2011 IEEE International Parallel & Distributed Processing Symposium

High Performance Data Mining Using R on Heterogeneous Platforms

Prabhat Kumar, Berkin Ozisikyilmaz, Wei-Keng Liao, Gokhan Memik, Alok Choudhary
Department of Electrical Engineering and Computer Science
Northwestern University
Evanston, IL, USA
{pku649, boz283, wkliao, memik, choudhar}@ece.northwestern.edu

Abstract—The exponential increase in the generation
and collection of data has led us in a new era of
data analysis and information extraction. Conventional
systems based on general-purpose processors are unable
to keep pace with the heavy computational require-
ments of data mining techniques. High performance co-
processors like GPUs and FPGAs have the potential to
handle large computational workloads. In this paper,
we present a scalable framework aimed at providing
a platform for developing and using high performance
data mining applications on heterogeneous platforms.
The framework incorporates a software infrastructure
and a library of high performance kernels. Furthermore,
it includes a variety of optimizations which increase the
throughput of applications. The framework spans mul-
tiple technologies including R, GPUs, multi-core CPUs,
MPI, and parallel-netCDF harnessing their capabilities
for high-performance computations. This paper also
introduces the concept of interleaving GPU kernels from
multiple applications providing significant performance
gain. Thus, in comparison to other tools available for
data mining, our framework provides an easy-to-use and
scalable environment both for application development
and execution. The framework is available as a software
package which can be easily integrated in the R pro-
gramming environment.

Keywords-R; GPU; Data Mining; MPI; K-Means;
Fuzzy K-Means; PCA; Parallel-netCDF;

I. INTRODUCTION

Knowledge driven decisions are a key to success
in today’s world. Business corporations, financial
institutions, government departments, research and
development organizations collect huge amounts
of data with a view to gain a deeper insight
in their respective fields. Social networks such
as Facebook and micro-blogging website Twitter
generate enormous amounts of data which can

1530-2075 2011
U.S. Government Work Not Protected by U.S. Copyright
DOI 10.1109/IPDPS.2011.329

1715

provide useful information about the latest trends
in the society. Sifting through such vast collection
of data and discovering unknown patterns is not a
trivial task, especially when the data sizes are of
the order of exabytes and petabytes. Data mining
presents a pool of automated analysis techniques
which can discover hidden knowledge and predict
new trends and behaviors.

Analyzing large quantities of data requires com-
putational resources. Recent times have seen the
emergence of many high performance architec-
tures like GPGPUs, Cell, Multi-cores, FPGAs,
etc., each presenting its own unique benefits. The
paradigm of homogenous computing, where all the
nodes have the same architecture, is transforming
itself to heterogeneous computing, where each
task is allocated to the architecture that suits its
properties best. Since data mining kernels are char-
acterized as being computationally intensive, the
new generation of architectures can provide a sig-
nificant boost to their performance. Furthermore,
storing and retrieving large quantities of data adds
to the complexity of data mining applications.

Exploring hidden patterns and trends require a
collection of data mining techniques. Tools such
as Clementine[1] and WEKA[2] provide a rich
collection of algorithms. However, they lack the
capability to utilize the benefits of co-processors
and do not have scalable I/O capabilities. This
limits their usability as a high performance data
analytics tool. This paper describes a scalable
framework for developing parallel applications on
a heterogeneous computational backbone. It in-
corporates a library of compute-intensive kernels
and explores performance optimization techniques

IEEE

@ computer
N soclety

to increase the throughput of applications. In our
framework, an application is written as a script
which is composed of modules (e.g., commonly
used kernels). The framework provides a middle-
ware which deploys these modules on a cluster of
heterogeneous hardware platforms. Further, pro-
cessing huge amounts of data requires reading and
writing to storage devices, like disk drives, SSDs
etc. I/O presents a significant bottleneck in the
overall performance of data mining applications as
a poor read/write interface can hinder any benefit
obtained from parallel architectures. To alleviate
this problem, our framework incorporates a par-
allel I/O interface. Thus, the framework discussed
in this paper provides parallelism both for I/O and
computations while still being simple and flexible.

