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ABSTRACT

ON FEASIBILITY OF FINGERPRINTING WIRELESS SENSOR

NODES USING PHYSICAL PROPERTIES

Xiaowei Mei, M.S.

The University of Texas at Arlington, 2012

Supervising Professor: Donggang Liu

Fingerprinting wireless devices using physical properties has been recently sug-

gested as an alternative for device identification and authentication. It has been

found that the clock skew caused by the frequency discrepancy of the quartz crystals

in different devices can be used as a reliable source for fingerprinting. Researchers

have studied the application of the clock skew-based fingerprinting in sensor networks

and claimed that it can detect fake identities, wormholes, and node replicas. How-

ever, the study in this paper draws a completely opposite conclusion, i.e., the clock

skew of sensor nodes can be easily forged by adversaries to evade the detection. This

paper then studies the feasibility of using the distribution of signal power in space to

fingerprint sensor nodes. The result shows that a sensor node’s signal power distri-

bution in space is not only reliable for being used as a source for fingerprinting but

also very hard to forge. Finally, the paper discusses the application of using signal

power distribution for detecting various attacks as well as the limitations and open

problems.
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CHAPTER 1

INTRODUCTION

1.1 Wireless sensor networks

A wireless sensor network is a wireless network that consists of spatially dis-

tributed autonomous devices which use sensors to monitor various environmental

or physical conditions, such as humidity, temperature, pressure, wind direction and

speed, sound intensity, vibration intensity, power-line voltage, illumination intensity,

chemical concentrations, pollutant levels and vital body functions. Each of these

autonomous devices, or nodes as we call them, is equipped with a transducer, a mi-

crocomputer, a radio transceiver with an internal antenna or connection to an external

antenna, and power source, usually a battery or an embedded form of energy harvest-

ing. The transducer generates electrical signals based on sensed environmental effects

and conditions. The microcomputer then process these signals and the result is trans-

mitted out through the transceiver to a central gateway, which provides a connection

to the wired world where the collected signals will be further analyzed and presented

to end user. More often than not, the signal may be transmitted through several

intermediate nodes before it finally arrives at the gateway in a multi-hop wireless

sensor network architecture, as shown in Figure 1.1 [1].

Initiated and motivated by military applications such as battlefield surveillance

and boarder security detection, today wireless sensor networks are becoming increas-

ingly prevalent and widely used in many industrial and consumer applications because

of its small, lightweight and portable character. And most of the applications are of

crucial importance to the user. In structural health monitoring, for example, wireless
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Figure 1.1. Typical multi-hop wireless sensor network architecture.

sensors are deployed to effectively monitor the durability and firmness of bridges,

tunnels, office buildings, hospitals, airports, etc. The result from this kind of sensor

network is so important that a tiny mistake could lead to a tremendous disaster. Such

mistake could come from malfunctioning of the devices, or more possibly, from the

wrong data provided by some fake sensor nodes deployed by malicious intruder. And

this leads to one of the essential security requirements in wireless networks.

1.2 Traditional fingerprinting approach

In wireless networks, node identification and authentication is always a fun-

damental security issue. For example, in sensor networks, it is important to ensure

that the node you are communicating with is really who he claims to be. Tradi-

tionally, cryptographic techniques are used for authentication, assuming that the two

communicating parties share a secret key or know each other’s public key. Thus,

the problem of authenticating a node using cryptography essentially becomes a key

management issue. However, due to limited computation and energy power on sensor

nodes, traditional key management techniques such as public key cryptography are

not feasible in wireless sensor networks. To facilitate fingerprinting of wireless sensor
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nodes, many novel key management techniques have been proposed to provide keys

needed for authentication [2, 3, 4, 5].

1.3 Fingerprinting using clock skew

Recently, fingerprinting using physical properties has been suggested by re-

searchers as an alternative to achieve node identification and authentication [6, 7, 8,

9, 10, 11, 12]. The rationale is that different nodes exhibit slightly different physical

properties (e.g., clock) after they are manufactured; these physical properties can be

measured to identify and authenticate a wireless node. The benefits of such finger-

printing are as follows. First, it does not rely on cryptography. Hence, it can work

even if we do not have a central trusted server for certifying public keys or pre-loading

key materials. Second, it can be combined with traditional cryptography-based au-

thentication to provide the so-called two-factor authentication. For example, the

attacker may capture a sensor node and create many replicas in the network [13].

These replicas have all the secrets learned from the compromised sensor node and

can thus evade all cryptography-based authentication schemes. With fingerprinting

as a second factor, it is possible to detect these replicas since it is difficult to create

nodes with exactly the same physical properties as the compromised node.

In general, the physical property used for fingerprinting should at least satisfy

the following two requirements, reliability and unforgibility. Reliability means that

the fingerprint created from the physical property should be stable enough so that

we don’t get a lot of false positives. In other words, it should be unlikely that the

same node produces different fingerprints at different times. Unforgibility means that

it is infeasible or very costly for the attacker to forge the physical property (or the

signature created from such property) so that we don’t get a lot of false negatives.
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This paper focuses on fingerprinting nodes in sensor networks. The physical

properties studied in the past include the clock skew [6, 7, 8, 9, 10] and the radio time

interval error (TIE) [11, 12]. Measuring TIE requires sophisticated equipment that is

not available on sensor nodes; we do not consider this a viable source for fingerprinting

in sensor networks. The clock skew is mainly caused by the frequency discrepancy

between the quartz crystals in different devices. The result of such discrepancy is

that the clock at one node runs a little bit faster (or slower) than the clock at the

other node. Such clock speed difference is called clock skew. Several studies have

found that clock skew is quite reliable in differentiating sensor nodes [9, 10], and can

therefore be used to authenticate nodes as well as detect sybil attacks [14], wormhole

attacks [15], and node replication attacks [13].

