
LLNL-CONF-502793

Designing Non-blocking Allreduce with
Collective Offload on InfiniBand Clusters:
A Case Study with Conjugate Gradient
Solvers

K. Kandalla, U. Yang, J. Keasler, T. Kolev, A. Moody,
H. Subramoni, K. Tomko, J. Vienne, D. K. Panda

October 4, 2011

IEEE IPDPS 2012
Shanghai, China
May 21, 2012 through May 25, 2012

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Designing Non-blocking Allreduce with Collective Offload on InfiniBand
Clusters: A Case Study with Conjugate Gradient Solvers*

K. Kandalla1, U. Yang2, J.Keasler2, T. Kolev2, A. Moody2, H. Subramoni1, K. Tomko3, J. Vienne1, and D. K. Panda1

1 Department of Computer Science and Engineering 2 Lawrence Livermore National Laboratory

The Ohio State University Livermore, California
{kandalla, subramon, viennej, panda}@cse.ohio-state.edu {yang11, keasler1, kolev1, moody20}@llnl.gov

3 Ohio Supercomputer Center

Columbus, Ohio
{ktomko}@osc.edu

Abstract—Scientists across a wide range of domains increas-
ingly rely on computer simulation for their investigations. Such
simulations often spend a majority of their run-times solving
large systems of linear equations that require vast amounts of
computational power and memory. It is hence critical to design
solvers in a highly efficient and scalable manner. Hypre is a
high performance, scalable software library that offers several
optimized linear solver routines and pre-conditioners. In this
paper, we study the characteristics of Hypre’s Preconditioned
Conjugate Gradient (PCG) solver algorithm. The PCG routine
is known to spend a majority of its communication time in
the MPI Allreduce operation to compute a global summation
during the innerproduct operation. The MPI Allreduce is a
blocking operation whose latency is often a limiting factor
to the overall efficiency of the PCG solver routine, and
correspondingly the performance of simulations that rely on
this solver. Hence, hiding the latency of the MPI Allreduce
operation is critical towards scaling the PCG solver routine
and improving the performance of many simulations.

The upcoming revision of MPI, MPI-3, will provide sup-
port for non-blocking collective communication to enable
latency-hiding. The latest InfiniBand adapter from Mellanox,
ConnectX-2, enables offloading of generalized lists of commu-
nication operations to the network interface. Such an interface
can be leveraged to design non-blocking collective operations.
In this paper, we design fully functional, scalable algorithms
for the MPI Iallreduce operation, based on the network offload
technology. To the best of our knowledge, this is the first such
design to be presented in the literature. Our designs scale
beyond 512 processes and we achieve near perfect communi-
cation/computation overlap. We also re-design the PCG solver
routine to leverage our proposed MPI Iallreduce operation to
hide the latency of the global reduction operations. We observe
up to 21% improvements in the run-times of the PCG routine,
when compared to the default PCG implementation in Hypre.
We also note that about 16% of the overall benefits are due to
overlapping the Allreduce operations.

Keywords-MPI-3 non-blocking collectives, Conjugate Gradi-
ent Solvers, Collective Offload, InfiniBand

*This research is supported in part by U.S. Department of Energy grants
#DE-FC02-06ER25749, #DE-FC02-06ER25755 and contract #DE-AC02-
06CH11357; National Science Foundation grants #CCF-0621484, #CCF-
0702675, #CCF-0833169, #CCF-0916302 and #OCI-0926691; grant from
Wright Center for Innovation #WCI04-010-OSU-0; grants from Intel, Mel-
lanox, Cisco, QLogic, and Sun Microsystems; Equipment donations from
Intel, Mellanox, AMD, Obsidian, Advanced Clustering, Appro, QLogic, and
Sun Microsystems.This work was also performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore National Laboratory
under contract DE-AC52-07NA27344.

I. INTRODUCTION

The fastest supercomputing systems currently offer sus-

tained peta-flop performance and are allowing scientists to

scale their parallel applications to tens of thousands of

processors. The Message Passing Interface (MPI) [1] has

been a popular programming model for High Performance

Computing applications for the last couple of decades.

MPI defines a set of collective operations that are used

to communicate data among a group of participating pro-

cesses. Owing to their ease of use and portability, they

are commonly used across various applications. The cur-

rent MPI Standard 2.2, defines the collective operations

to be blocking, i.e. the application has to wait until the

collective call completes. This limits the overall performance

and scalability of various scientific parallel applications. In

addition, blocking collective operations are also prone to

system noise which directly impacts the performance of

parallel applications [2], [3]. This has spurred interest in the

design of non-blocking collective communication operations

in MPI and the upcoming version of MPI, MPI-3, defines

non-blocking collective communication operations.

InfiniBand is a very popular switched interconnect stan-

dard being used by almost 41% of the Top500 Supercomput-

ing systems [4]. Since InfiniBand is so widely used, efficient

support of non-blocking collectives in MPI implementations

on InfiniBand is critical. Mellanox recently introduced net-

work offload features in their ConnectX-2 [5] adapter. Using

this feature, generic lists of communication tasks can be

offloaded to the network interface [6]. Such an interface

eliminates the need for the host processor to progress

communication and provides a low-level mechanism which

can be leveraged to design non-blocking collective commu-

nication algorithms. However, in order to leverage the full

benefits of this low-level mechanism, MPI libraries must be

designed in a highly efficient manner.

II. MOTIVATION

Application scientists increasingly rely on large scale

simulation to perform their scientific explorations. This

enables study of scenarios that are infeasible or impractical

to study by experiment. Several such applications are known

to rely heavily on popular solver routines, such as the

Preconditioned Conjugate Gradient (PCG), to solve large

systems of sparse linear equations. The efficiency of the

solver routine is extremely critical and strongly affects the

overall run-times of scientific simulations. In this paper, we

use Hypre [7], a high performance, scalable, open source

library that implements several preconditioners and solver

algorithms, including the PCG. When the PCG solver routine

is used with the diagonal scaling preconditioner, it is known

to spend a considerable fraction of its communication time

in MPI Allreduce, during the inner-product operation, which

is a significant performance bottleneck. Hence, hiding the

latency of the MPI Allreduce operation is critical towards

improving the efficiency of the PCG Solver routine. In this

paper, we re-design the PCG Solver routine, to leverage our

proposed MPI Iallreduce operation to hide the latency of the

global reductions by overlapping it with the compute phases

of PCG. Our studies show that we can improve the run-times

of PCG by up to 21% when compared to the default PCG

implementation in Hypre, about 16% of the overall benefits

are due to overlapping the Allreduce operations.

A high performance implementation of a non-blocking

interface for collective operations would ideally be expected

to deliver near-perfect communication/computation overlap.

While the benefits of non-blocking collectives are obvious

at a high-level, the real benefits offered by intelligent MPI

designs are likely to be the key driver for acceptance of

this interface by the application community. For example, to

ensure high overlap capabilities, it is necessary to minimize

the role of the host-processors in progressing the collective

operations. Simplistic designs of non-blocking collectives

requiring progressing the MPI library explicitly by CPU

intervention, e.g. calling MPI Test [8], offsets much of the

benefit of non-blocking communication. Similarly, if threads

within the library are used for progression, the application

performance can be hurt by interrupt processing, thread

scheduling and other such factors, [9]. It is also critical for

a non-blocking collective interface to ensure performance

portability, i.e, the benefits of using non-blocking collectives

should not be tightly coupled to system architecture and

network speeds. In this context, real benefits of non-blocking

collectives can only be achieved with corresponding net-

work support [10], [11]. In order to extract the maximum

benefit from non-blocking collectives, application develop-

ers may have to re-engineer their codes for communica-

tion/computation overlap. Such a co-design between the

applications and the MPI libraries can potentially lead to

significant improvements in application run-times.

