
Detection and Correction of Silent Data Corruption for Large-Scale
High-Performance Computing

David Fiala, Frank Mueller
NCSU

Raleigh, NC
{dfiala,fmuelle}@ncsu.edu

Christian Engelmann
Oak Ridge Natl Lab

Oak Ridge, TN
engelmannc@ornl.gov

Kurt Ferreira, Ron Brightwell
Sandia Natl Labs
Albuquerque, NM

kbferre@sandia.gov

Rolf Riesen
IBM

Dublin, Ireland
rolf.riesen@ie.ibm.com

Abstract—Faults have become the norm rather than the
exception for high-end computing on clusters with 10s/100s
of thousands of cores. Exacerbating this situation, some of
these faults remain undetected, manifesting themselves as silent
errors that corrupt memory while applications continue to
operate and report incorrect results.

This paper studies the potential for redundancy to both
detect and correct soft errors in MPI message-passing ap-
plications. Our study investigates the challenges inherent to
detecting soft errors within MPI application while providing
transparent MPI redundancy. By assuming a model wherein
corruption in application data manifests itself by producing
differing MPI message data between replicas, we study the
best suited protocols for detecting and correcting MPI data
that is the result of corruption.

To experimentally validate our proposed detection and
correction protocols, we introduce RedMPI, an MPI library
which resides in the MPI profiling layer. RedMPI is capable
of both online detection and correction of soft errors that
occur in MPI applications without requiring any modifications
to the application source by utilizing either double or triple
redundancy.

Our results indicate that our most efficient consistency
protocol can successfully protect applications experiencing even
high rates of silent data corruption with runtime overheads
between 0% and 30% as compared to unprotected applications
without redundancy.

Using our fault injector within RedMPI, we observe that
even a single soft error can have profound effects on running
applications, causing a cascading pattern of corruption in most
cases causes that spreads to all other processes. RedMPI’s
protection has been shown to successfully mitigate the effects of
soft errors while allowing applications to complete with correct
results even in the face of errors.

I. INTRODUCTION

In High-End Computing (HEC), faults have become the
norm rather than the exception for parallel computation on
clusters with 10s/100s of thousands of cores. Past reports
attribute the causes to hardware (I/O, memory, processor,
power supply, switch failure etc.) as well as software (operat-
ing system, runtime, unscheduled maintenance interruption).
In fact, recent work indicates that (i) servers tend to crash
twice a year (2-4% failure rate) [1], (ii) 1-5% of disk drives
die per year [2], (iii) DRAM errors occur in 2% of all
DIMMs per year [1], which is more frequent than commonly
believed, and (iv) large scale studies indicate that simple

ECC mechanisms alone are not capable of correcting a
significant number of DRAM errors [3].

Table I
RELIABILITY OF HPC CLUSTERS

System # CPUs MTBF/I

ASCI Q 8,192 6.5 hrs
ASCI White 8,192 5/40 hrs (’01/’03)

PSC Lemieux 3,016 9.7 hrs
Google 15,000 20 reboots/day

ASC BG/L 212,992 6.9 hrs (LLNL est.)

Even for small systems, such causes result in fairly low
mean-time-between-failures/interrupts (MTBF/I) as depicted
in Figure I [4], and the 6.9 hours estimated by Livermore
National Lab for its BlueGene confirms this. In response,
long-running applications on HEC installations are required
to support the checkpoint/restart (C/R) paradigm to react to
faults. This is particularly critical for large-scale jobs; as
the core count increases, so does the overhead for C/R, and
it does so at an exponential rate. This does not come as a
surprise as any single component failure suffices to interrupt
a job. As we add system components (cores, memory, disks),
the probability of failure combinatorially explodes.

For example, a study from 2005 by Los Alamos National
Laboratory estimates the MTBF, extrapolating from current
system performance [5], to be 1.25 hours on a petaflop
machine. The wall-clock time of a 100-hour job in such
as system was estimated to increase to 251 hours due to
the C/R overhead implying that 60% of cycles are spent
on C/R alone, as reported in the same study. More recent
investigations [6], [7] revealed that checkpoint/restart effi-
ciency, i.e., the ratio of useful vs. scheduled machine time,
can be as high as 85% and as low as 55% on current-
generation HEC systems. Recent work by Sandia [8] shows
rapidly decaying useful work for increasing node counts (see
Table II). Only 35% of the work is due to computation for
a 168 hour job on 100k nodes with a MTBF of 5 years
while the remainder is spent on checkpointing, restarting
and then partial recomputation of the work lost since the last
checkpoint. Figure III shows that for longer-running jobs or
shorter MTBF (closer to the ones reported above), useful
work becomes insignificant as most of the time is spent on

Table II
168-HOUR JOB, 5 YEAR MTBF

Nodes work checkpt recomp. restart

100 96% 1% 3% 0%
1,000 92% 7% 1% 0%

10,000 75% 15% 6% 4%
100,000 35% 20% 10% 35%

restarts.
The most important finding of the Sandia study is that

redundancy in computing can significantly revert this
picture. By doubling up the compute nodes so that every
node N has a replica node N’, a failure of primary node
N no longer stalls progress as the replica node N’ can take
over its responsibilities. Their prototype, rMPI, provides dual
redundancy [8]. And redundancy scales: As more nodes are
added to the system, the probability for simultaneous failure
of a primary N and its replica rapidly decreases. Of the
above overheads, the recompute and restart overheads can be
nearly eliminated (to about 1%) with only the checkpointing
overhead remaining — at the cost of having to deploy twice
the number of nodes (200,000 nodes in Figure III) and
four times the number of messages [8]. But once restart
and rework overheads exceed 50%, redundancy is actually
cheaper than traditional C/R at large core counts.

Table III
100K NODE JOB, VARIED MTBF

job work MTBF work checkpt recomp. restart

168 hrs. 5 yrs 35% 20% 10% 35%
700 hrs. 5 yrs 38% 18% 9% 43%

5,000 hrs, 1 yr 5% 5% 5% 85%

The failure scenarios above only cover a subset of actual
faults, namely those due to fail-stop behavior or at least
detectable by monitoring of hardware and software. Silent
data corruption (SDC) is yet a different class of faults. It
materializes as bit flips in storage (both volatile memory
and non-volatile disk) or even within processing cores. A
single bit flip in memory can be detected (with CRC) and
even mitigated with error correction control (ECC). Double
bit flips, however, forces an instant reboot after detection
since ECC cannot correct such faults. While double bit flips
were deemed unlikely, the density of DIMMs at Oak Ridge
National Lab’s Cray XT5 causes them to occur on a daily
basis (at a rate of 1-2 per day for 75,000+ DIMMs) [9].

Meanwhile, even single bit flips in the processor core
remain undetected as only caches feature ECC while register
files or even ALUs typically do not. Significant SDC rates
were also reported for BG/L’s unprotected L1 cache [10],
which explains why BG/P provides ECC in L1. Nvidia
is making a similar experience with its shift to ECC in

their Fermi GPUs. Yet, hardware redundancy, such as Tan-
dem/HP’s NonStop architecture remains extremely costly
[11], [12], [13], [14], [15].

Today, the frequency of bit flips is no longer believed
to be dominated by single-event upsets due to radiation
from space [16] but is increasingly attributed to fabrication
miniaturization and aging of silicon given the increasing
likelihood of repeated failures in DRAM after a first failure
has been observed [1]. With SDCs occurring at significant
rates, not every bit flip results in faults. Flips in stale
data or code remain without impact, but those in active
data/code may have profound effects and potentially render
computational results invalid without ever being detected.
This creates a severe problem for today’s science that
relies increasingly on large-scale simulations. Redundant
computing can detect SDCs where relevant, i.e., when results
are impacted. While detection requires dual redundancy,
correction is only feasible with triple redundancy. Such high
levels of redundancy appear costly, yet may be preferable to
flawed scientific results. Triple redundancy is also cheaper
than comparing the results of two dual redundant jobs, which
would be the alternative at scale given the amount of useful
work without redundancy for large systems from Table III.
Overall, the state of HEC requires urgent investigation to
level the path to exascale computing — or exascale HEC
may be doomed as a failure (with very short mean times,
ironically).

A. Modeling Redundancy

Elliott et al. [17] combine partial redundancy with check-
pointing in an analytic model and experimentally validate
it. Results indicates that for an exascale-size machine, more
jobs can utilize a cluster under redundancy than would
be possible with checkpointing without redundancy for the
same number of cores, i.e., redundancy increases capacity
computing in terms of HPC job throughput.

We used this model in combination with Jaguar’s system
MTBF of 52 hours [18] (equivalent to a node MTBF of
50 years) to assess the viability of redundancy. Consider a
128 hour job (without checkpointing). We then assess the
time required for such a job without redundancy (1x), dual
redundancy (2x) and triple redundancy (3x) at different node
counts under weak scaling and with an optimal checkpoint
interval to minimize overall execution (see Fig. 1). At 18,688
nodes (Jaguar), marked as line C, single-node (1x) runs are
about 7% faster than dual (2x) and 20% faster than triple
(3x) redundancy. The problem is that a job at 1x will have
no indication if it had been subjected to an SDC. Consider
Jaguar’s double bit error rate of once a day again [19],
which is silently ignored (to increase system availability)
as it cannot be corrected. Scientists will not know if their
outputs were affected, i.e., if outputs are flawed (incorrect
science problem).

Let us consider dual redundancy at half the node count

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

20

40

60

80

100

120

140

160

180

Number of Nodes (N)

C
om

pl
et

io
n

T
im

e
(T

to
ta

l)

A B C

1x 2x 3x

Degree of Redundancy r

Figure 1. Modeled Time to Completion with Redundancy

of Jaguar (line B in Fig. 1). In order to ensure absence of
SDCs, a user would have to run a single redundant (1x) job
twice for a total time of about 280 hours (twice 140) vs. a
dual redundant (2x) job at twice the number of nodes (full
Jaguar size, line A) with 155 hours. Hence, dual redundancy,
results in nearly half the wall-clock time if SDC detection
is a requirement for verification and validation of a job’s
results.

Consider triple redundancy at a third of Jaguar’s node
count (line A). Running two jobs at 1x takes about 276
hours (twice 138), a dual redundant (2x) job 145 hours and
a triple redundant job 180 hours. The output of the two 1x
jobs differs, a third run would be required (assuming that
two of them produce correct results). If the dual redundant
(2x) job detects an error, it also needs to be rerun. The triple
redundant (3x) job, in contrast, can correct errors so that no
reruns would be needed.

