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Abstract—Heterogeneous systems with CPUs and computa-
tional accelerators such as GPUs, FPGAs or the upcoming
Intel MIC are becoming mainstream. In these systems, peak
performance includes the performance of not just the CPUs
but also all available accelerators. In spite of this fact, the
majority of programming models for heterogeneous computing
focus on only one of these. With the development of Accelerated
OpenMP for GPUs, both from PGI and Cray, we have a clear
path to extend traditional OpenMP applications incrementally
to use GPUs. The extensions are geared toward switching
from CPU parallelism to GPU parallelism. However they
do not preserve the former while adding the latter. Thus
computational potential is wasted since either the CPU cores
or the GPU cores are left idle. Our goal is to create a runtime
system that can intelligently divide an accelerated OpenMP
region across all available resources automatically. This paper
presents our proof-of-concept runtime system for dynamic
task scheduling across CPUs and GPUs. Further, we motivate
the addition of this system into the proposed OpenMP for
Accelerators standard. Finally, we show that this option can
produce as much as a two-fold performance improvement over
using either the CPU or GPU alone.

Keywords-GPGPU; OpenMP; Programming models;

I. INTRODUCTION

Multicore processors are ubiquitous. Nearly everyone has
the equivalent of a small cluster on their desk, or even
in their phone. Further, in the race to exascale, hardware
vendors are offering a myriad of heterogeneous computa-
tional devices and systems that use them as accelerators.
Many applications written for these accelerators, or ported
to them, use them to the exclusion of the CPU cores.
Alternatively most parallel codes are well parallelized on
the CPU but ignore accelerators. Many of these could benefit
from using the combined potential of both CPU and GPU
resources together. As we move towards exascale, extracting
maximum performance from all resources in a given node
will be crucial to maintaining strong scaling, rather than just
continuing weak scaling as we add more nodes.

One can certainly spread an algorithm across both CPU
and GPU using CUDA, OpenCL, or the OpenMP accelerator
directives to send work to the GPU, and pthreads, OpenMP
or OpenCL for the CPU cores. However, this approach
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currently requires a programmer either to program in at
least two different parallel programming models, or to use
one of the two that support both GPUs and CPUs. Multiple
models however require code replication, and maintaining
two completely distinct implementations of a computational
kernel is a difficult and error-prone proposition. That leaves
us with using either OpenCL or accelerated OpenMP to
complete the task.

OpenCL’s greatest strength lies in its broad hardware
support. In a way, though, that is also its greatest weak-
ness. To enable one to program this disparate hardware
efficiently, the language is very low level, comes with a
steep learning curve and many pitfalls related to performance
across hardware as well as an almost complete lack of
bindings for languages not directly based on C. Given an
existing OpenCL application, dividing an application across
the devices in a system should be simple: divide the inputs
and accumulate the outputs. Unfortunately, managing the
data transfers, multiple CPU threads, and ensuring that
the code functions correctly and runs quickly on different
hardware remains a daunting task.

Accelerated OpenMP in contrast is designed to allow
a user familiar with basic OpenMP programming to port
their code to accelerators with relative ease. It offers a
more digestible and familiar syntax, especially for Fortran
programmers, while remaining capable of significant perfor-
mance gains. When it comes to using both CPU and accel-
erator however, the current state-of-the-art implementations
offer little support for splitting a workload across multiple
compute units concurrently. We propose the addition of new
options to accelerated OpenMP, designed to split accelerated
regions across available devices automatically.

Our ultimate goal is to enable OpenMP programmers
to experiment with coscheduling, combining CPUs with
GPUs, without having to re-create the work necessary to
split and to load balance their computation. This approach
requires the compiler and runtime system to (1) split regular
OpenMP accelerator loop regions across compute devices
and (2) manage the distribution of inputs and outputs while
preserving the semantics of the original region transparently.
We investigate the creation of such a runtime system and
the requirements to automate the process. Specifically we
present a case study that uses a development version of



Cray’s GPU accelerated OpenMP. For the purpose of this pa-
per, we use accelerator and GPU interchangeably, although
we could apply our approach to any platform that offers
similar OpenMP accelerator extensions.

We make the following contributions:
• Extensions to OpenMP accelerator directives to support

co-scheduling;
• Four novel scheduling policies for splitting work across

CPUs and accelerators;
• An implementation of those extensions that is built on

top of the OpenMP runtime and, thus, applicable to any
implementation of the OpenMP accelerator directives;

• An evaluation that demonstrates our extensions sig-
nificantly improve performance over only using an
accelerator.

Our results for four programs that use the OpenMP acceler-
ator directives demonstrates that our approach can produce
as much as a two-fold performance improvement over using
either the CPU or GPU alone.

The rest of the paper is arranged as follows. Section II
provides a background in accelerator programming and the
OpenMP Accelerator Directives. Section III describes the
design of our proposed heterogeneous scheduling extension.
Details of our proof-of-concept implementation follow in
Section IV. We present results and discussion in Section V.

II. BACKGROUND

This section provides background material with a partic-
ular focus on three items. First, we review accelerator pro-
gramming in general, with a focus on GPUs. A description
of OpenMP for accelerators follows. Finally, we describe
the previously proposed version of region splitting and task
scheduling for this system.

A. Accelerator Programming

To understand the extensions in accelerated OpenMP, one
needs a basic background in accelerator programming. Many
types of accelerators exist, from very CPU-like accelerators
that share the cache hierarchy, to completely separate devices
that must be treated as though they were compute nodes unto
themselves. Arguably the most popular type of accelerator is
the GPU, which is highly divergent from the standard SMP
programming model assumed by OpenMP.

