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Abstract—Server parameter tuning in virtualized data centers
is crucial to performance and availability of hosted Internet appli-
cations. It is challenging due to high dynamics and burstiness of
workloads, multi-tier service architecture, and virtualized server
infrastructure. In this paper, we investigate automated and agile
server parameter tuning for maximizing effective throughput
of multi-tier Internet applications. A recent study proposed a
reinforcement learning based server parameter tuning approach
for minimizing average response time of multi-tier applications.
Reinforcement learning is a decision making process determining
the parameter tuning direction based on trial-and-error, instead
of quantitative values for agile parameter tuning. It relies on a
predefined adjustment value for each tuning action. However it is
nontrivial or even infeasible to find an optimal value under highly
dynamic and bursty workloads. We design a neural fuzzy control
based approach that combines the strengths of fast online learn-
ing and self-adaptiveness of neural networks and fuzzy control.
Due to the model independence, it is robust to highly dynamic and
bursty workloads. It is agile in server parameter tuning due to its
quantitative control outputs. We implement the new approach on
a testbed of virtualized HP ProLiant blade servers hosting RUBiS
benchmark applications. Experimental results demonstrate that
the new approach significantly outperforms the reinforcement
learning based approach for both improving effective system
throughput and minimizing average response time.

I. INTRODUCTION

Internet server applications have many configurable parame-

ters. In Apache, a popular web server has important parameters

such as MaxClients, KeepAliveTimeout, MaxSpareServers and

MinSpareServers that control server concurrency level, net-

work link alive time, and worker process generating. These

parameters are very important to the performance of server

applications and to the resource utilization of the underlying

computer system. However, server parameter tuning is a very

complex task that highly relies on an administrator’s experi-

ences and understanding of the server system. An improper

configuration often leads serious consequences. According to

the study [19], in average more than 50% of service failures

is due to the misconfiguration. In some particular scenarios,

misconfigurations caused almost 100% of service failures.

In modern data centers, user-perceived performance is the

result of complex interaction of very complex workloads in

a very complex underlying server system [16], [17]. The

complexities are due to high dynamics and burstiness of

Internet workloads, multi-tier Internet service architecture, and

virtualized server infrastructure. Recent studies [16], [17], [23]

have observed significantly dynamic workloads of Internet

applications that fluctuate over multiple time scales, which

can have a significant impact on the processing and power

demands imposed on data center servers. The burstiness in

incoming requests in a server system can lead to significant

server overload and dramatically degradation of server per-

formance [16]. In the worst case, bursty workload can cause

service unavailability.

In today’s popular multi-tier Internet service architecture, a

set of servers are divided by their functionality like a pipeline.

Servers in each tier use the functionality provided by their

successors and provide functionality to their predecessors.

Incoming workloads are often unequally distributed across dif-

ferent tiers. Some tiers may run in the saturated or overloaded

state while others are under-loaded. Highly dynamic work-

loads will also result in the bottleneck shifting across tiers [5].

The inter-tier and intra-tier performance dependences further

complicate the configuration of a multi-tier server system. The

complexities and challenges demand for automated and agile

server parameter tuning.

There are a few recent studies focusing on automated server

parameter tuning with reinforcement learning for multi-tier

Internet applications [2], [21], [29]. The studies demonstrated

that the reinforcement learning based approaches were able to

minimize the average response time of a multi-tier application

under stationary workloads. There are two major limitations.

First, reinforcement learning is a decision making process

for the tuning direction. It does not generate a quantitative

result of the server parameter value change. It needs a pre-

defined adjustment value for each tuning action. However,

it is nontrivial or even infeasible to find an optimal value

for each tuning decision. Second, those approaches were

executed under stationary workloads. The approaches may not

be effective and agile for automated server parameter tuning

under highly dynamic and bursty workloads.

In the face of the challenges of highly dynamic and bursty

workloads, parameter dependences, and various application

characteristics, we design a neural fuzzy control that integrates

the strengths of self-constructing online learning of neural

networks and fast tuning of fuzzy control. The resulted ap-

proach is model-independent, robust and agile for automated

server parameter tuning under highly dynamic and bursty

workloads in virtualized data centers. We use the new approach

for improving both the effective system throughput and the

average response time of multi-tier Internet applications. We
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implement the new approach in a testbed of virtualized HP

ProLiant blade system. Like others [2], [10], [11], [21], we

adopt RUBiS, an e-transactional benchmark application [1],

[22] for performance evaluation and use three different work-

load characteristics: stationary, bursty, and step-change.

We conduct extensive experiments to compare the neural

fuzzy control based and reinforcement learning based ap-

proaches in automated server parameter tuning for improving

performance of multi-tier Internet applications. Results find

that the neural fuzzy control based automated configuration ap-

proach can achieve more than 80% higher effective throughput

than that due to default system configurations. It outperforms

the reinforcement learning based automated configuration ap-

proach by about average 10% to 20% in terms of effective

system throughput. The improvement is mainly due to the

agility of the new approach in finding ideal server parameter

configurations. Importantly, under highly dynamic step-change

workloads, the reinforcement learning based approach may

not converge in time in finding effective server parameter

configurations. It results in significant performance penalties.

Its achieved effective system throughput is just about 40% of

that due to the neural fuzzy control based approach. And, its

resulted average response time is about 35% higher that that

due to the neural fuzzy control based approach.

Our contributions lie in the design and development of

an automated and agile server parameter tuning approach

that can significantly improve the performance of complex

multi-tier Internet applications, the use of effective system

throughput as the primary performance metric, the analysis of

the weaknesses of reinforcement learning for server parameter

tuning, and the implementation of the proposed approach in a

virtualized data center.

In the following, Section II discusses related work. Sec-

tion III describes the automated server parameter tuning prob-

lem. Section IV gives the neural fuzzy control based and rein-

forcement learning based approaches. Section V introduces the

testbed implementation. Section VI presents the experimental

results and analysis. Section VII concludes the paper.

