
SyncChecker: Detecting Synchronization Errors

between MPI Applications and Libraries

Zhezhe Chen† Xinyu Li† Jau-Yuan Chen† Hua Zhong∗ Feng Qin†

†Dept. of Computer Science and Engineering ∗Technology Center of Software Engineering

The Ohio State University Institute of Software, Chinese Academy of Sciences

{chenzhe, lixiny, chenja, qin}@cse.ohio-state.edu zhongh@otcaix.iscas.ac.cn

Abstract—While improving the performance, nonblocking
communication is prone to synchronization errors between MPI
applications and the underlying MPI libraries. Such synchroniza-
tion error occurs in the following way. After initiating nonblock-
ing communication and performing overlapped computation, the
MPI application reuses the message buffer before the MPI library
completes the use of the same buffer, which may lead to sending
out corrupted message data or reading undefined message data.

This paper presents a new method called SyncChecker to
detect synchronization errors in MPI nonblocking communica-
tion. To examine whether the use of message buffers is well
synchronized between the MPI application and the MPI library,
SyncChecker first tracks relevant memory accesses in the MPI
application and corresponding message send/receive operations
in the MPI library. Then it checks whether the correct execution
order between the MPI application and the MPI library is en-
forced by the MPI completion check routines. If not, SyncChecker
reports the error with diagnostic information. To reduce runtime
overhead, we propose three dynamic optimizations.

We have implemented a prototype of SyncChecker on Linux
and evaluated it with seven bug cases, i.e., five introduced by
the original developers and two injected, in four different MPI
applications. Our experiments show that SyncChecker detects
all the evaluated synchronization errors and provides helpful
diagnostic information. Moreover, our experiments with seven
NAS Parallel Benchmarks demonstrate that SyncChecker incurs
moderate runtime overhead, 1.3-9.5 times with an average of 5.2
times, making it suitable for software testing.

I. INTRODUCTION

A. Motivation

In the past decade the Message Passing Interface (MPI) [1]

has been witnessed a great success. With the support of

MPI libraries, programmers have developed many parallel

applications across a variety of domains such as financial

forecasting, bioinformatics, and astronomy [2]. The continuing

trend of clusters as a major component in supercomputer

environments [3] makes MPI the popular choice for writing

high performance parallel programs.

One popular method for optimizing MPI applications is to

overlap the computation of MPI applications and the commu-

nication of underlying MPI libraries since it can hide costly

communication latency [4], [5], [6], [7]. Such overlapping can

be achieved by invoking nonblocking MPI functions or RDMA

(Remote Direct Memory Access) functions. For example, after

issuing a nonblocking send MPI_Isend, the sender process

will immediately return from the function call without waiting

for the completion of the message sending. As a result,

the sender process continues its own computation, while the

communication can be concurrently performed by the MPI

library via independent communication controllers, which are

often equipped in modern high performance network cards [8],

[9]. Similar computation-communication overlapping occurs

when invoking MPI RDMA functions. Previous studies [10]

have shown that nearly half of the MPI functions invoked in

NAS Parallel Benchmarks [11] are nonblocking ones.

While improving performance, overlapping computation

with communication is prone to synchronization errors be-

tween MPI applications (i.e., the computation part) and the

underlying MPI library (i.e., the communication part). After

overlapped computation, an MPI application often reuses the

message buffer (e.g., for performance reasons) that has been

passed to the MPI library for message transfer. Without proper

synchronization, the MPI application and the MPI library may

simultaneously access the message buffer and therefore could

corrupt message data or receive undefined data, leading to

severe program failures such as crashes, hangs, or incorrect

results. According to a recent survey on the importance and

severity of MPI errors [12], programmers have ranked such

synchronization errors as No. 6 out of 21 different error

types. To ensure correct synchronization, the MPI specification

requires an MPI application to perform a completion check on

the status of a nonblocking MPI call or a RDMA call before

accessing the message buffer. Nevertheless, programmers,

especially those who are used to the semantics of blocking

communication, tend to forget the completion check or to

access the message buffers before the completion check.

One particular challenge for detecting such synchronization

errors is their non-determinism on manifestation. In other

words, these synchronization errors may manifest as failures

for some program runs but not for others, depending on

whether the buffer accesses incorrectly issued by the MPI

application occur before or after the message data being trans-

ferred by the MPI library. Such ordering is non-deterministic

since message data transfer in MPI libraries [13], [14], [15],

[16] can occur at arbitrary time depending on the runtime

system status (e.g., the scheduling of network transmission and

the input data of MPI calls) and/or different MPI implementa-

tions. Furthermore, for multi-threaded MPI libraries [17], [18],

the degree of such non-determinism can significantly increase.

An existing tool, Umpire [19], cleverly exploits checksum

of message data to detect synchronization errors in nonblock-

ing MPI communication. Specifically, Umpire intercepts each

nonblocking MPI call and the corresponding completion check

call, and then calculates the checksums of the data in the

sending buffer at both MPI call interceptions, respectively.

If the checksums mismatch, Umpire reports an error. Umpire

can effectively detect the synchronization errors if the message

data are corrupted. However, it relies on the invocation of the

completion check to re-calculate the checksum. Nevertheless,

based on our observation, such synchronization errors are often

associated with omitted completion checks (See the real-world

bug cases in Section VIII). Furthermore, Umpire’s detection

technique is inapplicable for nonblocking MPI receives. The

reason is that order-violating read accesses in nonblocking

receives will not corrupt the message data and therefore

the checksums are intact. Note that Umpire is a general

tool that can detect various types of MPI bugs besides the

synchronization errors.

B. Our Approach

In this paper, we present a new technique called Sync-

Checker to detect synchronization errors between MPI applica-

tions and underlying MPI libraries. Our main idea is to check,

at runtime, whether the reuse of a message buffer in an MPI

application is properly enforced to occur after the correspond-

ing message data have been transferred by the MPI library.

If not, SyncChecker reports this synchronization error with

detailed diagnostic information to help developers understand

the root cause and fix the bug. The specific implementation of

SyncChecker we report in this paper focuses on nonblocking

MPI calls such as MPI_Isend and MPI_Irecv. We do

not see any particular difficulty in applying the core idea to

handle RDMA calls since they also follow the semantics of

nonblocking communication.

To detect such synchronization errors, SyncChecker per-

forms online profiling on the relevant runtime events and

then conducts on-the-fly analysis to reason about the event

orders. More specifically, SyncChecker first instruments the

MPI application for profiling nonblocking MPI calls (e.g.,

MPI_Isend) and relevant memory accesses. In addition,

SyncChecker profiles data movement operations in the MPI li-

brary to track whether the message data have been transferred.

Data movement operations refer to operations that move a

chunk of data from a source buffer to a destination buffer,

such as memory copy and network send/receive.

After collecting the runtime events, SyncChecker performs

the detection process on-the-fly. For each nonblocking call,

SyncChecker identifies the message buffer as well as the

execution order of the relevant runtime events, including

accesses to the buffer and invocation of MPI completion

checks by the MPI application, and messages sent or received

by the MPI library. SyncChecker reports a synchronization

error if the execution order between the buffer accesses by

the MPI application and message send/receive events by the

underlying MPI library is not enforced by MPI completion

checks. Furthermore, SyncChecker provides detailed diag-

nostic information, including the line numbers, the function

names, and the source file names of the synchronization error

related runtime events mentioned above and their incorrect

execution orders.

It is challenging to perform the above tasks. First, Sync-

Checker needs to handle complex MPI semantics. For ex-

ample, MPI supports many datatypes, ranging from simple

primitive types such as MPI_INT to derived datatypes such

as the ones specifying non-contiguous memory regions. Ad-

ditionally, the MPI library often issues a vast number of data

movement operations. Some are related to the nonblocking

calls while others are not. Second, memory access profiling

can easily induce prohibitive runtime overhead as indicated

by previous software instrumentation tools [20]. We address

the two challenges in Sections IV and V, respectively.

