
High-throughput Analysis of Large Microscopy Image Datasets 
on CPU-GPU Cluster Platforms

George Teodoro1, Tony Pan1, Tahsin M. Kurc1, Jun Kong1, Lee A. D. Cooper1, Norbert 
Podhorszki2, Scott Klasky2, Joel H. Saltz1

1Center for Comprehensive Informatics, Emory University, Atlanta, GA

2Scientific Data Group, Oak Ridge National Laboratory, Oak Ridge, TN

Abstract

Analysis of large pathology image datasets offers significant opportunities for the investigation 

of disease morphology, but the resource requirements of analysis pipelines limit the scale 

of such studies. Motivated by a brain cancer study, we propose and evaluate a parallel 

image analysis application pipeline for high throughput computation of large datasets of high 

resolution pathology tissue images on distributed CPU-GPU platforms. To achieve efficient 

execution on these hybrid systems, we have built runtime support that allows us to express the 

cancer image analysis application as a hierarchical data processing pipeline. The application is 

implemented as a coarse-grain pipeline of stages, where each stage may be further partitioned into 

another pipeline of fine-grain operations. The fine-grain operations are efficiently managed and 

scheduled for computation on CPUs and GPUs using performance aware scheduling techniques 

along with several optimizations, including architecture aware process placement, data locality 

conscious task assignment, data prefetching, and asynchronous data copy. These optimizations are 

employed to maximize the utilization of the aggregate computing power of CPUs and GPUs 

and minimize data copy overheads. Our experimental evaluation shows that the cooperative 

use of CPUs and GPUs achieves significant improvements on top of GPU-only versions (up 

to 1.6×) and that the execution of the application as a set of fine-grain operations provides 

more opportunities for runtime optimizations and attains better performance than coarser-grain, 

monolithic implementations used in other works. An implementation of the cancer image analysis 

pipeline using the runtime support was able to process an image dataset consisting of 36,848 

4Kx4K-pixel image tiles (about 1.8TB uncompressed) in less than 4 minutes (150 tiles/second) on 

100 nodes of a state-of-the-art hybrid cluster system.

Keywords

Image Segmentation Pipelines; GPGPU; CPUGPU platforms

I. Introduction

Analysis of large datasets is a critical, yet challenging component of scientific studies, 

because of dataset sizes and the computational requirements of analysis applications. 

HHS Public Access
Author manuscript
Proc IPDPS (Conf). Author manuscript; available in PMC 2014 November 21.

Published in final edited form as:
Proc IPDPS (Conf). 2013 May ; 2013: 103–114. doi:10.1109/IPDPS.2013.11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Sophisticated image scanner technologies developed in the past decade have revolutionized 

biomedical researchers’ ability to perform high resolution microscopy imaging of tissue 

specimens. With a state-of-the-art scanner, a researcher can capture color images of up 

to 100Kx100K pixels rapidly. This allows a research project to collect datasets consisting 

of thousands of images, each of which can be tens of gigabytes in size. Processing of 

an image consists of several steps of data and computation intensive operations such as 

normalization, segmentation, feature computation, and classification. Analyzing a single 

image on a workstation can take several hours, and processing a large dataset can take a 

very long time. Moreover, a dataset may be analyzed multiple times with different analysis 

parameters and algorithms to explore different scientific questions, to carry out sensitivity 

studies, and to quantify uncertainty and errors in analysis results. These requirements create 

obstacles to the utilization of microscopy imaging in research and healthcare environments 

and significantly limit the scale of microscopy imaging studies.

The processing power and memory capacity of graphics processing units (GPUs) have 

rapidly and significantly improved in recent years. Contemporary GPUs provide extremely 

fast memories and massive multi-processing capabilities, exceeding those of multi-core 

CPUs. The application and performance benefits of GPUs for general purpose processing 

have been demonstrated for a wide range of applications [1]. As a result, hybrid systems 

with multi-core CPUs and multiple GPUs are emerging as viable high performance 

computing platforms for scientific computation [2]. This trend is also fueled by the 

availability of programming abstractions and frameworks, such as CUDA1 and OpenCL2, 

that have reduced the complexity of porting computational kernels to GPUs. Nevertheless, 

taking advantage of hybrid platforms for scientific computing still remains a challenging 

problem. An application developer needs to be concerned about efficient distribution of 

computational workload not only across cluster nodes but also among multiple CPU cores 

and GPUs on a hybrid node. The developer also has to take into account the relative 

performance of application operations on CPUs and GPUs. Some operations are more 

suitable for massive parallelism and generally achieve higher GPU-vs-CPU speedup values 

than other operations. Such performance variability should be incorporated into scheduling 

decisions. On top of these challenges, the application developer has to minimize data 

copy overheads when data have to be exchanged between application operations. These 

challenges often lead to underutilization of the power of hybrid platforms.

In this work, we propose and evaluate parallelization strategies and runtime runtime 

support for efficient execution of large scale microscopy image analyses on hybrid cluster 

systems. Our approach combines the coarse-grain dataflow pattern with the bag-of-tasks 

pattern in order to facilitate the implementation of an image analysis application from 

a set of operations on data. The runtime supports hierarchical pipelines, in which a 

processing component can itself be a pipeline of operations, and implements optimizations 

for efficient coordinated use of CPUs and GPUs on a computing node as well as for 

distribution of computations across multiple nodes. The optimizations studied in this paper 

include data locality conscious and performance variation aware task assignment, data 

1 http://nvidia.com/cuda 
2 http://www.khronos.org/opencl/ 

Teodoro et al. Page 2

Proc IPDPS (Conf). Author manuscript; available in PMC 2014 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://nvidia.com/cuda
http://www.khronos.org/opencl/


prefetching, asynchronous data copy, and architecture aware placement of control processes 

in a computation node. Fine-grain operations that constitute an image analysis pipeline 

typically involve different data access and processing patterns. Consequently, variability in 

the amount of GPU acceleration of operations is likely to exist. This requires the use of 

performance aware scheduling techniques in order to optimize the use of CPUs and GPUs 

based on speedups attained by each operation.

We evaluate our approach using image datasets from brain tumor specimens and an analysis 

pipeline developed for study of brain cancers on a state-of-the-art hybrid cluster, where each 

node has multi-core CPUs and multiple GPUs. Experimental results show that coordinated 

use of CPUs and GPUs along with the runtime optimizations results in significant 

performance improvements over CPU-only and GPU-only deployments. In addition, multi

level pipeline scheduling and execution is faster than a monolithic implementation, since it 

can leverage the hybrid infrastructure better. Applying all of these optimizations makes it 

possible to process an image dataset at 150 tiles/second on 100 hybrid compute nodes.