At exascale core counts of one million and a node count
of 100,000 (swim lane 1 [20], [21]), dual redundancy would
have the lowest cost (lower than single job at 1x). The
additional cost of SDC correction at triple redundancy adds
another 14% overhead in wall-clock time, with the benefit of
no repeated runs for SDCs. This is based on the assumption
of Jaguar’s system MTBF (52 hours), even though the MTBF
could be much smaller given that double bit errors for a 128
Petabyte system would occur every four minutes (compared
to one a day today on Jaguar) [19]. SDC detection, if not
correction, may thus become essential at exascale.
B. Contributions

The main contributions of this work are (i) the design of
a novel silent data correction detection / correction methods
and (ii) a study on the challenges and costs of performing
SDC protection using redundancy. By utilizing redundancy,
our key to success is to not only rely on reactive resilience
requiring restart overheads but to sustain failures with for-
ward computational progress without a need to restart. In
this context, our work is addressing the following research
questions:

1) What are the protocols best suited to realize SDC
detection and correction at the communication layer?

2) What is the cost of different levels of redundancy with
respect to application runtime overhead?

3) How does quickly and critically does data corruption
spread across communicating MPI processes?

4) Is redundancy effective at identifying and isolating
corrupted data while still producing correct results?

Answering these questions, our work makes the following
major contributions: (1) We contribute the design and imple-
mentation of protocols for SDC detection and correction at
the communication layer. (2) We demonstrate the capabilities
and assess the cost of redundancy to (a) detect SDC and
(b) recover from such corruption in experiments on a real
system. As SDCs are being observed for 10k+ cores and
also due to smaller fabrication sizes, C/R techniques fail
to uncover SDCs, which can render the output of scientific
computations incorrect without knowledge of application
scientists. While dual redundancy can detect SDCs, triple
redundancy can actually correct them through voting. We
study the benefits and limitations of the spectrum ranging
from no redundancy over dual to triple redundancy in terms
of overhead and computing/interconnect resource costs. A
key challenge is to limit the overhead for SDC detection
by reducing the relevant footprint of computational results,
which we explore. (3) We assess the resilience of HEC
jobs to faults through injection. Hardware and software
failures can be studied through injection, which is in a native
environment on an actual cluster. (4) We develop a live SDC
tracking and reporting framework to investigate the effects
of SDCs on applications in terms of their rate of taint (cor-
ruption) progression spreading from node to node via MPI
communication. Further, we use this framework to evaluate
several application responses to fault injection and classify
three types of observed behavior that result in invalid data
being generated. In summary, this work contributes to fault
detection and recovery in significantly advancing existing
techniques by controlling levels of redundancy intervals in
the presence of hardware and software faults.

II. DESIGN

This work presents RedMPI, an MPI library that is capa-
ble of both detecting and correcting SDC faults. RedMPI
creates “replica” MPI tasks for each “primary” task and
performs online MPI message verification intrinsic to ex-
isting MPI communication. The replicas compare received
messages, or hashes, from multiple senders and can thus
detect if a process’s communication data has been corrupted.

RedMPI can run in double redundant mode and detect
divergent messages between replicas. Such messages are
indicative of corruption due to the fact that replicas will be
run in a deterministic manner. When RedMPI is run in triple
redundant mode, it gains the additional potential to also
correct faulty messages from a corrupted replica. RedMPI

supports additional levels of redundancy for environments
where multiple near-simultaneous faults can occur during
data transmission. A voting algorithm is used to determine
which of the received messages are correct and should be
used by all receivers.

To detect SDCs, RedMPI solely analyzes the content of
MPI messages to determine divergence between replicas dur-
ing communication. Upon divergence, the result deemed to
be invalid is discarded on the receiver side and transparently
replaced with a known “good” value from another replica.

A different SDC detection approach would be to con-
stantly compare the memory space of replicas’ processes
and compare results. Such an approach suffers from exces-
sive overhead due to constant traversals of large memory
chunks, overhead due to global synchronization to ensure
that each process is paused at the exact same spot during a
memory scan, and the communication required for replicas
to compare their copy of each memory scan while looking
for differences. In this case, if corruption is detected, it is
not feasible to correct the memory while the application is
running as this could interfere with application-side writes
to the same memory region. This, in turn, could necessitate a
rollback of all tasks to the last “good” checkpoint (assuming
that checkpointing was also enabled).

By instead focusing on the MPI messages themselves, we
have cut our search area down to only data that is most
critical for correctness of an MPI application; i.e., we argue
communication correctness is a necessary (but not sufficient)
condition for output correctness. Moreover, should an SDC
occur in memory that is not immediately communicated
over MPI, the fault is eventually detected as the corrupted
memory may later be accessed, operated on, and finally
transmitted. The same principle holds true for data that
became corrupted while residing in a buffer or any other
place in memory. If the SDC is determined to eventually
alter messages, then RedMPI detects it during transmission,
independent of when or how the SDC originated.

It is very important to note that RedMPI is designed
to protect an an entire application from SDC by using
replication. RedMPI is not designed to protect an intercon-
nect. By assuming that an application’s most critical data is
communicated during/after computation, we have effectively
reduced the scope to data that gets communicated and
may be compared between replicas to ensure consistency.
A process receiving corrupted data that affects important
calculations will eventually result in message correction so
that uncorrupted replicas are guaranteed to have received
correct data, only.

A. Point-to-Point Message Verification

The core of the RedMPI’s error detection capabilities are
designed around a reliable, verifiable point-to-point com-
munication protocol. Specifically, a point-to-point message

(e.g., MPI_Isend) sent from an MPI process must be iden-
tical to the message sent by other replicas for any given rank.
Upon successful receipt of a message, the MPI application
is assured that the message is valid (not corrupted).

Internally, a verification message may take the form of a
complete message duplicate that is compared byte by byte.
Alternatively, since MPI messages may be large, it is in
many cases more efficient to create a unique hash of the
message data and use the hash itself for message verification
to reduce network bandwidth. Message data verification can
be performed at either the sender or the receiver.

Let us first consider the case of sender-side verification.
To perform verification at the sender, all of the replicas need
to send a message to communicate with each other and
verify their content (through some means) before sending
the verified data to the receiving replicas. However, this ap-
proach incurs added latency and overhead for each message
sent due to the time taken to transmit between replicas and
to perform internal verification messages. Additionally, it is
best to optimize for the critical path; i.e., assuming that a
sent message tends to not be corrupted and that all senders
have matching data. A sender-side approach is subject to
additional overhead for every message sent at both sending
and receiving nodes. Specifically, while every sent message
is treated as suspect, the time required for the senders to
agree that each of their own buffered messages is correct
represents the time lost on the receiver side before the
application can proceed. For this reason, RedMPI’s protocols
use receiver-side verification resulting in faster message
delivery with considerably reduced message latency.

B. Assumptions

RedMPI does not protect messages over a transport layer,
such as TCP or InfiniBand, and assumes the transport to
be reliable. An unreliable network could cause undefined
behavior and deadlock RedMPI. Fortunately, protection in
the transport layer is well understood and is a common
feature of modern communication fabrics, e.g. hamming
codes or checksums for correction/retransmission.

As the primary focus of this work is to investigate
redundancy as a means to protect application data, RedMPI
only attempts to protect against corruption in data and not
application code or instructions. RedMPI does not protect
MPI I/O functionality, but orthogonal work [22] could be
combined with RedMPI to also cover this aspect.

Deterministic ordering of messages between replicas (for
wildcard receives, MPI Waitall/any calls or reduction or-
ders) is ensured via back-channel communication (see Sec-
tion III).

In this paper, we frequently reference RedMPI’s
MPI_Isend and MPI_Irecv. Note that RedMPI does, in
fact, support 53 standard MPI functions including collectives
via interposing, such as MPI_Send and MPI_Recv, around

their non-blocking equivalents within RedMPI. For brevity,
details of these and other supported functions are omitted.

III. IMPLEMENTATION

RedMPI provides the capability of soft error detection
for MPI applications by online comparison of results of
nearly identical replica MPI processes. To an MPI developer,
the execution of replica processes of their original code is
transparent as it is handled through MPI introspection within
the RedMPI library. This introspection is realized through
the MPI profiling layer that intercepts MPI function calls
and directs them to RedMPI. The profiling layer provides a
standard API allowing libraries to wrap MPI calls and add
additional or replacement logic for API calls.

To understand how RedMPI functions internally, it is first
important to understand how redundancy is achieved within
RedMPI. When launching an MPI job with RedMPI, some
multiple of the original number of desired processes needs
to be launched. For example, to launch an MPI job that
normally requires 128 processes instead requires 256 or
384 processes for dual or triple redundancy, respectively.
RedMPI handles redundancy internally and provides an
environment to the application that appears to only have the
originally required 128 processes.

The primary difference between replica MPI processes is
a replica rank that distinguishes redundant processes. For
example, for an application to run with three replicas (triple
redundancy), it would be started with three times as many
MPI ranks as usual. Internally, the number of ranks visible
to the MPI application would be divided by three where each
redundant rank carries an internal replica rank of 0, 1, or 2.
Figure 5 shows how triple redundancy may appear within
an MPI application expecting a size of three.

Virtual Rank: 0 Native Rank: 0 Replica Rank: 0

Virtual Rank: 0 Native Rank: 1 Replica Rank: 1

Virtual Rank: 0 Native Rank: 2 Replica Rank: 2

Virtual Rank: 1 Native Rank: 3 Replica Rank: 0

Virtual Rank: 1 Native Rank: 4 Replica Rank: 1

Virtual Rank: 1 Native Rank: 5 Replica Rank: 2

Virtual Rank: 2 Native Rank: 6 Replica Rank: 0

Virtual Rank: 2 Native Rank: 7 Replica Rank: 1

Virtual Rank: 2 Native Rank: 8 Replica Rank: 2

Figure 5. Triple Redundancy

The actual rank assigned to a process by
mpirun/mpiexec is referred to as the native rank.
The rank that is visible to an MPI process via the
MPI_Comm_rank API is referred to as the virtual rank.
Likewise, the size returned by MPI_Comm_size is
referred to as the virtual size. The number of replicas
running per virtual rank describes the redundancy of the
application and is referred to as the replication degree.
Within RedMPI, a mapping structure is stored in each

process that allows the forward and reverse lookup of any
processes’ native rank, virtual rank, or replica rank.