1.4 Defect of clock skew-based fingerprinting and a new approach

Existing studies on clock skew-based fingerprinting overlooked the unforgibility

requirement. Although clock skew is reliable, its measurement at a remote node could

be fooled. Basically, a malicious node first measures its clock skew with respect to

the target node and then use such clock skew to compensate its local time. In this

way, the malicious node can be well time-synchronized with the target node and thus

impersonate the target node without being detected. We demonstrate the feasibility

and effectiveness of such fingerprint forgery attack through extensive experiments.

We then investigate the feasibility of using the space distribution of signal power

as the physical property for fingerprinting sensor nodes. For each sensor node, this

physical property mainly captures the power distribution of its radio signal within its

radio range when this node is transmitting a message. In this paper, for simplicity,

we only pick a number of positions in the field and use characteristics of received

signal strengths (RSS) at these positions to represent such physical property. Our

4



observation is that the RSS distribution (called RSSD) for the same sensor node

is often quite stable, while the RSS distributions of different nodes are often quite

different from each other. We confirm this observation through experiments. In

addition, this paper also discusses the unforgibility of such physical property and

shows that it is very hard, if not infeasible, for any adversary to produce the same

RSSD as any benign sensor node in the network. In conclusion, we believe that RSSD

is a promising candidate for fingerprinting sensor nodes.

1.5 Our contribution

Our contributions in the paper are summarized below:

• In contrast to the common belief that clock skew can be used for fingerprinting

sensor nodes, we show in this paper that it can be easily manipulated by adver-

saries to evade all detection methods. As a result, it cannot be used to detect

fake identities, wormholes, or node replicas.

• We then show through extensive experiments that RSSD is very reliable to

fingerprint sensor nodes in a static sensor network. We also analyze its unforgi-

bility and conclude that it is very hard for adversaries to create the same RSSD

fingerprint as any benign node in the network.
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CHAPTER 2

NETWORK AND ADVERSARY MODELS

In this paper, we consider a network of sensor nodes that are deployed in a large

area of interest for applications such as border security and monitoring of critical facil-

ities like nuclear power plants. We assume that fingerprinting sensor nodes is required

by the application for authentication purpose which is of significant importance in

such scenarios. However, it is used to complement, rather than as a complete replace-

ment of, other authentication approaches such as cryptography-based authentication.

For example, it can be used as a second authentication factor if a cryptography-based

authentication scheme fails due to the leakage of cryptographic keys when sensor

nodes are compromised.

We assume that the network is free of node compromise attacks during the

initial deployment. Some initial network parameters as well as the fingerprinting

signatures of sensor nodes can be correctly extracted during this phase. We consider

this compromise-free initial deployment phase a reasonable assumption. The reasons

are as follows. First, this phase is often very short. It is possible for the owner of the

network to keep an eye on the field for signs of malicious activities. Second, a physical

contact is often needed in order to capture and compromise a sensor node, and such

physical contact will certainly expose the adversary himself in the field. However, we

do assume that malicious sensor nodes might be already present in the field during

the initial deployment since it is quite possible for the attacker to figure out the

possible area of deployment and place his sensor nodes before the actual deployment.
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Certainly, when the initial deployment is over, we may have some compromised sensor

nodes in the field.

We assume that the attacker’s investment is limited. In other words, we are

not expecting that a fingerprinting method shall establish a piece of evidence that is

as strong as a cryptography-based scheme can provide. We say that a fingerprinting

method is good enough if it is very hard or costly for a resource-limited adversary to

duplicate the physical property of a sensor node in the field. If a fingerprint can be

easily forged by one or a few colluding sensor nodes, then we say that this scheme

is broken. Therefore, by “costly”, we mean that it should take an adversary many

(e.g., 10) times more resources than one single sensor node to forge the fingerprint of

a given sensor node with a reasonably large probability.
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CHAPTER 3

FEASIBILITY OF CLOCK SKEW-BASED FINGERPRINTING

In this section, we will first review how to measure the clock skew between

two communicating parties. We will then describe the attack on the measurement of

clock skew and study how effective this attack is through experiments. Finally, we

will discuss the implication of our attack on the detection of various attacks in sensor

networks.

3.1 Measuring Clock Skew

Clock skew measures the difference between the clocks in devices. The difference

is mainly due to the inherent physical impairments during the manufacturing of the

oscillators in devices. There will be offset between the time from the clock of one

sensor node and the time from the clock of another. The growing speed of this

offset turns out to be a stable value, which is hence defined as clock skew. This

inherent physical property of oscillators has been explored by researchers to fingerprint

a physical device.

The clock skew between two nodes A and B is estimated as follows. Suppose

that node B is trying to measure its clock skew with respect to node A. Node A

first send n messages to B, each carrying a timestamp indicating the local time at

A when the message is sent, as shown in Figure 3.1. Let TA
i denote the timestamp

included in the i-th message from node A. When B receives the i-th message from A,

it records the local time TB
i when the message is received. Certainly, the timestamp

in the message should be the local time when the message hits the channel, and the
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Figure 3.1. Clock skew based fingerprinting.

arrival time at B should be the local time when the message is just received at the

physical layer.

