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Abstract—There is an increasing demand for efficient and
robust systems able to cope with today’s global needs for
intensive data dissemination, e.g., media content or news feeds.
Unfortunately, traditional approaches tend to focus on one end
of the efficiency/robustness design spectrum, by either leveraging
rigid structures such as trees to achieve efficient distribution, or
using loosely-coupled epidemic protocols to obtain robustness.

In this paper we present BRISA, a hybrid approach combining
the robustness of epidemic-based dissemination with the effi-
ciency of tree-based structured approaches. This is achieved by
having dissemination structures such as trees implicitly emerge
from an underlying epidemic substrate by a judicious selection
of links. These links are chosen with local knowledge only and
in such a way that the completeness of data dissemination is
not compromised, i.e., the resulting structure covers all nodes.
Failures are treated as an integral part of the system as the
dissemination structures can be promptly compensated and
repaired thanks to the underlying epidemic substrate.

Besides presenting the protocol design, we conduct an extensive
evaluation in a real environment, analyzing the effectiveness of
the structure creation mechanism and its robustness under faults
and churn. Results confirm BRISA as an efficient and robust
approach to data dissemination in the large scale.

I. INTRODUCTION

We live in a digital era whose foundations rely on the
production, dissemination, and consumption of data. The rate
at which content is produced is ever increasing [16], putting
pressure on dissemination systems able to deliver the data to
its intended consumers. Examples include the distribution of
digital media (e.g., music, news feeds) on the Internet [14] or
software updates in a datacenter infrastructure [33].

On account of its importance, significant research has been
dedicated to conceiving efficient and robust data dissemination
systems [5], [7], [8], [11], [26]. Unfortunately, both design
vectors, efficiency and robustness, are often addressed dis-
jointly: either by a highly efficient structure based on trees
or by a highly robust unstructured gossip-based approach.

Disseminating data using trees is attractive as, once formed,
trees enable the efficient delivery of data to all participants
without having to deal with duplicate transmissions [9], [37].
However, under churn and faults, the rigid structure that makes
the tree efficient must be rebuilt constantly, hindering robust
dissemination and continuity of service.

On the other hand, gossip-based dissemination systems rely
on redundancy instead of structure to offer guarantees on the
delivery of data to all participants [5], [11]. Gossip-based
dissemination was initially proposed in the context of database
replica synchronization in the ClearingHouse project [10]. The

transmission of several copies to random nodes enables gossip-
based systems to be oblivious to faults and churn, as messages
will be received through different paths. The cost is increased
bandwidth and processor usage due to duplicates.

Gossip-based principles have also been used to build ro-
bust and scalable membership [15], [18], [21] and failure
detection [30] services. As long as (1) the graph induced
by the (partial) views offered by the membership service is
connected and (2) all nodes have at least one incoming link,
dissemination can trivially be achieved by flooding. As with
traditional gossip-based dissemination, this approach yields a
large number of duplicates due to link redundancy.

a) Contributions: In this paper we present BRISA, an ef-
ficient, robust and scalable data broadcast mechanism. BRISA
leverages the resilience and scalability of a gossip substrate to
build dissemination trees that are correct, i.e., cover all nodes,
by construction. Trees are built in a distributed fashion with
local knowledge only and with minimal overhead. BRISA has
been designed in a way that upon failures or churn, trees
are easily and rapidly compensated and repaired using the
underlying gossip-based overlay management and dissemina-
tion protocol. BRISA is extensively evaluated by means of
deployments of a prototype on a cluster and on PlanetLab.

b) Roadmap: The remaining of this paper is organized
as follows. Section II describes the design of BRISA and Sec-
tion III presents the experimental evaluation. Then, Section IV
presents some perspectives, Section V discusses related work
and finally Section VI concludes the paper.

II. BRISA

In this section, we first present the assumptions made by
BRISA, and in particular the nature of the underlying peer
sampling service and the guarantees it provides. Then, we
introduce the key design principles of the protocol and in
particular how the dissemination structures are constructed.
Finally, we show how BRISA deals with dynamism, generalize
the construction of dissemination structures with desirable
efficiency/robustness criteria and discuss some optimizations.

A. Peer Sampling Service Layer

We assume an underlying peer sampling service (PSS) [18]
that provides each node with a view, i.e., a set of non-faulty
nodes chosen at random from the entire network. The objective
of the PSS is to create views such that the overlay obtained
by connecting each node to its neighbors (the nodes in its
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Fig. 1. HyParView [21]: views maintenance.

view) is connected. That is, every node is able to transitively
reach every other node in the network even under high rates of
churn and failures [15], [21]. Moreover, the PSS is expected to
rapidly replace failed nodes from the views and, for the sake
of load balancing, provide similarly sized views and evenly
distribute the number of incoming links at each node.

The update of the views can be either continuous (proactive
peer sampling) or happen only when a node fails or a new
one joins the system (reactive peer sampling). In the proactive
case, nodes periodically share their views with their neighbors
regardless of the actual need to replace failed entries, resulting
in the view being a continuous stream of node samples from
the network. A typical example of this class is Cyclon [35]. In
the reactive method, the view is kept unchanged unless some
of its entries need to be updated, i.e., for replacing a failed
node or for accommodating a new node. Typical examples
include Scamp [15], Araneola [28] and HyParView [21].

In this paper we rely on a reactive PSS, specifically on
the HyParView protocol [21]. The motivation for this choice
comes from the additional stability of reactive approaches,
which simplifies the process of creating efficient and correct
dissemination structures. In short, HyParView maintains two
views at each node: a passive view and an active view
(see Figure 1). Only the active view containing the node’s
neighbors is exposed to the application. The passive view
is maintained in a proactive manner by periodic exchanges
and sharing of the passive views with the node’s neighbors.
The entries in the active view are managed in a reactive
manner: a neighbor in this view only changes upon failure,
or for accommodating a newly joined node. An opened TCP
connection is maintained with each of the nodes in the active
view for communication efficiency, in particular, latency. Due
to the limited size of the active view, efficient heartbeat-based
fault detection can be used for all neighbors. Upon detection
of a failed neighbor, a replacement node is selected from the
passive view and moved to the active view. When the active
view is full and a new node attempts to join, a random node
is removed from the active view to accommodate the joiner.
In order to avoid chain reactions due to the massive number
of joins in the bootstrap process when nodes have complete
active views (node A’s view size is full so it removes node B,
B also removes A from its view and promotes a node C from
its active view, C must add B to its view and thus remove an
existing one as its active view is already full, removing D and
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Fig. 2. Distribution of duplicates per message for each node for 500 messages
in a 512 nodes HyParView network for various active view sizes.

so on so forth), we allow the active view size to grow past the
configured value by a given expansion factor. Nodes evictions
do not result in replacements when the view size is between
the target view size and this size times the expansion factor.
We used an expansion factor of 2 throughout the evaluation.
The impact on the actual view sizes is limited as shown later
in the analysis of the degree distribution (Figure 7).