Using terminology coined for NVIDIA’s CUDA archi-
tecture, GPUs consist of several multiprocessors, each of
which contains several cores, 8 to 32 depending on the
generation up to this point. An NVIDIA Tesla C2050,
for example, consists of 14 multiprocessors, each with 32
cores. These cores follow the Single Instruction Multiple
Thread (SIMT) execution model in which all cores on a
multiprocessor must run the same instruction each cycle
although the hardware hides the details of computing each
branch independently from the software if threads diverge.

In essence, this mechanism allows a SIMD processor to be
programmed as though it were MIMD.

Unlike CPU cores, GPU cores do not have direct access
to main memory but rather access a hierarchy of dedicated,
on-board memory modules. Each multiprocessor has a set
of caches and shared memory, a local memory space that
only threads run on that multiprocessor can access. The
only memory space that multiprocessors share is global
memory, some parts of which can also be used as read-
only texture memory. Our example architecture, the Tesla
C2050, contains three gigabytes of global memory. While
all cores share the global memory, similarly to how CPU
cores share main memory, the GPU memory system does
not offer coherence guarantees. Changes to global memory
are only guaranteed to be globally visible after either the
termination of a kernel (i.e., a GPU function), or a call to
the thread_fence() GPU function.

Programming a GPU effectively requires exploitation of
many of these architectural details. The most significant
issue is the separate address space from the CPUs, which
means it cannot be treated as a shared-memory entity.
Instead, we must program it as a distributed memory system.
Essentially, we must send and receive messages to load data
to the GPU, to retrieve results, or to synchronize. Much like
transfers between nodes in a cluster, these transfers are costly
and require care to ensure that no more is transferred than
necessary. OpenMP for accelerators, which was designed to
address these issues, strikes a balance between expressive-
ness and familiarity of syntax.

B. Accelerator Extensions

The OpenMP accelerator directives are proposed exten-
sions to OpenMP that parallelize OpenMP regions across
GPUs or other accelerators. For the purpose of this work, we
use the version proposed by James Beyer et al. [1]. Another
set of directives with similar goals are available from PGI as
the PGI accelerator directives [2]. Although our work builds
directly on a working prototype of the former from Cray, our
method is generally applicable and should perform similarly
with the PGI version.

The extensions add three main concepts to OpenMP: ac-
celerator regions, input/output identifiers, and array shaping.
An accelerator region generates a team of threads on an
accelerator to process the region, analogous to a parallel
region. Input/Output identifiers specify how to transfer data
in and out of a region with greater specificity than shared and
private. Accelerators, such as GPUs, with on-board discrete
memory require explicit memory movement, as discussed
in Section II-A. The identifiers support specification of that
movement explicitly. Array shaping specifies the dimen-
sions, range and stride of arrays. These shapes are passed
with pointers to the input/output clauses to bound unbounded
types in C or to transfer only the necessary part of arrays.



#pragma omp parallel for \
shared(in1,in2,out,pow)

for (i=0; i<end; i++){
out[i] = in1[i]*in2[i];
pow[i] = pow[i]*pow[i];

}

(a) Standard OpenMP

#pragma acc_region_loop \
acc_copyin(in1[0:end],in2[0:end])\
acc_copyout(out[0:end]) \
acc_copy(pow[0:end])

for (i=0; i<end; i++){
out[i] = in1[i] * in2[i];
pow[i] = pow[i]*pow[i];

}

(b) Accelerated OpenMP
#pragma acc_region_loop \

acc_copyin(in1[0:end],in2[0:end])\
acc_copyout(out[0:end]) \
acc_copy(pow[0:end]) \
hetero(<cond>, \

<iterations for CPU>)
for (i=0; i<end; i++){

out[i] = in1[i] * in2[i];
pow[i] = pow[i]*pow[i];

}

(c) Accelerated with hetero clause

#pragma acc_region_loop \
acc_copyin(in1[0:end],in2[0:end]) \
acc_copyout(out[0:end]) \
acc_copy(pow[0:end]) \
hetero(<cond>[,<scheduler>[,<ratio>\

[,<div>]]])
for (i=0; i<end; i++){

out[i] = in1[i] * in2[i];
pow[i] = pow[i]*pow[i];

}

(d) Proposed hetero clause

Figure 1: OpenMP accelerator directive comparison

Figure 1a shows a loop parallelized for the CPU
with OpenMP. Figure 1b is the same loop parallelized
across a GPU with an acc_region_loop directive.
We also add the acc_copy(), acc_copyin() and
acc_copyout() clauses, which specify that values must
be copied in and out, just in, or just out. Each clause
accepts a list of variables or shaped arrays of the
form array[<start>:<end>:<stride>]. These ex-
tensions preserve the clarity and syntax of OpenMP while
allowing the use of local distributed memory accelerators.

The third code segment in Figure 1c includes a
clause that was part of the draft standard for the
OpenMP accelerator directives. This clause is of the form
hetero(<cond>,<width>) where cond is a boolean
expression, true to split, false to use only the accelerator,
and width is the number of iterations to assign to the
CPU. It does not provide for scheduling options however,
and assumes that the application programmer will explicitly
specify the number of loop iterations to run on the CPU,
the others to be run on a single accelerator. Further, a more
recent draft no longer includes the option. We expect that the
option will be useful with some adjustment and increased
runtime support; we propose our version in Section III.