In the end, nodeB will have the following two timing sequences: {TA
1 , TA

2 , ..., TA
n }

and {TB
1 , TB

2 , ..., TB
n }. Based on these two sequences, Kohno et al. [6] produces n

points {Xi, Yi}i=1,2,...,n in a two-dimensional space, where










Xi = TB
i − TB

1

Yi = TA
i − TA

1 − (TB
i − TB

1 )
(3.1)

Yi is also called the clock offset of the i-th measurement. We then find a line

LB,A: y = pB,A × x + bB,A that best fits this set of n points using either linear

programming method (LPM) or Least Square Fitting (LSF). In this paper, we use

the Lease Square Fitting (LSF) algorithm. The slope pB,A is denoted as the estimated

clock skew, which is the one that many researchers have used for fingerprinting.

In addition to the slope pB,A, the intercept bB,A is also a possible candidate for

fingerprinting. Ideally, the intercept bB,A should be zero. However, in practice, due

to some measurement errors, the LSF fitting algorithm often outputs a non-zero

intercept. As a result, researchers in [8] have also pointed out that it may be possible

to use the intercept for fingerprinting.

3.2 Our Proposed Attack

In this subsection, we will describe an attack to manipulate the clock skew

as well as the intercept. Suppose now we have an attacker M who is trying to
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Figure 3.2. Attack scenario of clock skew based fingerprinting.

impersonate a benign node A during its communication with another benign node B.

Let pB,A and bB,A denote the actual clock skew and intercept that B has estimated

from its past communication with A. The goal of the attacker M is to create a

sequence of timestamps for its messages that will result in the same clock skew pB,A

and the same intercept bB,A at node B. The attack scenario is shown in Figure 3.2.

3.2.1 Forging Clock Skew

We will first explain how to forge the clock skew. Let us consider one of the

messages sent from M to B. Suppose this message is sent at its local time tm.

Certainly, if M always includes tm as the timestamp in the message every time, then

node B will detect that someone is impersonating A since the clock skew computed

will be different from pB,A. As a result, the goal of M is to make sure that the

timestamp included in the message is very close to the local time of A when the

packet is sent by M . In other words, node M needs to first figure out what is the

local time ta at A when its local time is tm and then include ta (instead of tm) in the

message. If M does this for every message, then it can fool node B into believing

that the clock skew is pB,A.

10



Hence, the remaining question is the estimation of ta. The basic idea to estimate

ta given tm is to take advantage of the clock skew between nodes M and A. Node M

can obtain this by talking to node A directly or eavesdropping on the communication

between A and B. SupposeM has intercepted the messages from A to B and recorded

its local time sequence {TM
1 , TM

2 , ..., TM
n }. Node M can then estimate the clock skew

pM,A in the same way as B estimates the clock skew between A and B. Then M will

have a fitting line LM,A: y = pM,A × x+ bM,A.

From ta and tm, we can produce the following point: (X ′ = tm − TM
1 , Y ′ =

ta − TA
1 − (tm − TM

1 )). This point should be very close to, if not exactly on, the line

LM,A. Consider the fact that the point (X ′, pM,A × X ′ + bM,A) is on line LM,A. We

know that we have

pM,A ×X ′ + bM,A ≈ Y ′ = ta − TA
1 − (tm − TM

1 )).

Thus, we have

ta ≈ (1 + pM,A)× (tm − TM
1 ) + TA

1 + bM,A = t′a. (3.2)

In the above equation, we will notice that pM,A, tm, T
M
1 , TA

1 , and bM,A are all

known values to node M . In other words, the adversary can estimate ta at node M .

Therefore, node M only needs to use the estimated value t′a as the timestamp in every

message in order to impersonate node A.

3.2.2 Forging Intercept

Now let us look at how to forge the intercept. Assume that node B has received

a sequence of n forged timestamps from the adversary. B will then derive n points

(X ′

i, Y
′

i )i=1,...,n. According to Equation 3.1, X ′

i is purely determined by the local times-

tamp sequence at B, but Y ′

i can be modified easily by the adversary. More specifically,

11



if the adversary reduces the value of the first forged timestamp by a constant ε, then

except the first point, which is always (0, 0), all other points (X ′

i, Y
′

i )i=2,...,n will be

moved up by ε. This means that the intercept will be approximated increased by

ε. In addition, we can also see that this do not introduce much change to the clock

skew since every point except the first one moves up or down by the same distance.

Therefore, the adversary can increase or reduce the intercept at a fingerprinter by an

arbitrary value without affecting the clock skew.

One may argue that the fingerprinter can always collect N (N > n) timestamps

{T1, T2, ..., TN} and randomly pick a Ti from {T1, T2, ..., TN−n+1} as the starting times-

tamp. Thus, the sequence of timestamps used to estimate the clock skew will be

{Ti, Ti+1, ..., Ti+n−1}. Since the choice of i is unknown to the attacker, it will be very

difficult for him to increase or reduce the intercept by an arbitrary value. However,

the problem of this idea is that the starting timestamp has a lot more impact on

the intercept than other points. For example, if the second timestamp is reduced by

a constant value, then only Y ′

2 is reduced by a constant value. None of the other

n − 1 points will change. It is thus unlikely that we will see much change in the

intercept. In contrast, if the starting timestamp is changed, every other point will be

changed accordingly. Hence, Our intuition tells us that selecting a different starting

timestamp will greatly change the intercept and make it unreliable for being used for

fingerprinting. In fact, our later experiment confirms this intuition.

In the remainder of this section, we will investigate how successful our proposed

attack can be through extensive experiments on TelosB motes.

3.3 Experiments

The platform we use is the TelosB mote running TinyOS [16]. Each sensor

mote has an 8MHz Texas Instruments MSP430 microcontroller with 10KB RAM and

12



1 MB external flash memory for data logging, and has a high radio data rate of 250

kbps. Data collection and programming are via USB.