A. Rank Mapping

When launching an MPI job, the mapping of native ranks
may be specified on the command line with either a custom
map file or by specifying a flag to indicate the desired virtual
size. When a virtual size is specified on the command line,
RedMPI automatically generates a structure that maps native
ranks to a virtual rank of [0 . . . virtual size−1] and assigns
replica ranks of [0 . . . (native size/virtual size)−1]. Ad-
ditionally, for each communicator, group, or MPI topology
created within the MPI application, another map is created
to track ranks within the new group.

Internally, mappings can be translated using a formula
or by storing the data in a lookup structure. The formula
method provides a simple, deterministic mapping function
with low memory requirements, but it is not capable of
providing fine-tuned control of rank mapping. By using a
custom rank map file passed to RedMPI during startup, the
user has the capability to specifically designate which virtual
ranks are mapped to a native rank. This is advantageous in
particular when the user desires to put replica processes on
the same physical host or on neighboring hosts with low
network latency. If a custom map file is omitted, the mapping
formula is used to build the initial structure upon startup.

B. Message Corruption Detection & Correction

1) Method 1: All-to-all: RedMPI’s first receiver-side
protocol, All-to-all, supports both message verification and
message voting to ensure that the receiver discards corrupted
messages. The All-to-all method requires that each MPI
message sent is transmitted from all sender replicas to
each and every receiver replica. Thus, for a redundancy
degree of three, each sender sends three messages where
one message goes to each replica receiver as demonstrated
by Figure 2. This means that for a degree of 2 or 3 the
number of messages sent for a single MPI_Isend is 4 or
9, respectively. Each receiver listens for a message from each
sender replica and places such messages in separate receive
buffers.

Such message verification requires each sender to send
degree messages for each MPI send encountered. This is
realized by interposing MPI_Isend via RedMPI using
the MPI profiling layer. The new MPI_Isend routine
determines all replicas for the virtual rank of a message’s
destination. For each such replica, RedMPI performs a non-
blocking send with a payload of the entire message and
records the MPI_Request for each pending send. Upon
completion, the overridden MPI_Isend returns back to the
MPI application a single MPI_Request that can later be
used by MPI_Test or MPI_Wait. In a similar manner,
MPI_Irecv is interposed by RedMPI to look up all replicas

Receiver
Replica: 0

Sender
Replica: 0 Send Buffer

Recv Buffer 0

Recv Buffer 1

Recv Buffer 2

Receiver
Replica: 1

Recv Buffer 0

Recv Buffer 1

Recv Buffer 2

Receiver
Replica: 2

Recv Buffer 0

Recv Buffer 1

Recv Buffer 2

Sender
Replica: 1 Send Buffer

Sender
Replica: 2 Send Buffer

Figure 2. All-to-all Method Overview

MPI_Test

MPI Application

Match
MPI_Request

to internal
requests array

RedMPI Internals

Test/wait each
MPI_Request
within internal
request array

(Optional)
For receives:

Perform message
verification

MPI_Isend

Several
MPI_Isend(s)/
MPI_Irecv(s)

One for each
destination/

source replica

Array of
MPI_Requests

(Internal to
RedMPI)

Reduced to a
single

MPI_Request
visible to MPI

application

MPI Application RedMPI Internals

MPI_Irecv

MPI_Wait

Figure 3. All-to-all Function Overrides

Sender
Replica: 0

Send Buffer
Receiver
Replica: 0

Recv Buffer

Hash Buffer

Receiver
Replica: 1

Recv Buffer

Hash Buffer

Receiver
Replica: 2

Recv Buffer

Hash Buffer
Full Message (Solid)
Hash Only (Dashed)

Sender
Replica: 1

Send Buffer

Sender
Replica: 2

Send Buffer

Figure 4. MsgPlusHash Method Overview

of the source’s virtual rank and internally posts a non-
blocking receive for a message from each replica. Every
receive is stored into a different, temporary buffer entry.
Again, all MPI_Request handles originating from non-
blocking receives are recorded internally, but only a single
MPI_Request is returned to the MPI application. Figure 3
visualizes this process.

Following an MPI_Isend or MPI_Irecv, an MPI
application usually completes these requests with an
MPI_Test or MPI_Wait. RedMPI interposes these func-
tions as it needs to test not just the single MPI_Request,
but rather impose a test for each array element of internal
MPI requests corresponding to sends/receives from all repli-
cas. The MPI_Request is looked up and the test or wait
is performed on all outstanding requests. If the test or wait
was performed on a request from an MPI_Isend, then no
further action from RedMPI is required once the requests
complete. Only a request from an MPI_Irecv requires
extra steps to verify message reception from each replica.

When an MPI application receives a message, RedMPI
internally waits for all replica MPI receive requests to finish
during an MPI_Test or MPI_Wait before verifying the
data. The actual verification occurs before MPI_Test or
MPI_Wait return to the MPI application, but after all
replica receives arrive. Verification is performed via memory
comparison or computing a SHA1 hash of each replica
receive buffer and then comparing these hashes.

If during message verification a buffer mismatch is de-
tected, RedMPI mitigates in a manner dependent on the
degree of replication. With replication degree of two, it is
impossible to determine which of the two buffers is corrupt.
Hence, an error is logged noting corruption detection, but no
corrective action may proceed since the source of corruption
is indeterminate. With a replication degree exceeding two,
buffers are compared and corrupted messages are voted
out upon mismatch with the simple majority (of matching
messages). In this event, RedMPI ensures that the MPI
application’s receive buffer contains the correct data by
copying one of the verified buffers if necessary.

2) Method 2: Message Plus Hash (MsgPlusHash): The
MsgPlusHash (message plus hash) corruption detection and

correction method provides a key performance enhancement
over the All-to-all method by vastly reducing the total data
transfer overhead per message and the number of messages
in the general case. Similar to the All-to-all method, Ms-
gPlusHash performs message verification solely on the re-
ceiver end. The critical difference is that MsgPlusHash sends
one copy of a message originating from an MPI_Isend
in addition to a very small hash message. This change
in protocol allows each sending replica to transmit their
message only once, while the additional hash message is
later used to verify each receiver’s message. MsgPlusHash’s
contribution is a reduction of messages and thus bandwidth
required from nr to simply n ∗ r where n is the number of
messages sent and r is the degree of replication.

Internally, the MsgPlusHash method interposes
MPI_Isend, MPI_Irecv, MPI_Test, and MPI_Wait
similarly to the All-to-all method previously discussed.
The following logical overview of MsgPlusHash outlines
how the MsgPlusHash implementation differs, while the
same level of transparency is provided to MPI applications
as for All-to-all. E.g., MsgPlusHash internally utilizes
multiple send/receive MPI_Request handles, but the MPI
application only ever receives one such MPI_Request
handle.

To detect message corruption, the minimum requirement
is a comparison between two different sources. Additionally,
the most likely scenario (critical path) is for corruption to
not exist. The MsgPlusHash method takes full advantage of
these facts by only receiving a single copy of any message
transmitted plus a hash from an alternate replica. From an
efficiency standpoint, it is not necessary to send two full
messages since a hash suffices to verify data correctness
without imposing overheads of full message retransmission.
Once the full message is received, a hash of the message is
generated at the receiver and compared with a hash from a
different replica. In the likely event that hashes match, the
receiver can be assured that its message is correct, i.e., no
corrective action is taken.

As shown in Figure 4, each sender replica must calculate
where to send its message and where to send a hash of
its message. The actual message’s destination is simply

calculated by finding the receiver with the same replica rank
as the sender. The hash message’s destination is calculated
by taking the sender’s replica rank and adding one. In the
event that the destination replica rank exceeds the replication
degree, the destination wraps around to replica rank 0. This
pattern provides a simple and elegant solution to ensure each
receiver always gets a copy of the full message plus a hash
of the message from a different sender replica over a ring
of replicas.

In the event that the message’s hash does not match the
received hash, it is necessary to determine if either the
message is corrupt or if the received hash was produced from
a corrupt sender. In any case, if a sender becomes corrupt, it
transmits both the corrupted message and a hash of the cor-
rupted message to adjacent receiving replicas. It is important
to realize that a single corrupt sender affects both receivers.
For example, with a replication degree of three where the
middle sender (replica 1) transmits a corrupted message,
we can see from Figure 4 that both receiver replicas 1
and 2 are affected. In this particular case, receiver replica
1 has received a corrupt message, but a good hash since
sender replica 0 was not corrupted. Conversely, receiver
replica 2 has received a valid message, but a hash of a
corrupted message. In this scenario, both receiver replicas
1 and 2 cannot yet determine if their message is corrupt,
but they are both aware that one of their senders was in fact
corrupted. Additionally, receiver replica 0 is unaware of any
corruption since both message and hash matched on arrival.
If the replication degree had only been two, a corrupt error
would be logged at this point, but no corrective action would
be available. With larger replication degrees, in contrast, a
corrupted message can be corrected.

MsgPlusHash message correction is a multi-step process
that takes place on the receiver replicas that have been
flagged with potential corruption. In this event, there are
always two adjacent receiver replicas that are aware of
corruption since both are affected by the same corrupt sender
replica. Yet, these receivers cannot easily identify whether
their message or their hash was corrupted. By analyzing the
communication pattern, it is obvious that the replica with
a higher replica rank always contains the corrupt message
with a bad hash. Therefore, the two adjacent replicas com-
municate with one another to determine which of them holds
a correct message. After this handshake, the higher replica
rank transmits a correction message to the lower ranked
replica to complete the correction. (Ranks wrap around 0
and the highest rank in these situations.)

Corrupted Adjacent Replica Discovery: After a process
encounters a message and hash mismatch, it initiates a
handshake protocol to discover which of its adjacent replicas
are also participating in a discovery. For each adjacent
rank also actively trying to discover a potentially corrupted
process, the other rank engages in the discovery protocol
since its message and hash did not match. Any rank that

did not obtain a mismatched message and hash is entirely
unaware of the corruption elsewhere and thus not participate
in the this protocol. In order for the two searching processes
to find each other, they both attempt to send a probe to the
rank below them (replica rank - 1) while simultaneously
issuing a receive probe from the rank above them (replica
rank + 1). After one of the processes receives a probe, an
acknowledgment is returned. Figure 6 depicts this process.
The highest rank’s X+1 wraps around to rank 0 and vice
versa.