II. RELATED WORK

Autonomic computing aims to reduce the degree of hu-

man involvement in the management of complex computing

systems [6]. Recently, autonomic computing in modern data

centers has become a very active and important research

area [2], [6], [8], [15], [18], [20], [21], [23], [24], [27],

[29]. Those studies focused on capacity planning for virtual

machines (VMs) co-location and distribution across a data

center [8], [15], [26], VM provisioning for applications [3],

[9], [10], [12], [24], [25], resource allocation in a VM [20],

[21], [7], and server parameter tuning [2], [29].

Automated server parameter tuning is one key but challeng-

ing research issue. There were early studies that explored au-

tomated server parameter tuning problem on Web servers [4],

[14], [28]. Those works studied how server application param-

eters can affect the user perceived performance and how to

automatically tuning those parameters. However, they focused

the automated server parameter tuning problem in one server

or one tier of servers. For example, Liu et al. focused on

improving online response time of an Apache web server by

tuning value of parameter MaxClients [14]. They applied rule-

based fuzzy control for parameter tuning. As the rule-based

fuzzy control is not model-independent, its pre-configured

rules will determine the actions of the fuzzy controller. To

create the rules, they modeled the application server using

queueing models. However, queueing theoretic approaches are

often not effective in modeling workloads of complex multi-

tier Internet applications due to the inter-tier dependences and

per-tier concurrency limit [5], [9].

A few recent studies focused on automated server parameter

tuning at multiple-tier servers [2], [21], [29]. A representative

approach was proposed in [2]. It used reinforcement learn-

ing for automated tuning of web-tier server parameters and

application-tier server parameters in a coordinated manner. It

aimed to minimize the average response time of a multi-tier

online web application. Furthermore, it employed an online

monitoring based Q-table switching mechanism, which can

improve the adaptiveness of the tuning approach regarding var-

ious workload characteristics such as the TPC-W benchmark’s

ordering, shopping and browsing workload mixes. The work

provided insights on the automated parameter tuning problem

in complex multi-tier Internet systems. However, it did not

consider the impact of highly dynamic and bursty workloads

on the agility of automated parameter tuning.

Reinforcement learning itself is a decision making process.

It only decides what tuning direction to be applied to a

server parameter, i.e., increasing, decreasing or hold. It does

not generate a quantitative result of the server parameter

value change. In practice, a reinforcement learning based

approach relies on a predefined adjustment value for each

tuning decision. Finding a good predefined value is crucial to

the performance of a reinforcement learning based approach.

However, under highly dynamic and bursty workloads, finding

such a good predefined value is nontrivial or even infeasible.

To address the weaknesses of reinforcement learning based

approach, we integrate the strengths of fast online learning

and self-adaptiveness of neural networks and fuzzy control.

We promote the use of effective system throughput, a key

performance metric to online web applications, in addition

to the average response time. Experimental results based

on the implementation demonstrate significant performance

improvement due to the new automated and agile approach.

III. AUTOMATED SERVER PARAMETER TUNING

A. Challenges and Issues

Highly dynamic and bursty workloads require an agile

and robust approach for automated server parameter tuning.

Application level performance heavily depends on the charac-

teristics of the workload. Server parameters must be tuned to

match current system workloads. However, Internet workloads

are highly dynamic and the workload characteristics keep

changing. Online matching the server parameter configuration

to the changes is a very challenging problem.
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Fig. 1. Parameter dependences in a multi-tier server architecture.

There are different parameter dependences of servers in a

multi-tier application, which require a coordinated approach

for automated server parameter tuning across all tiers.

• Inter-tier parameter dependency: In a multi-tier appli-

cation, each tier utilizes the functionality provided by

its successor tier. Performance variation in one tier will

affect user-perceived end-to-end system performance. As

Figure 1 shows, the concurrency capacity of Apache web

server, Tomcat application server, and MYSQL database

server are controlled by parameters MaxClients, Max-
Threads, max user connection, and thread concurrency,

respectively. These parameters need to be configured

carefully to match the workload distribution on all server

tiers. If we increase the concurrency capacity of web tier

and leave no changes to other tiers, the web tier will try to

process more user requests concurrently, which will result

in more requests to the successor tiers. This will increase

the response time at the successor tiers or even overload

them, resulting in end-to-end performance degradation or

even service outage.

• Intra-tier parameter dependency: There are intra-tier de-

pendences of server parameters at each tier. For example,

at the web tier, parameter MaxSpareServers must have a

greater value than parameter MinSpareServers. It is also

the case at the application tier between parameters maxS-
pareThreads and minSpareThreads. At the database tier,

the intra-tier dependence is more complicated. Parame-

ter max user connections has inter-tier dependency with

parameter MaxThreads at its predecessor tier, but also

intra-tier dependency with parameters max connections
and thread concurrency at the same tier.

Dynamically changing application characteristics require a

model-independent approach. The capacity of a web system

is constrained by the underlying hardware resources. But the

amount of hardware resources does not always provide the

same capacity of a web system because it also depends on what

application it hosts. For example, a web application based on

dynamic pages needs more resources than one based on static

pages. Performing server parameter tuning must consider the

differences among various web applications.

B. Effective System Throughput

We propose to maximize the effective system throughput via

automated server parameter tuning. Effective system through-

put is defined as the number of requests that meet the service

level agreement (SLA) requirement on the response time.

While the average response time of requests is important

to individual users, the effective system throughput is more

important to the application provider in clouds [18].

We use a SLA with two response time bounds, hard

response time and soft response time. The absolute effective
throughput is the number of requests that are processed within

the SLA time bounds. If a request is processed between the

hard and soft response time bounds, its effective throughput

is measured according to a utility decaying function. Figure 2

depicts three decaying functions that describe various utility of

request response times. The linear decaying function implies

moderate penalty on requests that exceeded the soft response

time bound, the exponential decaying function imposes higher

penalty on requests that exceeded the soft response time bound

and the logarithmic decaying function is more tolerant to

requests that exceeded the soft response time bound. The rel-
ative effective throughput is the ratio of the absolute effective

throughput to the total number of incoming requests.

The work in [2] aimed to minimize the average response

time of all requests. However, minimizing the average response

time of requests does not necessarily maximizing the effective

throughput of the system. To minimize the average response

time, server parameter configurations will be tuned to devote

more resources processing each request, which in turn would

make resource scarce when needed.