In this paper, we integrate our designs into the MVA-

PICH2 [12] software stack, which is a popular MPI imple-

mentation for InfiniBand, iWARP and RoCE technologies.

MVAPICH2 is currently used by more than 1,700 organi-

zations in 63 countries worldwide. We list the important

contributions of this paper below:

1) We propose fully functional designs for the

MPI Iallreduce operation, which leverages the

network offload features offered by the ConnectX-2

network interface.

2) We study the various factors that could potentially

affect the overlap capabilities of our network offload-

based MPI Iallreduce operation.

3) Linear solvers typically spend a significant amount

of their MPI time in the global Allreduce opera-

tions. In this work, we re-design the Preconditioned

Conjugate Gradient Solver in Hypre, to leverage our

MPI Iallreduce operation.

4) We show that our MPI Iallreduce designs reduce the

impact of system noise on the PCG Solver.

III. BACKGROUND

In this section we give the necessary background infor-

mation for our work.

A. InfiniBand and ConnectX-2 Network Interface

Current generation InfiniBand QDR network cards and

switches can deliver 36 Gbps end-to-end bandwidth and

about 1.0 to 1.5µs latency. The ConnectX-2 [5] network

interface is the latest adapter from Mellanox. Along with all

of the standard InfiniBand features, it offers a new network

offloading feature called CORE-Direct [13]. Using this fea-

ture, arbitrary lists of send, receive and wait operations can

be created. These lists can then be posted to a work-request

queue to be further processed by the network card. The

network adapter independently executes it and eliminates

the need for the host processor to progress the communi-

cation tasks. Using such task-lists, non-blocking collective

operations may be designed by upper-level libraries.

B. Offloading compute operations with ConnectX-2

Unlike collectives such as MPI Bcast and MPI Alltoall,

the MPI Allreduce operation also performs a few basic math

operations, such as MPI MAX, MPI SUM, etc. In order to

design MPI Iallreduce in a truly non-blocking manner, it is

desirable to offload the compute phases of the Allreduce op-

eration to the network interface. Such a design could lead to

higher overlap capabilities, when compared to designs which

may require the host processors to intervene and perform

the math operations. Apart from supporting communication

offload, the ConnectX-2 interface also allows MPI libraries

to create and post task-lists comprising of calc-requests. The

calc operation needs to be specified as a part of a send

work request element. Upon execution, the result of the

calc operation for the given set of operands will be sent

to the peer process. However, if a process that is posting

such an operation also requires the result, it is necessary

to do a network loop-back operation to retrieve the data

from the network interface. The current generation CX-2

interface has the limitation that it can only support binary

calc operations of scalar values. Solver routines commonly

do global Allreduce operations on just one double. So, it is

possible for MPI libraries to leverage the CX-2 feature for

2

such applications. However, to offload reductions on vector

data, we may require more advanced hardware support.

C. Allreduce Algorithms in MVAPICH2

State-of-the-art open-source MPI implementations, such

as MPICH2 [14], Open-MPI [15] and MVAPICH2 [12]

use optimized algorithms to improve the latency of blocking

collective operations. MVAPICH2 implements multi-core

aware, shared-memory based algorithms for blocking col-

lective operations. The processes that are within a compute

node are grouped within a “shared memory communicator”.

One process per node is designated as a leader and par-

ticipates in a “leader communicator” which contains leaders

from all nodes. We first do a shared-memory based reduction

within each compute node to accumulate the data at the

leader process. This is followed by an inter-leader Allreduce

operation, which may either be implemented through the

Recursive-Doubling algorithm, or a tree-based Reduce-Bcast

algorithm. Finally, the leader processes do a shared-memory

broadcast to complete the Allreduce operation.

D. Impact of System Noise

Several researchers have demonstrated the impact of sys-

tem noise on the performance of parallel applications [2],

[3]. The impact of noise is higher at larger scales, because

the delays tend to get propagated across various tasks in the

job. Hoefler et al, quantified the impact of noise on various

host-based collective operations in [2] and concluded that

MPI Allreduce based on the recursive-doubling algorithm is

very sensitive to system noise. However, with network based

implementations, the network can independently execute the

schedules, with little intervention from the host processors.

Such designs have the potential to reduce the impact of

system noise on the performance of applications.

E. Hypre

Hypre is an open-source, high performance and scalable

package of parallel linear solvers and preconditioners. Hypre

is designed to leverage the notion of conceptual interfaces,

which expose the various solver routines to users in a

modular fashion[16]. Such a design significantly eases the

coding burden for application developers and may also be

used to provide additional application information to the

solver routines. The solvers in Hypre are robust, numerically

stable and scalable [17]. Its object model is more generic

and flexible when compared to many state-of-the-art solver

packages [7] and it may also be used as a framework for

algorithm development. In this paper, we focus specifically

on the Preconditioned Conjugate Gradient solver routine,

which uses the diagonal scaling preconditioner.

IV. DESIGNING OFFLOAD-BASED ALLREDUCE

ALGORITHMS

We described the communication protocols we use for

small and large messages with the CORE-Direct interface

in [10], [11]. We pre-post buffers to minimize the latency of

small messages and we rely on InfiniBand’s Receiver-Not-

Ready (RNR) feature for large messages. In this section, we

discuss our proposed designs for the network-offload based

algorithms for the Allreduce operation.

As discussed in Section III-B, if a process posts a calc-

request requires the result of the operation, it is necessary

to do a network-loop-back operation. This may affect the

latency of the network offload based MPI Iallreduce opera-

tion, because the loop-back operation is expensive. Also, a

NIC-level wait-task gets triggered when there is a comple-

tion event on the Completion Queue(CQ), it is associated

with. Since the network interface does not offer hardware-

based tag-matching, there is no way for the NIC to know

the source of the data packet. This could potentially lead to

race conditions and may even lead to incorrect results during

the MPI Iallreduce operation. To address this problem, it is

necessary to use distinct InfiniBand Queue Pair’s (QP) and

CQ for each pair of processes involved in the Allreduce

operation. We limit the size of these CQ’s to control the

memory foot-print of our designs. We also selectively poll

only the specific CQ’s, where we are expecting data to arrive,

instead of exhaustively polling on all the available CQ’s.

Such an approach allows us to control the polling overheads.

We now propose our network-offload based designs for

both the recursive-doubling and the tree-based reduce-bcast

algorithm and explore design-level choices to minimize the

performance impact of the network loop-back operation.

A. Network Offload based Recursive-Doubling Algorithm

We describe the network-offload based recursive-doubling

algorithm in Figures 1(a) and (b). As shown in Figure

1(a), the recursive-doubling algorithm across N processes

requires (logN) iterations. At the start of the algorithm, each

process copies its input buffer into an accumulator-buffer.

In each iteration, a process chooses a specific peer, sends

the data in the accumulator-buffer, receives the peer’s data,

performs the math operations on the data in the accumulator

and the data it received from the peer. The result of the

calc operation is written back into the accumulator at the

end of each step. The recursive-doubling algorithm requires

that every process has the updated data at the end of each

iteration. Hence, a network offload based implementation for

the recursive-doubling algorithm will require each process

to do a loop-back operation at the end of every iteration

of the algorithm. It is not possible to hide this overhead,

because the next step of the algorithm cannot be started

before the loop-back operation is completed. Since there

are (logN) steps in a recursive-doubling algorithm, each

process executes (logN) loop-back operations, for a given

MPI Iallreduce operation.