Based on the above ideas, we have implemented a prototype

of SyncChecker on Linux and evaluated it with seven bug

cases including five introduced by the developers of the soft-

ware and two injected by us. The bugs reside in four different

types of MPI applications, including (1) Athena [21], a grid-

based application for astrophysical magnetohydrodynamics,

(2) octopus [22], a simulator for electron-ion dynamics, (3)

Boost-app, an application based on the Boost.MPI library [23],

and (4) Sort, a sorting algorithm using MPI. Our experiments

have shown that SyncChecker effectively detects all the eval-

uated bugs and reports detailed diagnostic information. In

summary, SyncChecker has the following advantages:

• SyncChecker accurately detects synchronization errors

in MPI nonblocking communication. Our experimental

results have shown that SyncChecker detects all of the

seven evaluated bugs that reside in either nonblock-

ing sends or nonblocking receives. Furthermore, Sync-

Checker provides detailed diagnostic information which

helps programmers understand the root causes and fix the

bugs. SyncChecker’s effectiveness is due to the fact that

it exploits semantic information in both MPI applications

and the underlying MPI libraries.

• SyncChecker incurs moderate runtime overhead. Our

experiments with seven NAS Parallel Benchmarks have

shown that SyncChecker (with both online profiling and

bug detection enabled) slows down program execution by

1.3-9.5 times with an average of 5.2 times. This indicates

that SyncChecker is suitable for the testing phase. The

reason of SyncChecker’s moderate runtime overhead is

that it aggressively exploits three dynamic optimizations

(see Section V) for eliminating the number of profiled

memory accesses that are irrelevant to nonblocking com-

munication.

• SyncChecker is independent of system scales. Our ex-

periments have shown that SyncChecker can detect the

synchronization errors when running the programs with

8 processes as well as running with 64 processes. This is

mainly because SyncChecker identifies these errors based

on programming rules and semantics (i.e., the execution

order of runtime events), instead of statistical invari-

ants [24], [25]. Furthermore, SyncChecker’s performance

is scalable since one detection process is running together

with each MPI process on a local node.

• SyncChecker is easy to use. It requires no modifica-

tion of source code and is independent of programming

languages, e.g., supporting MPI applications written in

C/C++ or Fortran. This is because SyncChecker instru-

ments the binary code of MPI applications and MPI

libraries using Pin [26], a lightweight dynamic binary

instrumentation framework.

II. RELATED WORKS

Our work is related to previous studies in three categories:

1) synchronization bug detection for multi-threaded programs,

2) bug detection for parallel and distributed programs, and 3)

problem diagnosis for large-scale systems.

Synchronization bug detection. Much research has been con-

ducted on detecting synchronization bugs (e.g., data races [27],

[28], [29], [30], [31], atomicity violations [32], [33], [34],

and order violations [35], [36], [37]) in multi-threaded pro-

grams. These approaches can be classified into two categories:

dynamic and static approaches. Dynamic approaches [20],

[29], [32] typically track all memory accesses at run time and

detect ill-synchronized accesses. While these approaches can

detect general non-deterministic bugs, they are not suitable

for handling the synchronization errors in MPI nonblocking

communication. This is mainly because these approaches only

focus on low-level memory accesses without understanding

complex semantics of MPI programs. For example, without

capturing MPI semantics, it is difficult to know when exactly

the message data in the buffer has been copied out or sent

over the network. Furthermore, these tools incur prohibitive

overhead due to fine-grained memory access monitoring [20],

although sampling [31] or new hardware [33], [36] can al-

leviate this situation. On the contrary, our approach exploits

semantic-relevant dynamic optimizations to significantly re-

duce runtime overhead.

Static approaches [38], [39] analyze program source code

and identify potential synchronization bugs based on program-

ming axioms such as “unlock must be paired with lock”. While

incurring no runtime overhead, static methods typically report

many false positives because of lacking accurate runtime

information. This is also true for detecting synchronization

errors in MPI nonblocking communication. For example, MPI

programs may use aliased pointers to access the message

buffers that are passed to nonblocking MPI calls. Without

runtime information, it is very challenging for static methods

to accurately detect the bugs.

Bug detection for parallel and distributed programs.

Realizing the importance of the reliability of parallel and

distributed programs, researchers have proposed many dy-

namic techniques for interactive parallel debugging [40], [41],

[42], [43], [44], [45], [46] and automatic bug detection [12],

[19], [24], [47], [48], [49], [50]. Interactive parallel debuggers

help programmers identify the bugs by exploiting automated

information collection, aggregation, and visualization tech-

niques. Unlike interactive debuggers, automatic bug detection

approaches check program runtime behaviors, without manual

intervention, against either specific programming rules (e.g.,

[19], [49], [50]) or extracted invariants based on temporal

and/or spatial similarity (e.g., [24]). While these bug detection

techniques can detect software bugs in MPI programs and/or

MPI libraries, none of them except for Umpire [19] can detect

synchronization errors in MPI nonblocking communication,

which is the focus of our paper.

Problem diagnosis for large-scale systems. Research has

been conducted on problem diagnosis for large-scale sys-

tems [25], [51], [52], [53], [54], [55], [56], [57], [58], [59].

They mainly focus on identifying root causes of program

failures or performance degradation via statistical methods

or machine learning techniques. For example, Falcon locates

faulty memory-access interleavings by cleverly identifying

the correlation between the interleavings and pass/fail exe-

cution. Maruyama and Matsuoka exploit the correlation be-

tween the function traces and normal/failed runs for localizing

faults [56]. Complementary to these approaches, SyncChecker

leverages semantic information of MPI programs and libraries

for detecting and diagnosing synchronization errors in non-

blocking communication.

III. MAIN IDEA

The main idea of SyncChecker is to examine whether the

use of a message buffer in nonblocking communication is well

synchronized between an MPI application and the underlying

MPI library. In particular, for each nonblocking MPI call,

SyncChecker monitors memory accesses to the message buffer

in the MPI application and data movement operations in the

MPI library, and checks whether their execution orders are en-

forced by an MPI completion check. The four types of runtime

events monitored by SyncChecker are: (1) nonblocking MPI

calls invoked by the MPI application (NBApp), (2) message

buffer processing events, e.g., sending or receiving, at the

library level (SRLib), (3) MPI completion checks invoked by

the MPI application (CKApp), and (4) accesses to the message

buffers by the MPI application (ACCApp). For each nonblock-

ing MPI call NBApp, if the order of SRLib → ACCApp

is enforced by a completion check CKApp, i.e., SRLib →
CKApp → ACCApp, where “→” means “happens before”

relation [60], SyncChecker considers it as the correct usage of

nonblocking communication. Otherwise, SyncChecker reports

a synchronization error since the MPI application may reuse

the message buffer before the message data transmitted by the

MPI library (i.e., ACCApp → SRLib), leading to either send-

ing out corrupted messages or reading undefined messages.