The accuracy of the clock skew depends largely on how precisely we can measure

the exact moment when a packet hits the medium, and when it is received at the physi-

cal layer at the receiver. TinyOS 2.x provides an interface called PacketT imeStamp <

TMicro, uint32 t > for TelosB motes through which we can get a 32-bit timestamp of

microsecond resolution, which is accurate enough for our measurement. At the sender

side we get the sending time by calling the timestamp command of this interface in

the sendDone event handler. The timestamp command returns the time of actual

transmission, which is stored into the timestamp field of the packet.

At the receiver side, the time information is obtained by calling the timestamp

command in the receive event handler. One thing that should be noticed is that the

local clock at the receiver may overflow or reset after the packet was timestamped at

the sender, which will create an inconsistent sequence of timestamps. As a result, we

need to call the isV alid command first and make sure that it returns TRUE so that

the return value of the timestamp command can be trusted.

3.3.1 Experiment Overview

We consider the following scenario in our experiment. There are three nodes

A, B, and M . Node A and B are benign nodes. Node B is connected to a PC for

data analysis. Whenever it is asked, A will send n messages to B for fingerprinting,

i.e., computing the clock skew pB,A and the intercept bB,A. Node M is configured

as a malicious sensor node; it will either eavesdrop on the communication between

nodes A and B or try to talk to A directly to estimate the clock skew pM,A and the

intercept bM,A with respect to node A. In this paper, we simply let node A send

n messages to node M whenever it is asked. Whenever M is asked to impersonate

13



node A, node M will send n messages to node B, each carrying a timestamp that is

computed from Equation 3.2. Let p′ and b′ denote the clock skew and the intercept

that node B estimated from the forged timestamp sequence from M , respectively.

In our experiment, we first evaluate how many messages are needed to have a

reliable estimation of the clock skew. In other words, we will first try to find a good

n for our experiment. We will then study if it is possible to use the intercept for

fingerprinting sensor nodes. We will show that the intercept is reliable only when the

starting timestamp is always fixed, which is consistent with our intuition in Section

3.2.2. We then study the distribution of pB,A and p′ and show that it is statistically

hard to distinguish them under our attack. In the end, we will show that our at-

tack will also work even if we fix the starting timestamp and use the intercept for

fingerprinting.

3.3.2 Experiment Results

The goal of the first set of experiments is to find a good n for our later experi-

ments. n should be small for cost reason but still lead to a reliable estimation of the

clock skew. For each n we pick, we estimate pB,A 20 times and then calculate the mean

and standard deviation from these values. Note that in each round of estimation, A

will send n messages to node B at a rate of one packet every second. Figures 3.3(a)

and 3.3(b) shows the mean and standard deviation of pB,A under different values of

n. From the figure, we notice that n = 200 gives a quite reliable estimation of the

clock skew pB,A. As a result, unless otherwise specified, we always send messages at

a rate of one per second and set n = 200 in our later experiments.

The goal of the second set of experiments is to see if the intercept could be

used to fingerprint a sensor node. We consider two cases in the experiment. In the

first case, we always use a new sequence of n (n = 200) timestamps in each round

14
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Figure 3.3. (a) Mean (b) Standard deviation.

of estimation. Thus, the starting timestamp in each round of estimation is different.

We then pick three different nodes and measure their corresponding intercepts 1, 000

times. Figure 3.4(a) shows the cumulative distribution of the intercepts for different

sensor nodes. We can clearly see that the intercept of the same node varies a lot, and

the distributions of different nodes are very close. This indicates that statistically

speaking, the intercept cannot be used to fingerprint sensor nodes if each estimation

uses a new sequence of timestamps. In the second case, we always use the same

starting timestamp. Hence, all old timestamps are included during the estimation.
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In other words, the i-th round of estimation will include all the timestamps used in

the previous i − 1 rounds (a total of i × n timestamps). We also pick three sensor

nodes and conduct 20 rounds of estimation for each of them. The result is shown in

3.4(b). We can see that the intercept in this case is very stable. However, our later

experiment will show that the intercept can be easily forged by using the same attack

mentioned in Section 3.2.1.
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Figure 3.4. (a)Reset starting timestamp (b)Fixed starting timestamp.
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The objective of the third set of experiments is to show that it is statistically

hard to distinguish p′ and pB,A. We first run one round of experiments to estimate

pB,A and one round of experiment to estimate p′ (n = 2, 500). We use Equation 3.1

to derive n points from the n timestamps from A to B and display them in Figure

3.5(a). We then derive the n points from the n forged timestamps from M to B in

the same way and display them in Figure 3.5(b).
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Figure 3.5. (a)Real node (b)Fake node.
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By comparing these two figures, we can see that it is very hard to distinguish the

two sequences of clock offsets. In other words, our proposed attack works effectively

in sensor networks. In addition, it also shows that our attack against clock skew-based

fingerprinting is more effective than the attack described in [8], where one can clearly

see the periodic dips in the offset sequence produced from the timestamp sequence of

the fake node.

We then also conduct 100 rounds of estimation for p′ and pB,A respectively

(n = 200). Figure 3.6(a) displays the cumulative distributions for p′ and pB,A. We

can clearly see that they are indeed very close to each other. This further shows that

it is statistically hard to distinguish p′ and pB,A when our attack is launched.