III. DESIGN

This section presents the abstract design of our proposed
system and its schedulers. First we describe the overall
structure and then discuss the three classes of schedulers and
their overall merits. The first class is static, analogous to
but distinct from the hetero clause. The second supports
dynamic scheduling with an intentional deviation from the
traditional OpenMP dynamic scheduler inputs. Our third
type of scheduler is two special case scheduling policies that
combine the static and dynamic policies to handle common
behavior ofaccelerated applications.




 













  

Figure 2: Our proposed software stack

A. Overview

We do not propose to replace part of the existing software
stack but rather to add a new one. As Figure 2 shows, we
intend our work to be a new layer between the OpenMP
accelerator directives and the existing CPU and GPU sched-
ulers, which leverages those existing schedulers to handle
the details of each device. We focus on assigning tasks to
a compute device, which we define as an entity that can
be targeted by a parallel or acc region, i.e., a single
GPU or all CPU cores rather than an individual core. Since
we work at the region layer, our design applies to any
architecture for which an implementation of the accelerator
directives is available.

Since we target heterogeneous resources, compute devices
may have completely disparate performance characteristics.
Standard OpenMP schedulers use the size of a chunk to split
the work across cores. For example, given a loop of 500,000
iterations one might add schedule(dynamic,500) to
their parallel loop, which would cause each thread to receive
500 iterations, compute those, and check for another chunk
of 500 to compute. However, the optimal chunk size depends
on the performance of the underlying devices and the



cost to distribute new work to them. Given a CPU based
system, chunks of size 500 may perform well, but assigning
500 iterations to an entire GPU will usually take so little
time to execute that overhead dominates, wasting potential
computation time. Conversely, a chunk large enough for the
GPU can run so long on a CPU as to dominate the program
execution time before it finishes the first chunk.

Our solution does not use chunks. Instead we specify
a ratio that captures the amount of work that a CPU can
complete in the time it takes for a GPU to finish 100 units.
This schedule is essentially a form of unbalanced static
scheduling, like those proposed by Ayguade et al. [3]. For
example, if the CPU device (i.e., all CPU cores) completes
100 iterations in the time it takes for the GPU to complete
500 the ratio would be 17%. Alternatively, if the CPU is
more suitable for a particular problem and completes 200
iterations in the time that it takes the GPU to handle 100
the ratio would be 67%. Thus, we specify the relationship
between the compute units, rather than trying to find a single
sensible unit of work to assign to both.

Our scheduler operates at the boundaries of a region rather
than within it, except in special cases, much like the DVFS
decisions made in Adagio [4], which provided the inspiration
for this type of interpass dynamic approach. This choice is
another concession to the overhead of GPU kernel launches:
by making scheduling decisions only once each pass through
a region we generate only one thread team per compute
unit rather than having to recreate them repeatedly. It also
allows us to synchronize memory at the beginning and end
of the region and not between, in turn saving synchronization
time. The user expects that all memory is consistent at
the end of the region. The most basic example is that
the output arrays on the CPU specified by the acc_copy
and acc_copyout must be consistent with the output of
running the full problem set on the GPU, but updates must
also be pushed to GPU memory, failure to do either can
cause unexpected side-effects.

B. Static Splitting
Static, which is the default scheduler, divides tasks at the

beginning of the region. Each entry into the region runs one
CPU team and one GPU team, using the underlying static
schedulers for each. As noted above, we split based on a
ratio. The CPU receives ic = it ⇤ r iterations where it is the
total number of iterations requested and r is the ratio. the
GPU receives the remainder ig = it � ic.

The ratio argument is optional; its default value is a non-
trivial problem. We compute the default ratio at runtime
based on the compute resources found to be available,
making the assumption that the workload is floating point
computation bound. The goal is for the ratio to express the
percentage of the total floating point work that the CPU
device can perform in a unit of time. Unfortunately, most
compute hardware does not expose a software API to query





 

  



Figure 3: Scheduler behavior over time

its peak flops directly, so we must approximate based on
something more accessible.

We essentially need to know how many floating point
operations each compute device can evaluate in a given unit
of time. Further, we know that on a current generation GPU,
each core can compute one floating point instruction per
cycle, for now assuming single precision. The CPU is a more
complicated. Each core on a CPU can compute anywhere
from one to its SIMD width floating point instructions
per cycle. We assume that floating point operations in the
region are mostly vectorizable so the CPU can retire its full
SIMD width in each cycle, which overestimates the CPU
somewhat. This overestimation helps to balance another
assumption: both the CPU and GPU operate on the same
frequency. The final equation is r = cc ⇤ 4/(cc + cg) where
cc is the number of CPU cores and cg is the number of
GPU cores. This default is portable since we can detect the
compute resources available on any given system and adjust
to them. We find that this simple model performs well for
compute-bound floating point intensive applications, but not
for memory bound ones, or highly conditional applications,
as we discuss further in Section V.

C. Dynamic Splitting
Similarly to our static scheduler, our dynamic scheduler

deviates from the original OpenMP dynamic schedule policy.
We make scheduling decisions only at the boundaries of
accelerated regions. Thus, the dynamic scheduler assumes
that the code will execute the parallel region several times.
The first time, our approach executes the region as the static
scheduler would. We measure the time taken to complete the
assigned iterations on each compute unit. On all subsequent
instances of the parallel region, we update the ratio based
on these measurements.