The other challenge is to ensure data dependency across

multiple iterations of the algorithm as the task-lists are

created during the MPI Iallreduce operation, even before

the collective has started. In [11], we proposed addressing a

3

similar problem with the network-offload-based MPI Ibcast

operation. Since each process uses a distinct queue-pair for

all of its peers, we pre-post registered buffers on all these

queue-pairs. We also mirror the list of pre-posted buffers

inside the MVAPICH2 library to monitor the flow of the

algorithm and handle the data consistency issues. In Figure

1(b), we demonstrate our network-offload-based recursive-

doubling algorithm for Rank0, with a communicator com-

prising of 4 processes. Rank0 maintains 4 lists, L00, L01,

L02 and L03, which always mirror the buffers that are

currently pre-posted on each of the QP’s. We name the

buffers on list L0i, as bi0, bi1 and so on. In the first

iteration, Rank0 copies the data in the input buffer of the

MPI Iallreduce operation into buffer b00 on the list L00
and enqueues a wait-task for a recv completion from Rank1

on the specific CQ it has for Rank1. The data arriving

from Rank1 will be guaranteed to be in the buffer b10,

on the list L01. Next, Rank0 performs the network-loop-

back operation by enqueueing a calc-send task to itself.

The network interface will place the result of this operation

back at the buffer b00, since this is the head of the list

L00. During the second iteration, Rank0 enqueues a wait-

task for the expected recv-completion from Rank2. The

data arriving from Rank2, will be available in the buffer

b20, on the list L02, once the network card generates the

corresponding recv-completion Finally, Rank0 enqueues a

calc-send task to itself, by supplying the data in b00 and b20
as the operands for the calc operation. The result of this calc

operation will be available in the buffer b01. Before exiting

the MPI Iallreduce operation, Rank0 also de-queues these

buffers, in preparation for the next MPI Iallreduce operation.

When the application executes the MPI Wait operation on

the request corresponding to the MPI Iallreduce operation,

if all the communication tasks have been completed, the pro-

cess can copy the data out of buffer b01 into the “recvbuf”

of the MPI Iallreduce operation.

B. Network Offload based Reduce-Bcast Algorithm

In Figures 2(a), (b) and (c), we describe the steps involved

in our network-offload based Reduce-Bcast algorithm. Sup-

pose we consider an intermediate process Pi, of the generic

k-nomial reduce tree. This process needs to handle receiving

the data from k children processes, creating k − 1 calc

operations to itself (through network loop-back) and 1 calc-

send operation to its parent. As shown in Figure 2(a), for

a binomial tree, an intermediate process is required to do

only one calc-self-send operation, but the communication

tree will be tall and thin. However, as we increase the

degree of the tree, the number of calc-self-send operations

also increase, while the communication tree becomes shorter

and denser. For example, with 16 processes, the reduction

operation with degree=4, takes 8 steps to finish, whereas

with degree=2 and 3, we only require 7 steps. We also

observe that any tree-based algorithm leads to a fairly imbal-

anced communication graph. Such an imbalance could help

in overlapping the overhead of the loop-back operation at

the intermediate processes, which was not possible with the

recursive-doubling algorithm. For example, in Figure 2(a),

process P5, waits for data to arrive from process 6. On

receipt of this message, P5 executes the calc-send operation

to itself. At the same time process P7 also receives data

from its child process and executes a calc-send task to P5.

If processes P5 and P7 are sufficiently synchronized, it is

possible that by the time the data from P7 arrives at P5, P5
is done with the calc-send to itself, hence potentially hiding

the overhead of loop-back operation. However, if process P5
is delayed in starting the MPI Iallreduce operation, it may

not be possible to hide the cost of the loop-back operation.

Once the reduce phase is done, the root of the reduce-tree

broadcasts the final result across all the processes. This phase

is also offloaded to the network interface, hence, eliminating

the need for any intervention from the host processors. Every

process chains the task-lists corresponding to the reduce

and the broadcast steps, during the MPI Iallreduce operation

itself, which allows us to completely offload the reduce-bcast

algorithm.

C. MPI Iallreduce Design Choices

A simple approach to designing a network-offload based

MPI Iallreduce operation is to ignore the node-level topol-

ogy and consider the communicator as a flat structure. If

there are N processes in the communicator, each process

communicates with (logN) peers. However, such a design

may suffer from a relatively high communication latency.

We refer to such a design as the “Flat” scheme. Another

option in designing a network-offload based MPI Iallreduce

operation could be to use the shared-memory approach for

the intra-node communication and use the network-offload

channels for the inter-node transfers. We refer to such a

design as the “Two-Level” scheme. We use the shared-

memory-based reduce operation to implement the first intra-

node reduction step, and the shared-memory-based broadcast

operation to implement the final intra-node broadcast phase.

We may choose to use either the network-offload-based

recursive-doubling algorithm or the reduce-bcast algorithm

for the inter-leader step of the MPI Iallreduce operation.

Since the communication latency of the shared-memory

channel is very small, we believe that such a design allows

for lower communication latency. However, a limitation of

such a design is that it introduces skew across processes,

since the leader processes on each node do more work

than the rest of the processes on the same node, during

the MPI Iallreduce step. During the MPI Wait step, the

non-leaders are required to synchronize with their leader

process, to get the final result of the Allreduce. Such a

synchronization may not be very appealing, because the

goal of a non-blocking collective interface is to hide the

synchronization overheads. Also, since the final intra-node

4

��������	

ABCDEF���������������

���������������������

�����E�����������F����

����A�C�������E��������F����

������D���E��������F��������F ����!�����

����A�C�������E��������F�����

��������������

"

1

L00

L01

L02

L03

b00 b01 b02

Steps performed by Rank0:

1. Copy data to b00

2. Recv data from Rank1 at

b10

3. Calc-Self-Send (b00 , b10

 b00)

4. Send data at b00 to Rank2

5. Recv data from Rank2 at

b20

6. Calc-Self-Send (b00, b20 

b01)

Mirror pre-posted buffers at

the NIC inside the MPI library

b10 b11

b20 b21

b30 b31

Figure 1. Recursive Doubling Algorithms for MPI Iallreduce: (a) Offload-based Recursive-Doubling pseudo code (b) Offload-based Recursive-Doubling
design

1

P0

P1 P2

P5

P6

P7

P8

P8

P10 P11 P11

1 2

1

1

1

1

1 1

5 3

2

2

4

3

2

4
6

7

P3

P12 P13 P14

1

2

2

2

3 3

P15

1

1

P0

P1 P2

P4

P5

P7

P8 P9

1 1

1 1 1 1

3

5 3

2 2

3

2

4 5

6

7

P6

P10

P11 P12

2

3

4

P15

P13

1 1

P14

2

1

1

P0

P1 P2 P3

P4

P5

P6 P7

P8

P9 P10 P11

1 1 1

1 1 1 1 1 1

4 4

2
3

2

3

3

2

4 5

6

8

P12

P13 P14 P15

2

3

1 1 1

4

7

Figure 2. Network Offload-based Reduce-Bcast Algorithms for MPI Iallreduce: (a) Degree=2, (b) Degree=3, (c) Degree=4

step requires copying the data from the leader processes to

the rest of the non-leader processes, it may also lead to

evicting the application’s data from the caches. However,

the “Flat” scheme may alleviate these problems, because

it does not require any process synchronization during the

MPI Wait operation and each process is only required to

the copy the result of the Allreduce step back into the user-

buffer, leading to fewer conflicts in the caches.