An important aspect of HyParView is that links with neigh-
bors are bidirectional. If node A has node B in its active view,
then B also has A as its neighbor. In a connected overlay,
using bidirectional links allows us to ensure that messages
disseminated by flooding will reach all the nodes in the system
without requiring anti-entropy mechanisms [10] (where nodes
periodically poll other nodes for the content they have missed).
A node receiving a message for the first time from a neighbor
simply propagates it to all its other neighbors.

Flooding is ensured to reach all nodes as long as no node
in the system has an active view with only failed nodes. The
larger the active views the smaller the chances for this to
occur. However, the larger the view, the larger the number of
relayed messages and consequently the number of duplicate
receptions. As a concrete example, Figure 2 presents the
cumulative distribution function (CDF) of the number of
duplicates during the dissemination of 500 messages over a
512 nodes HyParView network for different view sizes. We
observe that, as the size of the view grows, nodes quickly
receive large amounts of duplicate messages. For instance, half
of the nodes receive more than one duplicate with a view size
of 4, while they receive more than 7 duplicates with a view
size of 10.

BRISA develops on top of HyParView. It takes advantage
of the connectivity guarantee that can tolerate up to 80% node
failures [21] to bootstrap efficient dissemination structures that
eliminate (or considerably reduce) the number of duplicates,
while keeping the robustness offered by the underlying PSS.

B. BRISA: Rationale

The objective of BRISA is to support the efficient, robust
and scalable dissemination of a stream of messages from one
source to the entire network. Efficiency relates primarily to
the limitation of duplicate receptions that waste bandwidth
and processor resources. Additional criteria that we consider
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Fig. 3. Reception of a duplicate and deactivation of one link, for a tree BRISA structure. Depending on the parent selection strategy, the deactivated link
can be the previous parent or the node sending the duplicate.

for efficiency are: the reduction of the end-to-end delay
(dissemination time from the source to the last receiver) and
network efficiency (ratio between the delay for receiving a
message through BRISA as compared to a hypothetical direct
communication from the source). Robustness relates to fault
tolerance: dissemination should progress despite the inactivity
of some nodes (failure or disconnection) and the system should
be able to rapidly detect and mask such faults. Finally, BRISA
scales to very large networks, because the view size is kept
small and under strict control by the PSS, preventing the load
at any node to grow linearly with the system size.

The main idea behind BRISA stems from the observation
that it is the possibility of receiving messages through mul-
tiple paths that makes gossip-based approaches robust, not
necessarily the actual transmissions. Our goal is to limit or
even eliminate duplicates that are received by any node in the
network, but nonetheless maintain the possibility of receiving
the messages from multiple paths.

BRISA automatically derives dissemination structures on
top of the undirected HyParView overlay. The structure that
emerges from the views are oriented and can either be a tree,
by restricting the inbound neighbors of every node to a single
node (parent), or a directed acyclic graph (DAG) by allowing
multiple parents for each node. The creation of the structure
is performed by local and unilateral decisions made by the
nodes about the set of neighbors that should be active and
actually relay inbound traffic and those that should be inactive.
In the case of a tree the reception of duplicates is effectively
eliminated; in a DAG, it is significantly reduced.

The resulting dissemination structure must ensure complete
disseminations, i.e. that all nodes receive all messages. To
that end, we must ensure that it does not contain a non-
connected sub-graph that would not receive the message from
the other components of the structure. This property is ensured
by enforcing the absence of cycles. In fact avoiding cycles
is the main concern when determining the set of active and
inactive neighbors of a node. In the following sections we first
describe how the emergence of trees is achieved in BRISA, and
then generalize the approach to DAGs.

C. Emergence of the Dissemination Structure

The bootstrap of the BRISA dissemination structure starts
by sending the first message of the stream to all neighbors of
the source node. Nodes receiving the message for the first time

simply forward it to all the nodes in their active view. This
flooding operation reaches all nodes, given the connected and
bidirectional nature of the overlay provided by HyParView.
Note that the bootstrap can also be done by injecting an empty
message (without payload) in the system if the initial flood of
an application message poses bandwidth concerns.

The links used for the initial flooding dissemination form
a graph that serves as the basis for the construction of the
BRISA dissemination structure. A tree structure emerges by
having each node autonomously prune out all but one of its
inbound links.

During the initial flood, nodes receive the message from a
number of different neighbors. Out of these sources, each node
autonomously selects one as its parent in the dissemination
structure. Future messages in the stream will then be received
only from the parent node. The selection is achieved by the
use of a link deactivation mechanism and follows one of the
selection strategies presented in Section II-E.

It is important to notice that deactivating a link from a node
does not imply removing the corresponding entry from the
HyParView active view. The overlay constructed by the PSS
remains available and is used both as a provision of nodes
for reparations upon failure, or as a fallback for dissemination
when reparation is temporarily not possible.

Figure 3 presents the principle of the link deactivation mech-
anism for constructing a tree. Initially, links from nodes X ,
Y , and Z belong to node A’s view and are all active. The first
reception of a message from X results in A considering X as
its parent for the corresponding stream. A subsequent reception
of a duplicate from node Y triggers the link deactivation
mechanism. The two possibilities consist in either deactivating
the link from X or the link from Y .

There are three guiding principles for deciding which link
to deactivate. First, the construction process must avoid cycles.
Second, it must seek to meet the target number of parents for
each node (one for the tree structures, more when generalizing
to DAGs). Finally, when both conditions are met, the parent
selection strategy chooses the new parent based on different
criteria for shaping the emerging structure (Section II-E).