Since we split at region boundaries rather than using a
queue, we are subject to blocking time, during which one
compute unit is waiting on the other to finish before they
can pass the barrier at the end of the region. In order to
minimize blocking time, we attempt to compute the ratio
that causes the compute units to finish in as close to the same
amount of time as possible. In order to predict the time for



I = total iterations in next pass (int)
ij = iterations on compute unit j in next pass (int)
pj = time/iteration for compute unit j from last pass
n = number of compute devices
t

+
j = time over equal
t

�
j = time under equal

Table I: Variable definitions for the linear program

the next iteration, we assume that iterations take the same
amount of time on average from one pass to the next. For
the general case with an arbitrary number of compute units,
we use a linear program for which Table I lists the necessary
variables. Equation 1 represents the objective function, with
the accompanying constraints in Equations 2 through 5.

min(
n�1X

j=1

t

+
1 + t

�
1 · · ·+ t

+
n�1 + t

�
n�1) (1)
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i2 ⇤ p2 � i1 ⇤ p1 = t
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1 � t

�
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�
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...
in ⇤ pn � i1 ⇤ p1 = t

+
n�1 � t

�
n�1 (5)

Expressed in words, the linear program calculates the
iteration counts with predicted times that are as close as
possible to identical between all devices. The constraints
specify that the sum of all assigned iterations must equal
the total number of iterations and that all iteration counts
must be integers. Since we often have exactly two compute
devices, we also use a reduced form that is only accurate
for two devices but can be solved more efficiently. The
new ratio is computed such that t

0
c = t

0
g where t

0
c is the

predicted new time for the CPU portion to finish and t

0
g is

the predicted time to finish the GPU portion. When expanded
we eventually get Equation 6, which can be solved in only
a few instructions and produces a result within one iteration
of the linear program for the common case.

i
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0
g ⇤ pg

i

0
c ⇤ pc = (i0t � i

0
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i

0
c = ((i0t � i

0
c) ⇤ pg)/pc

i

0
c = ((i0t � i

0
c) ⇤ pg)/pc

i

0
c + (i0c ⇤ pg)/pc = (i0t ⇤ pg)/pc

(i0c ⇤ pc)/pc + (i0c ⇤ pg)/pc = (i0t ⇤ pg)/pc
i

0
c ⇤ (pg + pc) = it ⇤ pg

i

0
c = (it ⇤ pg)/(pg + pc) (6)

D. Special Purpose
Our design and testing indicated that neither of the sched-

ulers above is entirely appropriate in certain cases. Thus, we
created two other schedulers: split and quick.

1) Split: Our dynamic scheduling requires multiple ex-
ecutions of the parallel region to compute an improved
ratio, which works well for applications that make mul-
tiple passes. However, some parallel regions are executed
only a few times, or even just once. Split scheduling ad-
dresses these regions. Each pass through the region begins
a loop that iterates div times with each iteration executing
totaltasks/div tasks. Thus, the runtime can adjust the ratio
more frequently, and earlier, than with dynamic scheduling.
More importantly, it can adjust the ratio in cases that
dynamic scheduling cannot. The split schedule is analogous
to the original OpenMP dynamic schedule since it specifies
totaliterations/chunksize instead of chunk size directly.
It remains distinct however in that while it runs a number
of chunks, they can be independently subdivided to avoid
overloading, or underloading, a compute device. Increasing
the number of passes however, and thus the number of syn-
chronization steps, increases overhead, which is especially
problematic with short regions and those unsuitable for GPU
computation so it is unsuitable as a definitive replacement
for dynamic.

2) Quick: Quick is a hybrid of the split and dynamic
schedules. It executes a small section of the first pass of
size iterations/div just as split does, but the rest of that
pass in one step of size iterations�iterations/div. It then
switches to using the dynamic schedule for the rest of the
run. It targets efficiently scheduling of applications with long
running parallel regions that can be dominated by the first
pass of the dynamic schedule when given a poorly chosen
initial ratio. Quick is especially useful when such regions are
executed repeatedly, making the split scheduler impractical
due to its added overhead.

E. Schedules
We have alluded to the types of application that each

schedule targets. Figure 4 shows the computational patterns,
in terms of OpenMP regions, of three applications that we
evaluate in Section V. Each of our three dynamic schedulers






 



Figure 4: Computation patterns of evaluated benchmarks

targets one of these three cases, not just for these applica-
tions but as a general pattern of use. The first application
type, with its single huge region, is a clear choice for the
split schedule. The quick schedule targets the second, which
has slightly smaller sections in which the segments are too
long to allow an entire pass with a bad static mapping but
do not require splitting every region to achieve load balance.
Finally, we have applications that use fine grained regions.
Any overhead dominate these regions, which do best with
either quick or dynamic. Of course, we could use static for
any of these cases as well, especially if we want to fine-tune
the ratio manually.

IV. IMPLEMENTATION

We implement our concurrent heterogeneous support as a
library that uses the OpenMP accelerator directives to moti-
vate its addition in lower levels. This library encapsulates our
scheduling functionality. We manually translate applications
with minimal effort to function as if our proposed clause
and schedules were used. Our implementation would be
easy to integrate into a compiler, which represents the
design in Section III. In the only significant difference
from our design, our implementation currently only supports
two devices at a time since our testing environment only
offers two. We will implement the general case in future
work. In addition to the implementation of the library, we
also investigate what such loop splitting requires without
underlying support.

A. The Splitter Library

In order to keep the implementation as general as
possible, we design the library to be independent of
the implementation of accelerated OpenMP. The library
does not use accelerated regions or accelerated OpenMP
functions or constructs, with the single exception of
omp_get_thread_limit(), which we use to determine
the number of available threads and to calculate the default
static ratio. In the current version, we read the number of
GPU cores from an environment variable, or assume it is
448, which is the number of cores in the NVIDIA Tesla
C2050 GPU. While we would prefer to read the value from
the underlying system, the OpenMP accelerator extensions
do not include a function for this purpose.