Figure 1 shows six scenarios with different execution orders

of the relevant runtime events for nonblocking sends and

receives. Specifically, Figure 1 (a) shows the correct execution

order of these runtime events for a nonblocking send, i.e.,

NBApp → SRLib → CKApp → ACCApp. In this scenario,

the order of SRLib → ACCApp is enforced by a completion

check CKApp. On the other hand, Figure 1 (b) shows an

incorrect execution order, i.e., ACCApp → SRLib, where

the sending buffer is corrupted by the MPI application before

MPI App
:
 MPI Lib
:

MPI_Isend(buf, ...);

...

buf[0] = 8;

...

memcpy

(tmp, buf, ...);

MPI_Wait(...);

/*NB */

/*SR */

/*CK */

/*ACC */

App

App

App

Lib

MPI App
:
 MPI Lib
:

MPI_Isend(buf, ...);

...

buf[0] = 8;

...
 memcpy

(tmp, buf, ...);

MPI_Wait(...);

// or missing MPI_Wait here

MPI App
:
 MPI Lib
:

MPI_Isend(buf, ...);

...

buf[0] = 8;

...

memcpy

(tmp, buf, ...);

MPI_Wait(...);

// or missing MPI_Wait here

(a) A correct order (b) An incorrect order (an error) (c) An incorrect order (a potential error)

MPI App
:
 MPI Lib
:

MPI_Irecv(buf, ...);

...

i = buf[0];

...

memcpy

(buf, tmp, ...);

MPI_Wait(...);

/*NB */
App

/*CK */
App

/*ACC */
App

/*SR */
Lib

MPI App
:
 MPI Lib
:

MPI_Irecv(buf, ...);

...

i = buf[0];

...

memcpy

(buf, tmp, ...);

MPI_Wait(...);

// or missing MPI_Wait here

MPI App
:
 MPI Lib
:

MPI_Irecv(buf, ...);

...

i = buf[0];

...

memcpy

(buf, tmp, ...);

MPI_Wait(...);

// or missing MPI_Wait here

(d) A correct order (e) An incorrect order (an error) (f) An incorrect order (a potential error)

Fig. 1. Six scenarios of the execution orders among the runtime events (at both MPI application and library levels) in nonblocking communication.

the message is copied out or sent out by the underlying MPI

library. Figure 1 (c) shows another incorrect execution order,

where the synchronization error does not manifested itself as

message corruption. In this scenario, however, the order of

SRLib → ACCApp is not enforced by the completion check

CKApp. As a result, the incorrect order of ACCApp → SRLib

(as in scenario (b)) is still possible to occur in different

program runs if the execution environment changes, e.g., using

another MPI library [19]. Similarly, Figure 1 (d), (e), and (f)

show three corresponding scenarios for nonblocking receives.

SyncChecker detects the synchronization errors in scenarios

(b) and (c) in the following way. For a nonblocking call

NBApp, if a memory access ACCApp is observed before

either the message transfer event SRLib or the completion

check CKApp, SyncChecker reports the bug (scenario (b)). If

the order of SRLib → ACCApp is observed but no CKApp

is performed between SRLib and ACCApp, SyncChecker

reports the potential bug (scenario (c)). In addition to reporting

the synchronization error, SyncChecker provides diagnostic

information, such as the problematic nonblocking commu-

nication call NBApp, the observed order-violating memory

accesses ACCApp, and the relevant events SRLib and CKApp

if available. The diagnostic information can help developers

quickly understand and fix the bug.

It is worth noting that a completion check CKApp is often

missing in real-world MPI programs, which is demonstrated by

the bug cases in our experiments (see Section VIII). The main

reason might be that developers are often more familiar with

MPI blocking communication than nonblocking counterparts.

As discussed above, SyncChecker’s detection capability does

not depend on the existence of the completion check event

CKApp and therefore it can detect the synchronization error

no matter the completion check is missing or not. In contrast,

previous work Umpire [19] cannot handle the cases where

the completion check is missing since it recalculates message

checksum at the completion check.

Profiler

Analyzer

MPI App

Bug Report

Runtime Events

MPI Lib

SyncChecker

Fig. 2. Design overview of SyncChecker

IV. DESIGN AND IMPLEMENTATION

A. Design Overview and Challenges

SyncChecker is composed of two main components, in-

cluding Profiler and Analyzer, as shown in Figure 2. Profiler

instruments the MPI applications and the underlying MPI

library to profile the relevant runtime events during program

execution and sends the information of the runtime events to

Analyzer in a streaming fashion. By scanning these events,

Analyzer then on-the-fly detects synchronization errors in

MPI nonblocking communication, and provides diagnostic

information to developers. The design is scalable since the

Analyzer process only needs to analyze the runtime events

that are local to each host.

There are two key challenges with the design of Sync-

Checker and we will address them in Section IV and Sec-

tion V, respectively.

(1) How to effectively profile runtime events and detect

synchronization errors? To accurately detect synchronization

errors in nonblocking communication, SyncChecker must un-

derstand MPI’s rich semantics [4]. For example, MPI supports

various data types ranging from simple ones such as MPI_INT

to derived non-contiguous datatypes. Similarly, MPI nonblock-

ing communication supports various completion checking se-

mantics, including MPI blocking calls (e.g., MPI_Wait) and

MPI nonblocking calls (e.g., MPI_Test).

(2) How to efficiently profile runtime events? MPI program

execution can generate a large number of relevant runtime

events, especially memory accesses at the MPI application

level. With each memory access being profiled, Profiler can

easily slow down MPI programs by 100 times [20], [61].

This creates a significant challenge for Profiler. Furthermore,

the large number of profiled runtime events could overload

Analyzer as well. Therefore, the key question is how to reduce

the number of runtime events that are necessary for profiling

as well as for analyzing.

B. Profiler: Collecting Runtime Information

To facilitate error detection in nonblocking communication,

Profiler collects relevant runtime events in the MPI application

and in the MPI library. Specifically, Profiler instruments two

types of MPI calls at the application level. The first type is non-

blocking communication and completion checking functions.

Examples include MPI_Isend, MPI_Irecv, MPI_Wait,

and MPI_Test. We need this type of runtime information

for the locations of possible synchronization errors. The

second type is MPI datatype manipulation functions (e.g.,

MPI_Type_struct). These functions create new datatypes

from primitive types (e.g., MPI_INT) or existing user-defined

datatypes. This runtime information is required because the

message data may be stored in a memory region defined as

such derived datatype.

In addition to the relevant MPI calls, Profiler instruments

every memory access at the MPI application level. This is

because SyncChecker needs to detect order-violating mem-

ory accesses to the message buffer in a nonblocking call.

Unsurprisingly, such fine-grained instrumentation for memory

accesses can incur prohibitive runtime overhead, even for the

testing phases. We will address this issue with three dynamic

optimizations proposed in Section V. Furthermore, memory

management function calls in the MPI application need to

be instrumented since these routines may access the message

buffer too. For example, memcpy function call in the MPI

application can overwrite the sending buffer in a nonblocking

communication.

To detect synchronization errors, SyncChecker needs to

know whether the message has been transmitted or not at

the MPI library level. Instead of instrumenting each memory

access in the MPI library, Profiler tracks data movement

operations such as memory copy and network send/receive.

This will not affect the detection capability of SyncChecker

because the underlying MPI libraries often exploit such coarse-

grained operations for transferring messages, i.e., copying

out message to an intermediate memory location or directly

sending message over the network [24], [62].

For each instrumented function call, Profiler records the

function name and the arguments. For each instrumented

memory access, Profiler records the access type (i.e., read or

write), the memory address and the accessed memory size.

Such information is sufficient for detecting synchronization

errors and providing diagnostic information. During program

execution, Profiler sends the collected information of these

runtime events to Analyzer for on-the-fly error detection. Our

current prototype of SyncChecker uses UNIX domain sockets

for fast communication between Profiler and Analyzer.

One legitimate concern is how to record the order of these

events since Analyzer relies on the event order for error

detection. Our current prototype of Profiler takes no special

measures to handle the event order, since most existing MPI

applications and the underlying MPI libraries are executed

in a single-threaded process, and the event order is naturally

preserved by the program execution. To handle future multi-

threaded MPI library implementations and/or multi-threaded

MPI programs, we plan to extend our Profiler by maintaining

a global logical clock [60] and recording the clock value for

each profiled runtime event.

We leverage a lightweight dynamic binary instrumentation

tool Pin [26] to implement our current prototype of Profiler.

In other words, Profiler performs the instrumentation on

the binary code of the MPI application and the underlying

MPI library. Therefore, Profiler is language-independent, e.g.,

working with MPI applications written in C/C++ or Fortran.

Furthermore, Profiler does not require source code modifica-

tion or recompilation of MPI applications and libraries.

C. Analyzer: Analyzing Runtime Events and Detecting Syn-

chronization Errors

Analyzer receives the profiled runtime events and analyzes

them for detecting synchronization errors in nonblocking

communication. We next describe the error detection process,

followed by the detailed discussion on processing each type

of runtime events.