Receiver
Replica: X

(c) Send probe to X-1

(b) Listen for ACK from X-1

(a) Listen for probe from X+1

(d) Send ACK to X+1

Figure 6. MsgPlusHash Correction

In part (a) of Figure 6, the process posts a non-blocking
receive to listen for a probe from above. Next, in part (b),
the process posts a non-blocking receive to listen for an
acknowledgment from the process below. With the receives
in place, part (c) posts a non-blocking send as a probe to
the rank below. The probe contains a copy of the received
message’s hash as a means to match this particular probe on
the other end. At this point, the process waits for either the
probe or acknowledgment requests to complete as they both
result in different outcomes. If a probe message is received
then the process can immediately assume that it is the lower-
ranked replica and, as such, has a copy of the corrupted
message due to the communication patterns. This lower
rank then sends an acknowledgment (see part (d)) to signal
that the discovery is complete. Meanwhile, if a process
receives an acknowledgment instead of a probe message then
that rank immediately assumes that it is the higher ranked
process with a valid copy of the original message. In both
cases, once discovery has completed, any outstanding sends
and receives that were posted but left incomplete are now
canceled through MPI from RedMPI.

The nature of the discovery process creates a problem:
Two unique SDCs detected by adjacent replicas at separate
times may send probe messages that are received in a later
discovery. RedMPI handles this case by using hashes to
identify whether a probe pertains to the SDC at hand. Probes
that are unrelated to the current discovery process is safely
discarded until an expected probe hash arrives.

With discovery complete, the higher ranked replica sends
a full copy of the original, validated message to the lower

rank. The lower rank receives a copy of this message
within the application’s buffer while overwriting the copy
that originally was received in a corrupted state. Once this
transfer completes, all replicas hold a validated message
copy in their buffers and the MPI application may proceed.

Notice that RedMPI may sustain an unlimited number of
corrupt messages from a sender provided that the degree of
redundancy is greater than two and that no other replica of
the same virtual rank becomes corrupt simultaneously. By
our design, corruptions remain isolated to a single process,
even if never corrected.

C. MPI Operations

Deterministic Results: RedMPI relies on keeping replica
processes running with approximately equal progress in
execution. As replicas execute in a deterministic manner, we
guarantee that all MPI messages are sent in exactly the same
frequency, order, and message content. There are, however,
a few factors that might derail the replicas leading to non-
deterministic results that would leave RedMPI inoperable,
which has to be precluded. In particular, care was taken
to ensure any MPI routine with the potential to diverge in
execution progress of replicas is instead replaced with logic
that provides the same results across all replicas.

One notable MPI routine with the potential to induce di-
vergence is MPI_Wtime function. Not only is MPI_Wtime
extremely likely to return a different value between separate
processes and separate hosts, but its usage may guarantee
different outcomes across processes especially if used as a
random number seed. The divergence problem is solved by
allowing only the rank zero replica to call MPI_Wtime.
Since all replica ranks call MPI_Wtime at about the same
time, the first replica simply sends a copy of its result to the
others, which is then returned to the MPI application.

Another MPI routine with similar potential is the
MPI_Iprobe function. Unlike MPI_Wtime, a probe may
result in inconsistent results among replicas due to net-
working delays. It is possible that all but one replica
received a message. To prevent results of MPI_Iprobe
from diverging, the lowest ranking replica performs a real
MPI_Iprobe for the requested message. Following the
non-blocking probe, the lowest rank then sends a copy of the
results to all higher ranking replicas. If MPI_Iprobe re-
turned no message, then every replica simply reports that no
message was found. Otherwise, if the lowest rank did report
probing a message then each higher rank enters a blocking
MPI_Probe to wait until their copy of the message arrives.
As every replica has the same communication pattern, they
are guaranteed to return from MPI_Probe quickly if the
probed message had not, in fact, already arrived. Many other
MPI functions such as MPI_Testany, MPI_Testall,
MPI_Waitany, and MPI_Waitall are handled similar
to MPI_Iprobe as previously described.

Random number generation may be considered a source
of divergence, but in our experience many applications seed
their random number generator with MPI_Wtime, which
has already been protected. If this is not the case for an
application then other protective measures would be required
to ensure consistency between replicas or the application’s
source may need to be slightly modified to conform.

Some MPI operations (e.g., MPI_Recv, MPI_Iprobe)
may specify wildcards for their source or tag parameters
(i.e., MPI_ANY_TAG, MPI_ANY_SOURCE). To ensure that
replicas do not receive messages from differing nodes in
a receive and to ensure that probe results return the same
source and tag, RedMPI handles these wildcards differently
than regular operations when they are encountered during
program execution. When a wildcard is detected, only the
lowest ranking replica actually posts the wildcard while the
other replicas await an envelope containing the source and
tag from the lowest replica in a manner similar to how
MPI_Wtime is handled. Additional care must be taken to
ensure that only the lowest rank replica can post receives
until the wildcard has been resolved. Full technical details
are omitted due to space. Overall, RedMPI fully supports
wildcard sources, wildcard tags, or both in combination.

Mathematical operations such as those in MPI_Reduce
will execute in the same order across replicas independent
of their virtual rank. For this reason, if a floating point
reduction is performed in a tree then although differing
virtual ranks might perform different floating operations, our
virtual replicas will always perform the same operations in
order.

Collectives: MPI collectives pose a unique challenge for
corruption detection/correction. First, there is a lack of non-
blocking collectives in the MPI-2 standard (to be addressed
in the future MPI-3 standard). Without non-blocking collec-
tives, it is impossible to overlap collective operations. Thus,
it is possible to sustain a faulty process in a collective that
does not participate or encounter other unforeseen problems.
These issues may cause other participants to become non-
responsive (“hang”) or fail (“crash”). A second critical issue
with native MPI collectives is the inability to detect/correct
messages at the granularity of individual processes.

RedMPI supports two solutions for collectives:
1) Built-in linear collectives that map all collectives to

point-to-point messages inside of RedMPI: Our linear
collectives are portable to any MPI implementation
and reside entirely in the profiling layer. These col-
lectives are not necessarily performance oriented for
large scale usage as we tried to avoid direct replication
of existing MPI functionality.

2) An Open MPI collectives module that acts as a
wrapper to other existing collective modules, such
as linear or the more efficient tuned: Our cus-
tomized module resides within Open MPI and trans-
lates all point-to-point operations that would normally

occur without any RedMPI instrumentation into op-
erations that call the RedMPI library. By redirecting
collective communication through RedMPI we are
able to exploit the enhanced performance of the native
collectives while still providing SDC protection. Our
solution utilizes the Open MPI wrapper module during
experiments. The same algorithmic solution can also
be applied to other MPI implementations in place of
the portable but less efficient RedMPI linear collec-
tives.

The normal MPI communication stack is shown in Fig-
ure 7. However, when RedMPI is enabled along with its
counterpart collectives wrapper module, both the PMPI
layer and collectives have additional instrumentation as
shown in Figure 8. All MPI requests from the applica-
tion are now directed through the PMPI RedMPI library
residing between the application and Open MPI. Applica-
tion point-to-point communication is interposed in to its
redundant/deterministic counterparts and sent to Open MPI’s
point-to-point communication layer. Application collectives
are handled quite differently; a collective is routed through
RedMPI and then to Open MPI’s collective modules. Nor-
mally each Open MPI collective module would directly
communication with the point-to-point communication layer,
but this would circumvent RedMPI’s point-to-point commu-
nication protocol for SDC protection. To solve this chal-
lenge, the RedMPI collective module intercepts point-to-
point communication that is generated within Open MPI’s
collectives and redirects it to the RedMPI layer where it can
be protected similar to normal application communication.
This allows RedMPI to efficiently take advantage of Open
MPI’s more featureful and topologically-aware collectives
functionality.

Figure 7. MPI stack without RedMPI’s collectives module

IV. FAULT INJECTOR DESIGN

As the research goals of this work include detecting
and protecting applications from silent data corruption, an
integrated fault injection tool is required to evaluate the
effectiveness of RedMPI to detect and correct memory errors
during execution. Additionally, the same fault injector can
later be used to monitor the adverse effects of SDC on

Figure 8. MPI stack with RedMPI’s collectives module and PMPI layer

running applications when RedMPI is not actively protecting
them.

To experimentally determine the effect of corruption and
verify corrective actions, our fault injector was designed to
produce data corruption in a manner resembling naturally
occurring faults. Namely, single bit flips undetected by
ECC are of interest (e.g., within an arithmetic-logic unit
of a processor) when their effects eventually propagate into
a message transmission over MPI. Alternatively, also of
interest is SDC due to multiple bit flips in main memory
resulting in a corrupted bit pattern that ECC is unable to
detect / correct.

Our fault injector, which is built to co-exist with RedMPI,
specifically targets MPI message send buffers to ensure that
each injection actually impacts the MPI application while
simultaneously reaching message recipients. When activated,
the fault injector is given a frequency of 1/x during launch,
which is the probability that any single message may become
corrupted. By using a random number generator with a state
internal to RedMPI (without effect on the MPI application),
the injector randomly picks messages to corrupt. Once
targeted for corruption, RedMPI selects a random bit within
the message and flips it prior to sending it out. RedMPI is
agnostic to the data type of the message, i.e., the injector
calculates the total number of bits within the entire message
regardless of type or count before picking a bit to flip.

Note that not only does the fault injector flip a bit in the
send buffer, but it actually modifies the application’s memory
directly. If the MPI application accesses the same memory
again, further calculations based on that data will be invalid
with a high probability of causing further divergence from
non-corrupted replicas.
A. Targeted Fault Injections

Memory corruption faults may also be specifically tar-
geted to occur within specific sets of replicas, MPI ranks,
application timesteps, or frequency. For instance, as we will
later investigate the effects of SDC on our experimental ap-
plications when SDC errors are allowed to propagate without
any protection enabled, our targeted faults will be limited
to only one set of replicas such that in dual redundancy
half of the nodes may serve as “control” replicas that never

experience faults while the other “experiment” replicas will
receive faults. By modifying MPI applications to report back
to RedMPI whenever they reach a new timestep, we can also
target faults to occur at very specific points in execution such
as defining a desired timestep for an SDC injection to occur.