The interface has six functions and a structure, as Figure 5
shows. The split_init() function initializes the library
for a new region. It takes the arguments that would be given

splitter * split_init(int size, split_type sched,
double *rat,int *div)

splitter * split_next(splitter * s, int size,
int iteration)

void split_cpu_start(splitter *s);
void split_cpu_end(splitter *s);
void split_gpu_start(splitter *s);
void split_gpu_end(splitter *s);
typedef struct splitter{

int cts; //CPU start iteration
int cte; //CPU end iteration
int gts; //GPU start iteration
int gte; //GPU end iteration
int d_end; //div
int d_ccs; //start of CPU output
int d_cce; //end of CPU output
int d_gcs; //start of GPU output
int d_gce; //end of GPU output

}splitter;

Figure 5: Splitter API for basic, CPU and single GPU, case

to the hetero() clause as well as the number of tasks
to expect and it returns a structure to use with the splitter
functions. After that, split_next() is evaluated at least
once, populating the structure with the assignments for each
device. Each pass through the region, split_next()
restarts these counters, unless invoked with monotonically
increasing iteration values, which is used to implement
the split scheduler as we discuss shortly. The other four
functions are timing calls that inform the library of the
beginning and end of each split region.

In order to avoid repeated data transfers to and from the
GPU in a pass, the library sends the entire data set for the
region to the GPU and retrieves the entire output whether
or not it is all used. Although this choice is inefficient, it is
more efficient than copying piecemeal as the split between
CPU and GPU is adjusted. Lower level APIs in future could
make this choice unnecessary. Because we copy back the
entire region, we also must use a temporary array to receive
either the output from the CPU or GPU, and merge that into
the main output array after both have finished. Otherwise
consistency could not be assured. Use of this array could
also be avoided at a lower level in future work.

Since we must merge the data, we attempt to merge as
efficiently as possible. We accomplish this goal by having
each compute device work from opposite ends of the itera-
tion space toward the center. Thus, we divide the output only
into two pieces regardless of any adjustments made during
the run, unlike a simpler implementation that assigns chunks
moving from one end to the other.

B. Using Splitter

We present an example to illustrate the use of the library.
The code in Figure 6 shows the manually translated version
of the code of a k-means kernel in Figure 7, which includes
a hetero clause so it would correspond to the manually
transformed version. This kernel is part of the code for the
k-means implementation that we evaluate in Section V.



splitter * s = split_init(no, SPLIT_DYNAMIC, NULL, NULL);
int *m_c = (int*)malloc(sizeof(int)*no);
for(int d_it=0; d_it < s->d_end; d_it++)
{

s = split_next(no, d_it);

#pragma omp parallel num_threads(2)
{

if(omp_get_thread_num()>0)
{//CPU OpenMP code

split_cpu_start(s);
#pragma omp parallel shared(fo,fc,m_c,s) \

num_threads(omp_get_thread_limit()-1) \
firstprivate(no,ncl,nco) private(i)

{
#pragma omp for
for (i=s->cts; i<s->cte; i++) {

m_c[i] = findc(no,ncl,nco,fo,fc,i);
}

}
split_cpu_end(s);

}else{//GPU OpenMP code
split_gpu_start(s);
int gts = s->gts, gte = s->gte;

#pragma omp acc_region_loop private(i) \
firstprivate(nco,no,ncl,gts,gte)\
acc_copyin(fc[0:ncl*nco]) \
acc_copyout(m[0:no]) \
present(fo) default(none)

for (i=gts; i<gte; i++) {
m[i] = findc(no,ncl,nco,fo,fc,i);

}
split_gpu_end(s);

}
}

}
memcpy(m+s->d_ccs,m_c+s->d_ccs,

(s->d_cce-s->d_ccs)*sizeof(int));
free(m_c);

Figure 6: Manually transformed k-means kernel

#pragma omp acc_region_loop private(i) \
firstprivate(nco,no,ncl) default(none) \
acc_copyin(fc[0:ncl*nco]) present(fo) \
acc_copyout(m[0:no])

// hetero(1,dynamic)
for (i=0; i<no; i++) {

m[i] = findc(no,ncl,nco,fo,fc,i);
}

Figure 7: Accelerated OpenMP k-means region

We divide the translated code in two ways. First, we
divide the region into a CPU region and a GPU region,
each in one branch of a conditional, with each given one
thread from an outer parallel region. Thus, the master thread
runs the GPU region, a requirement as all other threads
crash when encountering GPU regions in this version of the
compiler, and the other thread starts a new team that uses the
remaining compute resources on the CPU. We transform the
computational loop in each of the two regions to use the start
and end values specified by the splitter library, and bound
it on either side by calls used for timing.

The other way in which we split the code is through the
outer loop. That loop allows the scheduler to split the region
into multiple sub-regions, by specifying how many iterations

it will pass, and thus how many times split_next() will
be evaluated. At the end of the outer loop, the merging step
is a simple memcpy() of the CPU calculated values from
the extra array to the original output array.

While the manual transformation is conceptually simple,
it is verbose. The original kernel is only 12 lines of code,
including line wrapping, while the transformed version is 43.
It also has two copies of the inner loop, forcing any change
made in one to be replicated. For both of these reasons, even
using a library such as ours to split a region at this level is
tedious and error prone. Even so, being able to use all the
compute resources available in a system is worthwhile.