1) Detecting Synchronization Errors: To quickly detect the

errors, Analyzer associates the message buffer in each MPI

nonblocking call with a runtime state and performs the state

transition based on the error detection state machine that

implicitly contains the event ordering information. Figure 3

shows the state machine for detecting synchronization errors

in MPI nonblocking communication. Take the nonblocking

MPI send as an example. The state of a message buffer is

initialized as Init when a nonblocking send (i.e., the event

of NBApp) is invoked. After the message is sent over the

network or copied out to a temporary system buffer at the

MPI library level (i.e., the event of SRLib), Analyzer transits

the buffer state from Init to LibDone. After this, if a

completion check is performed at the MPI application level

(i.e., the event of CKApp), the buffer state is transited to

Safe, i.e., no synchronization errors were found. Once the

state of a buffer becomes Safe, Analyzer stops processing

future runtime events associated to the buffer. Otherwise, if

the MPI application performs a memory write (i.e., the event

of ACCApp) to the buffer when it is in the state of LibDone,

Analyzer reports a potential synchronization error, i.e., the

error that is not manifested during this particular program

execution. If the MPI application performs a memory write to

the message buffer with the state of Init, Analyzer reports a

Init

LibDone

Safe
 Report Bug

SR
Lib

CK
App

ACC
App

ACC
App

NB
App

Report

Potential Bug

Fig. 3. The state machine for detecting synchronization errors

synchronization error since the message is overwritten by the

MPI application before it is sent out by the underlying MPI

library. Similar detection procedure is performed for an MPI

nonblocking receive.

For a detected (potential) error, Analyzer provides detailed

diagnostic information such as the MPI nonblocking methods,

the message buffer information, the memory accesses that

cause the synchronization errors or potential ones, relevant

data movement operations in the MPI library, and the process

rank. With the debugging information of an MPI program

(compiled with “-g” option), Analyzer can map the above-

mentioned diagnostic information to the line numbers, function

names, and file names in the source code. This diagnostic in-

formation offers a significant help for developers to understand

and fix the error.

2) Processing Runtime Events: Before error detection, An-

alyzer handles the following types of runtime events: datatype

manipulation routines, nonblocking communication routines,

memory access instructions and memory management rou-

tines, and data movement routines. The first three runtime

events are from MPI applications and the last one is from

the MPI library.

Datatype manipulation routines. MPI datatypes are com-

plex, ranging from primitive types such as MPI_INT to

non-contiguous memory regions that are created by datatype

manipulation routines. To simplify processing datatypes, Ana-

lyzer uses a data-map data structure to represent each datatype.

In particular, a data-map consists of a series of segments,

each segment represents the displacement and the length of

a continuous memory chunk specified in a datatype. For

example, the data-map of a datatype MPI_INT is {(0, 4)},
where 0 is the displacement and 4 is the length of the datatype.

Similarly, for a datatype that consists of two non-contiguous

MPI_INT’s with the gap of 4 bytes, the data-map is {(0, 4),
(8, 4)}, where 0 and 8 are the displacements for the first and

second MPI_INT, respectively, and the two 4’s are the length

for both MPI_INT’s.

Analyzer uses a vector to store the data-maps for all

datatypes in an MPI program. Initially, Analyzer creates a

data-map for each primitive datatype, such as MPI_INT, and

stores them in the vector. After receiving an event of a datatype

manipulation routine, Analyzer calculates the lower bound,

upper bound and data-map of the new datatype based on the

arguments in the routine and existing data-maps information

in the vector. Then Analyzer stores the data-map of the new

datatype into the vector for future use.

Nonblocking communication routines. MPI nonblocking

communication includes the initialization routines such as

MPI_Isend and MPI_Irecv, and the completion checking

routines such as MPI_Wait and MPI_Test. To handle an

initialization routine, Analyzer creates a new record containing

the starting address of the message buffer, the number of

elements, the datatype of each element in the message buffer,

the request handle value, and the initial state Init for the

buffer. Then Analyzer stores the newly-created record for the

message buffer in the send or receive list.

It is a little complicated to handle the completion checking

routines since they may have blocking or nonblocking seman-

tics. For example, MPI_Wait uses blocking semantics, i.e.,

the function will not return until the specified nonblocking

send/receive completes. Differently, MPI_Test uses non-

blocking semantics, i.e., the function will return immediately

no matter the specified nonblocking send/receive completes

or not. To handle blocking completion checking routines

such as MPI_Wait, Analyzer identifies the buffer record in

the send or receive list based on the request handle, then

performs buffer state transition based on the error detection

state machine in Figure 3. If the state transits to Safe,

Analyzer removes the buffer record from the corresponding

list. To handle nonblocking completion checking routines such

as MPI_Test, Analyzer checks the status flags that are

returned from the function call to see whether the specified

nonblocking send/receive function completes or not. If the

status flags indicate the completion of the specified nonblock-

ing send/receive, Analyzer performs the same steps as the

ones above-mentioned for handling MPI_Wait. Otherwise,

Analyzer does nothing since the nonblocking send/receive has

not completed yet.

Memory access instructions and memory management rou-

tines. To handle memory accesses issued in the MPI applica-

tion, Analyzer identifies the accessed message buffer in the

send or receive list. Specifically, for each memory access

instruction and memory management routine such as memcpy

or free, Analyzer calculates the intersection between the

memory address range in the access event and the ranges of

the message buffers in the send or receive list, depending on

the access type. If no intersection is found for all the message

buffers, Analyzer simply discards the runtime event since the

memory access is irrelevant to the nonblocking communica-

tion. Otherwise, Analyzer performs the state transition for the

identified message buffer based on the error detection state

machine. If an error or a potential error is detected, Analyzer

provides diagnostic information. Note that Analyzer only need

to check the send list for write accesses and the receive list

for read accesses.

Data movement routines from the MPI library. The underly-

ing MPI library performs data movement operations that move

data from one memory location to another location or send

data from memory to network cards. Some data movement

operations are related to nonblocking communication while

others are not. To identify relevant data movement operations,

Analyzer calculates the intersection between the buffer in the

data movement operations and the buffers in the send or re-

ceive list. If no intersection is found, Analyzer simply discards

the events of data movements since they are irrelevant to

nonblocking communication. Similar technique has been used

in our prior work [24], [62]. Otherwise, Analyzer performs the

state transition for the identified message buffer based on the

error detection state machine in Figure 3.

V. PROFILER OPTIMIZATIONS

The basic design of Profiler presented in Section IV in-

struments every memory access at the MPI application level

for error detection. Such fine-grained profiling can easily slow

down program execution by hundreds times as shown in our

experiments (see Section VIII), making our tool inapplicable

in testing environment. To reduce overhead, Profiler employs

three dynamic optimizations: (1) Execution Region (ER) opti-

mization that eliminates profiling efforts when there is no non-

blocking communication; (2) Access Type (AT) optimization

that treats nonblocking send and receive differently; and (3)

Memory Region (MR) optimization which eliminates profiling

efforts for memory accesses that are out of the buffer range.

A. Execution Region (ER) Optimization

Profiling all the memory accesses at runtime is unnecessary

for error detection. We observe that synchronization errors in

nonblocking communication can only occur between the non-

blocking send/receive calls and the corresponding completion

checking calls (if available). In other words, if there are no

pending nonblocking communication calls, Profiler does not

need to collect memory access information during program

execution. This is the basic idea for our Execution Region

(ER) optimization.

To perform ER optimization, Profiler records each non-

blocking send or receive call in the send or receive list, respec-

tively. When a completion check has finished (checking the

status flags for nonblocking completion check routines such

as MPI_Test), Profiler removes the nonblocking send/receive

call from the send/receive list. For each instrumented memory

access, Profiler checks whether both lists are empty. If yes,

Profiler simply ignores the memory access without sending

it to Analyzer. Otherwise, Profiler performs the basic profil-

ing function, i.e., collecting memory access information and

sending it to Analyzer.