In the last set of experiments, we investigate the effectiveness of our attack in

forging the intercept when the fingerprinter B always uses the same starting times-

tamp. In the experiment, we first let node A send a set of n packets to node B. This

set of packets is also intercepted by the malicious node M . Node M can then estimate

its clock skew and intercept with respect to node A. Then we let node M send n

packets to B with timestamps modified according to Equation 3.2. When node B

received the n forged timestamps, it will estimate the clock skew and the intercept

using the newly received timestamp sequence and the old sequence received from the

real sender A (a total of 2 × n = 400 timestamps from a mix of the new and the

old timestamp sequences). We then repeat the process for the malicious node 100

times and compute 100 forged intercepts. (Each of these 100 estimations uses a new

sequence of n timestamps and the same old timestamp sequence from A to B.) We

then repeat the same process with the real node A and get 100 real intercepts. The

cumulative distributions for these two sets (real and fake) of intercepts are shown

in Figure 3.6(b). We can see that these two distributions are indeed very similar to

each other. In addition, we also used the Kolmogorov-Smirnov test to quantitatively
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Figure 3.6. (a)Clock skews p′ and pB,A (b)Intercepts b′ and bB,A.

compare the real intercept data set with the forged intercept data set. The result

shows that the maximum difference between the two cumulative distributions, D, is

0.1818 with a corresponding P-value of 0.985, which indicates that it is indeed very

difficult to distinguish the real node from the fake node by inspecting the intercept.

Thus, we know that our attack also works very well in forging the intercept.
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3.4 Discussion

In the following, we will explain that our proposed attack allows an adversary

to evade clock skew-based detection schemes in a sensor network. First, to detect

sybil attacks, researchers have proposed to measure the clock skews corresponding to

different identities. If these clock skews are very close to each other, then they must

been created by the attacker [9, 10]. However, with our attack, the adversary can

create a different clock skew for each of the fake identities using Equation 3.2. Hence,

the detection of sybil attacks using clock skew will be ineffective.

Second, to detect wormhole attacks, researchers have proposed to look at the

clock skews related to different identities. The identities that have the same clock

skew must belong to the nodes at the other end of the wormhole [9, 10]. However,

with our attack, instead of directly relaying every packet, the attacker can modify

the timestamp of every packet from the same node, which is at the other end of

the wormhole, to create a clock skew that is close to this node. This will evade the

detection.

Third, the intuition behind the idea of detecting node replication attacks using

clock skews is that different replicas exhibit different clock skews. If we notice two

different clock skews for the same node, then we know that this node has been com-

promised and there are replicas in the network [9, 10]. However, with our attack, the

adversary can modify the timestamps of all replicas such that they exhibit the same

clock skew as the original compromised node. This will make the clock skew-based

replica detection useless.
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CHAPTER 4

FEASIBILITY OF RSSD-BASED FINGERPRINTING

In the previous section, we have clearly shown that the clock skew is not secure

enough for fingerprinting sensor nodes. In this section, we will look into another

physical property – the distribution of signal power in space. We assume a static

sensor network where a sensor node never changes its location after deployment. This

assumption is often reasonable since moving around consumes significant energy.

We will use the example in Figure 4.1 to explain our basic idea.

Figure 4.1. An example of fingerprinting using RSSD.

In this example, the sender A is located at the center. Ideally, when a sensor

node emits a radio signal, the signal power at distance d only depends on the trans-

mission power and the distance d. Thus, we can pick four locations {F1, F2, F3, F4}
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(marked as solid circles) that are within A’s radio range to fingerprint this benign node

A. The fingerprinting signature for node A will be a four-tuple (S1, S2, S3, S4) (this

is just a signature in the ideal situation, the actual fingerprint signature in practice

will include more information), representing the received signal strength measured at

the four selected points when node A is transmitting messages. We assume that this

signature is produced when there are no attacks.

Now suppose that a malicious node M is impersonating node A. After measur-

ing the received signal strength at each selected point, we will have another four-tuple

(S ′

1, S
′

2, S
′

3, S
′

4). We can see that this new four-tuple will be very different from the

original signature (S1, S2, S3, S4) unless M is at the same location as node A and is

also transmitting messages at the same power level. This is because it is impossible

that |MFi| = |AFi| for all i ∈ {1, 2, 3, 4} when M and A are located at different

points.

Certainly, the adversary can simply place M at the same location as A such

that the signature for M will be the same as that of A. However, this attack has the

following constraints. First, since node M is really close to A, A will overhear the

communication and immediately notice that someone is trying to impersonate him.

Second, due to the environmental factors and the physical difference between sensor

nodes (e.g., antenna orientation), the power distribution for different nodes will be

quite different even if they are at the same location. We will confirm this in our later

experiment.

We must recognize that in practice, the signal power at any point in the field

will be influenced by many environmental factors besides the distance d from the

sender. It is possible that the signal power at different points are different even if

their distances to the sender are the same. Nevertheless, we still believe that the signal

power at the same point in the field should not change dramatically in a short period

22



of time as long as the sender and the receiver do not move. In other words, the RSSD

for a static sender should be quite stable even if we are not in an ideal environment.

We thus strongly believe that our idea of using RSSD-based fingerprinting works.

The remainder of this section will be focusing on the investigation of its feasibility

through analysis and experiments in real environments.

4.1 Reliability of RSSD

The objective of this section is to show that RSSD is reliable enough for finger-

printing. In our experiment, we place the sender at a fixed location and then select

four other locations for measuring the signal strength as shown in Figure 4.2.
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Figure 4.2. RSS stability at the same measurement point.

Every packet from the sender will produce four RSS measurements. We then

have the sender transmit 10,000 packets and show the distribution of received signal

strength at these four points in 4.2. According to this figure, we can see that the

received signal strength at the same point is indeed stable given a static sender in a

fixed environment. This figure also shows that the received signal strength changes
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noticeably when we are at a different measurement point. This is very critical since

the difference between the RSSDs of two different nodes should be large enough for

distinguishing them. Overall, we believe that RSSD is stable enough for fingerprint-

ing. (We will discuss the unforgibility requirement later.)