Besides the above mentioned features, the pro-
posed framework outlines a new optimization
technique aimed for GPU architectures. This tech-
nique involves interleaving kernels from different
applications to improve their throughput. The opti-
mization relies on the domain specific knowledge
that it is not always known apripori, what is
the best algorithm to mine raw data for useful
information. In such situations the data is explored
using multiple algorithms. Since all the algorithms
work on the same dataset, they can run in close
coordination to improve the overall performance.
Overall, the major contributions of the paper are
as follows:

1) A scalable framework for writing high
performance applications on heterogeneous
platforms.

2) A high performance library of commonly
used kernels for data exploration.

3) An interface to parallel I/O functionality

4) Various optimizations to increase
throughput of applications

the

The paper is organized as follows. Section II
presents the related work. Section III presents
the implementation overview of our framework.
Section IV describes how applications can be
written for the framework. Section V presents a
discussion of the results. We conclude the paper
in Section VI with directions to future work.

1716

II. RELATED WORK

R[3] is a widely used programming language
for statistics and data manipulation. Given that
huge statistical problems have become common-
place today, a number of parallel R packages have
been developed. A few such packages for explicit
parallelism are mentioned below.

The Rmpi[4] package provides an interface
from R to MPI. The SNOW[5] package runs on
top of Rmpi (or directly via sockets), allowing the
programmer to express the parallel disposition of
work more conveniently. Rdsm package[6] gives
the R programmer a shared memory view, but the
objects are not physically shared. Instead, they are
stored in a server, and accessed through network
sockets, thus enabling a threads-like view. Parallel-
R[7] and pR[8] enable the statistical analysis
routines available in R to be deployed on high
performance architecture.

The MOBNI Microarray Lab in University of
Michigan has provided a gputools[9] package for
R which constitutes a handful of common statisti-
cal algorithms that are used in the biomedical re-
search community. Another work in this area is the
RGPU package which enables parallel evaluation
of linear algebra expressions, as well as access to
some of the function provided in CUDA SDK[10].
The magmal[11] package provides an interface to
the hybrid Matrix Algebra on GPU and Multicore
Architectures implementation.

There has been multiple works in using clus-
ter of GPUs in parallel. DisMaRC, a distributed
GPGPU based MapReduce framework is pre-
sented in [12]. In another work by Lawlor[13], the
author analyses two new communication libraries,
cudaMPI and gIMPI, that provide an MPI-like
message passing interface to communicate data
stored on the graphics cards of a distributed-
memory parallel computer. Then there are nu-
merous examples of single applications that are
ported on cluster of GPUs [14], [15], [16], [17].
In the data mining domain GPUs have been used
extensively. Some implementations of K-Means
on GPUs can be found in [18], [19], [20], [21],
[22], [23]. Our work focuses on low-level and

micro-level performance optimizations which are
explored using a library of customized kernels
incorporated in a scalable framework. In this work
we focus on a bottoms-up approach of developing
high performance applications using simpler ker-
nels. This is in contract to the various works men-
tioned above which follow a top-down approach.
Furthermore, we stress on the overall throughput
of applications as opposed to scaling independent
applications.

III. IMPLEMENTATION OVERVIEW

The framework presented in the paper spans
across different domains to harness their capabil-
ities in an attempt to provide a scalable system
for using data mining applications for knowledge
discovery. This section gives a detailed description
of the different components used in the frame-
work. The front end of the framework is the
widely used R-statistical tool. MPI is used for
communication between the cluster nodes and
parallel I/O is achieved using MPI-10 and Parallel-
netCDF[24] interface. The computation intensive
tasks are handled by multi-core CPUs and multi-
threaded GPUs [25], [10]. Figure 1 shows the
different components of the system.

Figure 2 shows the dataflow in our framework.
The framework is launched on all the nodes in
a master-slave configuration. The application is
written as an R script. The script calls the high-
performance I/O interface to read the data from
platform independent netCDF[26] file in parallel.

SR
R version 2.8.0

> Serial-
Input/Outp

ut

R-C Interface

Cluster of Multi-Core CPUs and GPUs

Multi-Core Multi-Core Multi-Core Multi-Core A
- - MPI MPI MPI - - -
= = = = = = = =
S R | EE | .
Bl R e (==

g g 9 9 netCDF

Figure 1: Overview of the Framework

[data <- file.read()]:3[results <-analyze(data)
e
|_| [

Figure 2: Dataflow in the framework

R Environment
}:E visualization

High
Performance
Kernels

Once the data is read, the script invokes high-
performance kernels, through an efficient R-C
interface, to analyze the data. The MPI commu-
nication enables the nodes to interact with each
other. The results, which are communicated to
the R environment, can take advantage of the
rich analysis and/or visualization tools available
in R. The programming model consists of - (1) a
programming infrastructure and (2) a library of
high performance kernels. The former provides
tools and methodologies for developing scalable
applications while the latter provides a collection
of commonly used data mining kernels to accel-
erate application development.