For correct MPI programs, ER optimization significantly

reduces runtime overhead and avoids sending unnecessary

runtime events to Analyzer since most of the memory accesses

are not within the execution regions of nonblocking commu-

nication. On the other hand, for buggy MPI program, ER

optimization is conservative – keep profiling memory accesses

when a completion checking routine is missing.

B. Access Type (AT) Optimization

After ER optimization, profiling information for all the

memory accesses within the execution region may still be

unnecessary. In particular, for nonblocking sends, Analyzer

only needs to check memory write accesses to see whether

the message in the sending buffer is overwritten or not. Simi-

larly, for nonblocking receives, Analyzer only needs to check

memory read accesses to see whether the receiving buffer has

been read before the message is ready. This observation leads

to the second optimization, Access Type (AT) optimization,

which profiles write accesses for nonblocking sends and read

accesses for nonblocking receives. Note that memory writes

in applications may corrupt message buffers for nonblocking

receives. To detect such error, AT optimization can be relaxed

by also checking writes for nonblocking receives. However,

such error is out of the scope of this paper since it exists even

with correct application-library synchronization.

AT optimization works as follows. For each instrumented

memory write access, Profiler only checks whether the send

list is empty or not. If yes, Profiler returns immediately. Oth-

erwise, Profiler performs the basic profiling function. Profiler

performs similar check for memory read accesses, i.e., only

checking the receive list. AT optimization reduces overhead

by saving half of the send/receive list checking effort and

eliminating the profiling of memory accesses whose types do

not match the nonblocking communication types.

C. Memory Region (MR) Optimization

Even after applying ER and AT optimizations, not all mem-

ory accesses are relevant to the message buffers in nonblocking

sends or receives. Instead, there are accesses to other memory

regions. Therefore, Profiler applies the third optimization,

Memory Region (MR) optimization. The main idea is to only

profile memory accesses that are within the range of message

buffers in nonblocking communication. Like AT optimization,

MR optimization handles write accesses for nonblocking send

and read accesses for nonblocking receive.

One straightforward way to implement MR optimization in

Profiler is to maintain message buffer and datatype information

for each nonblocking communication call, and then search all

the message buffers given a memory access event (i.e., similar

to what Analyzer does). However, it is very time consuming

to perform such fine-grained search for each memory access.

Instead, we implement a more efficient MR optimization,

which only performs coarse-grained search. The main idea

of our MR optimization is to maintain one memory range

(i.e., lower and upper bounds) of all the message buffers

in the send list and one memory range for the receive list,

and then check the memory range in the send list or receive

list for each instrumented write or read access, respectively.

Whenever a new nonblocking send or receive is performed,

Profiler updates the memory range in the send list or the

receive list with the new buffer bounds. Specifically, for the

memory range in the send list, the lower bound is the minimum

one among the lower bounds of all the sending buffers in

the list. The upper bound is the maximum value among the

lower bounds of all the sending buffers in the send list, plus

the corresponding buffer length. The buffer length should be

calculated from the extent of the corresponding datatypes.

To avoid processing complex datatype information, Profiler

conservatively uses a large threshold value for the buffer

Algorithm 1 Profiler Optimizations

1: for each memory write access addr do

2: if sendlist is non-empty then

3: if addr ≥ sendlist.minaddr and

addr ≤ sendlist.maxaddr then

4: Profiling the memory write access

5: end if

6: end if

7: end for

8: for each memory read access addr do

9: if recvlist is non-empty then

10: if addr ≥ recvlist.minaddr and

addr ≤ recvlist.maxaddr then

11: Profiling the memory read access

12: end if

13: end if

14: end for

length. For different MPI programs, developers can specify the

threshold with different values. The above mentioned steps for

memory range calculation is also applicable to the receive list.

D. Summary of the Optimizations

Algorithm 1 shows the summarized algorithm for all the

three optimizations. More specifically, with AT optimization,

Profiler instruments memory writes at lines 1-7 and instru-

ments memory reads at lines 8-14. Lines 2 and 9 check

whether the send list and the receive list are empty or not,

respectively i.e., ER optimization. Lines 3 and 10 check

whether the memory access is within the boundary of the

memory ranges of the send list or the receive list, respectively,

i.e., MR optimization. Lines 4 and 11 collect the information

of the memory access and sending it to Analyzer, as what

the basic profiling does. For clarity, we skip the code for

maintaining sendlist and recvlist in this algorithm.

Profiler performs the optimizations dynamically by instru-

menting each memory access in the binary code of the MPI

application. As shown in Algorithm 1, each optimization

reduces the number of profiled memory accesses, which are

expensive due to I/O operations, at the cost of performing an

additional check at each memory access. Note that none of

the three optimizations sacrifices SyncChecker’s capability of

detecting synchronization errors in nonblocking communica-

tion. This is because the optimizations are all conservative –

only eliminating profiling memory accesses that are irrelevant

to the targeted errors.

VI. ISSUES AND DISCUSSION

Data movement via hand-coded routines: Although most MPI

libraries use general data movement routines such as memcpy,

some may use their own hand-coded routines. To address this

issue, we can rely on programmers to pass the routine inter-

faces such as routine names and parameters to SyncChecker

so that SyncChecker can intercept and analyze them similarly

as general data movement routines.

MPI Apps #LOC Bug IDs Bug Locations

Athena-r1086 89,549 #1093 nonblocking send

Athena-r1090 89,749 #1095 nonblocking send
and receive

octopus-r1278 37,772 #1284 nonblocking send

Boost-app 133 10/2010 nonblocking send

Sort 156 07/2007 nonblocking receive

Athena-r1086-cc 89,549 #1093-cc nonblocking send

octopus-r1278-cc 37,772 #1284-cc nonblocking send

TABLE I
EVALUATED APPLICATIONS AND SYNCHRONIZATION ERRORS. NOTE THAT

ATHENA-R1086 MEANS THE MPI APPLICATION ATHENA WITH THE

REVISION NUMBER 1086. “R” HAS THE SAME MEANING IN THE NAMES OF

OTHER APPLICATIONS.

Completion guaranteed by other mechanisms: The completion

of the nonblocking sends/receives are usually guaranteed by

completion checking routines. In some scenarios, however, the

completion of nonblocking communication are enforced by

other mechanisms, e.g., succeeding blocking MPI calls. To

handle this case, we need to extend our proposed mechanism to

track the happens-before relations among such runtime events.

Once the order between buffer reuse in the MPI application

and the corresponding sending/receiving events in the MPI

libraries is correctly enforced by happens-before relations, we

will consider it as correct nonblocking communication.

VII. EVALUATION METHODOLOGY

Our experiments are conducted on two partitions of the

Glenn cluster at Ohio Supercomputer Center [63]. One par-

tition contains 877 computer nodes. Each node is a dual-

core machine with 2.3 GHz AMD opteron CPU, 8 GB RAM

and 48 GB local disk space. The other partition contains 650

computer nodes. Each node is a quad-core machine with 2.5

GHz AMD opteron, 24 GB RAM and 393 GB local disk space.

The operating system running on the cluster is Linux 2.6.18.

Note that we perform our experiments for each application

with different configurations on one system-assigned partition

so that the performance results can be normalized to the

native runs. We implement Profiler of SyncChecker using

Pin [26], a lightweight dynamic binary translation framework.

Additionally, we implement Analyzer of SyncChecker using

two threads, i.e., one for receiving runtime events from Profiler

and the other for processing the events and detecting errors.

In our experiments, Analyzer is running together with Profiler

for each MPI process on a local node.