D. Preventing Cycles

A mandatory condition for selecting a parent node is that it
does not yield a cycle in the dissemination structure. That is,
the potential parent of a node N does not receive the stream
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Fig. 4. Avoiding creating a cycle for a tree, by checking that the node N is
not in the dissemination path to the potential parent.

directly or indirectly from N itself. For a tree this implies that
the parent of N must not appear in the sub-tree rooted at N .

To verify this condition each node piggybacks on the
messages it relays all node identifiers in the path from the
stream’s source. When selecting its parent, a node N rejects
those candidates whose message path to the stream’s source
includes N itself. This is illustrated by Figure 4, where grey
nodes are not eligible as parents of node N . It is important to
note that the overhead of path embedding is minimal and very
attractive when compared to probabilistic inclusion structure
such as Bloom filters [6]. As a matter of fact, the size of the
embedded path is bounded by the tree height, which is roughly
O(logb(N)) where N is the system size and b the active view
size. For instance, in a system with 1×106 nodes with an active
view size of 8, the average tree height is log8(1 × 106) ≈ 7.
This bounds the maximum metadata size a message needs to
carry which, assuming a 48 bit ip:port pair as unique identifier,
is only 336 (7 ∗ 48) bits. On the other hand, a Bloom
filter in the same scenario with a false positive probability of
1 × 10−6 requires a filter with 28 755 176 bits [6]. Taking
into account the metadata size required, the fact that path
embedding is exact (false positive probability is zero) and the
computational overhead associated with Bloom filters (which
requires computing several hashes), path embedding presents
many advantages over Bloom filters.

The detection of cycles is not only done during the initial
flooding phase: a node that detects a cycle from a parent
simply makes the link from that parent inactive and selects
a new parent using the regular selection mechanism or the
fallback to flooding as we describe later in this section.

E. Parent Selection Strategies

From N ’s eligible parents (that is, those not having N in
the path followed by the messages from the stream’s source),
BRISA selects one according to the following strategies:

1. First-come first-picked. The node sending the first re-
ceived message is selected as parent, all subsequent duplicates
received trigger the deactivation of the incoming link.

2. Delay-aware. This strategy considers the round-trip time
between N and the candidate nodes. The one with the lowest
delay is selected as parent. We leverage the periodic keep-alive
messages that are exchanged by the nodes in the active views

at the HyParView level to measure round-trip times.

A simple optimization is available when building a dis-
semination tree using the first-come first-picked strategy: the
deactivation of links can be symmetric. Supposing node A
receives a message first from node B and then from node C,
A will pick the link from B and send a deactivate message to
C. But it can further mark its outgoing link to C as inactive
as A knows it will not be not eligible as parent for C, as C
already received the message first.

We discuss the possibility of more elaborate parent selection
strategies in Section IV.

F. Handling Dynamism

The insertion and removal of nodes in the system is handled
by the underlying HyParView PSS. A new node joins by
contacting an existing system node. The new node is provided
with an active view with the size of that of its contact point,
and is inserted in the active views of the associated nodes.
BRISA automatically marks links to new nodes as active. As
a result, the joining node will have all its inbound links marked
as active and will receive its first message multiple times.
All that remains is to select its parent(s) according to the
mechanism discussed previously.

The detection of node failures is also performed at the
level of the active view, by exchanging periodic keep-alive
messages over the established TCP connections, or when a
node fails to acknowledge the reception of a transmission
(as detected by the TCP flow control for that link). When
a node notices that one of its neighbors is removed from its
active view (due to a failure), it first checks if that neighbor
was a parent. If that is the case, the node needs to quickly
find a replacement parent using one of two strategies. It first
attempts a soft repair by trying to select as parent one of the
current neighbors. A simple approach is to reactivate all its
inbound links and proceed with the normal parent selection
process. This can however be optimized by leveraging the
keep-alive messages used for monitoring the active view at
the PSS level and piggyback up-to-date information required
by the parent selection procedure. If a suitable parent is found
then its inbound link is directly re-activated. Note that this
mechanism uses local knowledge only and requires a single
message exchange being thus very fast and efficient. Further,
as our evaluation shows, almost all repairs can be done using
this strategy leading to minimal disruptions in the structure.

If no replacement parent exists in the active view, we resort
to a hard repair that uses the underlying flooding approach
for rebuilding part of the dissemination structure. The orphan
node first re-activates all its incoming links and considers itself
a fresh node by forgetting its position in the cycle detection
mechanism. This allows the orphan node to take any of its
active view nodes as a parent as in the initial dissemination.

To ensure the tree remains connected, it is necessary to
rebuild the incoming links for a part of the structure rooted at
the orphan node. To support this, the orphan node propagates
a re-activation order to all its current children. These children
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Fig. 5. Avoiding creating a cycle for a DAG, by checking that the level of
the potential parent it less than or equal to the level of the node.

proceed with the same operation, which conducts to a part of
the structure being re-bootstrapped by the structure emerging
on top of flooding. We note that this re-activation order does
not need to be propagated all the way down the sub-tree rooted
at the orphan node, and is in practice limited to a small subset
of the structure. Indeed, nodes stop re-activating their links and
propagating the re-activation order as soon as they can select
a suitable parent in their active view that can replace the one
that sent the re-activation message (this previous parent node
will then receive subsequent message and may become a child,
effectively exchanging roles). The number of nodes that need
to re-activate their links for temporary flooding is independent
of the position of the original orphan in the tree: the depth of
the re-activation solely depends only on nodes in the sub-tree
finding suitable replacement parents, which is independent of
the position of the original orphaned node.

Finally, nodes can compensate message loss during the
parent recovery process by directly asking its new found parent
to send the missing ones. Since parent recovery is quick
(Section III-C) the number of messages each parent needs to
buffer is small. Nonetheless more complex approaches such
as [19] could still be used to ensure nodes buffer messages
for long enough to allow recovery.

G. Generalized Dissemination Structures

To enhance service continuity under failures and churn,
BRISA can generalize the tree structure to directed acyclic
graphics (DAGs) by having each node being served by several
parents. This way, a node that sees one of its parents fail can
seamlessly keep receiving the flow without the need to first
undergo the selection of a new parent. This is attained at the
cost of handling a controlled level of message duplicates.