V. DESIGNING THE PRECONDITIONED CG FOR OVERLAP

In this section, we first describe the basic PCG algorithm,

which is used in the Hypre software library. We then discuss

our implementation of a common variant of the PCG algo-

rithm, within Hypre. Finally, we propose our Overlap-PCG

algorithm, which uses non-blocking inner-product operations

to achieve communication/computation overlap.

A. Basic PCGSolve Algorithm

The Preconditioned Conjugate Gradient Solver routine

is commonly used to solve systems of linear equations

of the form Ax = B, if A is symmetric and positive

definite. The CG method is often used in combination with

a preconditioning step, which generates a different matrix

C, which is an approximation of A, so that Cy = Z

is easier to solve, when compared to Ax = B. In Fig-

ure 3, we include the pseudo-code for the PCG Solver

routine in the Hypre library. We observe that we do three

calls to the inner-product function in each iteration of the

PCG Solve routine, to update the sdotp, gamma and the

i prod variables. The inner-product operation relies on the

MPI Allreduce operation to calculate the global summation

value. In each iteration of the PCGSolve routine, we also

call the Matvec function, which implements the bound-

ary exchange and the local hypre CSRMatrixMatvec

operation. The boundary exchange phase uses MPI Isend,

MPI Irecv and MPI Waitall operations and is overlapped

with the hypre CSRMatrixMatvec function. We also

observe that the loop in its current form has a strict data

dependency and is not very amenable for overlapping the

inner-product functions. For example, if we consider the

sdotp variable, it gets updated during an inner-product

operation and its value is used in the very next step. For

the rest of this paper, we refer to this version of the PCG,

as “PCG-Algorithm1”.

B. PCGSolve Algorithm Variant

In Figure 6, we discuss a variant of the PCG algorithm,

which was proposed by authors in [18]. This version, is

inherently very similar to the basic PCG Routine described

in Figure 3, and has the same numerical stability. However.

we also observe that this variant offers the flexibility to use

the result of the inner-product functions at a later point in

time. For example, the result of the sdotp inner-product is not

needed until after the X Axpy routine is done. We refer to

this version of the PCG routine as “PCG-Algorithm2”. This

5

x = initial guess, p = 0, beta = 0
r = b - Ax
Solve C * p = r
gamma = inner-prod(r, p)
while(not converged)

Matvec (A, p, s) /* s = A*p */
sdotp = inner-prod(s, p)
alpha = gamma/sdotp
gamma old = gamma
x = x + alpha*p /* X Axpy*/
r = r - alpha*s /* X Axpy*/
Solve C * s = r /*DiagScale*/
gamma = inner-prod(r, s)
i prod = inner-prod(r, r)
if(i prod / bi prod)

/* Convergence Test */
if(converged)

break
beta = gamma/gamma old
p = s + beta*p /* P Axpy */

Figure 3. PCG-Algorithm1: Basic Preconditioned Conjugate Gradient
Solver Algorithm in Hypre

variant of the PCG also requires a slightly modified version

of the preconditioner routine. We describe the differences

in the two preconditioner routines in Figures 4 and 5. In

Hypre, PCG-Algorithm1, uses the DiagScale preconditioner,

described in Figure 4, which uses indirect addressing to ac-

cess the elements of the A data array. For PCG-Algorithm2,

we create the L and the L−T arrays at the start of the

solver routine, and we use these arrays, in the DiagInvScale

preconditioner, described in Figure 5. In our case, the matrix

L, is the square-root of the diagonal elements of matrix

A, and therefore L = LT . We would like to note that,

the DiagInvScale routine reads data sequentially from the

A data array, which could lead to better cache behavior.

We also observe that the DiagInvScale preconditioner in-

volves floating-point multiplication operations, whereas the

DiagScale routine requires floating-point division, which is

computationally more expensive. We also observe that the

gamma-innerproduct step in PCG-Algorithm2 reads data

from the same vector t. In PCG-Algorithm1, we use vectors

r and s to compute gamma. This may lead to fewer bus

transactions and better cache behavior. Due to both these

factors, we expect PCG-Algorithm2 to perform better than

PCG-Algorithm1, even though both of them use blocking

Allreduce operations.

hypre ParVector *y = (hypre ParVector *) Hy;
hypre ParVector *x = (hypre ParVector *) Hx;
double *A data = hypre CSRMatrixData(hypre ParCSRMatrixDiag(A));
int *A i = hypre CSRMatrixI(hypre ParCSRMatrixDiag(A));
for (i=0; i ¡ local size; i++)

x data[i] = y data[i]/A data[A i[i]];

Figure 4. DiagScale Preconditioner

hypre ParVector *y = (hypre ParVector *) Hy;
hypre ParVector *x = (hypre ParVector *) Hx;
double *A data = L

−1

for (i=0; i ¡ local size; i++)
x data[i] = y data[i]*A data[i];

Figure 5. DiagInvScale Preconditioner

X = initial guess, P = 0, beta = 0
P prev = 0, w = 0, v = 0, t = 0
r = b - Ax
C = L.LT

t = L
−1*r /* DiagInvScale */

gamma = inner-prod(t ,t)
while(not converged)

w =L−T *t /* DiagInvScale */
p = w + beta*p prev /* P Axpy */
s = A * p /* Matvec */
sdotp = inner-prod(s, p)
x = x + alpha*p prev /* X Axpy*/
alpha = gamma/sdotp
r = r - alpha*s /* R Axpy*/
i prod = inner-prod(r, r)
t = L

−1*r /* DiagInvScale */
gamma old = gamma
gamma = inner-prod (t,t)
beta = gamma/gamma old
if(i prod / bi prod)

/* Convergence Test */
if(converged)

break;

Figure 6. PCG-Algorithm2: Modified Preconditioned Conjugate Gradient
Solver Algorithm

C. PCG Algorithm with Overlap

We leverage PCG-Algorithm2 and re-design it to overlap

the inner-product operation with independent compute tasks,

as described in Figure 7. We design a non-blocking interface

for the inner-product function, init − inner − product,

which can be used to initiate the inner-product operation

and return immediately. We can perform some of the

other independent compute tasks of the solver routine and

wait for the completion of the inner-product by using the

wait − inner − prod routine. The init-inner-product func-

tion initiates the non-blocking Allreduce operation through

our network-offload-based MPI Iallreduce operation. The

wait− inner− product function calls the MPI Wait oper-

ation to wait on the corresponding non-blocking Allreduce

operation. In our proposed variant, we have overlapped each

of the three inner-products with either the DiagInvScale

routine or the X Axpy operation. For the rest of the paper,

we refer to this algorithm as “PCG-Overlap”.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

Each of our compute nodes have eight Intel Xeon cores

running at 2.53 Ghz with 12 MB L3 cache. The cores are

organized as two sockets with four cores per socket. Each

node also has 12 GB of memory and Gen2 PCI-Express bus.

They are equipped with MT26428 QDR ConnectX-2 HCAs

with PCI-Ex interfaces. We used a 171-port Mellanox QDR

switch, with 11 leafs, each having 16 ports. Each node is

connected to the switch using one QDR link. The HCA as

well as the switches use the latest firmware. The operating

system used is Red Hat Enterprise Linux Server release

5.4 (Tikanga), with the 2.6.18-164.el5 kernel version. OFED

version 1.5.1 is used on all machines, and the OpenSM

version is 3.3.7.