We evaluate the effectiveness of SyncChecker using four

different real-world applications as shown in Table I, including

(1) Athena [21], a grid-based application for astrophysical

magnetohydrodynamics; (2) octopus [22], a simulator for

electron-ion dynamics; (3) Boost-app, an application using

Boost.MPI, which is a C++-friendly interface to the standard

MPI [23]; and (4) Sort, an integer sorting algorithm using

MPI. These four applications consist of various lines of code

and contain seven different synchronization errors residing in

a nonblocking send and/or a nonblocking receive. Five of the

synchronization errors have no completion checks and were

introduced by the original application developers. We have

not yet located MPI applications that contain synchronization

MPI Apps Languages Bug IDs Detected? Missing Error Failure # of
Umpire SyncChecker Completion Check? Locations Symptoms Processes

Athena-r1086 C #1093 No Yes Yes send program crash 64

Athena-r1090 C #1095 No Yes Yes send/receive program crash 8

octopus-r1278 Fortran #1284 No Yes Yes send program hang 64

Boost-app C++ 10/2010 No Yes Yes send incorrect results 8

Sort C 07/2007 No Yes Yes receive program crash 8

Athena-r1086-cc C #1093-cc Yes Yes No send program crash 64

octopus-r1278-cc Fortran #1284-cc Yes Yes No send program hang 64

TABLE II
OVERALL EFFECTIVENESS OF SYNCCHECKER

errors with mislocated completion checks, i.e., the potential er-

rors shown in Figure 1 (c) and (f). To evaluate SyncChecker’s

functionality of detecting such errors, we injected completion

checks after memory accesses of sending buffers in Athena-

r1086 and octopus-r1278, renaming them as Athena-r1086-cc

and octopus-r1278-cc, respectively.

To evaluate the efficiency of SyncChecker, we run seven

NAS Parallel Benchmarks (NPB) [11] with class C inputs

on 64 processors. All of the seven NPB benchmarks contain

various numbers of nonblocking communication function in-

vocations (none in EP). We evaluate the impact of Analyzer

on the overall runtime overhead of SyncChecker as well as

the performance benefits brought by the three optimizations

for Profiler. Specifically, we measure the program execution

time with the following six configurations. In the first five

configurations we only enable Profiler and redirect the runtime

events to /dev/null. In the six configuration, we enable

both Profiler and Analyzer.

• Native: Executing the benchmarks without applying

SyncChecker.

• Profiler-basic: Executing the benchmarks with non-

optimized Profiler

• Profiler-ER: Executing the benchmarks with Profiler and

ER optimization enabled.

• Profiler-ER-AT: Executing the benchmarks with Profiler

and ER and AT optimizations enabled.

• SyncChecker-P: Executing the benchmarks with Profiler

and all the three (i.e., ER, AT and MR) optimizations

enabled.

• SyncChecker-PA: Executing the benchmarks with opti-

mized Profiler and Analyzer (i.e., the entire tool Sync-

Checker).

VIII. EXPERIMENTAL RESULTS

A. Overall Effectiveness

Table II shows the overall effectiveness of SyncChecker. For

each bug case, we measure whether SyncChecker can detect it.

For comparison purposes, we analyze each case to see whether

it can be detected by previous work Umpire [19]. Additionally,

we report more detailed results for SyncChecker’s detection

capability, including (1) whether the error code region misses

a completion check; (2) where (i.e., nonblocking send or

receive) each error locates; (3) failure symptoms once the

error is triggered; and (4) the number of processes running

for triggering each error.

SyncChecker is effective in detecting the synchronization

errors for MPI programs with nonblocking communication.

As shown in Table II, SyncChecker effectively detects all

of the five real bug cases that miss completion checks and

two injected ones that invoke completion checks. Addition-

ally, SyncChecker’s effectiveness is not affected by the error

locations or failure symptoms. For example, SyncChecker

detects the errors in Athena-r1086’s nonblocking send and

Sort’s nonblocking receive, where the errors cause the pro-

gram to crash. Similarly, SyncChecker locates the errors in

octopus-r1278’s and Boost-app’s nonblocking sends, where

the errors cause the program to hang and generate incorrect

results, respectively. SyncChecker’s effectiveness in detecting

synchronization errors is because it accurately captures the

essential runtime events, i.e., relevant memory accesses in MPI

applications and data movement operations in MPI library, and

their relative execution orders.

In contrast, Umpire can only detect the last two injected

synchronization errors. This is because Umpire relies on

the completion checking call at nonblocking sends for re-

calculating checksum and cannot detect synchronization errors

for nonblocking receives. However, all the five real bug

cases at the nonblocking sends miss invoking the completion

checking routines. This also indicates that programmers tend

to forget the completion check routines due to unfamiliarity

with nonblocking communication. Note that Umpire can detect

many other types of MPI bugs, while SyncChecker focuses on

synchronization errors in MPI nonblocking communication.

Table II also shows that SyncChecker’s detection capa-

bility does not depend on the scale of running processes.

For example, SyncChecker detects the error when running

the Athena-r1086 with 64 processes as well as catches the

error when running Athena-r1090 on 8 processes. The reason

why SyncChecker’s detection capability is oblivious to system

scales is because SyncChecker utilizes programming rules and

semantics instead of statistics-based program invariants [33],

[64]. In contrast, previous statistics-based approaches [24],

[25] cannot handle bug cases that only manifested themselves

in a small system scale since these approaches require collect-

ing a large number of statistical data for error detection.

As shown in Table II, SyncChecker is able to handle the

MPI applications written in different languages, including C,

C++ and Fortran. In contrast, some previous MPI bug detection

tools (e.g., [50]) can only deal with applications written in one

programming language. The reason for SyncChecker’s lan-

guage independence is that it utilizes a binary instrumentation

1: void bvals_mhd(DomainS *pD){

2: ...

3: ierr = MPI_Isend(send_buf[0], cnt, MPI_DOUBLE, ...);

4: ...

5: pack_ix1(pGrid);

6: ...

7: }

8: static void pack_ix1(GridS *pG){

9: ...

10: double *pSnd = send_buf[0];

11: ...

12: *(pSnd++) = pG->U[k][j][i].d;
 // buggy access

13: ...

14: }

Fig. 4. Bug case: Sending buffer overwritten in Athena (written in C)

framework, Pin [26], to directly work on the binary code of

the MPI applications and the MPI library for profiling and

analyzing runtime events.

B. Case Studies

This subsection presents a representative case of synchro-

nization errors from Athena written in C.

1) Sending Buffer Overwritten in Athena: This case was

found in Athena with the revision number 1086. The error

causes the program to crash once it is triggered. Figure 4

shows the buggy code extracted from the source files. First, a

nonblocking send MPI_Isend is invoked at line 3 in function

bvals_mhd, which intends to send the message in the buffer

send_buf[0] to another process. Without performing a

completion check, the buffer send_buf[0] is overwritten at

line 12 in a different function pack_ix1 being invoked by

function bvals_mhd. Moreover, the buffer is overwritten via

an aliased pointer pSnd instead of the original buffer pointer

send_buf[0].

This error can be triggered by running Athena in 64 pro-

cesses with certain error triggering inputs. After being applied

to this error case, SyncChecker reports that, out of the total

71.6 billions memory accesses, 1.25 millions write accesses

overwrite the nonblocking send buffers before the data are sent

out. Furthermore, SyncChecker pinpoints the root cause of this

synchronization error by successfully locating the functions

bvals_mhd and pack_ix1, the relevant MPI nonblocking

send at line 3, and the buggy memory access statement at line

12 as shown in Figure 4. Additionally, SyncChecker reports

the incorrect execution order between the memory accesses at

the MPI application and the message sent out event at the MPI

library (skipped in Figure 4 for simplicity). With such detailed

diagnostic information, programmers can quickly understand

and fix the error.

It is worth noting that the violating memory accesses

are convoluted since they are in a different function via an

aliased pointer. This creates significant challenges for static

bug detection methods. Furthermore, this error can not be

detected by Umpire because the completion checking function

is missed by programmers, which is a common reason caus-

ing synchronization errors in real-world MPI programs with

nonblocking communication.