IV. APPROACHES WITH LEARNING AND CONTROL

A. An Enriched Neural Fuzzy Control based Approach

1) Architecture and Features: Due to the challenges of

highly dynamic and bursty workloads, inter-tier and intra-tier

parameter dependences, and various application characteris-

tics, we design an enriched neural fuzzy control that integrates

the strengths of self-constructing online learning of neural

networks and fast tuning of fuzzy control.

A general rule-base fuzzy control consists of a fuzzification

stage, a rule-base stage, and a defuzzification stage. The

fuzzification stage maps numerical inputs into linguistic fuzzy

values by appropriate membership functions. The rule-base

stage invokes fuzzy logic rules and combines the results of

those invoked rules in a linguistic output value. Finally, the

defuzzification stage converts the output value back into a

numerical output value for the controlled system.

We integrate a neural network with the general rule-

base fuzzy control. This enables the integrated controller to

automatically construct its neuron structures and adapt its

parameters. Figure 3 shows the block diagram and control

flows of the controller. The task of controller is to adjust

server configurable parameters on a multi-tier system in order

to improve the performance metric eTd such as the effective

system throughput or the average response time of requests.
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Fig. 2. Three decaying functions for various utility of request response times.

Fig. 3. The block diagram of the neural fuzzy control.

The neural fuzzy controller has two inputs: error notated as

e(k) and error changing rate noted as Δe(k). We define error

as the difference between the achieved performance and the

tuning objective notated as eTref during the kth tuning period.

That is, e(k) = eTd−eTref . The output is the parameter value

ei(k) for the next tuning period. To support coordinated server

parameter tuning for multi-tier applications, we enrich the

neural fuzzy controller with an online monitoring component

that keeps monitoring real-time workload distributions at each

tier. Based on the monitoring data, the controller updates

the server parameter values at all tiers in proportion to their

workload distributions.

The neural fuzzy control has following features:

• Model-independence: Fuzzy control is suitable for non-

linear, time-variant, and model-incomplete systems. The

workload characteristic changes will not affect the func-

tionality of automated server parameter tuning.

• Self-construction: The structure of the neural fuzzy

controller is automatically generated. The neurons and

weights are dynamically changed during the server pa-

rameter tuning process.

• Robustness: Because the self-construction and model-

independence, the neural fuzzy controller can adjust itself

to match dynamic workload variations. This results in the

robustness of controller.

• Cross-tier coordination: The neural fuzzy controller treats

the multi-tier system as whole. According to parameters

inter-tier dependency and intra-dependency, each tuning

will be applied to related parameters at each tier at once.

Fig. 4. Schematic diagram of the neural fuzzy controller.

2) Design of the Neural Fuzzy Controller: The design of

the neural fuzzy controller is shown in Figure 4. We develop

a five-layer neural network. The interconnected neurons play

the role of membership functions and the rule base as in a

traditional fuzzy control. However, unlike a traditional fuzzy

controller, the neural fuzzy controller has multiple outputs, one

output for one tier in a multi-tier system. Figure 4 shows a

two-tier example. The neural fuzzy controller is initialized in a

neural network with eight neurons. This minimal structure only

contains two membership functions and one rule. More mem-

bership functions and rules will be dynamically constructed

and adapted as the neural network grows and learns.

The design details of each layer are as follows:

Layer 1: This is the input layer. At this layer, each neuron is

associated with one input variable. There are two neurons for

inputs e(k) and Δe(k), respectively. The activation functions

of these two neurons pass the inputs to the next layer for

fuzzification.

Layer 2: This is the fuzzification layer. At this layer, each

neuron represents a linguistic term. The activation functions

of neurons determine how to transform input values into

linguistic terms. We set the activation functions using a
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Gaussian function Eq. (1). We cluster the linguistics terms

into two groups, i.e., error e(k) and change in error Δe(k).
The Gaussian function uses the average of inputs mji and the

standard deviation of inputs σji to determine the jth linguistic

term.

uAj
i
= exp (− (xi −mji)

2

σ2
ji

) (1)

Layer 3: This is the rule-base layer. At this layer, each neu-

ron represents one fuzzy logic rule. The activation functions of

neurons are given by Eq. (2). The output of a layer 3 neuron

is the result of rth fuzzy logic rule.

ur =
n∏

i=1

uAj
i

(2)

Layer 4: This layer is the defuzzification layer. It converts

results of fuzzy logic rules from layer 3 into a numeric

parameter value. There is only one neuron in this layer. It

sums all results of fuzzy logic rules from Layer 3 and obtains

the numeric parameter value. The wr in function Eq. (3) is the

link weight of rth rule. It is adapted from the online learning

process.

y =
M∑

r=1

wr · ur (3)

Layer 5: This is the output layer. It converts the outcome

of defuzzification layer into the server parameter value mp(k)
for each tier. In the implementation, there are two concurrency

parameters for web and application tiers. Thus, there are

two neurons in layer 5 generating the parameter values. The

activation function of each node is given by Eq. (4). The

weight rp is determined by the workload distribution that was

obtained through the online monitoring.

mp(k) = y · rp p = 1, 2. (4)

We use a threshold to determine when the neural fuzzy con-

troller stops the server parameter tuning process. A complete

tuning iteration consists of two steps. First, the neural fuzzy

controller generates server parameter values by forwardly

feeding inputs through the five layers. Second, after new

parameter values are applied to the multi-tier system, the

neural fuzzy control evaluates performance changes. If the new

server parameters cause performance improvement, there is

no change on the parameters and weights as they are making

the positive effect. But if the new server parameters cause

performance degradation, the neural fuzzy control will amend

its parameters and weights using online learning. After several

tuning iterations, the neural fuzzy control stops parameter

tuning when either error e(k) or change in error Δe(k) is less

than the threshold. In our implementation, we set the threshold

value to be 10%, same as that in work [2].