II. Application Description

The motivation for our work is the in silico studies of brain tumors [3]. These studies are 

conducted to find better tumor classification strategies and to understand the biology of 

brain tumors, using complementary datasets of high-resolution whole tissue slide images 

(WSIs), gene expression data, clinical data, and radiology images. WSIs are captured by 

taking color (RGB) pictures of tissue specimens stained and fixated on glass slides. Our 

group has developed WSI analysis applications to extract and classify morphology and 

texture information from images, with the objective of exploring correlations between tissue 

morphology, genomic signatures, and clinical data [3]. The WSI analysis applications share 

a common workflow which consists of the following core stages: 1) image preprocessing 

tasks such as color normalization, 2) segmentation of micro-anatomic objects such as cells 

and nuclei, 3) characterization of the shape and texture features of the segmented objects, 

and 4) machine-learning methods that integrate information from features to classify the 

images and objects. In terms of computation cost, the preprocessing and classification stages 

(stages 1 and 4) are inexpensive relative to the segmentation and feature computation stages 

(stages 2 and 3). The current implementation of the classification stage works at image 

and patient level and includes significant data reduction prior to the actual classification 

operation which decreases data and computational requirements. The segmentation and 

feature computation stages, on the other hand, may operate on hundreds to thousands of 

images with resolutions ranging from 50K×50K to 100K×100K pixels and on 105 to 107 

micro-anatomic objects (e.g., cells and nuclei) per image. Thus, we target the segmentation 

and feature computation stages in this paper.

The segmentation stage detects cells and nuclei and delineates their boundaries. It consists 

of several component operations, forming a dataflow graph (see Figure 1). The operations 

in the segmentation include morphological reconstruction to identify candidate objects, 

watershed segmentation to separate overlapping objects, and filtering to eliminate candidates 

that are unlikely to be nuclei based on object characteristics. The feature computation 

stage derives quantitative attributes in the form of a feature vector for the entire image 

Teodoro et al. Page 3

Proc IPDPS (Conf). Author manuscript; available in PMC 2014 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



or for individual segmented objects. The feature types include pixel statistics, gradient 

statistics, edge, and morphometry. Most of the features can be computed concurrently in a 

multi-threaded or parallel environment.

III. Application Parallelization for High Throughput Execution

The workflow stages described in the previous section were originally implemented 

in MATLAB. To create high performance versions of the segmentation and feature 

computation stages, we first implemented GPU-enabled versions, as well as C++-based 

CPU versions, of individual operations in those stages (Section III-A). We then developed 

a runtime middleware and methods that combine the bag-of-tasks and coarse-grain dataflow 

patterns for parallelization across multiple nodes and within each CPU-GPU node (Section 

III-B). Finally, we incorporated a set of runtime optimizations to reduce computation time 

and use CPUs and GPUs in a coordinated manner on each compute node (Section III-C).

A. GPU-based Implementations of Operations

We used existing implementations from OpenCV [4] library or from other research groups, 

or implemented our own if no efficient implementations were available. The Morphological 

Open operation, for example, is available in OpenCV [4] and is implemented using NVIDIA 

Performance Primitives (NPP) [5]. The Watershed operation, on the other hand, has only 

a CPU implementation in the OpenCV library. We used the GPU version developed by 

Körbes et. al. [6] for this operation. A list of core operations supported by our current 

implementation along with the sources of the CPU/GPU implementations is presented in 

Table I.

Several of the methods we developed in the segmentation stage have irregular data 

access and processing patterns. The Morphological Reconstruction (MR) [7] and Distance 
Transform algorithms are used as building blocks in a number of these methods. These 

algorithms can be efficiently executed on a CPU using a queue structure. In these 

algorithms, only the computation performed in a subset of the elements (active elements) 

from the input data domain effectively contribute to the output. Therefore, to reduce the 

computation cost, the active elements are tracked using a container, e.g., a queue, so that 

only those elements are processed. When an element is selected for computation, it is 

removed from the set of active elements. The computation of the active element involves its 

neighboring elements on a grid, and one or more of the neighbors may be added to the set 

of active elements as a result of the computation. This process continues until stability is 

reached; i.e., the container of active elements becomes empty. To port these algorithms to 

the GPU, we have implemented a hierarchical and scalable queue to store elements (pixels) 

in fast GPU memories along with several optimizations to reduce execution time. We refer 

the reader to the following manuscripts [8], [9] for implementation details. The queue-based 

implementation resulted in significant performance improvements over previously published 

GPU-enabled versions of the MR algorithm [10]. Our implementation of the distance 

transform results in a distance map equivalent to that of Danielsson's algorithm [11].

The connected component labeling operation (BWLabel) was implemented using the union

find pattern [12]. Conceptually, the BWLabel with union-find first constructs a forest where 

Teodoro et al. Page 4

Proc IPDPS (Conf). Author manuscript; available in PMC 2014 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



each pixel is its own tree. It then merges trees corresponding to adjacent pixels by inserting 

one tree as a branch of the other. The trees are merged only when the adjacent pixels have 

the same mask pixel value. During a merge, the roots of two trees are compared by the label 

values. The root with the smaller label value remains the root, while the other is grafted onto 

the new root. After all the pixels have been visited, pixels belonging to the same component 

are on the same label tree. The label can then be extracted by flattening the trees and reading 

the labels. The output of this operation in the computation pipeline, shown in Figure 1, is a 

labeled mask containing all of the segmented objects.

The operations in the feature computation stage consist of pixel and neighborhood 

based transformations that are applied to the input image (Color deconvolution, Canny, 

and Gradient) and computations on individual objects (e.g., nuclei) segmented in the 

segmentation stage. The feature computations on objects are generally more regular and 

compute intensive than the operations in the segmentation stage. This characteristics of the 

feature computation operations lead to better GPU acceleration [13].

B. Parallelization on Distributed CPU-GPU machines

The image analysis application encapsulates multiple processing patterns. First, each image 

can be partitioned into rectangular tiles, and the segmentation and feature computation steps 

can be executed on each tile independently. This leads to a bag-of-tasks style processing 

pattern. Second, the processing of a single tile can be expressed as a hierarchical coarse

grain dataflow pattern. The segmentation and feature computation stages are the first level 

of the dataflow structure. The second level is the set of fine-grain operations that constitute 

each of the coarse-grain stages. This formulation is illustrated in Figure 1.

The hierarchical representation lends itself to a separation of concerns and enables the use 

of different scheduling approaches at each level. For instance, it allows for the possibility 

of exporting second level operations (fine-grain operations) to a local scheduler on a hybrid 

node, as opposed to describing each pipeline stage as a single monolithic task that should 

entirely be assigned to a GPU or a CPU. In this way, the scheduler can control tasks at a 

finer granularity, account for performance variations across the finer grain tasks within a 

node, and assign them to the most appropriate device.

In order to support this representation, our implementation is built on top of a Manager

Worker model, shown in Figure 2, that combines the bag-of-tasks style execution with the 

coarse-grain dataflow execution pattern. The application Manager creates stage instances, 

each of which are represented by a tuple, (input data chunk, processing stage), and builds 

the dependencies among them to enforce the correct pipeline execution. This dependency 

graph is not completely known prior to execution, thus is built dynamically at runtime. For 

instance, after the segmentation of a tile, the feature extraction for that particular chunk 

of data is only dispatched for computation if a certain number of objects were segmented. 

Since stage instances may be created as a consequence of the computation of other stage 

instances, it is possible to create loops as the dependency graph may be reinstantiated 

dynamically.