V. EXPERIMENTAL FRAMEWORK

We deployed RedMPI on a medium sized cluster and
utilized up to 96 nodes for benchmarking and testing.
Each compute node consists of a 2-way SMPs with AMD
Opteron 6128 (Magny-Cours) processors of 8 cores per
socket (16 cores per node) with 32 GB RAM per node.
Nodes are connected via 1Gbps Ethernet for user interactions
and management. MPI transport is provided by a 40Gb/s
InfiniBand fat tree interconnect. To maximize the compute
capacity of each node, we ran up to 16 processes per node.

When launching RedMPI jobs, we map replica processes
so that they do not reside on the same physical nodes. This
type of mapping is preferred as a fault on a node will not
affect multiple replicas of the same process simultaneously
(i.e., due to localized power failures for a whole rack).

A. Time Overhead Experiments

RedMPI allows applications to utilize transparent 2x or
3x redundancy. While the physical cost of redundancy is
known (2x or 3x the number of tasks), the additional cost in
terms of wall-clock time should be investigated to determine
what types of costs are expected, if any. To determine the
cost of redundancy in terms of time, we run a variety
of applications demonstrating differing scaling, processor
counts, communication patterns, and problem sizes.

For our timing experiments, we solely report benchmark
results for the MsgPlusHash SDC method as it provides a
more efficient communication protocol than All-to-all by
design. To provide meaningful metrics, each experiment
assesses the run time for regular, unaltered Open MPI
(referred to as 1x in the results tables), RedMPI with dual
redundancy (2x), and RedMPI with triple redundancy (3x).
Note that the size reported is the size without redundancy
in all experiments and results. Hence, a size 512 job in
our results with triple redundancy is actually running across
1536 processors.

We assess both strong and weak scaling when evaluating
overheads associated with RedMPI. For each weak scaling
application, the input data size remains constant for each
process no matter how many processes are run. In contrast,
strong scaling applications have a constant problem size for a
given class that varies the amount of input data each process
receives when jobs of differing sizes are run. In effect, we
expect strong scaling applications to reduce the amount of
data and computation required per process as the number of
processors increases.

Our test suite of weak scaling applications includes
LAMMPS, ASCI Sweep3D, and HPCCG. LAMMPS is a

popular molecular dynamics code that we evaluate with
two different problems, “chain” and “chute”. Sweep3D
is a neutron transport code. Finally, HPCCG is a fi-
nite elements application from the Sandia National Labs
Mantevo Project. It was chosen because of its use of
MPI_ANY_SOURCE to demonstrate RedMPI’s capability to
handle non-deterministic MPI operations.

The strong scaling NAS Parallel Benchmarks (NPB) are
also evaluated with varying problem class sizes and number
of processes. We use the NPB suite to demonstrate how vary-
ing the communication-to-computation ratio affects RedMPI
in some cases.

VI. RESULTS

Tables IV-XII report execution time for the benchmarked
applications. Every application was run with three different
MPI sizes. For all of the cases except one, we conducted
experiments with 128, 256, and 512 processors for the
baseline. The uninstrumented (no RedMPI) version of each
application is shown under the 1x column while the 2x and
3x columns represent dual and triple redundancy, respec-
tively, under RedMPI. The final two columns represent the
percent overhead incurred by adding dual or triple redun-
dancy relative to the baseline. Runs with redundancy use
two or three times as many processes as the uninstrumented
baseline runs. Performance is subject to cache effects when
running the same application with RedMPI. This effect may
vary between degrees of redundancy. This is evident for
results that indicate small negative overheads (speedup under
redundancy) when averaged, such as in Table IV.

We first analyze the runtime results of the weak scaling
applications in Tables IV-VII. LAMMPS with input chain
was run with a dataset size of 32x40x20 for 512 processors
and scaled down proportionally for 256 and 128 processors,
which explains the relatively consistent runtimes. Likewise,
LAMMPS with input chute was given a dataset size of
320x88 for 512 processors and also scaled proportionally.
Sweep3D had an input size of 320x40x200 and HPCCG
had an input size of 400x100x100.

These applications performed very well with RedMPI, i.e.,
in most cases the RedMPI overhead was not perceptible due
to a well balanced communication to computation ratio that
weak scaling allowed us retain despite increasing the number
of processors as we scaled up the benchmarks with RedMPI.

To demonstrate the effectiveness of RedMPI’s wild-
card support, HPCCG was chosen as it makes use of
MPI_ANY_SOURCE receives. Since RedMPI requires spe-
cial handling for wildcards, the overheads incurred may vary
based on how long it takes the replicas to receive an envelope
message that resolves the wildcard. When wildcard resolu-
tion is completed quickly, very little performance penalty
is seen as in the 2x results with size 128 (see Table VII).
Conversely, when wildcard resolution takes a relatively long
time, then RedMPI forces MPI to receive all messages in an

Table IV
LAMMPS INPUT CHAIN.SCALED

Size 1x [sec] 2x [sec] 3x [sec] 2x OV 3x OV
128 240.5 241.34 242.54 -3.8% -3.3%
256 244.39 244.61 245.25 0.1% 0.4%
512 250.93 251.89 256.11 0.4% 2.1%

Table V
LAMMPS INPUT CHUTE.SCALED

Size 1x [sec] 2x [sec] 3x [sec] 2x OV 3x OV
128 137.50 138.38 139.01 0.6% 1.1%
256 138.26 140.43 140.00 1.6% 1.3%
512 139.19 140.22 140.67 0.7% 1.1%

Table VI
SWEEP3D

Size 1x [s] 2x [s] 3x [s] 2x OV 3x OV
128 390.30 389.49 393.05 -0.2% 0.7%
256 428.17 427.53 431.20 -0.1% 0.7%
512 488.08 488.93 494.09 0.2% 1.2%

Table VII
HPCCG

Size 1x [sec] 2x [sec] 3x [sec] 2x OV 3x OV
128 99.79 99.76 125.75 0.0% 26.0%
256 99.64 128.83 131.02 29.3% 31.5%
512 126.36 146.19 152.26 15.7% 20.5%

Table VIII
NPB CG

Size 1x [sec] 2x [sec] 3x [sec] 2x OV 3x OV
128-D 201.42 205.87 215.51 2.2% 7.0%
256-D 127.21 132.61 136.64 4.2% 7.4%
512-D 70.10 77.54 83.67 10.6% 19.4%

Table IX
NPB EP

Size 1x [s] 2x [s] 3x [s] 2x OV 3x OV
128-D 72.31 72.63 72.74 0.4% 0.6%
256-E 579.94 581.02 581.27 0.2% 0.2%
512-E 289.80 290.83 291.30 0.4% 0.5%

Table X
NPB FT

Size 1x [sec] 2x [sec] 3x [sec] 2x OV 3x OV
32-C 117.45 117.95 118.68 0.43% 1.05%
64-C 68.82 68.62 71.77 -0.29% 4.29%
128-D 222.75 228.76 234.97 2.70% 5.49%

Table XI
NPB LU

Size 1x [sec] 2x [sec] 3x [sec] 2x OV 3x OV
128-D 361.78 379.90 375.44 5.0% 3.8%
256-D 179.78 191.97 195.55 6.8% 8.8%
512-D 102.90 115.07 121.01 11.8% 17.6%

Table XII
NPB MG

Size 1x [s] 2x [s] 3x [s] 2x OV 3x OV
128-E 339.17 340.41 429.67 0.4% 26.7%
256-E 168.56 170.68 171.48 1.3% 1.7%
512-E 66.97 68.35 69.29 2.1% 3.5%

unexpected queue. This can degrade performance.
The remaining NPB benchmarks are strong scaling ap-

plications subjected to input classes C, D, and E, where
E is the largest size. For each class, is equally distributed
across all MPI processes. For example, the CG and LU
benchmarks were both run with the same class size D for
128, 256, and 512 size jobs. We can see that as the number
of processes increases, the baseline runtime decreases since
there is less computation per process to perform. In turn,
as the computation is decreased per process the amount of
communication incurred does, in fact, increase. Tables VIII
and XI clearly demonstrate how the overhead of RedMPI
increases as the per-process communication overshadows the
per-process computation. Hence, to keep RedMPI overheads
reasonable, it is important to choose input classes such that
the ratio of communication to computation is balanced, e.g.,
as seen for input sizes for EP and FT. For the FT, we were
unable to run class E with size 256 and 512 because our
experimental setup did not have enough memory available
to hold class E. Thus, we chose to run FT with smaller class
sizes and report smaller runs.

Overall, RedMPI’s runtime overheads are modest for well-
behaved applications that can be scaled to exhibit a fair
communication to computation ratio.

VII. FAULT INJECTION STUDIES

RedMPI’s fault injector provides two key opportunities for
specifically analyzing silent data corruption faults within the
scope of running MPI applications. We will use RedMPI to
answer these questions:

(1) Propagation: Does SDC affect applications messages
and correctness when no protection mechanisms (such as
RedMPI’s voting) are available? How quickly do SDC
injections propagate to other processes via communication?
Do corrupted processes further disrupt other processes in

a cascading manner by sending invalid, divergent MPI
messages as compared to the correct execution of a job?

(2) Protection: When utilizing triple redundancy with
RedMPI, are SDCs successfully detected and corrected? Do
applications still complete with correct answers even in the
face of SDC injections?
A. SDC Propagation Study

Our first study investigates whether leaving message data
unprotected in the face of SDCs does in fact lead to
incorrect results. This happens when a single SDC injection
in one process will later spread to other nodes causing an
overwhelming cascade of invalid data.

As described in Section IV-A, we run RedMPI with dual
redundancy and assume two sets of replicas. The first set
of replicas is a control set and will not receive any SDC
injections. The control set will execute normally and should
produce correct results upon completion. Our second set
of replicas is the test set, which becomes the victim when
SDC faults are injected. Further, during these experiments
we also disable RedMPI’s corrective capabilities. RedMPI
still detects divergent messages between the control and
test set replicas, but allows application progress to continue.
RedMPI tracks live statistics on applications running in this
environment such as:

• which processes receive SDC injections;
• which processes send bad messages and where;
• which processes receive corrupt messages and how that

corruption further spreads to and from nodes that were
indirectly tainted by a bad message; and

• aggregate data at the granularity of a single application-
defined timestep.