3) Learning Process of Neural Fuzzy Controller: Initially,

the neural fuzzy controller only has a minimal skeleton struc-

ture. Then, the online learning process will add more fuzzifi-

cation neurons and rule neurons, and dynamically refine the

parameters and weights in the neural network. We achieve this

by two processes: structure learning and parameter learning.

1. Structure Learning: The structure learning process de-

cides when and how to add new membership function nodes

(layer 2) and associated rule nodes (layer 3). We use Gaussian

function (1) as the membership function. It has a certain

recognition range of the input values. The range is determined

by the mean and the standard deviation. If the input value

has been recognized by a membership function, the output

value of the Gaussian function is relatively high, which is

notated as high firing strength. When a new input value comes

in, the algorithm checks it with all pre-existing membership

functions. If all get low firing strength, it means the value has

not been recognized by the current neural network. Therefore,

the network grows and new membership function nodes are

added. We assign the mean of new node mnew
i to input xi and

the standard deviation σnew
i to a predefined value.

The newly generated membership function nodes could

be similar to an existing one. To eliminate it, we perform

a similarity check before adopting the membership function

nodes as a part of neural network. The similarity measurement

method was originally proposed in [13]. Suppose uA(x) and

ub(x) are two Gaussian functions and their means and standard

deviations are mA, mB , σA, σB , respectively. The similarity

of two Gaussian functions are measured as:

E(A,B) =
|A ∩B|

σA
√
π + σB

√
π − |A ∩B| . (5)

Assuming mA ≥ mB ,

|A ∩B| = 1

2

h2(mB −mA +
√
π(σA + σB))√

π(σA + σB)

+
1

2

h2(mB −mA +
√
π(σA − σB))√

π(σB − σA)

+
1

2

h2(mB −mA −
√
π(σA − σB))√

π(σA − σB)

(6)

where h(x) = max(0, x). In the case of scenario σA = σB ,

|A
⋂

B|) = 1

2

h2(mB −mA +
√
π(σA + σB))√

π(σA + σB)
. (7)

Only when the measured similarity is greater than a pre-

defined threshold value, the new membership function node

is added to the neural network. Since the newly generated

membership function node is associated with a new fuzzy logic

rule, we add a new node in layer 3 with the predefined output

link weight.

2. Parameter Learning process: The parameter learning

process is to refine the parameters and weights in the neural

fuzzy control. This improves the performance of the neural

fuzzy control under highly dynamic and bursty workloads.

The parameter learning trains the neural network using back-

propagation algorithm. The objective of the neural fuzzy

control is equivalent to minimizing the function (8):

E =
1

2
(eTref − eTd)

2 =
1

2
(e(k))2 (8)
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where eTref and eTd are the objective and measured value of

the performance metric, respectively. The learning algorithm

recursively obtains a gradient vector in which each element

is defined as the derivative of the function with respect to a

parameter of the neural network. This is done by the chain rule.

The method is referred to as the back-propagation learning

rule, because the gradient vector is calculated in the direction

opposite to the flow of the output of each node. The back-

propagation parameter learning algorithm is described in the

following.

Layer 5: The weights r1 and r2 are updated with moni-

tored request arrival rates ΔR1, ΔR2. The back-propagation

algorithm calculates output of layer 4 as:

y =
2∑

p=1

mp(k) · rp. (9)

Layer 4: The error term to be propagated is calculated as

δ(4) = −∂E

∂y
= [− ∂E

∂e(k)

∂e(k)

∂y
] = [− ∂E

∂e(k)

∂e(k)

∂eTd

∂eTd

∂y
].

(10)

The link weight wj is updated by:

Δwr = −ηw ∂E

∂wr
= −ηw ∂E

∂y

∂y

∂wr
= ηwδ

(4)ur (11)

where ηw is the learning rate of the link weight. The link

weights in layer 4 are updated by function Eq. (12).

wr(k + 1) = wr(k) + Δwr (12)

Layer 3: At layer 3, the error term is calculated and

propagated as described by function Eq. (13).

δ(3)r = − ∂E

∂ur
= [−∂E

∂y

∂y

∂ur
] = δ(4)wr (13)

Layer 2: The error term is calculated by

δ
(2)
ji = − ∂E

∂uAji

= − ∂E

∂ur

∂ur

∂uAji

= δ(3)r ur. (14)

The updating function for mji is

Δmji = −ηm ∂E

∂mji
= 2ηmδ

(2)
ji

(xi −mji)

(σji)2
. (15)

The updating function for σji is

Δmji = −ησ ∂E

∂mji
= 2etaσδ

(2)
ji

(xi −mji)
2

(σji)3
(16)

where ηm and ησ are the learning-rate parameters of the mean

and the standard deviation of the Gaussian function. The mean

and standard deviation of the membership functions at layer 2

are updated using functions Eq. (17) and Eq. (18), respectively.

mji(k + 1) = mji(k) + Δmji (17)

σji(k + 1) = σji(k) + Δσji (18)

B. A Reinforcement Learning based Approach

Reinforcement learning is a process of learning through

interactions with an external environment. Recently people

have adopted it as a methodology for resource management

in autonomic computing [2], [21]. The server configuration

tuning can be formulated as a finite Markov decision process.

It consists of a set of states and several actions for each

state. During the transition of each state, the learning agent

perceives a reward defined by a function R = E[rt+1|St =
s, at = a, st+1 = s′]. The goal of the reinforcement learning

agent is to develop the policy π : S− > A, which can

maximize the cumulative rewards through iterative trial-and-

error interactions.