V. EVALUATION

This section presents an evaluation of our proof-of-
concept runtime library. All codes were compiled with a
development version of the Cray Compiling Environment
(CCE) compiler version 8.0 using optimization flag -O3.
All tests were run on a single node containing a 2.2Ghz 12-
core AMD Opteron 6174 processor and one NVIDIA Tesla
C2050 GPU. No other processes, aside from the standard
daemons, were allowed to run during the tests. All CPU
results, unless otherwise specified, use all 12 available cores,
in the case of runs using both the CPU and the GPU
concurrently one core is reserved to manage the GPU, the
other eleven are assigned to computing. Parameters to the
scheduler are defaults unless otherwise specified; ratio is as
defined in Section III-B and div is 10.

To evaluate our proof-of-concept, we have implemented
OpenMP Accelerator directives versions of four applica-
tions, GEM [5], [6], [7], k-means, CG [8] and helmholtz
which will be described in greater detail below. Each of the
four presents a different pattern of execution, and different
levels of fitness for GPU computing. In each case, the
minimum transformation necessary to accelerate the code
was used. In GEM, k-means, and helmholtz the transforma-
tion entailed exactly two lines of code. CG required more
changes because of some undefined behavior when mixing
regular OpenMP threads with GPU regions in Fortran, which
we solved by porting the computational kernel of CG to
C before accelerating it. Optimizations could certainly be
applied, and the performance of each benchmark would
benefit, but we are evaluating the framework, not the specific
benchmark, and so leave this for future work. In addition to
the OpenMP accelerator directive modifications, we applied
the transformations necessary to hook into our region split-
ting library as we described in Section IV

For each application we collect computation time, as
defined by the time to compute a result excluding problem
setup and I/O. All transfers to and from the GPU are
included, as is scheduling time and extra work necessary
to split and to reassemble data to preserve the memory
semantics of the region. In addition to computation time, we
collect the number of iterations scheduled on the CPU and



GPU on each pass through the accelerated region, as well
as the amount of time each spent running those iterations.
From this we calculate the blocking time on a given pass as
the time one compute unit must wait for another to finish, or
max(timegpu, timecpu)�min(timegpu, timecpu). Finally,
we track the application’s performance ratio, as we defined
in Section III-B.

Each of our four benchmarks represents one of three
types of computation patterns that Figure 4 illustrates. Our
scheduling system works at the boundaries of OpenMP
regions. Thus, how these regions are distributed, can have
significant impact on the schedulers. Additionally, the length
of each pass is quite important, as it determines how much
overhead the runtime can afford to incur in launching each
region. We characterize these issues by measuring three
factors: the number of passes through the accelerated region
in a run; the average time to complete a pass; and the
native ratio, i.e., the ratio of CPU to GPU computation that
produces the most balanced workload for the application.
While the ratio may vary by input, all ratios for a given
application tend to cluster into a relatively small region due
to their suitability, or lack thereof, for GPU computation.
Table 8b depicts these values for the default input set. Length
is based on the time to run one pass while runtime measures
the entire computation, both on only the GPU.

A. K-Means
K-Means is a popular clustering algorithm that uses an

iterative method. Each iteration has two stages; the first
calculates the nearest cluster for all data points and the
second moves each cluster to the center of the data points
that identified it as nearest earlier that time step. As a
converging algorithm, it does not have a set number of
passes as an application, but a given problem does. In our
case, the number of passes is generally low in relation to
the kernel execution time, but varying the dataset can vary
these parameters. The dataset used for our tests consists of
1,210,000 points each with nine observations and groups
those points into 500 clusters, requiring seven iterations to
converge to a solution.

Figure 8a shows the results for our k-means test. For
this input set and implementation the CPU and GPU are
relatively evenly matched. K-means, is bound by one of
two operations, memory accesses as part of computing the
distance to every cluster, or the conditionals that check
whether that is the nearest cluster. Consequently, it is not
compute bound on the GPU, and the default ratio of 0.098,
which effectively gives the CPU 9.8% of the work, is far
off from its native ratio of 0.396. Thus, the default assigns
excess work to the GPU and the static scheduler performs
particularly poorly. The dynamic scheduler performs better,
but suffers from the first pass being run entirely with that
significantly poor ratio. Split, despite the added overhead,
outperforms dynamic by reducing the time that we run
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Figure 9: k-means performance on data sets in one million
point increments

at the default ratio. This observation motivated our quick
scheduler, which quickly makes the first adjustment while
reducing overhead for the remainder of the run. In fact, quick
produces an extra 10% performance improvement over split
for this case.

K-means is unique among our four benchmarks in that
its pattern of computation that Figure 4 shows can change
significantly based on the input dataset. To study the effect
of this change on the scheduler, we ran a variety of data
sizes in Figure 9. These tests use varying size subsets of
a 5 million point dataset with 10 observations per point
and groups them into 100 clusters. The number of passes
necessary for convergence, and length of a pass both vary
as the data size varies. Despite the variability in the number
and nature of the passes, the three dynamic schedulers
show consistent behavior across all five reference sizes,
although as the number of iterations for convergence grows,
peaking in the three million point dataset, the split scheduler
gets progressively worse, leaving the dynamic and quick
schedulers as the clear options for k-means with quick being
the most consistently fast across all tests.