Teodoro et al. Page 5

Proc IPDPS (Conf). Author manuscript; available in PMC 2014 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The granularity of tasks assigned to the application Worker nodes is equal to stage instances, 

i.e., a segmentation or feature computation stage instance in our case. The tasks are 

scheduled to the Workers using a demand-driven approach. Stage instances are assigned 

to the Workers for execution in the same order the instances are created, and the Workers 

continuously request work as they finalize the execution of the previous instances (see 

Figure 2). In practice, a single Worker is able to execute multiple application stages 

concurrently, and the sets of Workers shown in Figure 2 are not necessarily disjoint. All 

the communication among the processes is done using MPI.

Since a Worker (see Figure 3) is able to use all CPU cores and GPUs in a node concurrently, 

it may ask for multiple stage instances from the Manager in order to keep all computing 

devices busy. The maximum number of stage instances assigned to a Worker at a time is a 

configurable value (Window size). The Worker may request multiple stage instances in one 

request or in multiple requests; in the latter case, the assignment of a stage instance and the 

retrieval of necessary input data chunks can be overlapped with the processing of an already 

assigned stage instance.

The Worker Communication Controller (WCC) module runs on one of the CPU cores and is 

responsible for performing any necessary communication with the Manager. All computing 

devices used by a Worker are controlled by a local Worker Resource Manager (WRM). 

When a Worker receives a stage instance from the application Manager and instantiates 

the pipeline of finer-grain operations in that pipeline instance, each of the fine-grain 

operation instances, (input data, operation), is dispatched for execution with the local WRM. 

The WRM maps the (input data, operation) tuples to the local computing devices as the 

dependencies between the operations are resolved. In this model of a Worker, one computing 

thread is assigned to manage each available CPU computing core or a GPU. The threads 

notify the WRM whenever they become idle. The WRM then selects one of the tuples 

ready for execution with operation implementation matching the processor managed by that 

particular thread. When all the operations in the pipeline related to a given stage instance 

are executed, a callback function is invoked to notify the WCC. The WCC then notifies the 

Manager about the end of that stage instance and requests more stage instances. During a 

stage instance destruction phase, it could also instantiate other stages instances as necessary.

C. Efficient Cooperative Execution on CPUs and GPUs

This section describes optimizations that address smart assignment of operations to CPUs 

and GPUs and data movement between those devices.

1) Performance Aware Task Scheduling (PATS)—The stage instances (Segmentation 

or Feature Computation) assigned to a Worker create many finer-grain operation instances. 

The operation instances need to be mapped to available CPU cores and GPUs efficiently 

in order to fully utilize the computing capacity of a node. Several recent efforts on task 

scheduling in heterogeneous environments have targeted machines equipped with CPUs and 

GPUs [14], [15], [16]. These works address the problem of partitioning and mapping tasks 

between CPUs and GPUs for applications in which operations (or tasks) achieve consistent 

speedups when executed on a GPU vs on a CPU. The previous efforts differ mainly in 

Teodoro et al. Page 6

Proc IPDPS (Conf). Author manuscript; available in PMC 2014 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



whether they use off-line, on-line, or automated scheduling approaches. However, when 

there are multiple types of operations in an application, the operations may have different 

processing and data access patterns and attain different amounts of speedup on a GPU.

In order to use performance variability to our advantage, we have developed a strategy, 

referred here to as PATS (formerly PRIORITY scheduling) [13]. This strategy assigns tasks 

to CPU cores or GPUs based on an estimate of the relative performance gain of each task on 

a GPU compared to its performance on a CPU core and on the computational loads of the 

CPUs and GPUs. In this work, we have extended the PATS scheduler to take into account 

dependencies between operations in an analysis workflow.

The PATS scheduler uses a queue of operation instances, i.e., (data element, operation) 
tuples, sorted based on the relative speedup expected for each tuple. As more tuples are 

created for execution with each Worker and pending operation dependencies are resolved, 

more operations are queued for execution. Each new operation is inserted in the queue such 

that the queue remains sorted (see Figure 3). During execution, when a CPU core or GPU 

becomes idle, one of the tuples from the queue is assigned to the idle device. If the idle 

device is a CPU core, the tuple with the minimum estimated speedup value is assigned to 

the CPU core. If the idle device is a GPU, the tuple with the maximum estimated speedup 

is assigned to the GPU. The PATS scheduler relies on maintaining the correct relative order 

of speedup estimates rather than the accuracy of individual speedup estimates. Even if the 

speedup estimates of two tasks are not accurate with respect to their respective real speedup 

values, the scheduler will correctly assign the tasks to the computing devices on the node, as 

long as the order of the speedup values is correct.

Time based scheduling strategies, e.g., heterogeneous earliest finish time, have shown to be 

very efficient for heterogeneous environments. The main reason we do not use a time based 

scheduling strategy is that most operations in our case have irregular computation patterns 

and data dependent execution times. Estimating execution times for those operations would 

be very difficult. Thus, our scheduling approach uses relative GPU-vs-CPU speedup values, 

which we have observed are easier to estimate, have less variance, and lead to better 

scheduling in our example application.

Although we provide CPU and GPU implementations of each operation in our 

implementation, this is not necessary for correct execution. When an operation has only 

one implementation, CPU or CPU, the scheduler can restrict the assignment of the operation 

to the appropriate type of computing device.

2) Data Locality Conscious Task Assignment (DL)—The benefits of using a GPU 

for a certain computation are strongly impacted by the cost of data transfers between the 

GPU and the CPU before the GPU kernel can be started. In our execution model, input 

and output data are well defined as they refer to the input and output streams of each stage 

and operation. Leveraging this structure, we have extended the base scheduler in order to 

promote data reuse and avoid penalties due to excessive data movement. After an operation 

assigned to a GPU has finished, the scheduler explores the operation dependency graph 

and searches for operations ready for execution that can reuse the data already in the GPU 

Teodoro et al. Page 7

Proc IPDPS (Conf). Author manuscript; available in PMC 2014 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



memory. If the operation speedups are not known, the scheduler always chooses to reuse 

data instead of selecting another operation that does not reuse data. For the case where 

speedup estimates for operations are available, the scheduler searches for tasks that reuse 

data in the dependency graph, but it additionally takes into consideration other operations 

ready for execution. Although those operations may not reuse data, it may be worthwhile 

to pay the data transfer penalties if they benefit more from execution on a GPU than the 

operations that can reuse the data. To choose which operation instance to execute in this 

situation, the speedup of the dependent operations with the best speedup (Sd) is compared to 

that of the operation with the best speedup (Sq) that does not reuse the data. The dependent 

operation is chosen for execution, if Sd ≥ Sq × (1 − transferImpact). Here transferImpact is a 

real value between 0 and 1 and represents the fraction of the operation execution time spent 

in data transfer. We currently rely on the programmer to provide such an estimate, but we 

plan to automate this step in a future work.