In the context of applying reinforcement learning for max-

imizing the effective system throughput of multi-tier applica-

tions, we define the state space S and action set A as follow:

a) State Space: For the server parameter tuning, we

define the state space S as the set of possible parameter values

for each tier. A predefined adjustment value will determine

what states will be in the state space. Therefore, the possible

configurations are limited by the adjustment value. We repre-

sent the state space as a collection of state vectors:

si = (P1,tier1, P2,tier1, . . . , P1,tier2, . . . , Pn,tierk). (19)

b) Action Set: We define three tuning actions for each

parameter: keep, increase, and decrease. The potential action

for each state ai of one parameter is represented as a vector

Pn,tierk(1, 0, 0). Each element in the action vector determines

if one tuning action is taken or not-taken. The action set of

one state is described as:

aincresei = P1,tier1(1, 0, 0), . . . , Pn,tierk(0, 0, 0). (20)

c) Q Value Learning: The Q value determines the action

choice on each state. To learn the Q value, the learning agent

should continuously update its estimation based on the state

transition and reward what it receives. We use a temporal

difference agent to implement the Q value learning because

it is model independent and it updates Q values at each time

step based on estimation. Therefore, the average Q value of

an action a on state s, denoted as Q(s, a), is refined by the

function

Qt(st, at) = Qt(st, at) + a ∗ [rt+1 + γQt+1(st+1, at+1)

−Qt(st, at)]
(21)

in which s is the learning rate that facilitates the convergence

to the true Q values in the presence of noisy or stochastic

rewards and state transitions, and γ is the discount rate to

guarantee the accumulated reward convergence in continuing

tasks. Because the basic reinforcement learning would take

many trial-and-error iterations to converge, we use training

data that is collected offline to initialize the Q value table.

The training can reduce the iterations needed for reinforcement

learning to converge.
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Fig. 5. Highly dynamic and bursty RUBiS workloads used in the experiments.

V. SYSTEM IMPLEMENTATION

A. The Testbed

We implement a multi-tier web system in a university

prototype data center. It consists of three racks of HP ProLiant

BL460C G6 blade servers. Each server is equipped with 2-way

Intel quad-core Xeon E5530 CPUs and 32GB memory. The

blade servers are connected with 10 Gbps Ethernet. VMware

vSphere 4.1 is used to for server virtualization.

We construct the web system with three VMs, Apache

web server in the first, PHP application server in the second,

and MYSQL database server in the third. We configure the

web server and applications server with 2 VCPUs and 256

MB memory each. We set the CPU usage cap to 200 MHz

for stationary workloads and 400 MHz for bursty and step-

change workloads. We allocate another three VMs as clients

to emulate different workloads. Both the web system and client

VMs run Ubuntu server 10.04 with Linux kernel 2.6.35.

As many others in [2], [21], [11], [10], We use RUBiS [1],

[22] e-transationcal benchmark application for multi-tier In-

ternet applications. RUBiS provides a web auction application

modeled in a similar way of ebay.com and an emulation client

used as the workload benchmark. RUBiS characterizes the

workload into three categories, seller, visitor, and buyer. They

have different combinations of selling, browsing, and bidding

requests. RUBiS client emulates user requests at different

concurrent levels. To evaluate two automated server param-

eter tuning approaches, we use multiple clients to emulate

the dynamics in Internet workloads. To provide the runtime

performance monitoring, we modify the original RUBiS client

to support reporting performance statistics of requests. Each

parameter tuning iteration is executed every 30 seconds.

B. Workloads

We use three workloads with different densities: a stationary

workload, a bursty workload, and a step-change workload. The

stationary workload is generated to emulate 200 concurrent

users. For the bursty workload, we implement a workload

generator for RUBiS benchmark using the approach proposed

in [17]. Figure 5(a) shows the bursty workload generated

by changing the think time of each user. This workload

emulates bursty workload in a 1200-seconds time span from

200 concurrent users with the average think time of 7 seconds.

TABLE I
DEFAULT VENDOR CONFIGURATION OF PARAMETERS.

Parameter Value Range Default Value
MaxClients [50,600] 150

KeepAliveTimeout [1,21] 15
MinSpareServers [5,85] 5
MaxSpareServers [15,95] 15

We record the trace of the bursty workload and reuse it for

each experiment under bursty workloads.

To examine the adaptiveness of the neural fuzzy controller

under highly dynamic workloads, we design a step-change

workload that contains dynamics in both number of users

and workload characteristics. Figure 5(b) shows the workload.

Each time when the number of users changes, the workload

mix also changes. At the 300th second, the workload mix

changes from browsing to selling. At the 600th second, the

workload mix changes from selling to bidding.

C. Performance Metrics

We conduct experiments using the effective throughput of

the system and the average response time of requests as perfor-

mance metrics. We use both the absolute effective throughput

and the relative effective throughput. To demonstrate the

agility of the two different automated server parameter tuning

approaches, we compare their converging times. The converg-

ing time is the number of iterations before the configurable

parameters reach their stable states.

VI. PERFORMANCE EVALUATION

A. Impact of Automated Tuning on Effective Throughput

We compare two automated server parameter tuning ap-

proaches, the neural fuzzy control based and the reinforcement

learning based, with the default configuration provided by

the vendor of servers. The default vendor configuration is

shown in Table I. For the neural fuzzy control, we feed

the measured effective system throughput directly into the

control. The control starts with the default values of the server

parameters. It generates new parameter values to reconfigure

the server until the effective system throughput change meets

the threshold-based target. The reinforcement learning based

approach followed the same process. The default configuration

remains as it is during the whole process.
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Fig. 6. Performance of two automated server parameter tuning approaches compared to that of the default vendor configuration.

Figure 6 shows the relative effective throughput achieved

by the three approaches under the stationary workload, bursty

workload and step-change workload. Experimental results

show that both the neural fuzzy control based and the rein-

forcement learning based server parameter tuning approaches

can significantly improve the relative effective throughput.

Under the stationary, bursty, and step-change workloads, the

neural fuzzy control based approach achieves 67.5%, 83.3%,

and 85.9% higher relative effective throughput than the default

configuration does. The reinforcement learning based approach

achieves 45.8%, 71.1%, and 61.3% higher relative effective

throughput than the default configuration does.
Figure 7 shows the absolute effective throughput and the

relative effective throughput due to the three approaches. Both

automated parameter tuning approaches significantly improve

the achieved performance due to the default configuration.