A. Programming Infrastructure

The programming infrastructure provides a soft-
ware platform which presents different methods
for managing the various components with a view
of scalable implementation and a high perfor-
mance scripting interface for an easy-to-use front
end to write various applications.

1) Software Platform: As mentioned above, we
have four major components in our framework:
the front end (or the scripting interface), the back
end (managed by C/C++/CUDA), communication
(which is MPI) and the I/O. Broadly defined, there
are two different implementation methods for glu-
ing these components to have a scalable platform
while keeping it flexible enough to incorporate
different kernels. These methods are described in
the following. The first implementation, which
is referred to as C-level parallelism (C-LP), is
shown by dotted arrows in Figure 3. In this,
the MPI communication is not visible in the R
environment. Each of the nodes running R call

1717

the corresponding C interface functions and all the
MPI calls are handled at the C level. The other
way of implementation, called R-level Parallelism
(R-LP), in which the MPI communication is visi-
ble at the R environment, is shown by solid arrows
in Figure 3. The R nodes call the C interfaced
kernels and the communication among the nodes
is handled in R. Notice that the C kernels are serial
as opposed to MPI-enabled kernels in C-LP.
Both the implementations have pros and cons.
R-LP has a higher overhead in sharing data among
the nodes as the data needs to come to the
R environment and then communicated to other
nodes before finally filtering down to the C en-
vironment, as opposed to C-LP where the data
can be shared at the same level i.e., across the
C environment as shown in Figure 3. Secondly,
C applications/kernels which are already written
using MPI paradigm can be directly interfaced to
the R environment with no or little modifications.
On the contrary, R-LP requires application to be
written as R script. The limitation faced by C-LP
is that it requires all the development to be done
within Rmpi package, i.e., all the code needs to be
compiled with the Rmpi code. The reason lays in
the fact that MPI initialization can be done only
once for whole system which makes it impossible
for packages not compiled within Rmi to use

R Environment

NODE 1

NODE 2 NODE 3

i

I communication I communication
’-----‘ '—----‘
,--_->M =

communication communication

=)

]

=)

C/C++/CUDA Environment

Figure 3: C-level Parallelism (C-LP) - Parallelism embed-
ded at the C environment (dotted arrows) and R-level Par-
allelism (R-LP) Parallelism exposed to the R environment
(solid arrows)

MPI function calls. R-LP is more flexible in this
regard as high performance library packages can
be developed independent of the Rmpi package.
Both these approaches have been followed in the
framework for different components. As discussed
in later sections, parallel I/O interface is built upon
C-LP, while the kernel libraries and application
development follow the R-LP methodology.

2) High-Performance R: The programming in-
frastructure of our framework includes a high-
performance scripting language capable of being
used in a distributed computing environment. This
scripting language interface is based on the widely
used statistical tool R. However, since R is not
good for heavy lifting, an interface to high level
languages like C/C++/Fortran, known for their
computational capabilities, is provided. Further-
more, since all the accelerator/coprocessors have
an interface to high-level languages an efficient
R-C interface is necessary for true high perfor-
mance scripting capabilities. R serves as a front-
end interface to the user. Compiled C functions
can be invoked in the R environment using .C or
.Call interface functions. With .C, the R objects
are copied to C data structure before being passed
to the C code, and copied again to a R list object
when the compiled code returns. On the contrary
.Call does not copy arguments. Since data mining
algorithms process huge amounts of data, copying
of arguments can severely hamper the performance
of applications. Our framework uses .Call function
to provide the C interface to R. Also, we havent
noticed any degradation in the execution of the
C functions using .Call interface. Besides lower
amount of copied data, other advantages of using
.Call function include:

« The ability to dimension the answer in C code

« Access to the attributes of the vectors

« And, access to other types, e.g., expressions

and raw type

These advantages come at the cost of increased
complexity in writing the interface functions.