4.2 RSSD-Based Fingerprinting

This section describes the RSSD-based fingerprinting procedure. Since we need

the received signal strength characteristics at several points in the field, the RSSD-

based fingerprinting scheme requires assistance from other nodes. For simplicity, we

assume that every sensor node has a number of trusted “friends” in its neighborhood.

These friends can be identified at the beginning of the deployment when there are no

attacks. Of course, some friends may become compromised and untrustful after the

sensor network is on operation for a while. However, detecting compromised friends

and updating the friend list is a typical Byzantine General problem, which is out of

the scope of this paper. We also assume that a trusted friend will always report the

RSS characteristics honestly whenever being asked to. We consider the case where

an honest node B wants to check whether the other party in its communication is

indeed node A as the message indicates. We always ask the node being checked, i.e.,

the fingerprintee, to transmit the messages at a pre-determined power level during

the fingerprinting process.

We pre-select k−1 different friends in A’s communication range for RSSD-based

fingerprinting. The fingerprinting signature is a k-tuple (〈µ1, σ1〉, ..., 〈µk, σk〉). Each

〈µi, σi〉 in the signature represents the actual RSS characteristic at the i-th selected

measurement point; µi and σi are the mean and the standard deviation of the received

signal strength measured at this selected measurement point. Specifically, we samples

the received signal strength at i-th point m times and calculate the mean µi and the
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standard deviation σi from these m samples. We assume that node B already has the

RSSD-based fingerprinting signature of the real node A, which was obtained when

there are no attacks.

Suppose a malicious node is impersonating node A. From the packets sent by

the malicious node, node B and its friends will sample the signal strength l times and

compute the average. Let (P̄1, P̄2, ..., P̄k) be the averages of the samples from these k

points. The question now is: given (P̄1, P̄2, ..., P̄k), how likely is the other party really

node A? In this paper, we use the following simple rule to make the decision. For

each P̄i, we check whether µi − 2σi ≤ P̄i ≤ µi + 2σi. If all answers are YES, then we

say that the other party is indeed A.

4.2.1 False Positive Rate

For simplicity, we assume that the received signal strength follows the normal

distribution. This is a reasonable assumption based on our experiment result in

Figure 4.2. We also assume that the signature accurately captures the distribution of

the received signal strength at each selected points. Therefore, in a benign situation,

we know that the average P̄i will follow the normal distribution N (µi,
σ2

i

l
). Thus, the

probability that µi − 2σi ≤ P̄i ≤ µi + 2σi can be estimated by erf(
√
2× l). Hence,

the probability that all answers are YES can be estimated by erf
k(
√
2× l). As a

result, the false positive rate is FP = 1− erf
k(
√
2× l). For example, suppose k = 4

and l = 4, then FP ≈ 1− (0.99994)4 ≈ 0.0024.

4.2.2 Parameter k and l

We first discuss how to set parameter k. Obviously, k should be at least 3 since

otherwise, there will be at least one another location in the field that have the same

distances to the measurement points. Hence, the attacker only needs to put the fake
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node at one of these points to impersonate node A in an ideal situation. On the other

hand, k should be small enough so that it is feasible for B to get the fingerprint in a

short period of time and without adding too much overhead. In summary, we believe

that it is reasonable to set k to 3, 4 or 5.

Once k is set, we configure l based on our expectation about the false positive

rate. Suppose that we would like to limit the false positive rate to no more than P .

Then we have 1− erf
k(
√
2× l) < P , where erf is the Gauss error function. We can

then estimate the smallest l to meet our requirement. For example, if we would like

to limit the false positive rate to 0.01, then l only needs to be set to 3 if k = 4. Figure

4.3 shows the false positive rate for different combination of k and l. This figure can

certainly be used to guide the configuration of k and l.
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Figure 4.3. Fase positive rate v.s. k and l.

4.3 Unforgibility of RSSD

In this subsection, we will explain that it is very difficult for an adversary

to forge the RSSD. We are not trying to prove that forging RSSD is hard in the
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cryptographic sense. In fact, we believe that given sufficient investment, the adversary

is able to precisely create the same signature. For example, the adversary may send

a team to the deployment field to physically locate all neighbors of a target node and

then carefully place special devices to adjust the power to each of these neighbors.

Therefore, what we are trying to show is that the cost of successfully forging the same

fingerprinting signature as a benign node greatly outweighs the benefit this signature

can provide.

We start with a simple scenario where a malicious node is trying to impersonate

a benign sensor node in an ideal environment. By ideal environments, we mean that

the received signal strength is only affected by the distance and the transmission

power at the sender. Since we set a fixed transmission power for the sender during

fingerprinting, we can directly estimate the distance to the fingerprintee based on the

received signal strength. Since there are k (k >= 3) different measurement points,

we have k distances to the fingerprintee. Based on multilateration, these k distances

determine a unique location for the fingerprintee. Therefore, there is only one position

in the field that allows the malicious node to create exactly the same signature in an

ideal environment. This means that to evade the detection, the adversary has to locate

the original sender and place the malicious node at the same position. In addition,

the adversary also needs to guarantee that the packets forged by the malicious node

do not reach the original sender since otherwise the original sender will notice that

someone else is trying to impersonate him. Achieving all these requirements is a

certainly non-trivial task.

Next we want to point out that the real environment makes it even more chal-

lenging to launch a successful forgery of RSSD signatures. First, in practice, the

received signal strength is impacted by not only the environmental factor but also

some physical features about the sender such as the height, the antenna orientation,
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etc. As a result, even if the adversary place the node at the same position, it is very

hard to create the same signature. This will be confirmed by our later experiments.

