fault-Tolerant Computing Systems, June 1999, pp. 84-
91.
[25] K. Sundaramoorthy, Z. Purser, and E. Rotenberg,
“Slipstream processors: Improving both performance and
fault tolerance,” In Proceedings of the Thirty-Third
International Symposium on Microarchitecture, December
2000, pp. 269-280.
[26] S. K. Reinhardt and S. S. Mukherjee, “Transient fault
detection via simultaneous multithreading,” in Proceedings
of the Twenty-Seventh International Symposium on
Computer Architecture, June 2000, pp. 25-36.
[27] M. A. Qureshi, O. Mutlu, and Y. N. Patt,
“Microarchitecture-based introspection: A technique for
transient-fault tolerance in microprocessors,” In
Proceedings of International Conference on Dependable
Systems and Networks, June 2005, pp. 434-443.
[28] A. Parashar, A. Sivasubramaniam, S. Gurumurthi.
“SlicK: slice-based locality exploitation for efficient
redundant multithreading,” in Proceedings of the 12th Intl.,
conference on ASPLOS, 2006.
[29] A.E. Cooper and W.T. Chow, “Development of on-
board space computer systems,” IBM Journal of Research
and Development, vol. 20, no. 1, pp. 5-19, January 1976.
[30] D. Jewett, “Integrity S2: A fault-tolerant Unix
platform,” Digest of Papers Fault-Tolerant Computing: The
Twenty-First International Symposium, Montreal, Canada,
pp. 512 - 519, June 25-27, 1991.
[31] “AT&T 5ESS™ from top to bottom,”
http://www.morehouse.org/hin /ess/ess05.htm.

[32] AT&T Technical Staff. “The 5ESS switching
system,” The AT&T Technical Journal, Vol. 64(6), Part 2,
July-August 1985.
[33] A. Avizienis, “Arithmetic error codes: Cost and
effectiveness studies for Application in digital system
design,” IEEE Transactions on Computers, vol. 20, no. 11,
pp. 1332-1331, November 1971.

1575157115711571157115761576