B. High-Performance library of Kernels

The second component of our frameworks pro-
gramming model is the library of optimized and

Table I: Kernels for large data using CUDA Streams

Functionality Kernel Interface in R

Description

Summation gpu.stats.sum
Minimum gpu.stats.min
Maximum gpu.stats.max
Variance gpu.stats.var
Histogram gpu.stats.hist

Distance Computation
Cluster Update gpu.cluster_update
gpu.eigenvaiue
gpu.eigenvector

Eigenvalue Computation
Eigenvector Computation

Input: vector of elements; Output: sum

Input: vector of elements; Output: min

Input: vector of elements; Cutput: max

Input: vector of elements; Output: variance

Input: vector of elements, bins; Cutput: histogram

gpu.distance_compute linput: N records, K points; Qutput: Membership of each record

!nput: N records and membership; Qutput: Location of all centres

Weighted Cluster Update | gpu.w_cluster_update [input: N records and membership; Qutput: Weighted location of all centres
Input: NxD Matrix; Output: Eigenvalue {using Householder and Bisection)
Input: NxD Matrix, eigenvalues; Qutput: Eigenvectors {using Inverse Iteration)

Parallel netCDF file read
Parallel netCDF file write
MPI-1O file read
MPI-10 file write

ncmpi. file.read
ncmpi. file.write
mpi_io.file.read

mpi_io.file.write

Read data from netcdf file parallehy
\Write data to newcdf file parallely
Read data from a binary file using MPI
\Write data to a binary file using MPI

high performance kernels which can be embedded
in R scripts. The library provides a collection of
commonly used data mining kernels implemented
for different architectures. Apart from this, intra-
node and inter-node optimizations are also in-
cluded. To keep the development process simple
and flexible, we follow the R-LP approach (refer
to Figure 3). Decoupling the high performance
kernels from applications gives us the opportunity
to develop new applications. Furthermore, kernels
implemented on different architectures enable us
to explore the design space to achieve the best
performance.

1) Computational Intensive Kernels: We have
implemented the kernels both for CPU and GPU.
CPU kernels are used for hybrid-execution on a
heterogeneous cluster comprising of GPUs and
CPUs. For CPU, some kernels are already avail-
able in R. The implementation is done keeping in
view that the kernels can easily scale in a cluster
environment. For the GPU implementations, the
input data is first shipped to the GPU device
memory and then kernels are launched which
process the input data in the device memory. The
results are subsequently shipped back to the host
(CPU) memory. Table I shows a list of kernels and
their corresponding interface functions for R.

2) Kernel optimization for GPUs: The above
mentioned kernels work well when the input data

fits entirely into the GPU device memory. How-
ever, since data mining deals with huge amounts
of data, typically, the entire data will not fit
into the GPU device memory. Transferring data
to and from the GPU device will result in sig-
nificant performance degradation. This requires
out-of-core implementation using CUDA Streams.
The framework, however, uses the multi-threaded
kernels (mentioned above) and schedules them to
overlap with host/device data transfers. This limits
the need of developing new out-of-core kernels.
Figure 4 shows an example where the input dataset
is divided into smaller tiles and assigned to two
different streams. Each data transfer on Stream 1
is overlapped with a kernel execution on Stream
2 resulting in reduced overhead.

3) Communication + I/O: In our framework
the communication among the nodes of a cluster
is handled by MPI though the Rmpi package.
However, besides sharing the data during compu-
tations, large amounts of data need to be accessed
from storage devices. Absence of a parallel I/O
interface will severely affect any performance gain
achieved using multi-core multi-threaded kernels.
We, therefore, enhace the capabilities of Rmpi
package to provide MPI-IO interface to R for
parallel read/write capability. Further, parallel-
netCDF is built on top of MPI-IO. We have imple-
mented a parallel-netCDF interface for R which

1719

g Tile 4 Application
§ o Memcpy
g (_Eu Tile 3 Kernel A
a Memcpy
S E Tile 2 Kernel B
=3
= T
2 Tile 1 @ﬁs
|—|:> [Framework]
GPU

CUDA Stream 1

== &= E
(re)s () ()] () [(=)

Kernel
B

Kernel
A

[memcpy] [memcpy }

Kernel
A

Kernel
B

Figure 4: Kernels for large data using CUDA Streams

provides the capability of reading/writing netcdf
file format to all the nodes in the R-cluster. Table
I gives a list of interface functions for parallel
read/write.