The establishment of a DAG basically involves making a
number p > 1 of inbound links active in such a way that
cycles are avoided. The technique to prevent cycles we used
for trees is however unfeasible in the case of DAGs due to
the amount of control information required to be exchanged.
Indeed, a node in the nth level of the tree requires a set of n
node identifiers to define the path from the stream source to
itself, while for a DAG with p parents per node this set at level
n could reach pn+1 − 1 should all paths be non-overlapping.

Conversely, for DAGs, we use an approximate quantitative
approach that does not include the nodes identifiers but just
the depth each node is in the DAG as illustrated by Figure 5.

The source of the message stream is at depth 0 and every
message carries its sender’s depth encoded by a single integer.
Initially, the depth of a node N is undefined and, upon
reception of its first message from a node with depth i − 1,
N places itself at depth i. From then on, N can select parents,
and thus receive messages, from nodes at any depth not greater
than i. Should N receive a message from a node at depth i (its
current depth) then N moves to depth i+ 1 and immediately
updates its downstream children nodes accordingly.

Similar to the technique we used for trees, it is clear that
any node M served directly or transitively by node N will be
at a depth strictly greater than N. Therefore, M cannot become
a parent of N and yield a cycle.

As mentioned, the technique is however approximate. As
illustrated in Figure 5 it can yield false negatives by discarding
valid potential parents. Any two paths (rooted at S) are likely
to be labeled similarly with respect to depths. Since the tagging
is purely quantitative, a node from one path may be dismissed
as a potential parent of a node in another path despite the paths
being causally unrelated. An alternative is to rely on Bloom
filters to maintain the set of nodes that need to be excluded for
the parent selection process. However, as for trees this a costly
technique when compared to the simplicity and efficiency of
depth encoding. In our experiments, nodes always obtained
the desired number of parents, thus we consider this approach
an attractive alternative when compared to the cost of both an
exact predictor (path embedding) and of a probabilistic one
(Bloom filters).

After determining the set of potential parents with the above
strategy all that remains is selecting the best ones by using the
parent selection strategies presented above.

III. EVALUATION

In this section we evaluate BRISA on two different testbeds:
(1) a local cluster of 15 computers equipped each with 2.2 GHz
Core 2 Duo CPU and 2 GB of RAM and connected by
a 1 Gbps switched network, supporting up to 512 BRISA
nodes and (2) a slice of up to 200 nodes on the global-scale
PlanetLab [1] testbed. The prototype1 leverages Splay [23],
an integrated system for the development, deployment and
evaluation of distributed applications.

The evaluation is focused on the aspects that drove BRISA’s
design: efficiency and robustness. For each experiment and
unless otherwise stated, we bootstrap the system with the
specified number of nodes using the first-come first-picked
strategy with an expansion factor of two, randomly choose
a node to be the source across all the experiment and then
have it inject 500 messages at a rate of 5 per second, taking
measurements as appropriate. Due to the generic nature of
BRISA, the message payload is an opaque random bit string
with the specified size.

We start with a preliminary study, in Section III-A, on the
structural properties of the dissemination structures created

1The prototype along with instructions to reproduce the experiments is
available at http://www.splay-project.org/splay/ipdps2012/brisa.zip
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by BRISA as those properties impose well-known bounds in
resource usage and dissemination time. Then, in Section III-B
we inspect the network properties of BRISA, namely band-
width consumption and routing delays and analyze the results
according to the structural properties. Next we evaluate the
behavior of BRISA under churn in Section III-C. Finally, in
Section III-D, we compare BRISA with other approaches.

A. Structural properties

We first study the shape of the structures generated by
BRISA, namely trees and DAGs with 2 parents. The shape
(depth and degree), imposes constraints on latency and on the
distribution of the dissemination effort. Results for each con-
figuration are obtained after building the respective structure
and letting is stabilize. The reason for using this basic strategy
is twofold: i) a naive strategy helps to better understand the
basic behavior of BRISA thus serving as a baseline for more
elaborate strategies and ii) the limited number of physical
nodes hides significative differences on the observation of
structural shape properties changes that better emerge in the
large scale. Depth places a lower bound on the dissemination
time due to the cost of traversing several intermediate nodes
and thus should be kept as low as possible. Figure 6 presents
the depth distribution in a universe with 512 nodes. As
expected, larger views allow nodes to have more children
thus reducing maximum depth. The larger depths in DAGs
are because depth measures the maximum distance, i.e. the
longest path from the root to the node, which increases with
the extra number of links. The steep curves hint that the
structures built by BRISA are fairly balanced, i.e., do not
degenerate into long chain even with a simplistic strategy thus

preserving desirable properties for dissemination. An analysis
of the degree distribution confirms this observation.

The degree of a node in BRISA is given by the number of
outgoing links and thus bounds the message copies a node
receives/sends. This is directly related to the dissemination
effort and as such degree distribution should be as narrow
as possible indicating an evenly distributed load. When an-
alyzing the degree distribution presented in Figure 7 three
main observations arise. First DAGs are more effective than
trees in having a greater share of the nodes contribute to the
dissemination effort (nodes with degree zero are leaves). This
is due to the additional number of parents that reduces the
chance of having all outgoing links deactivated. Secondly,
degree distribution is also highly affected by the view size
provided by the PSS: higher values lead to shallower trees thus
resulting in more leaves, while lower values lead to deeper
trees due to the limitation imposed by the view sizes. Such
relation between degree and depth can be observed in Figure 8,
which depicts sample trees obtained by BRISA. As a matter
of fact, despite using a simple strategy, the resulting trees are
fairly balanced which is essential for efficient dissemination.
Finally, despite using an expansion factor of 2 the number of
nodes with degree higher than the configured value remains
small as hinted in Section II-A.

B. Network properties

In this section we focus on the network properties of the
dissemination structures obtained by BRISA.