The results demonstrate the significance of automated param-

eter tuning in performance improvement of complex multi-

tier applications. Under the stationary and the step-change

workloads, we observe that there are significant differences in

achieved performance between the two automated approaches.
The absolute effective throughput is the number of re-

quests that were responded within the time bounds. In RUBiS

benchmark, the request generation rate is affected by the

responsiveness of requests. That is, a new request will only be

generated until the response of the former request belonging

to the same session is returned. Thus, high response time

will slow down the workload generation rate, which would

result in fewer requests incoming to the system. When using

different approaches, the number of total incoming requests

indeed could be different. In this case, the absolute effective

throughput cannot truly reflect the performance of different

approaches. Therefore, in the following, we use the relative

effective throughput as the major performance metric.

B. Comparison of Two Automated Tuning Approaches
In this section, we focus on the performance difference

between the neural fuzzy control based and the reinforcement

learning based approaches for improving the effective system

throughput and minimizing the average response time. We

also compare their converging times during the parameter

tuning process. For the step-change workload, we compare

their converging times for each workload stage separately.
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Fig. 7. Performance comparison of three parameter configuration approaches.

1) Improving the Effective Throughput: Figure 8 shows the

relative effective throughput of the neural fuzzy control and

the reinforcement learning based approaches. Experimental

results show that the neural fuzzy control based approach

achieves on average 14.8%, 7.1%, and 19.5% higher relative

effective throughput than the reinforcement learning based

approach under stationary, bursty, and step-change workloads,

respectively.

Table II shows the comparison of the converging time due

to the two automated tuning approaches. Under the stationary

workload, the neural fuzzy control based approach converges

3 times faster than the reinforcement learning based approach.

Under the bursty workload, the neural fuzzy control based ap-

proach converges about 2.9 times faster than the reinforcement

learning based approach.

We note that performance variations during the server
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Fig. 8. Relative effective throughput of the neural fuzzy control and the reinforcement learning based server parameter tuning approaches.

parameter tuning process are significantly different due to the

two automated approaches. As Figures 8(a) and 8(b) show, the

performance due to the reinforcement learning based approach

varies significantly during the initial parameter tuning process

(the first 400 seconds). That results in significantly lower

effective throughput compared to that due to the neural fuzzy

control based approach. There are two major reasons that the

reinforcement learning based approach suffers performance

penalty from high variations. First, a parameter value change

is upper bounded by the pre-defined adjustment value. This

limits the capability of the approach in agilely adjusting sever

parameter values. Second, in reinforcement learning, the Q-

table is initialized by the offline training data. The training

outcome may not accurately describe the complex interaction

between parameter tuning and performance outcome.

Figure 9 shows the neural fuzzy control based approach

achieves better average relative effective throughput than the

reinforcement learning based approach. Under the step-change

workload, the improvement is particularly significant. The

neural fuzzy control based approach doubles the achieved

relative effective throughput. This is due to the fact that the

approach can agilely tune server parameters for performance

improvement. Table II shows the convergence time of two

automated parameter tuning approaches. Note that at the

bidding stage, the reinforcement learning based approach does

not converge during the experimental period (600th second

to 900th second). This results in significantly lower relative

effective throughput compared that due to the neural fuzzy

control based approach. As Figure 8(c) shows, the reinforce-

ment learning based approach suffers from high variations in

the system stability due to the slow convergence under the

highly dynamic step-change workload.

Table III gives the standard deviations of the achieved rela-

tive effective throughput due to the two automated parameter

tuning approaches. Results show that compared to the rein-

forcement learning based approach, the neural fuzzy control

based approach achieves much better system stability under

various workloads. This is due to its fast online learning and

the use of a quantitative output value for each parameter tuning

iteration. Note that the improvement in system performance

stability is amortized by the long experimental time period

(1200 seconds).

TABLE II
CONVERGING TIME OF TWO AUTOMATED TUNING APPROACHES.

NFC RL
Stationary Workload 6 18

Bursty Workload 7 20
step-change

Workload - Browsing Stage
1 4

step-change
Workload - Selling Stage

5 8

step-change
Workload - Bidding Stage

7
10

(did not
converge)
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Fig. 9. Average relative effective throughput under the step-change workload.

2) Minimizing Average Response Time: Figure 10 shows

the average response time of the multi-tier application due

to the neural fuzzy control based approach and the rein-

forcement learning based approach. For the stationary and

bursty workloads, the achieved average response time of the

two automated approaches are close. Under the stationary

workload, both approaches are able to decrease the average

TABLE III
STANDARD DEVIATION OF THE EFFECTIVE THROUGHPUT.

NFC RL Difference
σ of RET under stationary workload 0.1391 0.2144 54.1%
σ of RET under bursty workload 0.1226 0.1819 48.4%
σ of RET under step-change

workload browsing stage
0.0219 0.0373 70.3%

σ of RET under step-change
workload selling stage

0.1145 0.1194 4.3%

σ of RET under step-change
workload bidding stage

0.1430 0.1805 26.2%
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Fig. 10. The average response time due to the two automated server parameter tuning approaches.

TABLE IV
STANDARD DEVIATION OF EFFECTIVE THROUGHPUT.

NFC RL Difference
σ of bursty workload 357.9 407.3 13.8%
σ of bursty workload 972.8 999.2 2.7%
σ of step-change

workload browsing stage
18.40 116.3 632.1%

σ of step-chang
workload selling stage

364.4 1519.3 416.9%

σ of step-chang
workload bidding stage

709.1 832.7 117.4%

response time below the predefined time bound. Note that

the bound is needed for the reinforcement learning approach

to generate the reward. Under the bursty workload, both

approaches cannot assure that the average response time below

the predefined time bound. But both maintain the average

response time close to the bound. The main difference between

the two approaches is the convergence time for minimizing

the average response time. Figure 11 shows that the neural

fuzzy control based approach converges much faster than the

reinforcement learning based approach.

Figure 12 shows the average response time comparison

between the two automated parameter tuning approaches. Un-

der the step-change workload, the neural fuzzy control based

approach achieves more than 30% lower average response time

than the reinforcement learning based approach does.

Figure 13 illustrates significant differences in the achieved

average response time by the neural fuzzy control based

approach and by the reinforcement learning based approach

during three stages of the step-change dynamic workload.

3) Analysis: The experiments have demonstrated that the

neural fuzzy control based approach outperforms the reinforce-

ment learning based approach for both maximizing the relative

effective throughput and minimizing average response time.