B. CG

CG is the NAS Parallel Benchmarks implementation of
the conjugate gradient method. This method is used to solve
systems of linear equations by iterative refinement. While
CG requires a relatively small number of steps to converge,
each full iteration consists of a set of smaller steps internally.
Thus, the number of passes of the accelerated region is
large, and each pass is short. We use the C class for all
our tests, which requires 75 iterations to converge, and runs
1900 passes through the accelerated region. Figure 8a shows
that, switching to the GPU alone does not speed up CG
over using the 12 CPU cores. This result is expected since
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(a) Speedup over 12-core CPU for each application across schedulers

Program Passes Length (s) Runtime (s) Ratio
CG 1900 0.038 84.90 0.554
GEM 1 138.005 138.04 0.117
helmholtz 100 0.24 26.5 0.999
k-means 7 0.486 3.71 0.396

(b) Program characteristics as measured for the default dataset

Device/pass 1 2 3 4 5 6
CPU 392 2793 3637 3891 4000 4000
GPU 3608 1207 363 109 0 0
(c) Outer-loop iterations assigned to CPU and GPU per pass in helmholtz

Figure 8: Application performance and behavior for our four benchmarks

the data copying and kernel launch overhead inherent in
the simple acceleration are significant. Even so, it almost
matches 12 CPU cores, which in terms of performance per
dollar is still worth it if both can be used together. The static
scheduler sends insufficient work to the CPU, much as it
does with k-means, although in this case, the performance
is slightly improved regardless. Due to the very small pass
size, the added overhead for split completely destroys the
performance of the application, and the small extra overhead
and early misprediction in quick cause it to be, on average,
slightly lower performing than the dynamic scheduler.

C. GEM

GEM is a molecular modeling code developed by Fenley
et al. [5] to study the electrostatic potential along the
surface of biomolecules. It is a single step non-bonded force
interaction problem that has a computational complexity of
a⇤v where a is the number of atoms in the biomolecule and
v is the number of vertices, or points in the surface grid, to
be computed. Since GEM is a single step problem, it runs
large data sets through a single iteration of one region, as
Figure 4 shows. For all GEM tests, we use the 2eu1 input,
which consists of 109,802 atoms and 898,584 vertices.

The first striking feature of the GEM data that Figure 8a
shows is that the GPU is significantly faster, about 7.5⇥,
than all 12 CPU cores. This gain is consistent with prior
studies [7]. However, including the 12 CPU cores, which are
normally left idle, improves performance by approximately
10% over the GPU version. Also, the static scheduler
performs well for GEM. The default ratio balances floating
point performance and, thus, produces favorable results for
floating point computation bound applications like GEM.

This application was the original impetus for the develop-
ment of the split scheduler. Since it has only one very long
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Figure 10: GEM performance at varying divs

running region, as Figure 4 depicts, the standard dynamic
scheduler has no opportunity to adjust the ratio during
the course of a run. We expected that the split scheduler
would produce an improvement, but that the quick scheduler
would provide even greater benefit due to its lower overhead
and reduced synchronization. However, the split scheduler
performs best, possibly because the quick scheduler runs
a small chunk of a data and then extrapolates to the rest
of the dataset, which could make it overly sensitive to
overhead in thread team creation and kernel launching. In
other applications, dynamic adjusts for to this cost after the
second pass to hide it. However, GEM’s single iteration
provides no chance to fix the imbalance.

We also vary div with GEM to characterize its optimal
split size. Figure 10 shows that performance increases until



a div of ten. Three specific larger divs cause performance
degradation. We initially suspected that these tests exhibited
system noise, but the results are repeatable. The degradations
may be due to sub-optimal kernel launch decisions made by
the underlying system similar to what happens when a poor
block size decision is made directly in CUDA. In any event,
the optimal choice for div is non-trivial, and presents an
opportunity for future tuning.

D. Helmholtz

Helmholtz implements a solver for a discrete finite dif-
ference version of the Helmholtz equation, using the Jacobi
iterative method. The implementation is similar in design
to a map reduce in two dimensions that calculates the
equation at all n ⇤ m points in the space and reducies on
the error residuals to test for convergence. The appliation
has a single OpenMP region with a reduce clause, so the
map and reduce are combined into one phase. The results
for helmholtz in Figure 8a are materially different from
our other applications. Communication overhead completely
dominates the computation whenever a region is offloaded
to the GPU. Even with a significant problem size, none
of the GPU enabled versions could keep up with using
only the CPU. The dynamic schedulers detect the issue and
effectively turn off the GPU by not sending it any work
after the first few iterations – an average of 5 iterations.
Table 8c shows the number of outer-loop iterations assigned
to CPU and GPU in the first six iterations of a run with
the dynamic scheduler. With the advent of accelerators
that require little to no copying overhead, such as AMD
Fusion, we expect that the accelerator could compete with
the CPU, and thus it may be useful to enable this feature
even for this application when they become available. We
leave optimizing the number of iterations for the scheduler
to determine that the GPU is detrimental for future work.

E. Overall

The optimal scheduler depends on the application and, in
some cases, the size of the dataset. K-means benefits most
from the quick scheduler, GEM the split, and CG the basic
dynamic. Since each scheduler benefits at least one pattern,
these four schedulers offer a good starting point for dynamic
task splitting in heterogeneous systems. Alternatively, a user
could compute the ratio for a given application or save
the ratio that a dynamic scheduler computes to derive a
low overhead static schedule that achieves accurate splits
as Figure 11 shows. In a case with regions small enough
to be highly sensitive to overhead, as in the case of CG,
tuned static scheduling can be highly effective. However,
for GEM and k-means, the dynamic policy performs better,
implying that the ratio is adjusted during the run based on
current conditions to produce a better ratio. In addition to the
ability to compute a better scheduler at runtime, computing
the ratios for all input data sets and applications, not to
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Figure 11: Speedup of best static and dynamic options over
12-core CPU
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Figure 12: Total blocking time observed with each scheduler
for all applications

mention hardware platforms, will not always be feasible, so
we foresee a continued need for runtime dynamic splitting.