Second, it is generally very hard to precisely pinpoint the location of an arbitrary

sensor node in the area, not to mention the deployment of the malicious node at the

same position as this node. Certainly, it is possible that the adversary is lucky enough

to find several sensor nodes in the field if he can physically access the network. How-

ever, in this case, it is better to just capture and compromise these sensor nodes. In

summary, we believe that it is unrealistic for an adversary to forge RSSD signatures.

4.4 Experiment Evaluation

We will use the same deployment shown in Figure 4.1 for our experiment. We

pick four measurement points {F1, F2, F3, F4} as marked in the figure for fingerprinting

(k = 4). We first study the false alarm rate in a real environment. Remember that we

need the original signature to perform the detection. This signature is also obtained

through fingerprinting as well, which will inevitably introduce some error. We will

thus study the impact of the signature quality. Intuitively, the better the quality of the

signature, the lower the false positive rate. As mentioned, to obtain the signature, we

measure the signal strength at each selected i-th position m times and then calculate

the mean and standard deviation (µi, σi) from these samples, which is then used as

the i-th element in the signature. Clearly, the larger the sample size (m), the better

the quality of the signature. In other words, we will evaluate the impact of parameter

m on the false alarm rate. Figure 4.4 shows the false positive rate under different

signature qualities. We can see that the better the quality of the signatures, the

higher the performance, which is consistent with our intuition. The figure also shows

that the higher the l (i.e., more samples during fingerprinting), the lower the false

positive rate.
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Figure 4.4. False alarm rate v.s. signature quality (m) and l.

Next we will study the detection rate of the proposed fingerprinting scheme

when a malicious node is impersonating a benign node. We assume that we have

already obtained a signature with good quality (m = 20) according to the result

in 4.4. We will study the impact of the parameter l and the distance between the

malicious node and the good node B on the detection rate. As we mentioned in

Section 4.3, one may think that as long as we place the malicious node close enough

to the real node, it would be hard to detect the impersonation attack. This sounds

plausible since the radio signal from the malicious node may be influenced in the same

way as the signal from the real node. However, our experiment shows otherwise. We

select three different positions, {(0 ft, 0 ft), (2 ft, 2 ft), (4 ft, 4 ft)} for malicious

nodes and vary parameter l from 1 to 10 during the detection. The result shows that

we can always detection the impersonation attack. This tells us that the distance does

not impact the detection rate. This confirms that the RSSD is not only impacted by

the environment but also some physical features of a sensor node, e.g., the direction

of antenna, etc. Hence, we strongly believe that RSSD is suitable for fingerprinting

in sensor networks.
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4.5 Applications and Limitations

In the following, we will discuss the application of our RSSD-based fingerprint-

ing technique in detecting the sybil attacks [14], wormhole attacks [15], and node

replication attacks [13]. We will also discuss the limitations of RSSD-based finger-

printing techniques.

When RSSD-based fingerprinting is employed, a sensor node will always mea-

sure the RSSD fingerprint signature before communicating with any other sensor

node. If several sensor nodes have the same fingerprint signature, then we know that

they are either fake identities created by the adversary or tunneled by a wormhole.

In either case, these IDs cannot be trusted. For the replicas of the same compromised

sensor node, since they are essentially different sensor motes deployed by adversaries,

we will extract different RSSD signatures with respect to the same set of measure-

ment points. As a result, the RSSD-based fingerprinting can detect replica nodes at

a very high probability.

There are several limitations for RSSD-based fingerprinting. First, it does not

handle mobility. If a sensor node moves, its RSSD signature will also change. Second,

the fingerprinting signature is also quite sensitive to the environmental changes. If

there are some objects (e.g., cars, animals) present in the range, the RSSD signature

will be different too. As a result, we do not recommend RSSD fingerprinting methods

for highly mobile sensor networks or applications where the environment changes

frequently. In addition, deriving RSSDs signature requires collaboration between

several nodes and a considerable number of RSS samples need to be collected to

have a high-quality signature. This will add some noticeable overhead to the selected

fingerprinting nodes as well as latency during the fingerprinting.
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CHAPTER 5

RELATED WORK

Kohno et al. [6] introduced the concept of fingerprinting a physical device, more

specifically a computer in wide-area networks, by observing timestamps in its TCP or

ICMP packets. In the first scheme, fingerprinting is done by passively observing TCP

packets from fingerprintee. In the second scheme, a fingerprinter has to first issue

ICMP Timestamp Request to the fingerprintee and store the subsequent timestamp

reply message. Since ICMP timestamp uses a clock with higher frequency than TCP

timestamp, the authors claim that it requires less data for an active fingerprinter to

launch ICMP fingerprinting.

In wireless network, Jana and Kasera [7] explore clock skew of an access point

(AP) in local area network as the fingerprint for a client station to detect unauthorized

APs. They use IEEE 802.11 Time Synchronization Function (TSF) timestamp in

beacon frames. The time in the timestamp records the exact moment when the first

bit of beacon frames hit the wireless medium, thus it excludes the influence of the

random medium access delays. As for the beacon arrival time on client station side,

they proposed to use the Linux kernel function do gettimeofday to record the beacon

arrival time. The function asks the timing hardware what fraction of the current jiffy

has already elapsed and thus provides near microsecond resolution. Since beacons

are broadcast in high frequency, usually in millisecond, clock skew of an AP can be

identified very quickly, using 50-100 packets in most cases.