The differences in performance and agility are mainly due to

the weaknesses of reinforcement learning used for automated

server parameter tuning.

Essentially, reinforcement learning is a decision making

process. It does not directly generate the actual parameter

value for server parameter configuration. It needs a prede-

fined adjustment value for each parameter tuning iteration.

Experimental results show that during the server parameter
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tuning process, some configurations that the reinforcement

learning based approach chooses is not as effective as those

chosen by the neural fuzzy control based approach. This is

due to the fact that the predefined adjustment value by the

reinforcement learning based approach will limit the number

of states in its state space. This will make it possible that

some effective parameter configurations are not reachable by

the reinforcement learning based approach. On the other hand,

the neural fuzzy control based approach does not have such a

constraint on the reachable configurations.

At each iteration, the reinforcement learning based approach

can only move from one state to another one. Its converging

speed is dependent on the size of the state space. With the

same range of parameter tuning, the smaller the adjustment

value is, the larger the state space is, which often leads to

longer converging time. Finding a good adjustment value

for the reinforcement learning based approach is a difficult

problem. In contrast, the neural fuzzy control based approach

is designed to search all possible states and generate the ideal

parameter configuration value at runtime.

Moreover, the reinforcement learning based approach is

initialized by the training data and updated during the learning

process. During the server parameter tuning process, the

relation among workloads, parameters, and resulted perfor-

mance is very complex and non-linear. The training result

does not necessarily describe the correct interaction between

the performance and parameters. Therefore, the reinforcement

learning based approach can be misled by the training data.

C. Impact of Different Pre-defined Adjustment Values

For reinforcement learning, the choice of the pre-defined

adjustment value is very important. The value affects the

parameter tuning precision and the converging speed. It also

determines the parameter state space size. We study the impact

of different pre-defined adjustment values on the performance

of the reinforcement learning based approach under the bursty

workload. We vary the adjustment value from 10 to 120 to

build the parameter state space. We measure both the relative

effective throughput and the convergence time.

Figure 14 shows the impact of the pre-defined adjustment

value on the relative effective throughput and the convergence

time. For reference, the results due to the neural fuzzy control

based approach are included at the end of each plot. First,

the achieved relative effective throughput and the convergence

rate are a tradeoff when using different pre-defined adjustment

values. Note that the ideal value for the maximum effective

throughput is not the same as the ideal value for the smallest

convergence time. Second, a smaller adjustment value will

provide more states in the state space, which can provide

opportunities for the reinforcement learning based approach

to achieve better performance. But more states in the state

space also increase the number of iterations for converging.

From the results in Figure 14(a), we observe that when

the pre-defined adjustment value equals to 10, the reinforce-

ment learning based approach achieves its highest effective

throughput among all scenarios. However, it is still about 7%
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Fig. 14. Impact of pre-defined adjustment values on performance.

TABLE V
PERFORMANCE-CRITICAL SERVER PARAMETERS.

Parameter Value Range Step Change Size

MaxClients [50,600] 10
KeepAliveTimeout [1,21] 1
MinSpareServers [5,85] 2
MaxSpareServers [15,95] 2

lower that the effective throughput achieved by the neural

fuzzy control based approach. Meanwhile, Figure 14(b) shows

the convergence time of the reinforcement learning based

approach is 2.5 times of that due to the neural fuzzy control

based approach. When the pre-defined adjustment value is 60,

the number of iteration required by the reinforcement learning

based approach decreases to its minimum number 15, but it

is still 50% higher than that due to the neural fuzzy control

based approach. Under this scenario, the effective throughput

of the reinforcement learning based approach is 15% lower

than that due to the neural fuzzy control based approach.

D. Selection of Server Parameters for Tuning

There are many parameters in a server. In the perfor-

mance evaluation, we have highlighted the significant per-

formance impact due to automatically tuning the parameter

MaxClients. But we have also studied how tuning of other

parameters would affect the system performance.

We have conducted a series of experiments by tuning numer-

ous parameters that have been confirmed highly performance

relevant. Table V gives the ranges and step change sizes of

those server parameter values.

The experiment is done by step-by-step tuning of one

parameter while others maintain the default values under the

bursty workload. We use the relative effective throughput as
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TABLE VI
STANDARD DEVIATIONS FOR DIFFERENT PARAMETER.

KeepAlive
Timeout

MaxClients
MaxSpare

Servers
MinSpare
Servers

Standard
Deviation

0.036 0.108 0.028 0.033

the performance metric. We measure the impact of different

parameters on performance by the use of the standard devia-

tion of the relative effective throughput. Experimental results

in Table VI show that parameter MaxClients dominates the

performance impact.

VII. CONCLUSIONS

This paper tackles the important but challenging problem

of automated server parameter tuning in virtualized environ-

ments. We have proposed an automated and agile approach

that integrates the strengths of fast online learning and control

to maximize the effective system throughput of multi-tier

Internet applications. We have implemented the approach on

a testbed of virtualized HP ProLiant blade servers. Exper-

imental results based on multi-tier benchmark applications

have demonstrated that the proposed approach significantly

outperforms a reinforcement learning based approach for both

improving the effective throughput and minimizing the average

response time. We have analyzed the weaknesses of the

reinforcement learning based approach due to the use of a pre-

defined adjustment value and inaccurate training of Q-table.

Our developed neural fuzzy control based approach avoids

the weaknesses, providing the self-management capability for

automated and agile server parameter tuning under highly

dynamic and bursty workloads. It is also applicable to single-

tier server architecture.

Our future will be coordinate server parameter tuning with

VM capacity planning in Cloud-computing datacenters.

Acknowledgement

This research was supported in part by U.S. National Sci-

ence Foundation CAREER Award CNS-0844983. The authors

thank the NISSC for providing blade server equipments for

conducting the experiments.

REFERENCES

[1] C. Amza, A. Chanda, A. Cox, S. Elnikety, R. Gil, K. Rajamani,
W. Zwaenepoel, E. Cecchet, and J. Marguerite. Specification and
implementation of dynamic Web site benchmarks. In Proc. IEEE Int’l
Workshop on Workload Characterization (WWC), pages 3 – 13, 2002.