In addition to the overall performance of each application,
we collect the length of time spent blocking waiting on either
accelerator. As we discussed in Section III, our dynamic
scheduler, and those that build on it, assign iterations in
order to minimize blocking time. Figure 12 presents the total
blocking time in each application scheduler combination.
Overall these results follow our expectations: the blocking
time usually corresponds to overall execution time behavior.
CG presents a notable exception in that the static scheduler,
while not performing well, performs significantly better than
the split scheduler. However the blocking time of the split
scheduler makes it appear more efficient possibly due to



an increase in the percentage of the accelerated region
that transfers data and performs synchronization. As the
regions become smaller, that overhead begins to dominate
the execution time, slowing computation despite a balanced
workload, as seen in the time per iteration on each device
under the two schedulers. Under static, iterations average
0.39µs on the CPU and 0.26µs on the GPU. Under split
with the default div of 10, iterations on the CPU average
approximately the same time (0.37µs) but GPU iterations
take much longer (1.12µs). The extra overhead increases
the per iteration runtime by more than 4⇥. Thus, alternative
metrics for the dynamic schedule may produce better results
for this application.

VI. RELATED WORK

Automatic task scheduling is becoming increasingly pop-
ular for parallel computing. Traditionally the domain of
shared memory parallel systems like OpenMP [9], Intel
TBB [10] or even languages like Erlang, task scheduling has
begun to move outside that realm with the rise of frameworks
for cluster and cloud task based computing. Frameworks
like Charm++ [11] for clusters, and MapReduce [12] for the
cloud offer many of the same productivity benefits of their
shared memory ancestors, and provide interesting testbeds
for advances in scheduling and work partitioning. MapRe-
duce in particular has seen a significant amount of work
to become more aware of and amenable to heterogeneous
computing resources. CellMR [13] presents a MapReduce
framework for asymmetric cell based clusters. In response
to a different kind of heterogeneity, in this case back-
ground tasks and node loss in a work stealing environment,
Moon [14] provides a heterogeneous grid of work stealing
resources with a small number of high-uptime cluster-like
resources for improved performance and reliability.

Along with these platforms, a wide range of work explores
task scheduling policies and their effects on performance and
scalability. Ayguadé et al. question the need for a schedule
clause in OpenMP, using knowledge of previous passes
through a parallel region to influence the schedule of future
passes to positive results, but showing in the end that none
of the solutions is always optimal [3]. Their work influenced
the design of our initial heterogeneous schedulers as it offers
low overhead while remaining effective.

Accelerator-based heterogeneous computing, including
GPU platforms from NVIDIA and AMD, is also on the
rise. As these systems become more common, automatic task
scheduling in heterogeneous systems has also become more
common. StarPU [15] is designed to be a platform for het-
erogeneous task scheduling. Along with StarPU, Qilin [16],
Scout [17], the dynamic load balancing system created by
Chen et al. [18], and the work by Jiménez et al. [19] forms
a solid foundation for both the need and the capability for
a heterogeneous task scheduler. These solutions, however,
require the user to reimplement their application – in a new

programming language in the case of StarPU or Scout; a
new API in Qilin – or manually to create multiple copies of
a function for multiple platforms to provide to the scheduler.
In contrast, we bring heterogeneous task scheduling into
an extension of OpenMP, which eases the translation of
legacy scientific codes and makes the advances available
immediately to users.

OmpSs, proposed by Duran et al. [20], attempts to offer
an alternative to Accelerated OpenMP that also provides a
coscheduling mechanism. The major difference is that in
general one must still write GPU kernel code, CUDA or
OpenCL, to use OmpSs. Interestingly, in terms of compar-
ison with our results, coscheduling was consistently found
to be slower than using two CPUs in OmpSs.

Other relevant work has come in the form of various
studies that show code written and optimized for one GPU
cannot be trusted to run equally well on other GPUs. Du et.
al. [21] for example conclude that performance across GPU
architectures cannot be assumed to be portable and offer
some methods to make it more portable. Even within a given
GPU architecture and vendor, Archuleta et al. [22] show that
different GPUs react differently to algorithmic and mapping
changes. Each case calls the portability of accelerator per-
formance into question. Our work also attempts to address
this issue through a mechanism by which computation that
does not run well on the GPU on a system is remapped
automatically to use the CPU.

VII. CONCLUSIONS

In this paper we have presented our design for an
automatic heterogeneous task scheduler for Accelerated
OpenMP. We make four major contributions: the design of
the extension; four scheduling policies to handle a variety of
application behaviors; our case study implementation in the
splitter library; and our evaluation across four representative
scientific codes. Despite certain drawbacks inherent in our
library implementation approach, we have shown speedups
of as much as 2⇥ over using the CPU or GPU alone. We
clearly demonstrate the utility of a hetero() clause in
Accelerated OpenMP.

In future work we will implement our runtime and policies
at a lower level, such as the compiler or potentially an ex-
tension. This implementation not only will make the system
easier to use but it also will allow us to reduce memory
transfer costs and to explore heterogeneous task scheduling
further. We will investigate the ratio as a metric for the
suitability of a given compute unit to a given application,
and extend it to a more general model for scheduling work
across a variety of accelerator platforms.
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