First, we analyze the routing delay of dissemination. To this
end, we use the cumulative round trip times, taken at each
hop, from the root to a given node. When compared against
the round trip time of direct communication between the
root and that node, it indicates the effectiveness of BRISA in
building dissemination structures with low end-to-end delays,
an essential property for a dissemination system. The ratio
between the first and second measurements gives the stretch
factor. However, due to PlanetLab asymmetries that deter
direct communication between some nodes we instead present
the cumulative distribution of the raw results in Figure 9. Not
surprisingly, the flooding strategy yields the worst results due
mainly to the heavy load imposed on the network. In this non-
structural metric, the effects of a delay-aware strategy become
clear when compared to the simplistic first-come first-pick: for
instance 40% of the nodes reduce the routing delays to half.

Next, we focus on the bandwidth usage. This measures the
dissemination effort and is directly influenced by depth and
degree distribution. Figure 10 and Figure 11 depict download
and upload bandwidth usage, respectively, for payload sizes
of 1, 10, 50 and 100 KB. We used stacked bars with decaying
shades of grey for representing a distribution using a set of
percentiles. For instance, the medium shade of grey gives the
median value (half of the node below that value, the other half
above), while the lighter shade gives the 90th percentile: 90%
of the nodes are associated with a lower bandwidth.

As expected, trees are more frugal with respect to download
as nodes receive exactly one copy of each message whereas
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Fig. 8. Sample tree shape for 100 nodes with a HyParView active view size of 4 on the left and 8 on the right. Expansion factor is 1.
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Fig. 10. Bandwidth usage for a 512 nodes network, download

in DAGs nodes receive two copies (one for each parent).
For each structure, the increase in bandwidth usage for the
different view sizes is due to the PSS. The small difference,
negligible when compared to application messages, hints at a
low overhead service. The differences in the percentiles for
the DAG are related to the depth of nodes (Figure 6) as nodes
at lower depths may not be able to find additional parents and
thus receive messages only from a single parent.

For upload, results are naturally similar. DAGs require more
links and consequently nodes will have to relay messages
to more neighbors, increasing upload bandwidth usage. The
differences between percentiles for a given configuration are
explained by the degree distribution (Figure 7) as nodes with
higher degrees need to upload more.

C. Robustness

We now focus on the behavior of BRISA under continuous
churn in order to assess its robustness. Each experiment is
associated with a synthetic churn trace based on the churn
support module of Splay. The synthetic description is given
in Listing 1 and proceeds as follows: first we bootstrap the
system and let it stabilize. After, we induce churn at rate X
by having X percent nodes fail at random and X percent new
nodes join the system during each minute.
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Fig. 11. Bandwidth usage for a 512 nodes network, upload.

from 1 s to N s j o i n N
at 1000 s s e t r e p l a c e m e n t r a t i o to 100%
from 1000 s to 1600 s c o n s t churn X% each 60 s
at 1600 s s top

Listing 1. Churn trace generation script

Table I depicts the results obtained for networks with 128
and 512 nodes. For simplicity we ensure that the source node
does not fail. However, we note that the failure of source
node would only produce a negligible impact in the presented
results. In fact only the direct children of the source (a small
number limited by the view size) would experience the effect
of a parent failure.

We defined the following metrics:
• Parents lost per minute: rate at which nodes lost any

of their parents;
• Orphans per minute: rate at which nodes lost all parents

(implying disconnections);
• Percentage of soft repairs: upon disconnections, how

many nodes successfully repair their incoming links using
the soft repair mechanism;

• Percentage of hard repairs: upon disconnections, how
many nodes required using the hard repair mechanism.

As expected the rate at which parents are lost is higher
for DAGs than trees due to the larger number of parents
of the former. Nonetheless DAGs are much more robust
with nodes being seldom fully disconnected. For instance,
with a churn rate of 5% per minute, which implies half
of the nodes leaving the system within the ten minutes of
the experiment, only 17 nodes on an universe of 512 get
disconnected (1.7 per minute * 10). Of those, all but one
were able to recover using the soft repair, which simply
implies activating a link to a new parent. Moreover, the time
required for hard repairs, studied in the next section, is very
low meaning that despite disconnections nodes are able to
promptly repair their connectivity with minimal effort. Finally,
quick parent recovery also allows nodes to quickly recover
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lost messages thus ensuring that all application messages are
effectively delivered. Such recovery capabilities under high
churn, combined with efficient dissemination structures that
are correct by design made BRISA a promising substrate for
efficient and robust dissemination in the large scale.

D. Comparison with existing approaches

In this section we compare BRISA’s bandwidth usage,
structure construction time, dissemination latency and parent
recovery delays with several approaches. Those protocols
were chosen as representatives of different points in the
efficiency/robustness design spectrum. The comparison is done
against a BRISA tree with an HyparView active view size of 4.
In order to assess the inherent overhead of each approach and
for fairness reasons the other approaches were implemented
and evaluated in the same environment as BRISA and config-
ured with equivalent settings. We considered the following:

a) SimpleGossip: This approach lies on the robustness
end of the spectrum. We use Cyclon [35] as the PSS. Due to
its proactive nature we use a combination of rumor mongering
(push) to infect most of the nodes and anti-entropy (pull)
to ensure completeness [10]. Rumor mongering follows an
infect and die strategy with a fanout of ln(N), where N is
the system size and anti-entropy exchanges updates with a
single random node with a frequency that is the double of the
message creation ratio.

b) SimpleTree: Oppositely, this approach lies on the
efficiency side of the design spectrum. We consider a tree
created randomly with the help of a centralized node. The
only criteria for a node joining the tree is to connect to a
parent that joined earlier in the past, which avoids creating
a cycle in a similar manner to the one used in TAG. This
parent is provided by the centralized node that randomly picks
any of the previously joined nodes as a parent for a newly
joined node. Dissemination is done by pushing the messages
immediately through tree links thus minimizing latency.

c) TAG: For this approach which tries to achieve both
robustness and efficiency we use TAG [27]. As BRISA, TAG
maintains a tree and a gossip-based overlay to combine the
efficiency of trees and resilience of gossip. Nodes are further
organized in a linked list structure sorted by joining time, with
nodes maintaining information about their predecessors/suc-
cessors up to two hops away. New nodes traverse this list
backwards until an application specific condition is met. In
the traversal, nodes pick k random peers to form the gossip
overlay and join the tree by choosing a suitable parent. Upon
parent failures, nodes update the linked list and traverse it
to find a new parent and thus restore the tree. With respect
to dissemination, TAG uses a pull-based approach with nodes
pulling content both from the tree and from gossip neighbors.
For instance, as TAG is designed with media streaming in
mind, gossip partners can be used to pre-fetch segments
(messages) that are still ahead of the play time. Because TAG
relies on pull we expect increased dissemination latency due
to the additional roundtrips and pull period. We chose to
compare BRISA against TAG due to its proximity in terms