This type of reporting is made possible by redundancy and is
considered a new technique for live application analysis and
correctness since we do not need to actually log data for later
viewing; this is advantageous for long-running applications

LU - 4 Timesteps After Injection

 0 10 20 30 40 50 60

 0

 10

 20

 30

 40

 50

 60

 1

 10

 100

 1000

 10000

LU - 58 Timesteps After Injection

 0 10 20 30 40 50 60

 0

 10

 20

 30

 40

 50

 60

 1

 10

 100

 1000

 10000

LU - 112 Timesteps After Injection

 0 10 20 30 40 50 60

 0

 10

 20

 30

 40

 50

 60

 1

 10

 100

 1000

 10000

LU - 221 Timesteps After Injection

 0 10 20 30 40 50 60

 0

 10

 20

 30

 40

 50

 60

 1

 10

 100

 1000

 10000

Figure 9. NPB LU Corrupted Communication Patterns

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 50 100 150 200 250
 0

 10

 20

 30

 40

 50

 60

M
e
ss

a
g
e
 C

o
u
n
t

Ta
in

te
d
 N

o
d
e
s

Timestep

Injection Points and Count
Directly Tainted Nodes (right axis)

Indirectly Tainted Nodes (right axis)
corrupt messages (left axis)

|

1

Figure 10. NPB LU Overview of Corrupt Nodes and Messages

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 50 100 150 200
 0

 10

 20

 30

 40

 50

 60

M
e
ss

a
g
e
 C

o
u
n
t

Ta
in

te
d
 N

o
d
e
s

Timestep

|

1

Figure 11. NPB BT Overview of Corrupt Nodes and Messages

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 50 100 150 200 250 300 350 400
 0

 10

 20

 30

 40

 50

 60

M
e
ss

a
g
e
 C

o
u
n
t

Ta
in

te
d
 N

o
d
e
s

Timestep

|

1

Figure 12. NPB SP Overview of Corrupt Nodes and Messages

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 0 5 10 15 20
 0

 10

 20

 30

 40

 50

 60

M
e
ss

a
g
e
 C

o
u
n
t

Ta
in

te
d
 N

o
d
e
s

Timestep

|

1

Figure 13. NPB MG Overview of Corrupt Nodes and Messages

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

 0 10 20 30 40 50 60 70
 0

 10

 20

 30

 40

 50

 60

M
e
ss

a
g
e
 C

o
u
n
t

Ta
in

te
d
 N

o
d
e
s

Timestep

|

1

Figure 14. NPB CG Overview of Corrupt Nodes and Messages

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 2 4 6 8 10
 0

 10

 20

 30

 40

 50

 60

M
e
ss

a
g
e
 C

o
u
n
t

Ta
in

te
d
 N

o
d
e
s

Timestep

|

1

Figure 15. ASCI Sweep3D Overview of Corrupt Nodes and Messages

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20
 0

 10

 20

 30

 40

 50

 60

M
e
ss

a
g
e
 C

o
u
n
t

Ta
in

te
d
 N

o
d
e
s

Timestep

|

1

|

1

|

1

|

1

Figure 16. NPB FT Overview of Corrupt Nodes and Messages

or when bandwidth is high and logging to disk for offline
analysis is undesirable.

Figures 10-16 show how SDC injection(s) spread causing
bad messages and cascading tainting of other processes via
reception of corrupt messages. The x-axis of these graphs de-
notes progress in the form of application-reported timesteps.
The blue line correlates with the left vertical axis, which
denotes the number of bad messages that were cumulatively
received by all MPI processes in any given timestep. The
gray filled areas match to the right axis and denote the
number of MPI processes that receive an SDC injection
themselves (direct tainting) or become corrupt indirectly
(indirect tainting/light gray) by receiving a corrupt message
from a previously corrupted sender themselves. Combined,
both of the gray filled areas indicate how many of the MPI
processes operating in a single job have become corrupt over
time.

For all of the experiments except NPB FT (Figure 16),
only a single SDC injection was performed. NPB FT was
subjected to 4 SDC injections. All SDC injections were
randomly inserted using the aforementioned RedMPI fault
injector. In all cases we ran the experiments with 64 MPI
processes under dual redundancy (64 control set processes
+ 64 test set processes).

These 7 graphs indicate three disjoint trends in response to
SDC injections. First, the progressive trend is characterized
by Figures 10 and 11 as a single injection that does not
spread immediately. Instead, progressive applications often
communicate with their grid neighbors resulting in a sphere
of corruption that grows outward. For example, Figure 9
shows a heatmap indicating nodes (both on the x-and y-
axes) that communicate tainted messages with one another
due to an SDC. The figures depict timesteps 4 (one timestep
after first injection), 58 (more indirectly tainted messages),
112 (most nodes tainted), and 221 (all nodes tainted) after
the SDC injection. As the application progresses, the final
heatmap shown is actually what a heatmap of normal
communication. This indicates that eventually virtually all
communication has succumbed to invalid data due to a single
SDC injection.

The next trend we identify is the immediate/explosion
case. Of the experiments reported, Figures 12-15 fall in
this category. For these applications we noticed that a
single injection resulted in corruption that spread across
all nodes usually within two timesteps of the initial SDC.
The most common reason for the immediate trend is the
use of collectives or some communication pattern that tends
to exchange messages between all nodes in a short period
of time. Heatmaps of this trend are not provided as they
essentially mirror the full communication pattern of the
application almost immediately after the injection occurs.

Our third identified trend is the localized case. In Fig-
ure 16, NPB FT is one such application where injections
result in just a few invalid messages. This occurs when the

corrupted data is neither reused nor retransmitted, which in
turn keeps the sphere of corruption relatively isolated to the
processes that were tainted by a direct SDC injection. In
this experiment we targeted FT with multiple injections to
demonstrate how applications that fit the localized trend typ-
ically do not result in large aggregates of tainted messages or
nodes. Although we did not receive a high degree of corrupt
messages or spreading for FT, it is important to note that all
benchmarks (including NPB FT) failed to pass their internal
verification or complete with correct results that matched
their “control” counterparts.

In summary, by observing that just a single SDC injection
can induce a profound effect on all communicating pro-
cesses, we conclude that protecting applications at the MPI
message level is an appropriate method to detect, isolate,
and prevent further corruption. Had RedMPI’s protection not
been purposefully disabled for this study, then all of the SDC
injections would have been isolated from spreading and no
bad messages could have been received by other processes.

B. RedMPI SDC Protection Study

To gauge SDC sustainability when RedMPI is active with
redundancy, we inject faults into the running benchmarks
to determine if the faults are detected and if correction
succeeds. Additionally, we experimentally determine if the
fault corrections allow the benchmarks to complete their
self-verification process successfully.

Next, we analyze the effectiveness of SDC detection
and correction protocols. We ran the fault injector with a
corruption frequency of 1/5, 000, 000 messages to ensure
a relatively high likelihood for an injection while running
the CG benchmark with 64 processes (virtual ranks) and a
replication degree of three (192 physical processes). Note
that we restricted the intentional corruption injections to
only occur on replicas with a replica rank of zero to control
the experiment. This ensures that at least two of the three
replicas do not receive an injection in all cases. Thus,
voting results in a valid outcome so that invalid messages
can be corrected. During ten experiments with a frequency
of 1/5, 000, 000, we encountered one occasion with two
injections, four occasions with a single injection, and five
occasions without injections. In every run except one, the
corruption resulted in a single bad message that was success-
fully detected and corrected by the receiving replicas. In one
event, a single injection cascaded resulting in 6,242 bad mes-
sages originating from the corrupted sender. Nevertheless,
the receiving replicas were able to correct the messages as
they arrived. Eventually, the corrupted node ceased to send
corrupted messages as the application finished traversing
data structures until the fault was no longer touched. In these
experiments, the applications progressed until completion
and successfully passed their built-in verification at the end
of processing.

Following that experiment, we performed injections with
a frequency of 1/2, 500, 000 in another ten runs that were
not limited to a single group of replicas. By doubling the
odds for an injection and removing the process selection re-
striction, we detected a significantly larger number of faults.
On average, we received 2.5 injections and several thousand
invalid messages per run as a result. Nonetheless, RedMPI
carried all but two runs to a successful completion with ver-
ification. Of the two runs that failed, we observed that when
two of the three replicas simultaneously transmitted a corrupt
message over RedMPI, it was detected. The voting process
is then forced to fail. In this case, RedMPI aborts because
voting becomes impossible with three unique messages and
hashes. Statistically, as more processes are added to a job,
the likelihood of two processes with the same virtual rank
becoming corrupt decreases. Therefore, observing results
similar to this particular controlled experiment decreases as
job sizes and replication degrees increase. Nonetheless, the
longer a process remains in an invalid state (i.e., sending bad
messages), the longer the correction features of RedMPI are
impaired. However, it is important to note that RedMPI still
forces a job to abort if it does detect corruption across two
or more nodes while utilizing triple redundancy.

Performance of SDC correction has proved to be quite
efficient. During SDC correction overhead experiments, we
discovered that with as few as three injections we were able
to produce nearly 100,000 invalid messages from corrupted
senders. The receiving replicas were able to successfully
detect and correct each invalid message while effectively
generating no perceived overhead. In fact, while running
20 experimental iterations to gauge the protocol overhead
of correcting MsgPlusHash messages during injection, the
runtime was 0.31 seconds less than the original experiment
runtime without fault injection on average.

Realistically, we do not expect to encounter such a high
number of naturally occurring SDCs for a small environment
such as our benchmarking cluster. The actual overhead
incurred due to SDC correction is a function of the number
of invalid messages and the distribution of such messages
over nodes. The number of invalid messages is highly
dependent on the data reuse patterns of an MPI application.
For example, an application that never reuses send buffer
data only incurs a single invalid message in the event that a
buffer is corrupt. On the other hand, if an entire application
depends on reuse of data stored in a buffer, the number of
invalid messages could quickly exceed the valid messages
in this type of program design.

As empirical evidence of the success of RedMPI, we
discovered that RedMPI was detecting and correcting MPI
transmission errors during our timing benchmarks even
though we had not activated our fault injection module.
While investigating, we learned that RedMPI had been
properly detecting and correcting faulty memory that was
later confirmed to be producing errors, which could not be

corrected by ECC alone. These problems were occasionally
(but not always) visible through the Linux EDAC monitoring
module of the memory controller. Interestingly, EDAC was
unable to consistently detect all of the errors that RedMPI
detected. Using RedMPI, we discovered which of the 1536
compute cores in the experiment was faulting and were able
to reproduce similar experiments that consistently produced
faulty MPI messages on this node before removing it from
the production system. Without RedMPI, this failing hard-
ware may have gone unnoticed for some time.