3) Data Prefetching and Asynchronous Data Copy—Data locality conscious task 

assignment reduces data transfers between CPUs and GPUs for successive operations in a 

pipeline. However, there are moments in the execution when data still have to be exchanged 

between these devices because of scheduling decisions. In those cases, data copy overheads 

can be reduced by employing pre-fetching and asynchronous data copy. New data can be 

copied to the GPU in parallel to the execution of the computation kernel on a previously 

copied data [17]. In a similar way, results from previous computations may be copied to 

the CPU in parallel to a kernel execution. In order to employ both data prefetching and 

asynchronous data copy, we modified the runtime system to perform the computation and 

communication of pipelined operations in parallel. The execution of each operation using a 

GPU in this execution mode involves three phases: uploading, processing, and downloading. 

Each GPU manager thread in the WRM pipelines multiple operations through these three 

phases. Any input data needed for another operation waiting to execute and the results 

from a completed operation are copied from and to the CPU in parallel to the ongoing 

computation in the GPU.

IV. Experimental Evaluation

A. Experimental Setup

We have evaluated the runtime system, optimizations, and application implementation using 

a distributed memory hybrid cluster, called Keeneland [2]. Keeneland is a National Science 

Foundation Track2D Experimental System and has 120 nodes in the current configuration. 

Each computation node is equipped with a dual socket Intel X5660 2.8 Ghz Westmere 

processor, 3 NVIDIA Tesla M2090 (Fermi) GPUs, and 24GB of DDR3 RAM (See Figure 

4). The nodes are connected to each other through a QDR Infiniband switch.

The image datasets used in the evaluation were obtained from brain tumor studies [3]. 

Each image was partitioned into tiles of 4K×4K pixels. The codes were compiled using 

“gcc 4.1.2”, “-O3” optimization flag, OpenCV 2.3.1, and NVIDIA CUDA SDK 4.0. The 

experiments were repeated 3 times. The standard deviation in performance results was not 

observed to be higher than 2%. The input data were stored in the Lustre filesystem.

Teodoro et al. Page 8

Proc IPDPS (Conf). Author manuscript; available in PMC 2014 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



B. Performance of Application Operations on GPU

This section presents the performance gains on GPU of the individual pipeline operations. 

Figure 5 shows the performance gains achieved by each of the fine-grain operations 

as compared to the single core CPU counterparts. The speedup values in the figure 

represent the performance gains (1) when only the computation phase is considered 

(computation-only) and (2) when the cost of data transfer between CPU and GPU is 

included (computation+data transfer). The figure also shows the percentage of the overall 

computation time spent in an operation on one CPU core.

The results show that there are significant variations in performance gains among operations, 

as expected. The most time consuming stages are the ones with the best speedup 

values – this is in part because of the fact that we have focused on optimizing the 

GPU implementations of those operations to reduce overall execution time. The feature 

computation stage stands out as having better GPU acceleration than the segmentation stage. 

This is a consequence of the former's more regular and compute intensive nature.

This performance evaluation indicates that the task scheduling approach should take into 

consideration these performance variations to maximize performance on hybrid CPU-GPU 

platforms. We evaluate the performance impact on pipelined execution of using PATS for 

scheduling operations in Section IV-C.

C. Cooperative Pipeline Execution using CPUs and GPUs

This section presents the experimental results when multiple CPU cores and GPUs are 

used together to execute the analysis pipeline. In these experiments, two versions of the 

application workflow are used: (i) pipelined refers to the version described in Section II, 

where the operations performed by the application are organized as a hierarchical pipeline; 

(ii) non-pipelined that bundles the entire computation of an input tile as a single monolithic 

task, which is executed either by CPU or GPU. The comparison between these versions is 

important to understand the performance impact of pipelining application operations.

Two scheduling strategies were employed for mapping tasks to CPUs or GPUs: (i) FCFS 

which does not take performance variation into consideration; and, (ii) PATS that uses the 

expected speedups achieved by an operation in the scheduling decision. When PATS is used, 

the speedup estimates for each of the operations are those presented in Figure 5.

The results for the various configurations are presented in Figure 6, using the three images. 

In all cases, the CPU speedup using 12 cores is about 9. The sub-linear speedups are a result 

of the application's high memory bandwidth requirements. The 3-GPU execution achieved 

about 1.8× speedup on top of the 12 CPU cores version for all images. The coordinated 

use of CPUs and GPUs improved performance over the 3-GPU executions. We should note 

that only up to 9 CPU cores are used for computation in the multi-device experiments, 

because 3 cores are dedicated to GPU control threads. In the non-pipelined version of the 

application, potential performance gains by using CPUs and GPUs together are limited by 

load imbalance. If a tile is assigned to a CPU core near the end of the execution, the GPUs 

will sit idle waiting until the CPU core finishes. This reduces the benefits of cooperative 

use of computing devices. The performance of PATS for the non-pipelined version is similar 

Teodoro et al. Page 9

Proc IPDPS (Conf). Author manuscript; available in PMC 2014 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to FCFS. In this case, PATS is not able to make better decisions than FCFS, because the 

non-pipelined version bundles all the internal operations of a stage in the analysis pipeline 

as a single task, hence the performance variations of the operations are not exposed to the 

runtime system.

The CPU-GPU execution of the pipelined version of the application with FCFS (3 GPUs 

+ 9 CPU cores - FCFS pipelined) also improved the 3-GPU execution, reaching similar 

performance to that of the non-pipelined execution. This version of the application requires 

that the data are copied to and from a GPU before and after an operation in the pipeline 

is assigned to the GPU. This introduces a performance penalty due to the data transfer 

overheads, which are about 13% of the computation time as shown in Figure 5, and 

limits the performance improvements of the pipelined version. The advantage of using 

the pipelined version in this situation is that load imbalance among CPUs and GPUs is 

reduced. The assignment of computation to CPUs or GPUs occurs at a finer-grain; that is, 

application operations in the second level of the pipeline make up the tasks scheduled to 

CPUs and GPUs, instead of the entire computation of a tile as in the non-pipelined version. 

Figure 6 also presents the performance of the PATS scheduling for the pipelined version of 

the application. As is seen from the figure, processing of tiles using PATS is about 1.33× 

faster than using FCFS with the non-pipelined or pipelined version of the application. The 

performance gains result from the ability of PATS to better assign the application internal 

operations to the most suited computing devices.

Figure 7 presents the percent of tasks that PATS assigned to the CPUs or GPUs for each 

pipeline stage. As is shown, the execution of components with lower speedups are mostly 

performed using the CPUs, while the GPUs are kept occupied with the operations that 

achieve higher speedups. For reference, when using FCFS with the pipelined version, about 

62% of the tasks for each operation are assigned to GPUs and the rest to CPUs regardless of 

performance variations between the operations.

D. Data Locality Conscious Scheduling/Data Prefetching

This section evaluates the performance impact of the data locality conscious task assignment 

(DL) and data prefetching and asynchronous data download (Prefetching) optimizations. 

Figure 8 presents the performance improvements with these optimizations for both PATS 

and FCFS. For reference, the GPU-only and CPU-only performance for each of the 

images are the same presented in the last section (Figure 6). As is shown in the figure, 

the pipelined version with FCFS and DL is able to improve on the performance of the 

non-pipelined version by about 1.1× for all input images. When Prefetching is used in 

addition to FCFS and DL (“3GPUs + 9 CPU core - pipelined FCFS + DL + Prefetching”), 

there are no significant performance improvements. The main reason is that DL already 

avoids unnecessary CPU-GPU data transfers; therefore, Prefetching will only be effective 

in reducing the cost of uploading the input tile to the GPU and downloading the final 

results from the GPU. These costs are small and limit the performance gains resulting from 

Prefetching.