IV. APPLICATION DEVELOPMENT USING THE
FRAMEWORK

Previous section has given a detailed description
of the different components that make our frame-
work. In this section, we present how applications
can be written using all these components. We di-
vide this section into three subsections discussing
about the implementation of algorithms using the
kernels, the optimizations offered by the frame-
work, and how to scale the applications to a cluster
of nodes. Notice that application development is
done on the front end in R script and the kernels
and I/O functions are called only when necessary.

A. Algorithms

Using the framework, we have developed dif-
ferent data mining algorithms. Due to limited
space we give only a brief description of three of
them: K-Means[27], Fuzzy K-Means[28], [29] and
PCA[30], [31], [32], [33]. K-Means is a widely
used clustering algorithm which attempts to find
K partitions of the input dataset by minimizing

1720

the squared error within each partition. The K-
Means algorithm can be implemented using the
Distance Computation, Cluster Update and His-
togram kernels as mentioned in Table I. A vari-
ation of K-Means algorithm called Bisection K-
Means can also be implemented similarly. Fuzzy
K-Means is a superset of K-Means algorithm with
the distinction that it allows each record in the
data set to have a degree of membership to each
partition. Principal component Analysis (PCA)
aims at finding the principal components which
are representative of the input dataset and can
be implemented using Eigenvalue and Eigenvector
kernels.

B. Scheduling Optimizations using the Frame-
work

Besides the above mentioned kernels, our
framework provides a number of optimizations
which can help increase the speedup of the ap-
plications. We present a couple of optimizations
here. Notice that these optimizations are currently
specific to the hardware but as new hardware
devices are introduced, new optimizations for that
particular hardware are easy to integrate in the
current system.

1) Hybrid Implementation: Hybrid implemen-
tation refers to harnessing the capabilities of both

Application

Memcpy
Kernel A
Memcpy
Kernel B

ybrid
Kernel
Call

ﬂCPU Kernel Call

lLGPU Kernel Call

[Framework]

Figure 5: Distribution of tasks in a Heterogeneous environ-
ment

GPUs and CPUs simultaneously. Consider a situa-
tion when we have a GPU and a multi-core CPU in
the system. It would be desirable to distribute the
tasks between the GPU and the CPU cores. Since
the computational power of GPU is significantly
higher than that of the CPUs, the data need to be
distributed such that the work remains balanced.
Our framework provides the functionality to run
an application in the hybrid mode. In this mode,
the data will be distributed among the nodes and
the corresponding CPU or GPU kernels will be
launched. Figure 5 shows how a hybrid kernel call
gets broken down into architecture specific kernel
calls using the framework.

2) Multiple Kernel Optimization: This opti-
mization is specific to the CUDA implementation.
We notice that data mining kernels process huge
amounts of data and it is not always possible to
fit the entire data in the GPU device memory. As
mentioned in Section III-B2, this will require the
usage of CUDA Streams to lower the overhead
caused by copying data from host memory to
the device memory. We further notice in our
experiments that kernel execution time is smaller

e N\
Memcpy .

: Kernel 1.a m Tile 4
3 o Memcpy ;2
o < Kernel 1.b ‘a; ':
o [il
c Memcpy E © Tile 3
O N[el © £
- a ernel 2.a a &
E (-3 Memcpy [=}
Q < K I s e .
-~ ernel 2.b =5 £ T| 2
S 2 i
Q Memcpy £ %
< rg Kernel 3.a =