6

X = initial guess, P = 0, beta = 0
P prev = 0, w = 0, v = 0, t = 0
r = b - Ax
C = L.L
t = L

−1*r /* DiagInvScale */
gamma = inner-prod(t ,t)
while(not converged)

w =L−1*t /* DiagInvScale */
gamma = wait-inner-prod(t, t) /*finish gamma inner-product*/
beta = gamma/gamma old
p = w + beta*p prev /* P Axpy */
s = A * p /* Matvec */
init-inner-prod(s, p) /*start sdotp inner-product */
x = x + alpha*p prev /* X Axpy*/
sdotp = wait-inner-prod(s, p) /*finish sdotp inner-product*/
alpha = gamma/sdotp
r = r - alpha*s /* R Axpy*/
init-inner-prod(r, r) /*start i prod inner-product */
t = L

−1*r /* DiagInvScale */
i prod = wait-inner-prod(r, r) /*finish i prod inner-product*/
gamma old = gamma
init-inner-prod (t,t) /*start gamma inner-product */
if(i prod / bi prod)

/* Convergence Test */
if(converged)

break;

Figure 7. PCG-Overlap: Overlapping the Innerproducts in the Precondi-
tioned Conjugate Gradient Solver Algorithm

B. Benchmark Suite

In this paper, we use modified versions of the OSU Micro-

Benchmarks, which are a part of the MVAPICH2 software

package. We measure the average latency of the different

implementations of the Allreduce operation across various

system sizes. We report communication latency averaged

across all the processes, across 1000 iterations and three

different runs.

Overlap Benchmark: In this benchmark, we perform

floating point matrix-matrix operations by invoking the

cblas dgemm function supported by the Intel MKL Library

(10.2.1.017), between the MPI Iallreduce and the MPI Wait

operations. We measure the overall time required for com-

pletion and compute the GFLOPS rating for the given case

and compare it against the theoretical peak FLOPS rating for

our system. In the first experiment, we fix the message size

and vary the matrix size N gradually between the values 10

and 3K and we measure the average throughput. We do a

global barrier between two iterations, to ensure that all the

processes are synchronized at the start of an iteration.

C. Communication Latency

In Figure 8(a), we compare the latency of the default

blocking algorithm in MVAPICH2, with our proposed net-

work offload based designs. We fix the message size to be

constant at 1 double as we perform the global summation

operation, and we vary the number of processes. We can

see that the latency of our proposed network offload based

designs are higher than that of the default implementation

available in MVAPICH2. We attribute this higher latency to

expensive network-loop-back operations, which need to be

performed during the execution of the algorithm. As dis-

cussed in Section IV, for the recursive-doubling algorithm,

every process needs to do a loop-back operation at the end

of each iteration. With the tree-based approaches, this issue

might be alleviated to an extent, because the number of

loop-back operations per process will depend on the degree

of the tree. However, the tree-based schemes also require

the offload-based broadcast to complete. In Figure 8(a), we

compare the latency of the default MPI Allreduce oper-

ation in MVAPICH2, with our proposed network-offload

based designs. We observe that the latency of the “Flat”

scheme is significantly higher than the rest of the designs.

Among the “Two-Level” designs, we observe that both the

recursive-doubling (Offload-RD) and the tree-based Reduce-

Bcast (Offload-Red-Bcast) are similar. For the tree-based

approach, we also vary the degree of the reduce-tree, denoted

by Offload-Red-Bcast-2 (for degree 2), Offload-Red-Bcast-3

(for degree 3) and Offload-Red-Bcast-4 (for degree 4). We

observe that the latency of the Reduce-Bcast approach is

the lowest when the degree is 2. As we increase the degree

of the tree, intermediate processes might have to do more

number of loop-back operations, before they send the data

to their parent processes. We also varied the degree of the

tree for the offload-bcast algorithm and we observed that we

get the best latency, when the degree of the bcast-tree is 4.

In Figures 8(b), (c) and (d), we further analyze the com-

munication latency of our network offload based designs.

We specifically measure the average time required for a

process to return from the MPI Iallreduce and the overhead

of the MPI Wait operations, without attempting any overlap.

We can see that the average latency of the MPI Iallreduce

operation is significantly lower with the tree-based design

than the recursive-doubling algorithm. This is expected,

because the size of the task-list posted by an intermediate

process is smaller, when compared to the task-list posted

by any process in the recursive-doubling algorithm. Also,

for this analysis, we consider the tree-based algorithm with

degree-2, since it delivers better latency when compared to

the algorithm with higher degrees.

D. Overlap/Throughput Analysis

In this section, we use our throughput benchmark to

study the impact on the throughput of the DGEMM oper-

ation, when it is overlapped with different variants of the

MPI Iallreduce operation. As indicated in Section IV-C,

for collectives with small messages, process skew can

play a significant role in affecting the benefits achiev-

able through computation/communication overlap. In Fig-

ure 9(a), we compare the measured throughput of the

CBLAS-DGEMM operation, when it is overlapped with the

MPI Iallreduce based on either the Two-level-Recursive-

Doubling scheme, or the Two-level-Reduce-Bcast algorithm,

or the Flat-Recursive-Doubling scheme, being performed

with 256 processes. We also compare the measured through-

7

0

50

100

150

200

250

300

350

64 128 256 512

L
a
te

n
cy

 (
u

se
c)

System Size

MVAPICH2-Default Offload-RD Offload-Red-Bcast-2

Offload-Red-Bcast-3 Offload-Red-Bcast-4 Offload-Flat

0

5

10

15

20

25

30

35

40

45

64 128 256 512

L
a
te

n
cy

 (
u

se
c)

System Size

Two-Level-RD-Iallreduce-Finish

Two-Level-RD-Iallreduce-Init

0

5

10

15

20

25

30

35

40

45

64 128 256 512

L
a
te

n
cy

 (
u

se
c)

System Size

Two-Level-Red-Bcast-Iallreduce-Finish

Two-Level-Red-Bcast-Iallreduce-Init

0

50

100

150

200

250

300

350

64 128 256 512

L
a
te

n
cy

 (
u

se
c)

System Size

Flat-Iallreduce-Finish Flat-Iallreduce-Init

Figure 8. (a) Communication Latency; Latency analysis for the (b) Recursive-Doubling Algorithm, (c) Reduce-Bcast Algorithm (d) Flat Algorithm

put with the peak-throughput of the DGEMM operation, for

the given problem size. We can observe that across all the

MPI Iallreduce variants, we are able to achieve throughput

which is very close to the peak throughput.

In Figure 9(b), we study the communication overhead

of the MPI Iallreduce operation, when overlapped with

the DGEMM operation, as we increase the problem size.