Figure 8 also shows the performance results for PATS when DL and Prefetching are 

employed. The use of DL improves the performance of PATS as well, but the gains achieved 

Teodoro et al. Page 10

Proc IPDPS (Conf). Author manuscript; available in PMC 2014 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(1.04×) with DL are smaller than those in FCFS. The estimated speedups for the operations 

are available, thus PATS will check whether it is worthwhile to download the operation 

results to map another operation to the GPU. The number of upload/downloads avoided by 

using DL is also smaller than when FCFS is used, which explains the performance gain 

difference. Prefetching with DL results in an additional 1.03× performance improvement. 

This optimization was more effective in this case, because the volume of data transferred 

between the CPU and the GPU is higher than when FCFS with DL is employed.

E. Impact of Worker Request Window Size

This section analyzes the effect of the demand-driven window size between Manager and 

Workers (i.e., the number of pipeline stage instances concurrently assigned to a Worker) 

on the CPU-GPU scheduling strategies utilized by the Worker. In this experiment, we used 

3 GPUs and 9 CPU cores (with 3 CPU cores allocated to the GPU manager threads) 

with FCFS and PATS. The window-size is varied from 12 until no significant performance 

changes are observed.

Figure 9 presents the execution times. The performance of FCFS is impacted little by 

variation in the window size. The performance of PATS, on the other hand, is limited for 

small window sizes. In the scenario where the window size is 12, FCFS and PATS tend 

to make the same scheduling decisions, because only a single operation will be usually 

available when a processor requests work. This makes the decision trivial and equal for 

both strategies. When the window size is increased, however, the scheduling decision space 

becomes larger, providing PATS with opportunities to make better task assignments. As 

is shown in the figure, with a window size of 15, PATS already achieves near its best 

performance. This is another good property of PATS, since very large window sizes can 

create load imbalance among Workers.

The profile of the execution (% of tasks processed by GPU) as the window size is varied as 

is displayed in Figure 10. As the window size increases, PATS changes the assignment of 

tasks, and operations with higher speedups are more likely to be executed by GPUs. FCFS 

profile is not presented in the same figure, but its profile is similar to PATS with a window 

size of 12 for all configurations.

F. Sensitivity to Inaccurate Speedup Estimation

In this section, we empirically evaluate the sensitivity of PATS to errors in the GPU-vs-CPU 

speedup estimation of operations. For the sake of this evaluation, we intentionally inserted 

errors in the estimated speedup values of the application operations in a controlled manner. 

The estimated speedup values of operations with lower speedups that are mostly scheduled 

to the CPUs (Morph. Open, AreaThreshold, FillHoles, and BWLabel) were increased, while 

those of other operations were decreased. The changes were calculated as a percentage of an 

operation's original estimated speedup, and the variation range was from 0% to 100%.

The execution times for different error rates are presented in Figure 11. The results show 

that PATS is capable of performing well even with high errors and error rates in speedup 

estimations. For instance, when 60% estimation error is used, the performance of the 

pipeline is only 10% worse than the initial case (0% speedup estimation error). At 70% 

Teodoro et al. Page 11

Proc IPDPS (Conf). Author manuscript; available in PMC 2014 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and 80% errors, the performance of PATS is more affected, because stages with lower 

GPU speedups (such as AreaThreshold, FillHoles, and BWLabel), which were previously 

executed on the CPU, are now scheduled for execution on a GPU. Nevertheless, PATS still 

performs better than FCFS, because the operations in the feature computation stage are not 

miss-ordered. To emulate 100% estimation error, we set to 0 the speedups of all substages 

that in practice have higher speedups, and double the estimated speedups of the other stages 

that in reality have lower speedup values. This forces PATS to preferably assign operations 

with low speedups to GPU and the ones with high speedup to CPU. Even with this level of 

error, the execution times are only about 10% worse than those using FCFS.

G. Multi-node Scalability

This section presents the performance evaluation of the cancer image analysis application 

when multiple computation nodes are used. The evaluation was carried out using 340 

glioblastoma brain tumor WSIs, which were partitioned into a total of 36,848 4K×4K tiles. 

Similarly to other experiments, the input data tiles were stored as image files in the Lustre 

filesystem. Therefore, the results presented in this manuscript represent real end-to-end 

executions of the application, which include overheads for reading input data.

The strong scaling evaluation is presented in Figure 12. First, Figure 12(a) shows the 

execution times for all configurations of the application when the number of computing 

nodes is varied from 8 to 100. All the application versions achieved improvements as the 

number of nodes increase, and the comparison of the approaches shows that the cooperative 

CPU-GPU execution resulted in speedups of up to 2.7× and 1.7× on top of the “12-CPU 

cores non-pipelined” (CPU-only) version, respectively, for PATS and FCFS. As shown in 

the results figure, PATS with optimizations achieved the best performance for all number of 

computing nodes.

Figure 12(b) also presents the parallelization efficiency for all versions of the application. 

As may be noticed, the parallelization efficiency reduces in different rates for the application 

versions as the number of nodes increase. For instance, the efficiency on 100 nodes is about 

85% for the CPU-only version of the application, while it is nearly 70% for the CPU-GPU 

cooperative executions. The main bottleneck for better parallelization efficiency is the I/O 

overhead of reading image tiles. As the number of nodes increases, I/O operations become 

more expensive, because more clients access the file system in parallel. The strategies that 

use cooperative CPU-GPU execution have smaller efficiency simply because they are faster 

and, consequently, require more I/O operations per unit of time. If only the computation 

times were measured, the efficiency for those versions would increase to about 93%. Even 

with the I/O overheads, the application achieved good scalability and was able to process the 

entire set of 36,848 tiles in less than four minutes when 100 nodes were employed, using a 

total of the 1,200 CPU cores and 300 GPUs in cooperation and PATS. This represents a huge 

improvement in data processing capabilities. Currently, as discussed in Section VI, we are 

evaluating efficient I/O mechanisms to improve the performance of this component of the 

application on large scale machines.

Teodoro et al. Page 12

Proc IPDPS (Conf). Author manuscript; available in PMC 2014 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



V. Related Work

The use of hybrid computing architectures with hardware accelerators is growing in HPC 

leadership supercomputing systems [2]. The appropriate utilization of hybrid systems, 

however, typically requires complex software instruments to deal with a number of peculiar 

aspects of the different processors available. This challenge has motivated a number of 

languages and runtime frameworks [15], [14], [16], [18], [19], [20], [21], [22], [23], [24], 

[25], [26], specialize libraries [4], and compiler techniques [27].

The Mars [15] and Merge [14] projects evaluate the cooperative use of CPUs and GPUs 

to speed up MapReduce computations. Mars has examined the benefits of partitioning Map 

and Reduce tasks between CPU and GPU statically. Merge has extended that approach with 

dynamic distribution of work at runtime. The Qilin [16] system has further proposed an 

automated methodology to map computation tasks to CPUs and GPUs. The Qilin strategy 

is based on having a profiling phase, where performance data of the target application is 

collected. This data is used to build a performance model to estimate the best work division. 