&l. Memcpy = T”e 1

Kernel 3.b
. J
[Framework]
GPU

CUDA Stream 1

© ©
@
CUDA Stream 2

Figure 6: Concept of Interleaved Kernel Optimization

1721

than the time it takes to copy smaller tiles of data
to the GPU device memory. This presents us a
unique opportunity to leverage the time difference.
In practical situations, a number of different data
mining algorithms are used on a given dataset. We
propose to run kernels from different applications
on the dataset while it is in the device memory
so as to reduce the overhead of memory copy as
much as possible. Figure 6 shows the idea behind
this optimization. As an example, three different
applications Appl, App2, and App3 are shown
in the figure. For each memory transfer call put
on a CUDA Stream, one kernel call from each
of the applications (1.a, 2.a, and 3.a) is allocated
on that particular stream as shown. This can be
viewed as a single kernel whose execution time is
close to the combined execution time of the same
kernels running separately. The kernel execution
and host-device memory copy times can be used
to predict the number of applications which can
be interleaved in the above fashion.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of
the applications developed using the framework
as well as various proposed optimizations. On the
hardware side, we have a cluster of 4 nodes. The
host CPU on each node is an Intel Quad Core 2.4
GHz processor with 4 GB of main memory. The
co-processor on each node is NVIDIAs GeForce
8800GT Graphics Processing Unit with 112 pro-
cessing cores and 512 MB of device memory. On
the GPU, the grid of thread blocks can have a
maximum of 65535 blocks on each dimension,
with a maximum of 512 threads per block. Each
multiprocessor has 16 KB of shared memory and
can run 8 thread blocks concurrently. Each node
has two of these GPUs. The software setup in-
cludes R version 2.8.0. MPICH2 version 1.2.1
is used for providing the MPI communication.
To provide parallel-netCDF functionality Pnetcdf
library version 1.2 is used. The GPU kernels
are compiled using the CUDA compiler driver,
NVCC, release 2.0. The entire software framework
is compiled using GCC version 4.4.2.

A. Performance of Applications

Figure 7 shows the performance of clustering
algorithms like K-Means and Fuzzy K-Means for
20 clusters and different sizes of the input data
set ranging from 10K to 1 million records. We
notice that as the data size is increased, there is an
initial improvement in the speedup, which even-
tually saturates at around 40 for K-Means and 70
for Fuzzy K-Means. The performance difference
between the two algorithms occurs because of the
computationally intensive membership calculation
resulting in higher speedups for larger workloads.
Due to limited space we cannot provide perfor-
mance charts for other applications. However, for
basic statistical kernels we obtain a speedup of up
to 30x and for PCA the speedups achieved are of
the order of 35x when compared to a single CPU
implementation.

Figure 8 shows the performance results for
larger datasets when the entire dataset does not
fit into the GPU device memory. Data is divided
into smaller tiles of size 768K records and the
number of CUDA Streams used is 4. We notice
that the speedup in this case is somewhat smaller
as compared to K-Means in Figure 7. This can
be attributed to two reasons. First, since the data
transfer time (between CPU and GPU) is not
negligible, copying data for all iterations incurs
extra overhead lowering the performance gains.
Second, since the kernels take less time compared
to the memory transfer, this overhead cannot be
eliminated even using CUDA Streams. Hence,
the speedup saturates around 25 compared to a

Clustering Algorithm

M 10K W50K W 100K W250K M500K W1M

Speedup (CPU/GPU)

k-means fuzzy k-means

Figure 7: Performance improvement for K-Means and
Fuzzy K-Means for K=20

1722

K-Means Speedup for large dataset
25

20 -
15 -
10 -
s -
0 - T
4M 8M 12M 16M 20M

Number of Records {in Millions)

Speedup w.r.t CPU

Figure 8: K-Means implementation for large dataset

speedup of 40 in Figure 7.

B. Effects of Scheduling Optimizations

In Figure 9, we show the performance gain
achieved by interleaving different kernels. As an
example, we consider K-Means with different
number of clusters (which is a parameter for K-
Means) as different applications. The results show
the speedups obtained for 2 to 7 applications rel-
ative to a single application for data sizes ranging
from 4 million to 20 million records. We notice
that as more kernels are interleaved for the same
amount of data transferred to the device memory,
the speedup increases. The speedup increases from
1.6x for two applications and saturates around
2x as the number of applications are increased
beyond 4. It should be noted that the speedup
of 2x w.urt. a single application amounts to an
overall performance gain of 50x when compared
against a single threaded CPU implementation.
The saturation is attributed to the fact that memory
copy time is completely hidden by the kernel
execution time and any further addition of kernels
will not result in a performance gain.