We can observe that the communication overheads of the

two-level approaches increase as we increase the DGEMM

problem size. However, the overhead of the Flat-Recursive-

Doubling approach remains nearly constant. We believe that

this could either be due to process skew, synchronization

inside MPI Wait and the cache effects, as discussed in

Section IV-C. We observe that the variation between the

min and the max compute times, across all the processors,

for the same DGEMM problem size is as high as 10%. With

two-level schemes, if a leader process gets delayed in the

DGEMM operation, all the non-leader processes in that node

have to wait inside the MPI Wait operation, which naturally

shows up as higher overheads due to MPI Wait. However,

with the Flat approach, every process does the same amount

of work inside the MPI Iallreduce operation. Also, within

the MPI Wait operation, processes only need to poll for

completions, without having to synchronize with any other

process. We believe that the Flat approach could potentially

achieve better benefits through overlap, because they do not

introduce skew and may require fewer cache accesses. We

also expect that the overall benefits of the flat approach to be

higher, if their communication latency could be optimized

Table I
APPLICATION RUN TIME (SECONDS)

Operation PCG-Algorithm1 PCG-Algorithm2

matvec 39.72 40.29

Inner-Prod Time

sdotp 3.65 4.80
gamma 9.26 3.09
iprod 1.23 1.19

Avg Time 14.14 9.08

precond 7.36 3.60

axpy 3.81 3.86

vector scale 0.98 0.97

solver-time 66.78 59.21

further, through advanced hardware designs.

VII. PCG SOLVE PERFORMANCE

A. Potential for Computation/Communication Overlap in

PCG Routines

In Table I, we report the average time required to do

the different operations for PCG-Algorithm1 and PCG-

Algorithm2. For this experiment, we consider 256 processes,

and 216000 unknowns per process (-n 60 60 60). We can

see that Matvec function accounts for most of the time. We

also observe that the precond and the gamma-innerproduct

steps in PCG-Algorithm2 are much faster, as discussed

in Section V. Both the solvers run for 951 iterations. In

each iteration of PCG-Algorithm2, make two calls to the

DiagInvScale function, both of which are overlapped by the

inner-products. We expect the amount of compute to overlap,

per call to Iallreduce to be about 1.8 msec. Since the latency

of even the most expensive MPI Iallreduce operation is

about 250µs, with 256 processes, we believe there is enough

potential for computation/communication overlap.

8

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 500 1000 1500 2000 2500 3000

T
h
ro

u
g
h
p
u
t

(G
F

lo
p
s)

CBLAS-DGEMM Problem Size (N)

Iallreduce-Flat-RD
Iallreduce-Two-Level-RD

Iallreduce-Two-Level-Red-Bcast
Peak Throughput

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 500 1000 1500 2000 2500 3000

Ia
ll

re
d
u
ce

 l
at

en
cy

 (
u
se

c)

CBLAS-DGEMM Problem Size (N)

Iallreduce-Flat-RD
Iallreduce-Two-Level-RD

Iallreduce-Two-Level-Red-Bcast

Figure 9. (a) CBLAS-DGEMM throughput, (b) Communication overhead of the MPI Iallreduce operation

B. PCG Solver Run-Time Comparison

In this section, we study the run-times of the different

algorithms for the PCG Solver, across different system sizes

and varying number of unknowns. PCG-Algorithm1 and

PCG-Algorithm2 use the blocking inner-product function,

which uses the regular MPI Allreduce operation in MVA-

PICH2. Since our re-designed PCG algorithm in Figure 7

uses a non-blocking inner-product function, we use either

one of our proposed MPI Iallreduce designs. We use a

slightly adapted version of the ij.c driver program, which

is available in Hypre, to invoke the PCG solver for the

27pt Laplace problem. The 27pt Laplace problem solves a

Laplace-like problem with a 27-pt stencil, i.e., each row has

an average of 27 non-zeros. We vary the number of processes

from 64 through 512 and study the run-times of the different

PCG Solver algorithms. Similarly, in Figures 10 (b), (c) and

(d), we vary the number of unknowns per process by using

the (-n 40 40 40), (-n 60 60 60), (-n 80 80 80) and (-n 10

10 100) run-time options respectively.

In Figure 10(a), we fix the number of unknowns of the

Laplace problem by using the -n option as (-n 40 40 40),

which leads to 64,000 number of unknowns per process.

With 64 processes, the run-time of PCG-Algorithm1 is about

6.8 (s), whereas that of the PCG-Algorithm2 is about 6.1(s).

Our proposed PCG algorithm, Overlap-PCG which uses

non-blocking inner-products through our network offload

based MPI Iallreduce operation has a run-time of about

6(s) for both the recursive-doubling and the reduce-bcast

schemes. However, with the flat scheme, Overlap-PCG(Flat),

the run-time is about 5.4(s), which is about 11.5% better than

the PCG-Algorithm2 algorithm and about 20.5% better than

PCG-Algorithm1. With higher number of processes, say 512,

Overlap-PCG(Flat)’s run-time is about 11.1(s), whereas the

default PCG-Algorithm1 requires about 14.2(s) and modified

PCG-Algorithm2 takes about 12.2 (s).

We observe a similar trend in Figure 10(b), with

216,000 unknowns per process (-n 60 60 60). With 64

processes, the Overlap-PCG(Flat) algorithm, which uses

the flat MPI Iallreduce schemes has a run-time of about

27.93(s), when compared to the PCG-Algorithm2’s run-

time of 33.3(s) (an improvement of about 16.1%) and

PCG-Algorithm1’s run-time of 35.6(s) (an improvement of

about 21.6%. The run-time of the Overlap-PCG(Flat) is

also better than that of the Overlap-PCG(Two-Level-RD)

and the Overlap-PCG(Two-level-Red-Bcast) by about 5%.

With 512 processes, the Overlap-PCG(Flat) scheme delivers

an improvement of about 5.7% when compared to PCG-

Algorithm2 and about 13.6% when compared to PCG-

Algorithm1.

As we further increase the number of unknowns per

process to 512000, in Figure 10(c), Overlap-PCG(Flat) does

about 7% better than PCG-Algorithm2 and about 21.5%

better than PCG-Algorithm1, with 64 processes. With 512

processes, Overlap-PCG(Flat) performs about 4.5% better

than PCG-Algorithm2 and 13% better when compared to

PCG-Algorithm1.

We observe that, across various problem sizes, the benefits

of overlapping the inner-product appear to be the highest

with the Flat MPI Iallreduce design, than the Two-Level-

RD or the Two-Level-Red-Bcast schemes. This is consistent

with the results we observed in Figure 9(b). Despite the

fact that Flat scheme has very high communication latency,

if there is enough compute to overlap, it could potentially

deliver better overlap. This is because the Flat scheme is

resilient to process skew and cache-friendly. However, we

also observe that the benefits are the maximum with 64 pro-

cesses and the the overall benefits appear to diminish, as we

increase the number of processes. This could be attributed

to the fact that the latency of the Flat scheme continues to

increase, as the number of processes in the MPI Iallreduce

operation increases. We would again like to note that, if

next generation hardware interfaces support better features

for offloading global reduction operations, without requiring

expensive loop-back operations, we could expect to see

9

higher efficiency, for the Overlap-PCG algorithm, even at

higher scales.

C. PCG Solver Run-Time Analysis

In this section, we report the break-up of the run-time

between application-level compute and MPI communication.