Neither ther of these solutions (Mars, Merge, and Qilin), however, are able to take advantage 

of distributed systems.

PTask [28] provides OS abstractions for execution of tasks, called ptasks, on GPU equipped 

machines. It treats GPUs as first class resources and provides methods for scheduling tasks 

to GPUs, fairness, and isolation. Applications are represented using a data-flow model. 

Our approach differs from Ptask in several ways. A task in our framework is dynamically 

bound to a GPU or CPU during execution. ptasks in the PTask framework, on the other 

hand, cannot be re-targeted. Our PATS scheduler employs a different priority metric, the 

relative performance of (data, oper) on GPU vs CPU, for mapping tasks to processors. These 

optimizations are targeted at improving throughput. We also allow for cyclic and dynamic 

dependency graphs, hierarchical pipelines, and multi-node execution. We believe PTask and 

our system could co-exist and benefit from each other.

Efficient execution of applications on distributed CPUGPU equipped platforms has been 

an objective of several projects [23], [24], [25], [26], [22], [29], [30]. Ravi et al. [24], 

[26] proposes techniques for automatic translation of generalized reductions to CPU-GPU 

environments via compile-time techniques, which are coupled with runtime support to 

coordinate execution. The runtime system techniques employ auto-tuning approaches to 

dynamically partition tasks among CPUs and GPUs. The work by Hartley et al. [25] is 

contemporary to Ravi's and proposes runtime strategies for divisible workloads. The OmpSs 

[29] supports efficient asynchronous execution of dataflow applications automatically 

generated by compiler techniques from serial annotated code. OmpSs statically binds the 

tasks to one of the available processors, while our approach dynamically schedules tasks to 

processors during execution according to the performance benefits and device suitability of 

tasks.

DAGuE [23] and StarPU [18], [31] are frameworks that support execution of regular linear 

algebra applications on CPU-GPU machines. These systems represent an application as 

a DAG of operations and ensure that dependencies are respected. They offer different 

Teodoro et al. Page 13

Proc IPDPS (Conf). Author manuscript; available in PMC 2014 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



scheduling policies, including those that prioritize computation of critical paths in the 

dependency graph in order to maximize parallelism. They include support for multi-node 

execution and assume that the application DAG is static and known before execution. 

This structure fits well with regular linear algebra applications, but is a limitation that 

prevents their use in irregular and dynamic applications such as ours. In our application, 

the dependency graph representing the application must be dynamically built during the 

execution, as the computation of the next stage of the analysis pipeline may depend on 

the results of the current stage. For instance, the entire feature computation should not be 

computed, if nuclei are not found in the segmentation stage. Additionally, neither of the 

previous solutions allow for the representation of the application as a multi-level pipeline, 

which is key to achieving high performance with fine-grain task management.

Our work targets a scientific data analysis pipeline, including the GPU/CPU 

implementations of several challenging irregular operations. In addition, we develop support 

for execution of applications that can be described as a multilevel pipeline of operations, 

where coarse-grain stages are divided into fine-grain operations. In this way, we can leverage 

variability in the amount of GPU acceleration of fine-grain operations that was not possible 

in the previous works. We also investigate a set of optimizations that include data locality 

aware task assignment. This optimization dynamically groups operations that present good 

performance according to the current set of tasks ready to execute on a machine, instead 

of doing it statically prior to execution as in our previous work [13]. Data prefetching 

and asynchronous data transfer optimizations are also employed in order to maximize 

computational resource utilization.

VI. Conclusions and Future Directions

Hybrid CPU-GPU cluster systems offer significant computing and memory capacity to 

address the computational needs of large scale scientific analyses. In this paper, we 

have developed an image analysis application that can fully exploit such platforms to 

achieve high-throughput data processing rates. We have shown that significant performance 

improvements are achieved when an analysis application can be assembled as pipelines 

of fine-grain operations, as compared to bundling all internal operations in one or two 

monolithic methods. The former allows for exporting application processing patterns 

more accurately to the runtime environment and empowers the middleware system 

to make better scheduling decisions. Performance aware task scheduling coupled with 

function variants enable efficient coordinated use of CPU cores and GPUs in pipelined 

operations. Performance gains can further be increased on hybrid systems through such 

additional runtime optimizations as locality conscious task mapping, data prefetching, and 

asynchronous data copy. Employing a combination of these optimizations, our application 

implementation has achieved a processing rate of about 150 tiles per second when 100 

nodes, each with 12 CPU cores and 3 GPUs, are used. These levels of processing speed 

make it feasible to process very large datasets and would enable a scientist to explore 

different scientific questions rapidly and/or carry out algorithm sensitivity studies.

The current implementation of the classification step (step 4 in Section II) clusters images 

into groups based on average feature values per image. The average feature values can be 

Teodoro et al. Page 14

Proc IPDPS (Conf). Author manuscript; available in PMC 2014 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



computed by maintaining on each compute node a running sum of the feature values of 

segmented objects for each image. The partial sums on the nodes can then be accumulated 

in a global sum operation, and the average feature values per image can be computed. 

Thus, the amount of data transferred from the feature computation step to the classification 

step is relatively small. However, there are cases when the output from a stage, or even 

from an operation, needs to be staged to disk. For example, studying the sensitivity to 

input parameters and algorithm variations of output from the segmentation stage would 

require us to execute multiple runs. It might not be possible, due to time and resource 

constraints, to maintain output from a run in memory until all the runs have been completed. 

The output from a stage in a single run or multiple runs may also need to be stored on 

disk for inspection or visualization at a later time. As a future work, in order to support 

the I/O requirements in such cases, we are developing an I/O component based on a 

stream-I/O approach, drawing from filter-stream networks [32], [33], [34], [35], [36] and 

data staging [37], [38]. This implementation facilitates flexibility. The I/O processes can be 

placed on different physical processors in the system. For example, if a system had separate 

machines for I/O purposes, the I/O nodes could be placed on those machines. Moreover, 

the implementation allows us to leverage different I/O sub-systems. In addition to POSIX 

I/O in which each I/O process writes out its buffers independent of other I/O nodes, we 

have integrated ADIOS [39] for data output. ADIOS is shown to be efficient, portable, and 

scalable on supercomputing platforms and for a range of applications. We are in the process 

of carrying out initial performance evaluations of the I/O component.

Acknowledgment

This work was supported in part by HHSN261200800001E from the National Cancer Institute, R24HL085343 
from the National Heart Lung and Blood Institute, by R01LM011119-01 and R01LM009239 from the National 
Library of Medicine, RC4MD005964 from National Institutes of Health, and PHS UL1RR025008 from the Clinical 
and Translational Science Awards program. This research used resources of the Keeneland Computing Facility 
at the Georgia Institute of Technology, which is supported by the National Science Foundation under Contract 
OCI-0910735.