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

0 1 10 20

D
a

ta
 T

ra
n

s
m

it
te

d
 (

M
B

)

Message Size (KB)

S
im

p
le

T
re

e

B
R

IS
A

 t
re

e
, 
v
ie

w
 4

T
A

G
, 
v
ie

w
 4

S
im

p
le

G
o
s
s
ip

 Stabilization  Dissemination

Fig. 12. Bandwidth usage for a 512 nodes network.

of goals and general approach (combining tree efficiency and
gossip robustness) and the differences in its design choices
(e.g., tree construction and a pull-based approach). We believe
this choice will allow us to better assess the merits of each
approach in the following evaluation scenarios.

Bandwidth usage We first focus on the bandwidth usage
of each protocol by considering two metrics: stabilization
bandwidth and dissemination bandwidth.

Stabilization bandwidth is the bandwidth used to bootstrap
the protocol including the construction/emergence of the over-
lay and tree structures and is measured until stabilization.
After stabilization we consider the dissemination bandwidth
as the bandwidth associated with message disseminations
and subsequent management overhead. Once the structure
stabilizes, we inject messages with payload sizes from 0 to
20 KB in a network of 512 nodes. This differentiation allows
us to clearly observe the overhead imposed in each phase. As
SimpleGossip does not uses any structure we represent all the
bandwidth consumed under dissemination bandwidth.

Figure 12 presents bandwidth consumption averaged over
all nodes. As expected, TAG and BRISA are comparable and
the actual cost is dominated by the sending of data among
peers rather than the management cost of bootstrapping the
dissemination structures. The smaller management overhead
of SimpleTree is due to the fact that only a single commu-
nication step with the centralized node is needed while the
other protocols require inter-node communications. The small
extra bandwidth cost for TAG and BRISA when compared to
SimpleTree is from the maintenance of the PSS layer and
dissemination structures that are key to the performance in
terms of delays and robustness as we explore later. For the
smaller message sizes, SimpleGossip is comparable with both
BRISA and TAG due to the absence of structure management
and because Cyclon does not uses explicit fault detection
mechanisms. However, this is quickly offset for larger message
sizes due to the excessive number of duplicates SimpleGossip
relays which leads to high network usage.

Structure Construction Time In this experiment we measure
the time necessary to bootstrap the dissemination structures
both on the cluster environment and on PlanetLab. Due to
the absence of structure of SimpleGossip and the construction
simplicity of SimpleTree, they are not considered in the
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Churn conditions Parents lost/min. Orphans/min. % Soft repairs % Hard repairs
128 Nodes

Churn rate: X=3%
(38 leaves & 38 joins /10 min.)

Tree 2.3 2.3 87.0 13.0
DAG, 2 parents 4.0 0.2 92.5 7.5

Churn rate: X=5%
(64 leaves & 64 joins /10 min.)

Tree 3.4 3.4 79.4 20.6
DAG, 2 parents 7.0 0.3 90.0 10.0

512 Nodes
Churn rate: X=3%
(154 leaves & 154 joins /10 min.)

Tree 22.2 22.2 88.2 11.8
DAG, 2 parents 36.8 2.3 94 6

Churn rate: X=5%
(256 leaves & 256 joins /10 min.)

Tree 22.2 22.2 87.7 12.3
DAG, 2 parents 32.3 1.7 94.1 5.9

TABLE I
IMPACT OF CHURN IN BRISA FOR A 128 AND 512 NODE NETWORKS WITH ACTIVE VIEW SIZE 4.
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Fig. 13. Construction time for 512 (on cluster) and 200 (PlanetLab) nodes
network.

Protocol Latency (seconds) Overhead
SimpleTree 100,025 -
Brisa 106,587 +6%
SimpleGossip 128,23 +28%
TAG 200,476 +100%

TABLE II
DISSEMINATION LATENCY FOR A 512 NODES NETWORK FOR 500

MESSAGES OF 1KB.

experiment. For BRISA we consider the time elapsed since a
node sends the first deactivation message until all its inbound
links except one are deactivated. In the case of TAG we use the
time since a node joins the list until it settles its position on
that list.Results are presented in Figure 13. It is interesting to
observe that in absolute terms (x scale is logarithmic) TAG is
marginally faster than BRISA on the cluster but much slower
on PlanetLab. This is because the construction mechanism
happens at once in TAG by traversing the list, whereas in
BRISA it is triggered by the reception of messages. As BRISA
keeps the connection to its neighbors open, in the adverse
environment of PlanetLab, the traversal cost of TAG (i.e.
creating a connection to a node, exchanging messages, tearing
it down and proceeding to the next node) easily outweighs the
time BRISA needs to wait for the reception of the messages
from all its neighbors.

Dissemination Latency We consider dissemination latency
as the time elapsed between the reception of the first and
last message among the set of all messages. When studied
along with bandwidth usage it highlights the tradeoffs of each
approach. The message payload is 1 KB and the the ideal
dissemination latency is 100 seconds (500 messages at 5 per