Interleaved Kernel Optimization

2.5

1.5

Speedup
w.r.t. Single Application

0.5

am 8M

12M

16M 20M

Number of Records (in Millicns)

ETwo Apps B Three Apps Four Apps B Six Apps M Seven Apps

Figure 9: Performance evaluation with interleaving kernels

Heterogeneous Execution

o

@

=

@

E

'_

c

8

=

3

[¥]

g

w

b#
Data Distribution Ratio {between GPU and CPU} °§~

Figure 10: K-Means on heterogeneous platform
(GPU+CPU)

C. Scalability

We evaluate the performance of the scalability
infrastructure provided by our framework by scal-
ing the above applications on a homogeneous and
heterogeneous cluster of machines. Our heteroge-
neous environment consists of GPUs and CPUs.
Figure 10 shows the execution times for different
ratios of data distribution between the CPUs and
GPUs for K-Means clustering algorithm. The hy-
brid middleware invokes CPU kernels and GPU
kernels optimized for large datasets for distance
computation and cluster update. We vary the data
distribution ratio from 20 to 34 and notice that
we achieve the best performance around the ratio
of 29. This heterogeneous implementation results
in a performance gain of around 9% compared to
GPU-only implementation.

Figure 11 shows the scalability of K-Means
algorithm on a homogeneous cluster of GPUs
using our framework. The framework achieves
7.2x speedup when the number of GPUs increases
from 1 to 8.

Homogeneous Exectution

-llE
T2 4 8

Number of GPUs

Speedup w.r.t Single GPU

Figure 11: Scalability results for cluster of GPUs

1723

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a scalable
framework for developing and using data mining
algorithms. Our framework spans across different
technologies to harness their capabilities. Data
mining techniques require heavy computations and
deal with huge amounts of data. To provide a
scalable environment we have provided an effi-
cient interface to handle compute-intensive tasks
as well as a parallel I/O interface for optimized
read/write of the data. We have further described
optimizations which can be easily implemented
using the framework. We introduce the concept of
multiple kernel optimizations, which runs kernels
from different applications for each data transfer.
We also present a middleware for heterogeneous
computations enabling both GPUs and CPUs work
together. In future, other architectures and more
data mining applications can also be easily inte-
grated. Our framework provides the flexibility of
integrating newer kernels and optimizations easily
in the framework. It provides a library of (highly
optimized) high performance kernels which are
commonly used in data mining algorithms. The re-
sults show that we can achieve significant speedup
with our optimizations. We also present, through
case studies, how the framework can be used to
write scalable applications.

ACKNOWLEDGMENT
This work 1is supported in part by NSF
award numbers: CCF-0621443, SDCI OCI-
0724599, CNS-0551639, 1IS-0536994, and

HECURA-0938000. This work is also partially
supported by DOE grants DE-FC02-07ER25808,
DE-SC0005309, DE-SC0005340, and DE-FGO02-
08ER25848.

REFERENCES

[1] Clementine ver. 12, SPSS Corporation, http://www.

spss.com/clementine.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reute-

mann, and I. H. Witten, “The weka data mining

software: An update,” SIGKDD Explorations, vol. 11,

no. 1, 2009.

[3] An Introduction to R, http://cran.r-project.org/doc/
manuals/R-intro.pdf.

(2]

[4]

(10]

(11]

(12]

[13]

(14]

[15]

[16]

(17]

(18]

Rmpi: Wrapper to MPI (Message Passing In-
terface), http://cran.r-project.org/web/packages/Rmpi/
index.html.

SNOW: Simple Network of Workstatsions, http://cran.
r-project.org/web/packages/snow/index.html.

Rdsm: Threads-Like Environment for R, http://cran.
r-project.org/web/packages/Rdsm/index.html.

N. F. Samatova, M. Branstetter, A. R. Ganguly, R. Het-
tich, A. Shoshani, and S. Yoginath, “High performance
statistical computing with parallel r: Applications to
biology and climate modelling,” Journal of Physics,
2006.

X. Ma, J. Li, and N. F. Samatova, “Automatic paral-
lelization of scripting languages: Toward transparent
desktop parallel computing,” in IEEE International
Parallel and Distributed Processing Symposium, Long
Beach, CA, March 2007, pp. 1-6.

J. Buckner, J. Wilson, M. Seligman, B. Athey, S. Wat-
son, and F. Meng, “The gputools package enables gpu
computing in r,” Bioinformatics, vol. 26, no. 1, pp.
134-135, 2010.