VIII. RELATED WORK

Since the early 1990s [23], fault tolerance in large-
scale HPC systems is primarily assured through application-
level checkpoint/restart (C/R) to/from a parallel file system.
Support for C/R at the system software layer exists, e.g.,
via Berkeley Lab Checkpoint Restart (BLCR) [24] or disk-
less C/R via Scalable C/R (SCR) [25]. Message logging,
algorithm-based fault tolerance, proactive fault tolerance,
and Byzantine fault tolerance have all been researched in
the past. Redundancy in HPC, as showcased in this paper,
has only been recently explored.

Historically, the primary defense against SDC has been
ECC in memory. In today’s memory modules and proces-
sors, single-error correction (SEC) double-error detection
(DED) ECC protects against single event upset (SEU) bit
flips as well as single event multiple upset scenarios. Chipkill
offers additional protection against wear-out and complete
failure of a memory module chip by spanning ECC across
chips but Bose Chaudhuri-Hocquenghem (BCH) encoding
provides better energy-delay characteristics [26]. Software
redundancy may provide more extensive SDC protection,
especially considering the expected increase in SECDED
ECC double-error rates.

Pure software-based solutions [27] try to protect against
memory corruption without extending hardware ECC. How-
ever, they cannot provide perfect coverage to all memory and
are subject to job failure if just a single process terminates
due to a fault. In contrast, redundancy for SDC correction
survives single process faults more gracefully.

Studies primarily done at Los Alamos National Labo-
ratory focused on analyzing the probability and impact of
silent data corruption in HPC environments. One investiga-
tion [28] showed that a Cray XD1 system with an equivalent
number of processors as the ASCI Q system would expe-
rience one SDC event every 1.5 hours. Another study [29]
at Lawrence Livermore National Laboratory investigated the
behavior of iterative linear algebra methods when confronted
with SDC in their data structures. Results show that linear
algebra solvers may take longer to converge, not converge
at all, or converge to a wrong result.

Modular redundancy has been used in information tech-
nology, aerospace and command & control systems [30].
Recent software-only approaches [31], [32] focused on

thread-level, process-level and state-machine replication to
eliminate the need for expensive hardware. The sphere of
replication [33] concept describes the logical boundary of
redundancy for a replicated system. Components within such
a sphere are protected; those outside are not.

Recent work [34] studied the impact of deploying re-
dundancy in HPC systems. Redundancy can significantly
increase system availability and correspondingly lower the
needed component reliability. Redundancy applied to a sin-
gle computer decreases the MTTF of each replica by a factor
of 100-1,000 for dual redundancy and by 1,000-10,000 for
triple redundancy without lowering overall system MTTF. If
a failed replica is recovered through rebooting or replacing
with a hot spare, replica node MTTF can be lowered by a
factor of 1,000-10,000 for dual and by 10,000-100,000 for
triple redundancy. Redundancy essentially offers a trade-off
between component quality and quantity. Our work in this
paper permits this trade-off.

Another compelling study [8] uses an empirical assess-
ment of how redundant computing improves time to solution.
The simulation-driven study looked at a realistic scenario
with a weak-scaling application that needs 168 hours to
complete, a per-node MTTF of five years, a fixed five
minutes to write out a checkpoint, and a fixed ten-minute
time to restart. Checkpointing is performed at an optimal
interval. The results show that at 200k nodes, an application
spends eight times the time required to perform the work,
reducing the throughput of such a machine to just over 10%
compared to a fault-free environment. In contrast, using
400k nodes and dual redundancy, the elapsed wall clock
time is 1/8 of that for the 200k-node non-redundant case.
The throughput of the 400k-node system is four times better
with redundant computing than the non-redundant 200k-
node system. The prototype detailed in this paper is a step
toward achieving this capability.

rMPI [35] is a prototype for redundant execution of MPI
applications that uses the MPI profiling interface (PMPI) for
interpositioning. rMPI maintains redundant nodes and and
each replica duplicates the work of its partners. In case of
a node failure, the redundant node continues without inter-
ruption. The application fails only when two corresponding
replicas fail. The reported impact on actual applications is
for the most part negligible [8]. Our work differentiates itself
from rMPI in that it takes the research in a new direction
using replication to detect and correct silent errors. The
protocols necessary for this detection and correction and the
performance impacts are quite different.

The modular-redundant Message Passing Interface (MR-
MPI) [36] is a similar solution for transparent HPC redun-
dancy via PMPI interpositioning. In MR-MPI, a redundantly
executed application runs with r ∗m native MPI processes,
where r is the number of MPI ranks visible to the application
and m is the replication degree. Messages are replicated
between redundant nodes. The results show the negative

impact of the O(m2) messages between replicas. For low-
level, point-to-point benchmarks, the impact can be as high
as the replication degree. In realistic scenarios, the overhead
can be 0% for embarrassingly parallel or up to 70-90% for
communication-intensive applications in a dual-redundant
configuration. RedMPI extends beyond the capabilities of
MR-MPI by protecting against SDC, lowering the replication
overhead, and advancing internal communication protocols
(MsgPlusHash). Unlike MR-MPI, RedMPI expands upon
MR-MPI’s linear collectives by providing internal MPI
modifications that exploit native collectives performance.

MPIecho[37][38] is another platform for redundant com-
puting that utilizes the PMPI layer of MPI to provide process
replication. MPIecho’s primary purpose is to assist in the
process of debugging by monitoring hardware performance
counters between replicas. Paralleling which part of the
code each replica is profiling allows MPIecho to perform
traditionally heavyweight debugging techniques that on their
own may not scale to 10s of thousands of cores. MPIecho
provides further debugging assistance by including features
that verify the similarity of all MPI arguments and MPI
function return values between replicas. It can also perform
send buffer checking between replicas at an additional cost.
MPIecho’s findings show that runtime overheads range from
0% (low communication) to 103% (high communication
applications) when send buffer checking is used with dual re-
dundancy. While MPIecho may support simple buffer check-
ing and is used as a debugging aid, RedMPI’s contributions
stand separately as a library intended for production use
by providing high-performance message verification with an
optimal communication protocol.

VolpexMPI [39] is an MPI library implemented from
scratch that offers redundancy internally and uses a polling
mechanism by the receiver of point-to-point messages to
avoid message replication. If a polled sender (of a replicated
sender-receiver pair) fails to respond, a different sender
(replica of the original sender) is chosen until the receive is
successful. Messages are matched with a logical timestamp
to allow for late message retrieval. VolpexMPI achieves close
to 80% of Open MPI’s point-to-point message bandwidth,
while latency of small messages increases from 0.5ms to
1.8ms. Using the NAS Parallel Benchmark suite, there is no
noticeable overhead for BT and EP for 8 and 16 processes.
SP shows a significant overhead of 45% for 16 processes.
The overhead for CG, FT and IS is considerably higher
as these benchmarks are communication heavy. VolpexMPI
does not provide SDC protection, however, it provides good
performance as replication protocols are part of the low-level
communication inside the MPI library.

IX. CONCLUSION

Redundant computing is one approach to detect SDC.
This study assesses the feasibility and effectiveness of SDC
detection and correction at the MPI layer. We presented

two consistency protocols, explored the unique challenges
in creating a deterministic MPI environment for replication
purposes, investigated the effects of fault injection in to
our framework, and analyzed the costs of performing SDC
protection via redundancy.

This study develops a novel, efficient SDC detection and
correction protocol (MsgPlusHash) with overheads ranging
from 0% up to 30% for dual or triple redundancy depending
on the number of messages sent by the application and
the communication patterns. In particular, overheads do
not change significantly for weak scaling applications as
the number of processes is varied. These modest overhead
ranges indicate the potential of RedMPI to protect against
SDC for large-scale runs.

Our protocol detected and corrected injected faults for
processes that continued to completion even when these
faults resulted in many thousands of corrupted messages
from a sender that experienced one or more SDC faults. In
our controlled experiments, injected faults that were targeted
to a single set of replicas were successfully isolated from
spreading by fixing corrupted messages and allowing the
applications to complete without incident. Further, when
we injected faults into two or more replicas (of the same
rank), RedMPI detected the corruption and was able to abort
the application thus preventing invalid results from being
reported.

In summary, RedMPI was successful in preventing invalid
data from propagating or being transmitted without detection
even under extreme scenarios. Our experiments showed
profound effects from applications that experience even a
single soft error without any form of protection. Without
RedMPI, just one injected SDC was observed to quickly
spread to other processes and messages, causing the majority
of message data to become corrupt, which consistently lead
to invalid results at a global scale.

Empirically, RedMPI not only performed exactly as ex-
pected in our controlled experiments, but it also pinpointed
previously unknown hardware faults on our own experimen-
tal cluster nodes that had not been detected until RedMPI
alerted us to SDCs occurring on unaltered MPI jobs.

While the cost of double/triple redundancy appears high
in terms of power, analytic models show that for large core
counts redundancy actually improves job throughput. As
both the likelihood of node failure and silent data corruption
increases as we scale up HPC systems, the importance of
protecting data becomes obvious and available at a low
cost when redundancy is already in place to ensure high
throughput of mission-critical/high-consequence large scale
applications.

ACKNOWLEDGEMENTS

This work was supported in part by NSF grants CNS-
1058779, CNS-0958311, DOE grant DE-FG02-08ER25837
and a subcontract from Sandia National Laboratory. Re-

search sponsored in part by the Laboratory Directed Re-
search and Development Program of Oak Ridge National
Laboratory (ORNL), managed by UT-Battelle, LLC for the
U.S. Department of Energy under Contract No. De-AC05-
00OR22725.

REFERENCES

[1] B. Schroeder, E. Pinheiro, and W.-D. Weber, “Dram errors
in the wild: a large-scale field study,” in SIGMETRICS Con-
ference on Measurement and Modeling of Computer Systems,
2009, pp. 193–204.

[2] E. Pinheiro, W.-D. Weber, and L. A. Barroso, “Failure trends
in a large disk drive population,” in USENIX Conference on
File and Storage Technologies, 2007.