second). Table II presents the results averaged over all nodes.
As SimpleTree is very close to the ideal value we use it as
a baseline of comparison for the other approaches. Latency
for TAG is significantly higher than the other approaches.
This is mainly because TAG uses a pull-based approach to
get updates, while the others rely on push. We note however
that this is a characteristic that pertains to pull approaches in
general and not TAG in particular. The delays for BRISA are
similar to the ones for the SimpleTree, with a small variation
that we account for the extra context switching and physical
machines sharing on our cluster. Differences in practice are
expected to be minimal with a SimpleTree, and largely in
favor of BRISA when using a delay-aware selection strategy
as previously illustrated by Figure 9. Somehow surprisingly,
SimpleGossip performs worse than BRISA and SimpleTree.
This is because the overhead of dealing with duplicates and
eventual omissions that needs to be compensated by the slower
anti-entropy mechanism.
Parent recovery delay Our last comparison considers the
robustness of BRISA and TAG. As SimpleTree does not con-
sider dynamic scenarios, and SimpleGossip does not maintain
any structure both approaches are ignored in this experiment.
We apply for both protocols the same churn conditions as
described in Section III-C, with a churn rate of 3% and focus
on the parent recovery delay for hard repairs in both cases.
In BRISA this corresponds to the case where no immediate
replacement neighbor is available and the underlying gossip
layer is used. In TAG this corresponds to the case where the
linked list is broken (i.e., two consecutive simultaneous node
failures) and the node needs to be re-inserted into the structure.
Figure 14 depicts the results in a 128 nodes network. We
note that BRISA, while yielding a similar bandwidth cost, and
better dissemination delays, also outperforms TAG regarding
robustness in two ways: i) the number of hard repairs almost
doubles with TAG (not shown) in the same churn conditions
and ii) the delay for recovery is twice as fast for BRISA. This
means that both the disruption of dissemination happens less
often with BRISA, and that the effect of such disruptions is
less than what is experienced with TAG.

IV. PERSPECTIVES

The work on BRISA brings several interesting perspectives
that we highlight in this section.
Parent selection strategies: BRISA’s parent selection is a flex-
ible mechanism to build dissemination structures with different
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Fig. 14. Parent recovery delays for a 128 nodes network with active view
size 4, 3% continuous churn conditions.

performance criteria as highlighted in the evaluation. With this
in mind there are several other strategies that can be employed
to select the best parent. We highlight some possibilities: i)
gerontocratic: which takes into account the uptime of the
candidate nodes and selects the one with the highest value.
This is based on the observation that the higher the uptime
of a node, the more likely it is to remain available [4], ii)
heterogeneity-aware: which considers the available bandwidth
at candidate nodes and iii) load-balancing: which selects
parents according to load and is to some extent the dual of
the gerontocratic strategy by spreading the dissemination effort
to newer nodes. It is important to note that the effectiveness
of those strategies is effectively limited by two factors, the
bounded size of the PSS view and its reactive nature. Adjusting
the view size according to node capacities such as in [3]
and using a proactive PSS such as Cyclon to improve the
diversity of potential parents opens interesting challenges and
possibilities.

Another possibility requiring further exploration is the use
of DAGs with different number of parents based on several cri-
teria such as available inbound bandwidth or parent reliability
(as in the gerontocratic strategy).
Multiple Trees and Multiple Parents: Currently, BRISA is
focused only on the construction of single trees or DAGs. The
DAG approach can be used as a starting point to efficiently
support multiple trees. For instance the parent(s) to which to
relay the upward message can be chosen on a message basis
thus enabling different strategies on a per-source basis. Other
possibility is to choose the number of parents according to
some criteria like the gerontocratic strategy for reliability. The
main advantage of this approach is little to no overhead to
support multiple trees/sources with different tradeoffs.
Stream splitting: When using a DAG configuration, nodes
will have more than one parent. Currently, this is used to mask
parent failures for applications sensitive to small interruptions
due to the effect of the repair mechanism. An interesting
perspective is to use this capability to obtain different parts
of the stream from different parents, for instance a node with
two parents can obtain half of the stream of messages from
each parent. This idea is used in SplitStream [7] to enable
fault-tolerance and load balancing, but in a quite rigid manner
as all nodes need to participate in all trees. When combining
the possibility of a varying number of parents (as in the

node heterogeneity strategy) with the possibility of obtaining
different parts of the stream from different parents nodes could
effectively improve inbound and outbound bandwidth usage.

V. RELATED WORK

Existing approaches to large-scale data dissemination
cover two main design domains: overlay management and
application-level multicast. In the following we present exist-
ing work in this design space and compare it to our approach.

Scribe [8] is an application-level multicast layer that builds
dissemination trees by aggregating reverse paths to a ren-
dezvous node in the Pastry [31] distributed hash table. Unlike
BRISA, where we assume that all nodes are interested in all
messages, Scribe supports group membership management by
having each node subscribe to group(s) it is interested in. Yet,
the load of dissemination is shared by non-members of the
groups that must act as interior (forwarding) nodes in the
dissemination trees. Unlike gossip-based dissemination, where
the failure of a node has little impact on the functioning of
the system, Scribe’s rendezvous nodes can represent single
points of failure and bottlenecks in the system. BRISA also
considers emerging a dissemination structure from an existing
overlay, but can leverage the gossip dissemination layer as
a fallback for robustness. We note that group membership
can be implemented in BRISA by maintaining on each node
separate views for its subscribed groups, as done in the TERA
publish/subscribe system [2]. These group specific views can
themselves be constructed by the means of a gossip-based
clustering protocol [17].

SplitStream [7] is a high-bandwidth dissemination layer that
builds on top of Scribe [8] and Pastry [31]. In order to balance
the load of dissemination, it constructs multiple trees that
are used for sending alternate pieces of a stream; nodes that
participate as a leaf in one tree participate as an interior node
in the other(s), thus balancing the in- and out-degrees of nodes.

Chunkyspread [34] also builds multiple dissemination trees,
rooted at a single source node. These trees are built on top of
an unstructured overlay and not on a DHT. They are used to
parallelize the dissemination process by pushing different parts
of the data in each tree. Cycles in the trees are avoided by using
a technique derived from Bloom filters, whereas BRISA relies
on simpler mechanism based on the path or the number of
hops from the source. Chunkyspread trees can be constructed
by taking into account latency and load metrics that are also
considered in the different BRISA parent selection strategies.

In Bullet [20], a stream of data is also pushed through a tree
structure. Different data blocks are intentionally disseminated
to different branches of the tree, taking into account the
bandwidth limits of participating nodes. Bullet complements
this tree with a gossip-like layer that allows repairing the
faults in the dissemination (missed updates). This mechanism
takes the form of a mesh that is used to locate peers with
missing items, in a way similar to a PSS. In this sense, Bullet
is based on a design choice that is opposite to ours: BRISA
complements a robust dissemination layer (the PSS) with an
efficient but failure-prone structure (tree/DAG), while Bullet
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complements a tree with gossip-style dissemination to support
failures. Rappel [29] is another example of a dissemination
service that combines a tree structure for dissemination with a
gossip-based service for optimization. In the case of Rappel,
the gossip-based layer is used to locate suitable peers based on
interest-affinity and network distances, and not as a fallback
mechanism for dissemination.