C. Runtime Overhead

Figure 5 shows the execution time of seven NAS Parallel

Benchmarks without SyncChecker, with SyncChecker’s Pro-

Fig. 5. Runtime overhead of SyncChecker. “Native” means execution without
applying SyncChecker, “SyncChecker-P” means execution with Profiler only,
“SyncChecker-PA” means execution with both Profiler and Analyzer enabled.

filer only, and with both Profiler and Analyzer. The execution

time for each benchmark is normalized to the native execution

without SyncChecker. As shown in Figure 5, the runtime

overhead incurred by SyncChecker’s Profiler is moderate,

ranging from 96% to 6.73 times with an average of 3.85

times. The reason for the modest overhead is that SyncChecker

aggressively exploits three dynamic optimizations, which sub-

stantially reduces the number of profiled memory accesses.

Additionally, Figure 5 shows that SyncChecker’s on-the-

fly Analyzer is very efficient. For example, executing Profiler

together with Analyzer only adds a little additional overhead,

ranging from 32% to 2.8 times with an average of 1.4

times, compared to executing the programs with Profiler only.

Otherwise, if we save the runtime event logs to disk and

process them offline, it takes much longer time to analyze

due to expensive I/O operations, and costs extra disk space.

Overall, SyncChecker incurs runtime overhead ranging from

1.3-9.5 times with an average of 5.2 times, which is acceptable

for software testing. Our current prototype of SyncChecker

only performs dynamic optimizations to reduce overhead.

We leave applying static analysis to further reduce runtime

overhead as future work. For example, we can statically

identify the functions where memory accesses are unnecessary

for profiling due to irrelevance to nonblocking communication.

D. Effects of the Optimizations

Figure 6 shows the runtime overhead incurred by Profiler

with different optimizations applied. The result clearly indi-

cates that the three optimizations are very effective in reducing

runtime overhead incurred by Profiler. For example, the basic

Profiler without any optimizations slows down all the bench-

marks by more than 100 times. With all three optimizations

applied, the runtime overhead incurred by Profiler is reduced to

an average of 3.85 times for the seven benchmarks. The main

reason is that the three optimizations significantly reduce the

number of profiled memory accesses as shown in Figure 7.

Next we will discuss benefits brought by each optimization.

We first apply ER optimization since we observe that

many memory accesses are outside of the execution region

of nonblocking communication and thereby can be eliminated

by ER optimization. As shown in Figure 6, after applying

ER optimization, the overhead is reduced from more than

200 times to less than 10 times for most of the evaluated

benchmarks. This is echoed by substantial reduction of profiled

memory accesses as shown in Figure 7. For example, after

applying ER, the number of profiled memory accesses per

Fig. 6. Optimization effects of runtime overhead with Profiler enabled only. The runtime overhead of “> 200” incurred by Profiler-basic is because we
terminate the program execution after that long time. “Native” means execution without applying SyncChecker, “Profiler-basic” means execution without
any optimization, “Profiler-ER” means execution with ER optimization enabled, “Profiler-ER-AT” means execution with ER and AT optimizations enabled,
“SyncChecker-P” means execution with ER, AT and MR optimizations enabled.

Fig. 7. The numbers of profiled memory accesses per process with different level of optimizations. For clarity, we put a tiny bar with “0” on the top
indicating no memory access. Also note that y-axis is in a logarithmic scale. “Profiler-basic”, “Profiler-ER”, “Profiler-ER-AT”, and “SyncChecker-P” have the
same meanings as those in Figure 6.

process for BT is reduced from 56.3 billions to 221 thousands,

which leads to the overhead being reduced from more than 200

times to 6.47 times.

AT optimization further reduces the overhead incurred by

Profiler with ER enabled. As shown in Figure 6, although the

overhead reduction is not obvious for most of the benchmarks,

it is still worth to perform AT optimization for some bench-

marks such as MG, where the overhead is reduced from 20.1

times to 8.48 times. This is because AT optimization further

reduces the number of profiled memory accesses for MG from

80.3 millions to 13.7 millions, i.e., by almost 5 times.

After enabling ER and AT optimizations, Profiler can further

reduce the runtime overhead by applying MR optimization.

While most of the benchmarks have reached their minimum

overhead after perform ER and AT optimizations, the runtime

overhead for benchmark SP is still high, i.e., 55 times.

After performing MR optimization, the runtime overhead for

benchmark SP is reduced to 1.78 times, as shown in Figure 6.

This is because the number of profiled memory accesses

for SP is reduced from 4.28 billions to zero, as shown in

Figure 7. Moreover, MR optimization is especially useful for

MPI applications which miss the completion checks. This

is because missing completion checks disables ER and AT

optimizations to eliminate many memory accesses due to no

ending boundaries of the nonblocking execution regions.

While the three optimizations greatly reduce the runtime

overhead, they will introduce some additional overhead be-

cause the optimizations are performed dynamically and the

introduced conditional checks consume system resources. For

example, benchmark EP does not contain any nonblocking

communication, as indicated by the profiled memory accesses

number after ER optimization. Due to additional checks,

Profiler slows down EP by 1.04 times after ER optimization.

IX. CONCLUSIONS

This paper presents SyncChecker, a new approach to detect

synchronization errors when MPI programs use nonblock-

ing communication. Based on the profiled runtime events,

SyncChecker checks whether the use of the message buffers

in nonblocking communication is well synchronized between

MPI programs and the underlying MPI library. If not, Sync-

Checker reports the error with detailed information to assist

bug diagnosis.

We have built a prototype of SyncChecker on Linux. Our

evaluation with five real-world and two injected bug cases

in four different MPI applications shows that SyncChecker

is effective in detecting the synchronization errors in non-

blocking communication. Additionally, SyncChecker provides

useful diagnostic information to pinpoint the root causes

and help programmers to understand the bugs. Furthermore,

our experiments with seven NAS Parallel Benchmarks show

that SyncChecker incurs moderate overhead, ranging from

1.3 times to 9.5 times with an average of 5.2 times. This

indicates that SyncChecker is suitable for programmers to

detect synchronization errors in the testing phase.

X. ACKNOWLEDGMENTS

We thank the anonymous reviewers for invaluable feedback.

We appreciate useful discussion with Yang Zhang, Mai Zheng,

and Dachuan Huang. This work was supported in part by an

allocation of computing time from the Ohio Supercomputer

Center, and by the NSF grant #CCF-0953759 (CAREER

Award). This work was also partially sponsored by the Na-

tional Natural Science Foundation of China under Grant No.

61173004.

REFERENCES

[1] “Message passing interface forum,” http://www.mpi-forum.org.

[2] “Papers About MPI,” http://www.mcs.anl.gov/research/projects/mpi/
papers.

[3] “Architecture share in top 500 supercomputers for 11/2010,”
http://www.top500.org/stats/list/36/archtype.

[4] “MPI document of nonblocking communication,” http://www.mpi-
forum.org/docs/mpi22-report/node57.htm#Node57.

[5] C. Iancu, P. Husbands, and P. Hargrove, “Hunting the overlap,” in PACT,
2005.

[6] S. Chakrabarti, M. Gupta, and J.-D. Choi, “Global communication
analysis and optimization,” in PLDI, 1996.

[7] Y. Zhu and L. J. Hendren, “Communication optimizations for parallel c
programs,” in PLDI, 1998.

[8] InfiniBand Trade Association, http://www.infinibandta.org.

[9] Myricom, http://www.myri.com.

[10] T. B. Tabe and Q. F. Stout, “The use of the mpi communication library
in the NAS parallel benchmark,” Technical Report CSE-TR-386-99,

University of Michigan, 1999.

[11] D. H. Bailey, L. Dagum, E. Barszcz, and H. D. Simon, “NAS parallel
benchmark results,” in Supercomputing, 1992.

[12] J. DeSouza, B. Kuhn, B. R. de Supinski, V. Samofalov, S. Zheltov, and
S. Bratanov, “Automated, scalable debugging of mpi programs with intel
message checker,” in SE-HPCS, 2005.

[13] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.
Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open mpi:
Goals, concept, and design of a next generation mpi implementation,”
in EuroPVM/MPI, 2004.

[14] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance,
portable implementation of the mpi message passing interface standard,”
Parallel Comput., vol. 22, no. 6, 1996.