[3] A. A. Hwang, I. A. Stefanovici, and B. Schroeder,
“Cosmic rays don’t strike twice: understanding the nature
of dram errors and the implications for system design,”
in Proceedings of the seventeenth international conference
on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’12. New York, NY,
USA: ACM, 2012, pp. 111–122. [Online]. Available:
http://doi.acm.org/10.1145/2150976.2150989

[4] C.-H. Hsu and W.-C. Feng, “A power-aware run-time system
for high-performance computing,” in Supercomputing, 2005.

[5] I. Philp, “Software failures and the road to a petaflop
machine,” in HPCRI: 1st Workshop on High Performance
Computing Reliability Issues, in Proceedings of the 11th
International Symposium on High Performance Computer
Architecture (HPCA-11). IEEE Computer Society, 2005.

[6] J. T. Daly, “ADTSC nuclear weapons highlights: Facilitating
high-throughput ASC calculations,” Los Alamos National
Laboratory, Los Alamos, NM, USA, Tech. Rep. LALP-07-
041, Jun. 2007.

[7] J. T. Daly, L. A. Pritchett-Sheats, and S. E. Michalak, “Ap-
plication MTTFE vs. platform MTTF: A fresh perspective on
system reliability and application throughput for computations
at scale,” in Proceedings of the Workshop on Resiliency in
High Performance Computing (Resilience) 2008, May 2008,
pp. 19–22.

[8] K. Ferreira, J. Stearley, J. H. L. III, R. Oldfield, K. Pedretti,
R. Brightwell, R. Riesen, P. Bridges, and D. Arnold, “Evaluat-
ing the viability of process replication reliability for exascale
systems,” in Supercomputing, nov 2011.

[9] O. R. N. Laboratory, “Personal communications,” 2010.

[10] L. L. N. Laboratory, “Personal communications,” 2007.

[11] Y. Yeh, “Triple-triple redundant 777 primary flight computer,”
in 1996 IEEE Aerospace Applications Conference. Proceed-
ings, vol. 1, 1996, pp. 293–307.

[12] J. R. Sklaroff, “Redundancy management technique for space
shuttle computers,” IBM Journal of Research and Develop-
ment, vol. 20, no. 1, pp. 20–28, 1976.

[13] T. M. Austin, “DIVA: A reliable substrate for deep submicron
microarchitecture design,” in International Symposium on
Microarchitecture, 1999, pp. 196–207.

[14] M. Gomaa, C. Scarbrough, T. N. Vijayjumar, and I. Pomeranz,
“Transient-fault recovery for chip multiprocessors,” in Inter-
national Symposium on Computer Architecture, May 2003,
pp. 98–109.

[15] S. K. Reinhardt and S. S. Mukherjee, “Transient fault de-
tection via simultaneous multithreading,” in International
Symposium on Computer Architecture, 2000, pp. 25–36.

[16] H. Quinn and P. Graham, “Terrestrial-based radiation upsets:
A cautionary tale,” in Symposium on Field-Programmable
Custom Computing Machines (FCCM) 2005, Apr. 18-20,
2005, pp. 193–202.

[17] J. Elliot, K. Kharbas, D. Fiala, F. Mueller, C. Engelmann,
and K. Ferreirar, “Combining partial redundancy and check-
pointing for HPC,” in International Conference on Distributed
Computing Systems, 2012, p. (accepted).

[18] J. Vetter, “Hpc landscape — application accelerators: Deus
ex machina?” Sep. 2009, invited Talk at High Performance
Embedded Computing Workshop.

[19] A. Geist, “What is the monster in the closet?” Aug. 2011,
invited Talk at Workshop on Architectures I: Exascale and
Beyond: Gaps in Research, Gaps in our Thinking.

[20] J. Shalf, “Simulation challenge: Exascale planning overview,”
Aug. 2010, invited Talk at HEC FSIO R&D Workshop.

[21] J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio,
J. C. Andre, D. Barkai, J. Y. Berthou, T. Boku, B. Braun-
schweig, and et al., “The international exascale software
project roadmap,” International Journal of High Performance
Computing Applications, vol. 25, no. 1, pp. 3–60, 2011.

[22] S. Böhm and C. Engelmann, “File i/o for mpi applications in
redundant execution scenarios,” in Euromicro International
Conference on Parallel, Distributed, and network-based Pro-
cessing, Feb. 2012.

[23] N. DeBardeleben, J. Laros, J. T. Daly, S. L. Scott,
C. Engelmann, and B. Harrod, “High-end computing
resilience: Analysis of issues facing the HEC community and
path-forward for research and development,” Whitepaper,
Dec. 2009. [Online]. Available: http://www.csm.ornl.gov/
∼engelman/publications/debardeleben09high-end.pdf

[24] P. H. Hargrove and J. C. Duell, “Berkeley Lab
Checkpoint/Restart (BLCR) for Linux clusters,” in Journal
of Physics: Proceedings of the Scientific Discovery through
Advanced Computing Program (SciDAC) Conference 2006,
vol. 46. Denver, CO, USA: Institute of Physics Publishing,
Bristol, UK, Jun. 25-29, 2006, pp. 494–499. [Online].
Available: http://www.iop.org/EJ/article/1742-6596/46/1/067/
jpconf6 46 067.pdf

[25] G. Bronevetsky and A. Moody, “Scalable I/O systems
via node-local storage: Approaching 1 TB/sec file I/O,”
Lawrence Livermore National Laboratory, Livermore, CA,
USA, Tech. Rep. TR-JLPC-09-01, Aug. 2009. [Online].
Available: http://dx.doi.org/10.2172/964079

[26] S. Li, K. Chen, M.-Y. Hsieh, N. Muralimanohar, C. D. Kersey,
J. B. Brockman, A. F. Rodrigues, and N. P. Jouppi, “System
implications of memory reliability in exascale computing,” in
Supercomputing, 2011, pp. 46:1–46:12.

[27] D. Fiala, K. Ferreira, F. Mueller, and C. Engelmann, “A
tunable, software-based dram error detection and correction
library for hpc,” in Workshop on Resiliency in High Per-
formance Computing (Resilience) in Clusters, Clouds, and
Grids, Sep. 2011, pp. 110–121.

[28] S. E. Michalak, K. W. Harris, N. W. Hengartner, B. E.
Takala, and S. A. Wender, “Predicting the number of
fatal soft errors in Los Alamos National Laboratory’s
ASC Q supercomputer,” IEEE Transactions on Device and
Materials Reliability (TDMR), vol. 5, no. 3, pp. 329–335,
2005. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs
all.jsp?arnumber=1545893

[29] G. Bronevetsky and B. R. de Supinski, “Soft error
vulnerability of iterative linear algebra methods,” in
Proceedings of the 21st ACM International Conference on
Supercomputing (ICS) 2008. Island of Kos, Greece: ACM
Press, New York, NY, USA, Jun. 7-12, 2007. [Online].
Available: http://greg.bronevetsky.com/papers/2008ICS.pdf

[30] D. P. Siemwiorek, “Architecture of fault-tolerant computers:
An historical perspective,” Proceedings of the IEEE,
vol. 79, no. 12, pp. 1710–1734, 1991. [Online]. Available:
http://dx.doi.org/10.1109/5.119549

[31] A. Golander, S. Weiss, and R. Ronen, “DDMR: Dynamic
and scalable dual modular redundancy with short validation
intervals,” IEEE Computer Architecture Letters, vol. 7,
no. 2, pp. 65–68, 2008. [Online]. Available: http://doi.
ieeecomputersociety.org/10.1109/L-CA.2008.12

[32] A. Shye, J. Blomstedt, T. Moseley, V. J. Reddi, and D. A.
Connors, “PLR: A software approach to transient fault
tolerance for multicore architectures,” IEEE Transactions
on Dependable and Secure Computing (TDSC), vol. 6,
no. 2, pp. 135–148, 2009. [Online]. Available: http:
//doi.ieeecomputersociety.org/10.1109/TDSC.2008.62

[33] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt,
“Detailed design and evaluation of redundant multithreading
alternatives,” in Proceedings of the 29th Annual
International Symposium on Computer Architecture (ISCA)
2002. Anchorage, AK, USA: IEEE Computer Society,
May 25-29, 2002, pp. 99–110. [Online]. Available: http:
//doi.ieeecomputersociety.org/10.1109/ISCA.2002.1003566

[34] C. Engelmann, H. H. Ong, and S. L. Scott, “The case
for modular redundancy in large-scale high performance
computing systems,” in Proceedings of the 8th IASTED
International Conference on Parallel and Distributed
Computing and Networks (PDCN) 2009. Innsbruck,
Austria: ACTA Press, Calgary, AB, Canada, Feb. 16-
18, 2009, pp. 189–194. [Online]. Available: http://www.csm.
ornl.gov/∼engelman/publications/engelmann09case.pdf

[35] R. Brightwell, K. B. Ferreira, and R. Riesen, “Transparent
redundant computing with MPI,” in EuroMPI, ser. Lecture
Notes in Computer Science, R. Keller, E. Gabriel, M. M.
Resch, and J. Dongarra, Eds., vol. 6305. Springer, 2010, pp.
208–218.

[36] C. Engelmann and S. Böhm, “Redundant execution of hpc ap-
plications with mr-mpi,” in Proceedings of the 10th IASTED
International Conference on Parallel and Distributed Com-
puting and Networks (PDCN) 2011. Innsbruck, Austria:
ACTA Press, Calgary, AB, Canada, Feb. 15-17, 2011.

[37] B. Roundtree, G. Cobb, T. Gamblin, M. Schulz, B. Supinski,
and H. Tufo, “Parallelizing heavyweight debugging tools with
mpiecho,” in High-performance Infrastructure for Scalable
Toolsi, WHIST 2011, Held as part of ICS ’11, Tucson,
Arizona, 2011, pp. 803–808.

[38] G. Cobb, B. Roundtree, H. Tufo, M. Schulz, T. Gamblin, and
B. de Supinski, “Mpiecho: A framework for transparent mpi
task replication,” Dept. of Computer Science, University of
Colorado at Boulder, Tech. Rep. CU-CS-1082-11, Jun. 2011.

[39] T. LeBlanc, R. Anand, E. Gabriel, and J. Subhlok,
“Volpexmpi: An MPI library for execution of parallel
applications on volatile nodes,” in Lecture Notes in
Computer Science: Proceedings of the 16th European
PVM/MPI Users‘ Group Meeting (EuroPVM/MPI) 2009,
vol. 5759. Espoo, Finland: Springer Verlag, Berlin,
Germany, Sep. 7-10, 2009, pp. 124–133. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-03770-2 19