In Figures 11(a), (b) and (c), we consider the case with

64 processes, which showed the maximum improvements

and analyze its communication overheads, as we vary the

number of unknowns per process. We can see that most of

the run-time for the 27pt laplacian problem accounts for

the compute phases. MPI Allreduce dominates the bulk of

the communication time, probably indicating that most of

the boundary exchange communication is efficiently over-

lapped by the local Matvec operations. In Figure 11(a),

we analyze the run-times across the different PCG and

Allreduce algorithms, as we keep the number of unknowns

per process constant, at 64,000. The PCG-Algorithm1 and

PCG-Algorithm2 versions use blocking MPI Allreduce and

we can see that the overhead of the Allreduce operation

in higher in these cases. The Allreduce overheads appear

to be smaller with the Overlap-PCG-Red-Bcast and the

Overlap-PCG-RD cases, implying that we are seeing benefits

through our proposed network offload based designs. We

also observe that the overhead of the Allreduce operation

is very negligible with the Overlap-PCG-Flat case, which

seems to indicate that most of the Allreduce time is ef-

fectively hidden. In Figures 11(b) and (c), we repeat the

same study, as we increase the number of unknowns per

process. We can see that with the Overlap-PCG-Flat scheme,

the Allreduce overhead continues to remain significantly

smaller than the other alternatives. With better hardware

support, we expect that the Overlap-PCG routine achieves

better efficiency through completely hiding the latency of

the Allreduce operations.

D. Impact of System Noise of PCG Run-Times

In this section, we study the impact of system noise on

the performance of PCG Solver routines, by considering

PCG-Algorithm2 and the Overlap-PCG algorithm based on

the Flat MPI Iallreduce operation. We believe that this

is a fair comparison, because our earlier set of experi-

ments indicate that PCG-Algorithm2 performs better than

PCG-Algorithm1, even though both of them use block-

ing MPI Allreduce operations. And the Overlap-PCG al-

gorithm delivered achieved better speed-up with the Flat

MPI Iallreduce operation. We rely on a simple daemon that

performs matrix-matrix multiplication operations that can be

used to inject noise with durations and frequencies and we

schedule this daemon on each core on all the nodes. In

this experiment, we use 256 processes, fix the number of

unknowns per process for the PCG Solver as 216,000. We

vary the noise duration from about 50µs to about 200µs and

the noise frequency between 20Hz and 1KHz. We expect the

noise to affect the performance of the compute phases of

both the solver routines in a similar manner. However, since

PCG-Algorithm2 uses blocking MPI Allreduce operations,

we believe that its communication times could be affected

to a greater extent than the Overlap-PCG algorithm, which

uses network-offload based MPI Iallreduce operation. This

is mainly due to the fact that the host processors are not

required to progress the Allreduce operations, with network-

offload based solutions. In Figure 12, we compare the

performance degradations of both the PCG algorithms, as we

vary the noise duration and frequency. We can observe that

the relative performance degradation of the PCG-Algorithm2

is higher, when compared to the Overlap-PCG version, as

the noise becomes longer and more frequent. For example,

with the extreme case, the performance of PCG-Algorithm2

degrades by as much as 37%, whereas the Overlap-PCG

version degrades by about 30%. We expect the effects of

noise to be stronger, at larger scales. We shall include

experimental results with 512 and 1K core processors, in

the final version of the paper.

20

40

1K0

5

10

15

20

25

30

35

40

N
o

is
e

D
u

ra
ti

o
n

 (
H

er
tz

)

%
 P

er
fo

rm
a
n

ce
 D

eg
ra

d
a

ti
o
n

Figure 12. Performance degradation with Noise Injection. PCG-
Algorithm2 Vs Overlap-PCG(Flat)

VIII. RELATED WORK

Improving computation and communication overlap in

parallel applications has traditionally been a topic of great

interest [19]. Sancho et al. [20] study the benefits of using

dedicated processors for progressing the Allreduce operation

and study the benefits with of overlapping the Allreduce

operations in POP, a weather modeling application. Improv-

ing the efficiency of the Conjugate Gradient Solvers is a

widely studied problem [21]. In [22], Hoefler et al. tried to

optimize the CG Solver using the CG method by Hestenes

and Stiefel[23]. However, the authors noted that they were

unable to resolve the data dependency necessary to overlap

the Allreduce operations. In our work, we leverage the PCG

algorithm variants proposed by Demmel et al. [24] and

extend their work to achieve communication/computation

overlap through non-blocking implementations of the inner-

product operations, which use our network-offload based

MPI Iallreduce operations.

10

 0

 2

 4

 6

 8

 10

 12

 14

 16

 64 128 256 512

P
C

G
 S

o
lv

er
 R

u
n
-T

im
e

(s
)

System Size

Default PCG(Algorithm1)
Modified PCG(Algorithm2)

Overlap PCG(Two-Level-RD)
Overlap PCG(Two-Level-Red-Bcast)

Overlap PCG(Flat)
 0

 10

 20

 30

 40

 50

 60

 70

 80

 64 128 256 512

P
C

G
 S

o
lv

er
 R

u
n
-T

im
e

(s
)

System Size

Default PCG(Algorithm1)
Modified PCG(Algorithm2)

Overlap PCG(Two-Level-RD)
Overlap PCG(Two-Level-Red-Bcast)

Overlap PCG(Flat)

 0

 50

 100

 150

 200

 250

 64 128 256 512

P
C

G
 S

o
lv

er
 R

u
n
-T

im
e

(s
)

System Size

Default PCG(Algorithm1)
Modified PCG(Algorithm2)

Overlap PCG(Two-Level-RD)
Overlap PCG(Two-Level-Red-Bcast)

Overlap PCG(Flat)
 0

 100

 200

 300

 400

 500

 600

 64 128 256

P
C

G
 S

o
lv

er
 R

u
n
-T

im
e

(s
)

System Size

Default PCG(Algorithm1)
Modified PCG(Algorithm2)

Overlap PCG(Two-Level-RD)
Overlap PCG(Two-Level-Red-Bcast)

Overlap PCG(Flat)

Figure 10. PCGSolve Run-Time Comparisons (a) -n 40 40 40, (b) -n 60 60 60, (c) -n 80 80 80 and (d) -n 100 100 100

0

20

40

60

80

100

120

R
u

n
-T

im
e

B
re

a
k

u
p

Waitall Allreduce Compute

0

20

40

60

80

100

120

R
u

n
-T

im
e

B
re

a
k

u
p

Waitall Allreduce Compute

0

20

40

60

80

100

120

R
u

n
-T

im
e

B
re

a
k

u
p

Waitall Allreduce Compute

Figure 11. PCG Run-Time Analysis with 64 processes (a) -n 40 40 40, (b) -n 60 60 60 and (c) -n 80 80 80

Hoefler et. al. proposed using host based techniques for

designing non-blocking collective operations [8]. However,

host based techniques, offer limited performance portability

and may not deliver complete overlap. In [25], Hemmert

et. al. demonstrate the benefits of using triggered operations

and counting events provided by the Portals 4.0 message

passing interface. Additionally, Beckman at. al. [26] studied

the impact of noise on the performance of collectives by

injecting noise. We use a subset of these parameters in our

experiments. Graham et. al. reported early experiences with

the CORE-Direct software API in [13]. Subramoni et. al.

proposed communication primitives for blocking collective

operations with the CORE-Direct in [6]. In [10], we de-

signed a scalable network offload based MPI Ialltoall imple-

mentation and demonstrated up to 23% improvement with

a parallel 3D FFT library. In [11], we proposed network-

offload based designs for the MPI Ibcast operation and stud-

ied the benefits of achieving communication/computation

overlap with the HPL benchmark. In this paper, we propose

efficient non-blocking designs for the Allreduce operation

that scales beyond 512 processes and study the benefits with

Preconditioned Conjugate Gradient Solvers in the Hypre

software library. We also study the benefits of using network

based collectives with system noise. In both [10] and [11],

we observed that our network-offload based solutions offer

significantly better performance benefits than host-based

non-blocking solutions, such as libNBC. Hence, in this

work, we focus more on the different design choices for

network offload based MPI Iallreduce and understanding

their behavior with the PCG solver algorithms.