[2] X. Bu, J. Rao, and C.-Z. Xu. A reinforcement learning approach to
online Web system auto-configuration. In Proc. IEEE Int’l Conference
on Distributed Computing Systems (ICDCS), 2009.

[3] J. Chen, G. Soundararajan, and C. Amza. Autonomic provisioning of
backend databases in dynamic content Web servers. In Proc. IEEE Int’l
Conference on Autonomic Computing (ICAC), 2006.

[4] I.-H. Chung and J. K. Hollingsworth. Automated cluster-based Web
service performance tunning. In The IEEE International Symposium on
High-Performance Distributed Computing, 2004.

[5] Y. Diao, J. L. Hellerstein, S. Parekh, H. Shaihk, and M. Surendra.
Controlling quality of service in multi-tier Web applications. In Proc.
IEEE Int’l Conference on Distributed Computing Systems (ICDCS),
2006.

[6] M. C. Huebscher and J. A. McCann. A survey of autonomic computing–
degrees, models, and applications. ACM Computing Surveys, 40(7):1–28,
2008.

[7] G. Jung, K. R. Joshi, M. A. Hiltunen, R. D. Schlichting, and C. Pu.
Generating adaptation policies for multi-tier applications in consolidated
server environments. In Proc. IEEE Int’l Conference on Autonomic
Computing (ICAC), 2008.

[8] M. Korupolu, A. Singh, and B. Bamba. Coupled placement in modern
data centers. In Proc. of IEEE Int’l Parallel and Distributed Processing
Symposium (IPDPS), 2009.

[9] P. Lama and X. Zhou. Autonomic provisioning with self-adaptive neural
fuzzy control for end-to-end delay guarantee. In Proc. IEEE/ACM Int’l
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), pages 151–160, 2010.

[10] P. Lama and X. Zhou. aMOSS: Automated multi-objective server
provisioning with stress-strain curving. In Proc. IEEE Int’l Conference
on Parallel Processing (ICPP), pages 345–354, 2011.

[11] P. Lama and X. Zhou. PERFUME: Power and performance guarantee
with fuzzy mimo control in virtualized servers. In Proc. IEEE/ACM
Int’l Workshop on Quality of Service (IWQoS), pages 1–9, 2011.

[12] P. Lama and X. Zhou. Efficient server provisioning with control for
end-to-end delay guarantee on multi-tier clusters. IEEE Transactions on
Parallel and Distributed Systems, 19 pages, 23(1), 2012.

[13] C. Lin and C. S. G. Lee. Real-time supervised structure/parameter
learning for fuzzy neural network. In Proc. IEEE Int’l Conference on
Fuzzy Systems, pages 1283–1291, 1992.

[14] X. Liu, L. Sha, and Y. Diao. Online response time optimization of apache
Web server. In Proc. Int’l Workshop on Quality of Service (IWQoS),
2003.

[15] X. Meng, C. Isci, J. Kephart, L. Zhang, and E. Bouillet. Efficient
resource provisioning in compute clouds via vm multiplexing. In Proc.
Int’l Conference on Autonomic Computing (ICAC), 2010.

[16] N. Mi, G. Casale, L. Cherkasova, and E. Smirni. Burstiness in
multi-tier applications: Symptoms, causes, and new models. In Proc.
ACM/IFIP/USENIX Int’l Middleware Conference (Middleware), 2008.

[17] N. Mi, G. Casale, L. Cherkasova, and E. Smirni. Injecting realistic
burstiness to a traditional client-server benchmark. In Proc. IEEE Int’
Conference on Autonomic Computing (ICAC), 2009.

[18] J. Moses, R. Iyer, R. Illikkal, S. Srinivasan, and K. Aisopos. Shared
resource monitoring and throughput optimization in cloud-computing
datacenters. In Proc. of IEEE Int’l Symposium on Parallel and Dis-
tributed Processing (IPDPS), 2011.

[19] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why do Internet
services fail, and what can be done about it? In Proc. USENIX
Symposium on Internet Technologies and Systems (USITS), 2003.

[20] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
and A. Merchant. Automated control of multiple virtualized resources.
In Proc. of the EuroSys Conference (EuroSys), pages 13–26, 2009.

[21] J. Rao, X. Bu, C. Xu, L. Wang, and G. Yin. Vconf: A reinforcement
learning approach to virtual machines auto-conguration. In Proc. IEEE
Int’l Conference on Autonomic Computing Systems (ICAC), 2009.

[22] RUBiS. Rice university bidding system.
http://www.cs.rice.edu/CS/Systems/DynaServer/rubis.

[23] R. Singh, U. Sharma, E. Cecchet, and P. Shenoy. Autonomic mix-aware
provisioning for non-stationary data center workloads. In Proc. IEEE
Int’l Conference on Autonomic Computing (ICAC), pages 21–30, 2010.

[24] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani. A hybrid
reinforcement learning approach to autonomic resource allocation. In
Proc. IEEE Int’l Conference on Autonomic Computing (ICAC), 2006.

[25] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood. Agile
dynamic provisioning of multi-tier Internet applications. ACM Trans.
on Autonomous and Adaptive Systems, 3(1):1–39, 2008.

[26] M. Wang, X. Meng, and L. Zhang. Consolidating virtual machines with
dynamic bandwidth demand in data centers. In Proc. IEEE INFOCOM,
2011.

[27] Q. Wang, S. Malkowski, D. Jayasinghe, P. Xiong, C. Pu, Y. Kanemasa,
M. Kawaba, and L. Harada. The impact of software resource allocation
on n-tier application scalability. In Proc. of IEEE Int’l Parallel and
Distributed Processing Symposium (IPDPS), 2011.

[28] Y. Zhang, W. Qu, and A. Liu. Automatic performance tuning for J2EE
application server systems. Proc. of Web Information System Engneering
(WISE), pages 520–527, 2005.

[29] W. Zheng, R. Bianchini, and T. Nguyen. Automatic configuration of
Internet services. In Proc. of the EuroSys Conference, 2007.

667667