REFERENCES

1. NVIDIA. GPU Accelerated Applications. 2012. [Online]. Available: http://www.nvidia.com/object/
gpu-accelerated-applications.html

2. Vetter JS, Glassbrook R, Dongarra J, Schwan K, Loftis B, McNally S, Meredith J, Rogers J, 
Roth P, Spafford K, Yalamanchili S. Keeneland: Bringing Heterogeneous GPU Computing to the 
Computational Science Community. Computing in Science and Engineering. 2011; 13 

3. Cooper LAD, Kong J, Gutman DA, Wang F, Cholleti SR, Pan TC, Widener PM, Sharma A, 
Mikkelsen T, Flanders AE, Rubin DL, Meir EGV, Kurc TM, Moreno CS, Brat DJ, Saltz JH. An 
integrative approach for in silico glioma research. IEEE Trans Biomed Eng. 2010; 57 (10) :2617–
2621. [PubMed: 20656651] 

4. Bradski G. The OpenCV Library. Dr. Dobb's Journal of Software Tools. 2000 

5. NVIDIA. NVIDIA Performance Primitives(NPP). Feb 11, 2011. [Online]. Available: http://
developer.nvidia.com/npp

6. Körbes, A; Vitor, GB; de Alencar Lotufo, R; Ferreira, JV. Advances on watershed processing on 
GPU architecture. Proceedings of the 10th International Conference on Mathematical Morphology, 
ser. ISMM'11; 2011; 

7. Vincent L. Morphological grayscale reconstruction in image analysis: Applications and efficient 
algorithms. IEEE Transactions on Image Processing. 1993; 2 :176–201. [PubMed: 18296207] 

Teodoro et al. Page 15

Proc IPDPS (Conf). Author manuscript; available in PMC 2014 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nvidia.com/object/gpu-accelerated-applications.html
http://www.nvidia.com/object/gpu-accelerated-applications.html
http://developer.nvidia.com/npp
http://developer.nvidia.com/npp


8. Teodoro G, Pan T, Kurc TM, Cooper L, Kong J, Saltz JH. A Fast Parallel Implementation of Queue
based Morphological Reconstruction using GPUs. Emory University, Center for Comprehensive 
Informatics Technical Report CCI-TR-2012-2. Jan. 2012 

9. Teodoro G, Pan T, Kurc T, Kong J, Cooper L, Saltz J. Efficient Irregular Wavefront Propagation 
Algorithms on Hybrid CPU-GPU Machines. Parallel Computing. 2013 

10. Karas, P. MEMICS, ser. OASICS. Vol. 16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik; 
Germany: 2010. Efficient Computation of Morphological Greyscale Reconstruction. 

11. Danielsson P-E. Euclidean distance mapping. 14. Computer Graphics and Image Processing. 1980 
:227–248. 

12. Oliveira VMA, de Alencar Lotufo R. A Study on Connected Components Labeling algorithms 
using GPUs. SIBGRAPI. 2010 

13. Teodoro, G; Kurc, TM; Pan, T; Cooper, LA; Kong, J; Widener, P; Saltz, JH. Accelerating Large 
Scale Image Analyses on Parallel, CPU-GPU Equipped Systems. 26th IEEE International Parallel 
and Distributed Processing Symposium (IPDPS); 2012; 1093–1104. 

14. Linderman MD, Collins JD, Wang H, Meng TH. Merge: a programming model for heterogeneous 
multi-core systems. 43. SIGPLAN Not. 2008; (3) :287–296. 

15. He B, Fang W, Luo Q, Govindaraju NK, Wang T. Mars: A MapReduce Framework on Graphics 
Processors. Parallel Architectures and Compilation Techniques. 2008 

16. Luk, C-K; Hong, S; Kim, H. Qilin: Exploiting parallelism on heterogeneous multiprocessors with 
adaptive mapping. 42nd International Symposium on Microarchitecture (MICRO); 2009; 

17. Jablin, TB; Prabhu, P; Jablin, JA; Johnson, NP; Beard, SR; August, DI. Automatic CPU
GPU communication management and optimization. Proceedings of the 32nd ACM SIGPLAN 
conference on Programming language design and implementation, ser. PLDI '11; 2011; 142–151. 

18. Augonnet, C; Thibault, S; Namyst, R; Wacrenier, P-A. Starpu: A unified platform for task 
scheduling on heterogeneous multicore architectures. Euro-Par '09: Proceedings of the 15th 
International Euro-Par Conference on Parallel Processing; 2009; 863–874. 

19. Diamos, GF; Yalamanchili, S. Harmony: an execution model and runtime for heterogeneous many 
core systems. Proceedings of the 17th international symposium on High performance distributed 
computing, ser. HPDC '08; New York, NY, USA. 2008; ACM; 197–200. 

20. Teodoro G, Sachetto R, Sertel O, Gurcan M, W. M. Catalyurek U, Ferreira R. Coordinating the 
use of GPU and CPU for improving performance of compute intensive applications. IEEE Cluster. 
2009 :1–10. 

21. Sundaram, N; Raghunathan, A; Chakradhar, ST. A framework for efficient and scalable execution 
of domain-specific templates on GPUs. IPDPS '09: Proceedings of the 2009 IEEE International 
Symposium on Parallel and Distributed Processing; 2009; 1–12. 

22. Teodoro, G; Hartley, TDR; Catalyurek, U; Ferreira, R. Run-time optimizations for replicated 
dataflows on heterogeneous environments. Proc. of the 19th ACM International Symposium on 
High Performance Distributed Computing (HPDC); 2010; 13–24. 

23. Bosilca, G; Bouteiller, A; Herault, T; Lemarinier, P; Saengpatsa, N; Tomov, S; Dongarra, J. 
Performance Portability of a GPU Enabled Factorization with the DAGuE Framework. 2011 IEEE 
International Conference on Cluster Computing (CLUSTER); sept. 2011; 395 –402. 

24. Ravi, V; Ma, W; Chiu, D; Agrawal, G. Compiler and runtime support for enabling generalized 
reduction computations on heterogeneous parallel configurations. Proceedings of the 24th ACM 
International Conference on Supercomputing. ACM; 2010; 137146

25. Hartley TDR, Saule E, Çatalyürek ÜV. Automatic dataflow application tuning for heterogeneous 
systems. HiPC. IEEE. 2010 :1–10. 

26. Huo, X; Ravi, V; Agrawal, G. Porting irregular reductions on heterogeneous CPU-GPU 
configurations. 18th International Conference on High Performance Computing (HiPC); dec. 
2011; 1 –10. 

27. Lee, S; Min, S-J; Eigenmann, R. OpenMP to GPGPU: a compiler framework for automatic 
translation and optimization. PPoPP '09: Proceedings of the 14th ACM SIGPLAN symposium on 
Principles and practice of parallel programming; 2009; 101–110. 

Teodoro et al. Page 16

Proc IPDPS (Conf). Author manuscript; available in PMC 2014 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



28. Rossbach, CJ; Currey, J; Silberstein, M; Ray, B; Witchel, E. Ptask: operating system abstractions 
to manage gpus as compute devices. Proceedings of the Twenty-Third ACM Symposium on 
Operating Systems Principles, ser. SOSP '11; New York, NY, USA. 2011; ACM; 233–248. 