[15] J. Liu, J. Wu, S. P. Kini, P. Wyckoff, and D. K. Panda, “High
performance rdma-based mpi implementation over infiniband,” in ICS,
2003.

[16] J. M. Squyres and A. Lumsdaine, “A Component Architecture for
LAM/MPI,” Lect. Notes Comput. Sci., vol. 2840/2003, 2003.

[17] E. Demaine, “A threads-only mpi implementation for the development
of parallel programs,” in HPCS, 1997.

[18] H. Tang, K. Shen, and T. Yang, “Compile/run-time support for threaded
mpi execution on multiprogrammed shared memory machines,” in
PPoPP, 1999.

[19] J. S. Vetter and B. R. de Supinski, “Dynamic software testing of MPI
applications with Umpire,” in Supercomputing, 2000.

[20] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” in PLDI, 2007.

[21] Athena, https://trac.princeton.edu/Athena.

[22] octopus, http://www.tddft.org/programs/octopus.

[23] D. Gregor, “Boost.MPI,” http://www.boost.org/doc/libs/1 46 1/doc/html/
mpi.html.

[24] Q. Gao, F. Qin, and D. K. Panda, “Dmtracker: finding bugs in large-
scale parallel programs by detecting anomaly in data movements,” in
Supercomputing, 2007.

[25] A. V. Mirgorodskiy, N. Maruyama, and B. P. Miller, “Problem diagnosis
in large-scale computing environments,” in Supercomputing, 2006.

[26] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” in PLDI, 2005.

[27] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Srid-
haran, “Efficient and precise datarace detection for multithreaded object-
oriented programs,” in PLDI, 2002.

[28] B. Lucia, L. Ceze, K. Strauss, S. Qadeer, and H.-J. Boehm, “Conflict
exceptions: simplifying concurrent language semantics with precise
hardware exceptions for data-races,” in ISCA, 2010.

[29] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
“Eraser: A dynamic data race detector for multithreaded programs,”
ACM Trans. Comput. Syst., vol. 15, no. 4, 1997.

[30] Y. Yu, T. Rodeheffer, and W. Chen, “Racetrack: efficient detection of
data race conditions via adaptive tracking,” in SOSP, 2005.

[31] M. D. Bond, K. E. Coons, and K. S. McKinley, “Pacer: proportional
detection of data races,” in PLDI, 2010.

[32] C. Flanagan and S. N. Freund, “Atomizer: a dynamic atomicity checker
for multithreaded programs,” in POPL, 2004, pp. 256–267.

[33] S. Lu, J. Tucek, F. Qin, and Y. Zhou, “AVIO: detecting atomicity
violations via access interleaving invariants,” in ASPLOS, 2006.

[34] M. Xu, R. Bodı́k, and M. D. Hill, “A serializability violation detector
for shared-memory server programs,” in PLDI, 2005.

[35] Q. Gao, W. Zhang, Z. Chen, M. Zheng, and F. Qin, “2ndstrike: toward
manifesting hidden concurrency typestate bugs,” in ASPLOS, 2011.

[36] B. Lucia and L. Ceze, “Finding concurrency bugs with context-aware
communication graphs,” in MICRO, 2009.

[37] S. Park, R. W. Vuduc, and M. J. Harrold, “Falcon: Fault localization in
concurrent programs,” in ICSE, 2010.

[38] D. Engler and K. Ashcraft, “Racerx: effective, static detection of race
conditions and deadlocks,” in SOSP, 2003.

[39] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata, “Extended static checking for java,” in PLDI, 2002.

[40] D. H. Ahn, B. R. de Supinski, I. Laguna, G. L. Lee, B. Liblit, B. P.
Miller, and M. Schulz, “Scalable temporal order analysis for large scale
debugging,” in Supercomputing, 2009.

[41] D. C. Arnold, D. H. Ahn, B. R. de Supinski, G. Lee, B. P. Miller, and
M. Schulz, “Stack trace analysis for large scale debugging,” in IPDPS,
2007.

[42] S. M. Balle, B. R. Brett, C.-P. Chen, and D. LaFrance-Linden, “Extend-
ing a traditional debugger to debug massively parallel applications,” J.

Parallel Distrib. Comput., vol. 64, no. 5, 2004.
[43] Etnus, LLC., “TotalView,” http://www.etnus.com/TotalView.
[44] S. S. Lumetta and D. E. Culler, “The mantis parallel debugger,” in SPDT,

1996.
[45] A. Vo, S. Aananthakrishnan, G. Gopalakrishnan, B. R. de Supinski,

M. Schulz, and G. Bronevetsky, “A scalable and distributed dynamic
formal verifier for mpi programs,” in Supercomputing, 2010.

[46] F. Gioachin, G. Zheng, and L. V. Kalé, “Debugging large scale appli-
cations in a virtualized environment,” in LCPC, 2011.

[47] C. Falzone, A. Chan, E. Lusk, and W. Gropp, “A portable method for
finding user errors in the usage of mpi collective operations,” IJHPCA,
vol. 21, no. 2, pp. 155–165, 2007.

[48] T. Hilbrich, B. R. de Supinski, M. Schulz, and M. S. Müller, “A graph
based approach for mpi deadlock detection,” in ICS, 2009.

[49] B. Krammera, K. Bidmona, M. S. Mullera, and M. M. Rescha, “Marmot:
An mpi analysis and checking tool,” in PARCO, 2003.

[50] G. Luecke, H. Chen, J. Coyle, J. Hoekstra, M. Kraeva, and Y. Zou,
“MPI-CHECK: a tool for checking Fortran 90 MPI programs,” Concurr.
Comput. Pract. Exp., vol. 15, 2003.

[51] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthi-
tacharoen, “Performance debugging for distributed systems of black
boxes,” in SOSP, 2003.

[52] G. Bronevetsky, I. Laguna, S. Bagchi, B. R. de Supinski, D. H. Ahn,
and M. Schulz, “Automaded: Automata-based debugging for dissimilar
parallel tasks,” in DSN, Jun 2010.

[53] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, “Pinpoint:
Problem determination in large, dynamic internet services,” in DSN,
2002.

[54] K. L. Karavanic and B. P. Miller, “Improving online performance
diagnosis by the use of historical performance data,” in Supercomputing,
1999.

[55] Z. Lan, Z. Zheng, and Y. Li, “Toward automated anomaly identification
in large-scale systems,” TPDS, vol. 21, pp. 174–187, 2010.

[56] N. Maruyama and S. Matsuoka, “Model-based fault localization in large-
scale computing systems,” in IPDPS, Apr 2008.

[57] C. Yuan, N. Lao, J.-R. Wen, J. Li, Z. Zhang, Y.-M. Wang, and W.-Y.
Ma, “Automated known problem diagnosis with event traces,” SIGOPS

Oper. Syst. Rev., vol. 40, no. 4, 2006.
[58] L. Yang, C. Liu, J. M. Schopf, and I. Foster, “Anomaly detection and

diagnosis in grid environments,” in SC, 2007.
[59] S. Park, R. W. Vuduc, and M. J. Harrold, “extscFalcon: Fault localization

for concurrent programs,” in Proc. ACM/IEEE Int’l. Conf. Software Eng.,
May 2010.

[60] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, pp. 558–565, July 1978.

[61] R. Hastings and B. Joyce, “Purify: Fast detection of memory leaks and
access errors,” in Winter USENIX Conference, 1992.

[62] Z. Chen, Q. Gao, W. Zhang, and F. Qin, “Flowchecker: Detecting bugs
in mpi libraries via message flow checking,” in Supercomputing, 2010.

[63] Ohio Supercomputer Center, http://www.osc.edu.
[64] P. Zhou, W. Liu, F. Long, S. Lu, F. Qin, Y. Zhou, S. Midkiff, and

J. Torrellas, “AccMon: Automatially detecting memory-related bugs via
program counter-based invariants,” in MICRO, 2004.