11

IX. CONCLUSION

In this paper, we designed fully functional, scalable al-

gorithms for the MPI Iallreduce operation, based on the

network offload technology. We showed that we are able to

scale our designs to more than 512 processes and we achieve

near perfect communication/computation overlap. We also

re-designed the PCG solver routine to leverage our proposed

MPI Iallreduce operation to hide the latency of the global

reduction operations. Our proposed Overlap-PCG algorithm

does up to 21% better than the default PCG implementation

in Hypre, about 16% of these benefits are derived through

hiding the latency of the global reductions. All of our

current work was based on the CX-2 InfiniBand network

interface from Mellanox. We believe that the benefits of our

proposed approaches could be higher with better hardware

support for offloading reductions to the network. We plan

to include results with the next generation interface, CX-3,

for the final version of the paper. In the future, we wish to

explore the benefits of hiding the latency of the Allreduce

operations with other solver routines in Hypre. It could also

be interesting to study the benefits of our work with real

scientific applications, which use Hypre’s solvers.

REFERENCES

[1] MPI Forum, “MPI: A Message Passing Interface,” in
www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf.

[2] T. Hoefler and T. Schneider and A. Lumsdaine, “Character-
izing the Influence of System Noise on Large-Scale Appli-
cations by Simulation,” in International Conference for High
Performance Computing, Networking, Storage and Analysis
(SC’10), Nov. 2010.

[3] Petrini, Fabrizio and Kerbyson, Darren J. and Pakin, Scott,
“The Case of the Missing Supercomputer Performance:
Achieving Optimal Performance on the 8,192 Processors of
ASCI Q,” in International Conference for High Performance
Computing, Networking, Storage and Analysis (SC’03), ser.
SC, 2003.

[4] Top500, “Top500 Supercomputing systems,” Oct 2010, .

[5] Mellanox Technologies, “ConnectX-2 Architecture,”
http://www.hpcwire.com/features/Mellanox-Rolls-Out-
Next-Iteration-of-ConnectX-57046327.html.

[6] H. Subramoni, K. Kandalla, S. Sur and D K. Panda, “Design
and Evaluation of Generalized Collective Communication
Primitives with Overlap using ConnectX-2 Offload Engine,”
in HotI’18, 2010.

[7] R.D. Falgout, J.E. Jones, and U.M. Yang, “ The Design and
Implementation of hypre, a Library of Parallel High Perfor-
mance Preconditioners,” in chapter in Numerical Solution of
Partial Differential Equations on Parallel Computers, A.M.
Bruaset and A. Tveito, eds., Springer-Verlag, 51 (2006), pp.
267-294. UCRL-JRNL-205459. .

[8] T. Hoefler, J. Squyres, W. Rehm, and A. Lumsdaine, “ A
Case for Non-blocking Collective Operations ,” in Frontiers
of High Performance Computing and Networking . ISPA
2006 Workshops, Lecture Notes in Computer Science, vol.
4331/2006, 2006, pp. 155–164.

[9] T. Hoefler and A. Lumsdaine, “Message Progression in Par-
allel Computing - To Thread or not to Thread?” in Cluster,
2008.

[10] K. Kandalla, H. Subramoni, K. Tomko, D. Pekurovsky, S.
Sur and D. K. Panda, “High-Performance and Scalable Non-
Blocking All-to-All with Collective Offload on InfiniBand
Clusters: A Study with Parallel 3D FFT ,” in ISC, June,2011.

[11] K. Kandalla, H. Subramoni, J. Vienne, K. Tomko, S. Sur
and D. K. Panda, “Designing Non-blocking Broadcast with
Collective Offload on InfiniBand Clusters: A Case Study with
HPL ,” in Hot Interconnects, August, 2011.

[12] MVAPICH2, http://mvapich.cse.ohio-state.edu/.
[13] R. Graham, S. Poole, P. Shamis, G. Bloch, N. Boch, H. Chap-

man, M. Kagan, A. Shahar, I. Rabinovitz, and G. Shainer,
“Overlapping Computation and Communication: Barrier Al-
gorithms and Connectx-2 CORE-Direct Capabilities ,” in
CAC, 2010.

[14] Argonne National Laboratory, “MPICH2:
High-Performance MPI Implementation,”
http://www.mcs.anl.gov/research/projects/mpich2/.

[15] Open-MPI, http://www.open-mpi.org/.
[16] R.D. Falgout, J.E. Jones, and U.M. Yang , “Conceptual

Interfaces in hypre,” in Future Generation Computer Systems,
Special Issue on PDE Software, UCRL-JC-148957, 2006, pp.
239–251.

[17] A.H. Baker, R.D. Falgout, Tz.V. Kolev, and U.M. Yang ,
“Scaling hypre’s Multigrid Solvers to 100,000 Cores,” in
to appear in High Performance Scientific Computing: Algo-
rithms and Applications - A Tribute to Prof. Ahmed Sameh,
M. Berry et al., eds., Springer. LLNL-JRNL-479591.

[18] J. W. Demmel, M. T. Heath, and H. A. van der Vorst, “Parallel
Numerical Linear Algebra,” in Society for Industrial and
Applied Mathematics. SIAM, 1997.

[19] J. C. Sancho, K. J. Barker, D. J. Kerbyson, and K. Davis,
“Quantifying the Potential Benefit of Overlapping Commu-
nication and Computation in Large-Scale Scientific Applica-
tions,” ser. Proceedings of the 2006 ACM/IEEE conference
on Supercomputing. New York, NY, USA: ACM, 2006.

[20] J. C. Sancho, D. J. Kerbyson, and K. J. Barker, “Efficient of-
floading of collective communications in large-scale systems,”
Cluster Computing, IEEE International Conference on, vol. 0,
pp. 169–178, 2007.

[21] A. Chronopoulos and C. Gear, “On the Efficient Implemen-
tation of Preconditioned S-Step Conjugate Gradient Methods
on Multiprocessors with Memory Hierarchy,” in Parallel
Computing, 11 (1989), 2008, pp. 37–53.

[22] T. Hoefler, P. Gottschling, A. Lumsdaine, and W. Rehm,
“Optimizing a Conjugate Gradient Solver with Non-Blocking
Collective Operations,” Elsevier Journal of Parallel Comput-
ing (PARCO), vol. 33, no. 9, pp. 624–633, Sep. 2007.

[23] M. R. Hestenes and E. Stiefel, “Methods of Conjugate Gradi-
ents for Solving Linear Systems,” Journal of Research of the
National Bureau of Standards, vol. 49, no. 6, pp. 409–436,
Dec. 1952.

[24] James W. Demmel, Michael T. Heath, Henk A.
van der Vorst, “LAPACK Working Note 60, UT
CS-93-192, Parallel Numerical Linear Algebra,”
http://www.netlib.org/lapack/lawnspdf/lawn60.pdf.

[25] K. Hemmert, B. Barrett, and K. Underwood, “Using Trig-
gered Operations to Offload Collective Communication Oper-
ations,” in Recent Advances in the Message Passing Interface,
ser. Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2010, vol. 6305, pp. 249–256.

[26] P. Beckman, K. Iskra, K. Yoshii, S.Coghlan, A.Nataraj,
“Benchmarking the effects of operating system interference
on extreme-scale parallel machines,” Cluster Computing,
vol. 11, pp. 3–16, March 2008.

12