29. Bueno, J; Planas, J; Duran, A; Badia, R; Martorell, X; Ayguade, E; Labarta, J. Productive 
Programming of GPU Clusters with OmpSs. 2012 IEEE 26th International Parallel Distributed 
Processing Symposium (IPDPS); may 2012; 557 –568. 

30. Teodoro G, Hartley T, Catalyurek U, Ferreira R. Optimizing dataflow applications on 
heterogeneous environments. Cluster Computing. 2012; 15 :125–144. 

31. Augonnet, C, Aumage, O, Furmento, N, Namyst, R, Thibault, S. StarPU-MPI: Task Programming 
over Clusters of Machines Enhanced with Accelerators. In: Träff, S. B. Jesper Larsson; Dongarra, 
J, editors. The 19th European MPI Users’ Group Meeting (EuroMPI 2012), ser. LNCS. Vol. 7490. 
Springer; Vienna, Autriche: 2012. 

32. Arpaci-Dusseau, RH, Anderson, E, Treuhaft, N, Culler, DE, Hellerstein, JM, Patterson, DA, 
Yelick, K. IOPADS '99: Input/Output for Parallel and Distributed Systems. Atlanta, GA: May, 
1999 Cluster I/O with River: Making the Fast Case Common. 

33. Plale B, Schwan K. Dynamic Querying of Streaming Data with the dQUOB System. IEEE Trans. 
Parallel Distrib. Syst. 2003; 14 (4) :422–432. 

34. Kumar VS, Sadayappan P, Mehta G, Vahi K, Deelman E, Ratnakar V, Kim J, Gil Y, Hall MW, 
Kurc TM, Saltz JH. An integrated framework for performance-based optimization of scientific 
workflows. HPDC. 2009 :177–186. [PubMed: 22068617] 

35. Tavares T, Teodoro G, Kurc T, Ferreira R, Guedes D, Meira WJ, Catalyurek U, Hastings S, Oster 
S, Langella S, Saltz J. An Efficient and Reliable Scientific Workflow System. IEEE International 
Symposium on Cluster Computing and the Grid. 2007; 0 :445–452. 

36. Teodoro G, Tavares T, Ferreira R, Kurc T, Meira J, Wagner, Guedes D, Pan T, Saltz J. A run-time 
system for efficient execution of scientific workflows on distributed environments. International 
Journal of Parallel Programming. 2008; 36 :250–266. [PubMed: 22582009] 

37. Docan C, Parashar M, Klasky S. Dataspaces: an interaction and coordination framework for 
coupled simulation workflows. HPDC. 2010 :25–36. 

38. Abbasi H, Wolf M, Eisenhauer G, Klasky S, Schwan K, Zheng F. Datastager: scalable data staging 
services for petascale applications. Cluster Computing. 2010; 13 (3) :277–290. 

39. Lofstead JF, Klasky S, Schwan K, Podhorszki N, Jin C. Flexible IO and integration for scientific 
codes through the adaptable IO system (ADIOS). CLADE. 2008 :15–24. 

Teodoro et al. Page 17

Proc IPDPS (Conf). Author manuscript; available in PMC 2014 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Pipeline for segmenting nuclei in a whole slide tissue image and computing their features. 

The input to the pipeline is an image or image tile. The output is a set of features for each 

segmented nucleus.

Teodoro et al. Page 18

Proc IPDPS (Conf). Author manuscript; available in PMC 2014 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Overview of the multi-node parallelization strategy.

Teodoro et al. Page 19

Proc IPDPS (Conf). Author manuscript; available in PMC 2014 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
A Worker is a multi-thread process. It uses all the devices in a hybrid node via the local 

Worker Resource Manager, which coordinates the scheduling and mapping of operation 

instances assigned to the Worker to CPU cores and GPUs.

Teodoro et al. Page 20

Proc IPDPS (Conf). Author manuscript; available in PMC 2014 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Architecture of a Keeneland node.

Teodoro et al. Page 21

Proc IPDPS (Conf). Author manuscript; available in PMC 2014 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Evaluation of the GPU-based implementations of application components (operations).

Teodoro et al. Page 22

Proc IPDPS (Conf). Author manuscript; available in PMC 2014 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Application scalability when multiple CPUs and GPUs are used via the PATS and FCFS 

scheduling strategies.

Teodoro et al. Page 23

Proc IPDPS (Conf). Author manuscript; available in PMC 2014 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Execution profile (% of tasks processed by CPU or GPU) using PATS per pipeline stage.

Teodoro et al. Page 24

Proc IPDPS (Conf). Author manuscript; available in PMC 2014 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Performance impact of data locality conscious mapping and asynchronous data copy 

optimizations.

Teodoro et al. Page 25

Proc IPDPS (Conf). Author manuscript; available in PMC 2014 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
Performance impact of request window size.

Teodoro et al. Page 26

Proc IPDPS (Conf). Author manuscript; available in PMC 2014 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. 
Execution scheduling profile for different window sizes and the PATS strategy.

Teodoro et al. Page 27

Proc IPDPS (Conf). Author manuscript; available in PMC 2014 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 11. 
Performance of PATS when errors in speedup estimation for the pipeline operations are 

introduced.

Teodoro et al. Page 28

Proc IPDPS (Conf). Author manuscript; available in PMC 2014 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 12. 
Multi-node scalability: strong scaling evaluation.

Teodoro et al. Page 29

Proc IPDPS (Conf). Author manuscript; available in PMC 2014 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Teodoro et al. Page 30

Table I Sources of CPU and GPU implementations of operations in the segmentation and feature computation 

stages.

Pipeline operation CPU source GPU source

RBC detection OpenCV and Vincent [7] Morph. Reconstruction (MR) Implemented

Morph. Open OpenCV (by a 19x19 disk) OpenCV

ReconToNuclei Vincent [7] MR Implemented

AreaThreshold Implemented Implemented

FillHolles Vincent [7] MR Implemented

Pre-Watershed Vincent [7] MR and OpenCV for distance transformation Implemented

Watershed OpenCV Korbes [6]

BWLabel Implemented Implemented

Features comp. Implemented. OpenCV(Canny) Implemented. OpenCV(Canny)

Proc IPDPS (Conf). Author manuscript; available in PMC 2014 November 21.


	Abstract
	I. Introduction
	II. Application Description
	III. Application Parallelization for High Throughput Execution
	A. GPU-based Implementations of Operations
	B. Parallelization on Distributed CPU-GPU machines
	C. Efficient Cooperative Execution on CPUs and GPUs
	1) Performance Aware Task Scheduling (PATS)
	2) Data Locality Conscious Task Assignment (DL)
	3) Data Prefetching and Asynchronous Data Copy


	IV. Experimental Evaluation
	A. Experimental Setup
	B. Performance of Application Operations on GPU
	C. Cooperative Pipeline Execution using CPUs and GPUs
	D. Data Locality Conscious Scheduling/Data Prefetching
	E. Impact of Worker Request Window Size
	F. Sensitivity to Inaccurate Speedup Estimation
	G. Multi-node Scalability

	V. Related Work
	VI. Conclusions and Future Directions
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Table T1