MON [26] relies on a mechanism similar to BRISA to
construct spanning trees and DAGs on top of an unstructured
overlay. The goal of MON is to manage large-scale infras-
tructures such as PlanetLab, by using the resulting trees/DAGs
to disseminate management commands. Therefore, sessions in
MON are intended to be short-lived and the protocol does not
provide any support for dynamism in the population of peers.
To disseminate data, MON relies on a pull strategy, where
nodes can download content simultaneously from multiple
parents, if available. This approach eliminates duplicates,
as it is the receiver that decides which pieces to receive.
However it requires nodes to maintain knowledge of the data
blocks/messages present at each parent.

The work presented in [36] stems from an observation
similar to ours that even though gossip-based dissemination is
attractive due to robustness, achieving completeness requires
large fanouts resulting in high overhead. The authors thus pro-
pose a hybrid approach that uses gossip-based dissemination
with fanouts lower enough to infect most of the population,
and ensures completeness by relying on a ring structure
that encompasses all nodes. Gossip is used for the bulk
dissemination of data, still resulting in many duplicates, as
opposed to BRISA, where most of the dissemination happens
on the dissemination structure with a controlled number of
duplicates. Similarly, in [24], [25] a Chord-like ring overlay
is combined with a push mechanism to disseminate messages
over a spanning tree optimized for minimal latency. BRISA
instead builds on top of an unstructured overlay, and it offers
a wider set of options for the tree construction.

In [12] the authors propose an alternative approach to tree
repair based on proactive principles. Each node computes
alternative parents for its children that can be used upon fail-
ures. This minimizes disruptions as nodes known beforehand
the new parent they need to connect to. Further it can cope
to some extent with multiple concurrent failures and strictly
control node degrees, a major goal of the authors. Due to this
restriction, tree shape tends to degenerate to a chain overtime
penalizing end-to-end delay. BRISA uses a notion similar to the
alternative parents without however having the tree degenerate
into a chain. This is because [12] only considers potential
parents in the failed node subtree while BRISA can consider
any node as long as it passes the cycle detection mechanism.

GoCast [32] builds a dissemination tree embedded on a
gossip-based overlay that takes into account network proximity
to improve end-to-end latency. The tree is built using a tradi-
tional Distance Vector Multicast Routing Protocol (DVMRP)
and used to push messages as in BRISA. Message identifiers
are advertised through the overlay links as in PlumTree [22]
and used to recover missing messages due to tree disruptions

that, contrary to BRISA, imposes additional network over-
head. Most strikingly this recovery information is not used
to repair the tree, which relies solely on DVMRP and thus
presents scalability problems due to the overhead of periodic
floods to rebuild the tree. Furthermore, BRISA is able to
adjust to different performance criteria but could nonetheless
take advantage of the network-proximity offered by Gocast’s
overlay. TAG, the protocol we use in the direct comparison
with BRISA also falls into this class due to the use of a
tree and a gossip-based overlay. More details can be found
in Section III-D. PlumTree [22] also relies on the detection
of duplicates and subsequent deactivation of links to build
an embedded spanning tree on an underlying unstructured
overlay. However, inactive links are still used in a “lazy push”
approach, by announcing the message identifier instead of
the full payload. These announcements are used to repair
the tree: when an announcement for an unknown message
is received, the protocol starts a timer. If the timer expires
before the reception of the payload the tree repair mechanism
is triggered. This approach is highly sensitive to variations in
network latency, which lead to unnecessary message recoveries
as observed in [13]. BRISA does not separate the dissemination
of the header and payload, the dissemination is deterministic,
and faults are detected thanks to the underlying PSS layer,
which avoids sending periodic probe messages at the level
of the dissemination layer. Further, the generic construction
mechanism can build trees and DAGS according to different
criteria, which is not possible in PlumTree. Due to the use of
message advertisements to manage faults both PlumTree and
Gocast fall in an undesirable tradeoff: either advertisements
are sent sparingly to conserve bandwidth with an impact on
recovery time, or advertisements are eagerly sent imposing a
constant management overhead in the system.

Thicket [13] uses the same principles of PlumTree to build
multiple dissemination trees on top of an unstructured overlay.
The goal is to provide similar functionality to SplitStream by
balancing the number of trees where a node is interior and
also by splitting the content among trees to improve fault-
tolerance. The mechanism used to build trees imposes several
constrains that do not ensure the resulting tree is connected by
design. This is addressed with a tree repair mechanism based
on missing messages, as in PlumTree, that requires periodic
exchanges of received messages among neighbors which is
also used to handle joins and leaves. In contrast, BRISA builds
connected trees by design, despite controlled fanouts, and
deals with joins and failures with a simple and lightweight
mechanism that is triggered only when failures happen. The
support for multiple trees in Thicket is based on the premise of
load balancing and fault-tolerance by leveraging on network
coding techniques. The cost however is a linear growth in
the number of links with respect to the number of trees,
which poses scalability concerns. BRISA instead provides
fault-tolerance and load balancing at the dissemination level
by building generic dissemination structures in the form of
DAGs. Although not considered in this paper, this opens the
possibility of using more advanced load-balancing techniques
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as presented in Section IV.

VI. CONCLUSIONS

In this paper, we presented the design and evaluation
of BRISA, a data dissemination system that combines the
robustness of gossip-based protocols and the efficiency of
structured overlays. BRISA automatically emerges efficient
dissemination structures from the flooding-based distribution
of the first message in a stream. The construction of efficient
dissemination structures exploits the path diversity that natu-
rally exists in gossip- and flooding-based dissemination, while
avoiding the high level of duplicate reception these mecha-
nisms typically yield. The support for robustness comes from
the ability of the underlying gossip layer to rapidly provide
replacement nodes upon failures, and by acting as a fallback
for reliability to support continuous service upon failures.
Therefore, BRISA bridges the gap between reliable but costly
gossip-based dissemination and efficient but failure prone tree-
based dissemination. We evaluated BRISA with a prototype
deployed on a cluster and on PlanetLab. The experiments and
comparisons to related work confirmed BRISA as a robust and
efficient system for data-intensive applications.
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