NVIDIA CUDA SDK, NVIDIA Corporation,
http://developer.download.nvidia.com/compute/cuda/
sdk/website/samples.html.

Magma: Matrix Algebra on GPU and Multicore
Architectures, http://cran.r-project.org/web/packages/
magma/index.html.

A. Mooley, K. Murthy, and H. Singh, “Dismarc: A
distributed map reduce framework on cuda,” University
of Texas, Austin, Tech. Rep.

O. Lawlor, “Message passing for gpgpu clusters: cud-
ampi,” in Proceedings of the IEEE Cluster, 2009.

Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover,
“Gpu cluster for high performance computing,” in
Proceedings of the IEEE Supercomputing Conference,
Pittsburgh, PA, November 2004.

B. G. Aaby, K. S. Perumalla, and S. K. Seal, “Ef-
ficient simulation of agent-based models on multi-
gpu and multi-core clusters,” in Proceedings of the
SIMUTools Conference, Torremolinos, Malaga, Spain,
March 2010.

D. A. Jacobsen, J. C. Thibault, and I. Senocak, “An
mpi-cuda implementation for massively parallel in-
compressible flow computations on multi-gpu clus-
ters,” 48th AIAA Aerospace Sciences Meeting and
Exhibit, January 2010.

M. Fatica, “Accelerating linpack with cuda on het-
erogenous clusters,” in Proceedings of the Workshop
on General-Purpose Computation on Graphics Pro-
cessing Units, Washington, D.C., March 2009.

R. Wu, B. Zhang, and M. Hsu, “Clustering billions of
data points using gpus,” Unconventional High Perfor-

1724

[19]

[20]

[22]

(23]

[24]

[26]

[27]

(28]

[29]

mance Computing Workshop, pp. 1-6, 2009.

R. Farivar, D. Rebolledo, E. Chan, and R. H. Cam-
bell, “A parallel implementation of k-means clustering
on gpus,” International Conference on Parallel and
Distributed Processing Techniques and Applications,
2008.

B. Hong-tao, H. Li-li, O. Dan-tong, L. Zhan-shan,
and L. He, “K-means on commodity gpus with cuda,”
in WRI World Congress on Computer Science and
Information Engineering, vol. 3, 2009, pp. 651-655.
S. A. Shalom, M. Dash, and M. Tue, “Efficient k-
means clustering using accelerated graphics proces-
sors,” International Conference on Data Warehousing
and Knowledge Discovery, pp. 166—175, 2008.

R. Wu, B. Zhang, and M. Hsu, “Gpu accelerated large
scala analytics,” HP Labs, Tech. Rep. HPL-2009-38,
20009.

J. D. Hall and J. C. Hart, “Gpu acceleration of iterative
clustering,” The ACM Workshop on General Purpose
Computing on Graphics Processors, August 2004.

J. Li, W. Liao, A. Choudhary, R. Ross, R. Thakur,
W. Gropp, and R. Latham, “Parallel netcdf: A scien-
tific high-performance i/o interface,” in Processings of
Supercomputing Conference, November 2003.
NVIDIA CUDA Programming Guide, NVIDIA
Corporation, http://developer.download.nvidia.com/
compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA _
ProgrammingGuide.pdf.

R. K. Rew and G. P. Davis, “Netcdf: An interface for
scientific data access,” IEEE Computer Graphics and
Applications, July 1990.

J. B. MacQueen, “Some methods for classification and
analysis of multivariate observations,” in 5th Berkeley
Symposium on Mathematical Statistics and Probabil-
ity, 1967, pp. 281-297.

J. C. Bezdek, Pattern recognition with fuzzy objective
function algorithms. Kluwer Academic Publishers,
1981.

J. C. Dunn, “A fuzzy relative of the isodata process and
its use in detecting compact well-separated clusters,”
Journal of Cybernetics, vol. 3, pp. 32-57, January
1974.

1. T. Jolliffe, Principal Component Analysis. Springer-
Verlag, 1986.

J. H. Wilkinson, The Algebraic Eigenvalue Problem.
London: Oxford University Press, 1965.

C. Lessig, FEigenvalue Computation with CUDA,
NVIDIA Corporation, October 2007.

J. E. V. Ness, “Inverse iteration method for finding
eigenvectors,” IEEE Tansactions on Automatic Control,
pp. 63-66, February 1969.