Arackaparambil et al. [8] studied Jana and Kasera’s work in [7] and pointed

out two major drawbacks of using do gettimeofday to measure the beacon arrival
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time. First this Linux function is implemented using timer interrupts and is adjusted

for anticipated delays in the kernel thus could shift in accuracy. Second the skew of

using this function as a clock depends on the implementation of the function which

varies with different kernel releases. This means if there are updates to the system,

clients would also have to recalibrate the fingerprint measurements since if measured

by the same client station the same AP would have different clock skew now. Instead,

they suggest a new method, using local TSF timer in client station, to measure the

beacon arrival time which overcomes these deficiencies and therefore provides more

reliable fingerprinting results. Once a beacon frame comes, the local TSF time value

is provided directly to the driver by hardware, thus not affected by other delays.

In spite of this new and more accurate measuring method, the authors proposed a

possible attack. An attacker builds two virtual APs on one physical AP, since one

physical AP can work with multiple virtual interfaces (VAP) or multiple modes, one

virtual AP is set in AP mode (AP VAP) and the other in Station mode (Station

VAP), with the AP VAP configured as the fake AP and the Station VAP associated

with the real AP. Through TSF timestamp of incoming beacons, the Station VAP

acquires the clock skew of the real AP. Because the two VAP share the same TSF

timer hardware, AP VAP will broadcast beacons with timestamps reflecting real AP’s

clock skew, thereby spoofing real AP. The effectiveness of this attack is studied and

the counter-measures are also proposed.

Clock skew-based fingerprinting was later used as an alternative for node iden-

tification and authentication or a second factor (when combined with cryptography-

based solutions) in node authentication in sensor networks. Huang et al. [9] proposed

to identify a node by measuring its clock skew. They found that the clock skew is

reliable enough to identify different nodes. They also discussed the application of

using clock skew in detecting sybil attacks. Uddin and Castelluccia [10] also showed
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that the clock skew is reliable for fingerprinting sensor nodes. They studied how the

clock skew changes with temperature and how to use this property to detect and

locate malicious or malfunctioning nodes. They also explained how to use clock skew

to detect sybil attacks, wormhole attacks, and node replication attacks. In contrast

to these studies, our paper found that the clock skew can be easily forged and cannot

be used to detect any attack mentioned in early studies.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

Wireless sensor network has been prevalently used for data collection and mon-

itoring purposes in various fields such as civilian, industrial, military and scientific

research. And most of the time, the data collected from the network is of great

importance to the user, which makes it attractive to attackers. Apart from eaves-

dropping, packet injection and relay attack, node replication attack is an application-

independent attack unique to wireless sensor networks. In the attack, an adversary

is able to deploy his own fake sensor nodes and spoof the network take them as le-

gitimate ones by compromising one node and revealing the secret credentials. And

what’s more, the attacker can replicate sensor nodes in large quantity and deploy

them into the network, which will eventually subvert the whole network and leads to

a sybil attack. Thus node identification and authentication has always been a par-

ticularly critical issue in wireless sensor networks since the very beginning. The gate

way must make sure that the sensor it is communicating with is actually it claims to

be before it can be trusted.

Traditionally, cryptographic techniques are used for authentication purposes

in wired networks, assuming the two communicating parties share a secret key or

know each other’s public key before hand, which is essentially a key management

issue. However, these traditional key management techniques are not feasible in

wireless sensor networks because of the constrained computation and energy power

on these low-cost sensor nodes. To facilitate node identification in wireless sensor

networks, many novel key management techniques have been proposed to provide
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keys needed for authentication. In supplement to these techniques, fingerprinting

using physical properties has recently been suggested to achieve node identification

and authentication.

In this paper, we study the feasibility of fingerprinting sensor nodes using two

physical properties, the clock skew and the RSSD. Different from the common belief,

we pointed out that clock skew cannot be used for node authentication or detecting

attacks in sensor networks. Although it is a reliable property, which means that

clock skew is stable enough so the same sensor node won’t produce different results

at different times, its measurement at a remote node could easily be forged without

even being noticed by the fingerprinter. We confirmed the feasibility and effectiveness

of such attack via extensive experiments. One the other hand, the space distribution

of signal power depends on not only the sensor node itself but also its environment,

which could be regarded as a unique character to that node and thus a promising

property for fingerprinting in static sensor networks. We demonstrated its reliability

and analyzed its unforgibility in Section 4. Besides, in detecting fake nodes, it also

gives a fairly low false positive rate.

In the future, we would like to investigate the following directions. First, we only

tested our clock skew attack against sensor networks. In wireless local area networks,

users get access to internet through access points which makes them ideal targets for

malicious users. Using techniques such as spoofing Medium Access Control (MAC)

address an attacker can try to set up his own rogue access point, also known as evil

twin access point, through which he will gain unauthorized access to the network,

or more profitably, he can conduct a man-in-the-middle attack by inducing legiti-

mate users to get network access through the rogue access point, a wireless version

of phishing scam. Unfortunately one of the major limitations of existing solutions

is the inability of effectively detecting Medium Access Control (MAC) spoofing. Re-
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cently clock skew based fingerprinting methods [7, 8] have being proposed as a novel

approach to address this problem. We strongly believe that our attack in Section 3.2

will also work in this kind of scenario even if clock skew based fingerprinting method

is used. This is because our analysis in Section 3.2 does not make any assumption

about the hardware.

Second, there are some other physical properties that could be used for finger-

printing, e.g., link quality indicator (LQI) which is a characteristic of the strength

and/or quality of a received packet [17, 18]. Generally, the measurement of LQI

may be implemented using received energy detection (ED), a signal-to-noise ratio

estimation, or a combination of these methods. The measurement is performed for

each received packet and reported to the MAC sublayer as an integer ranging from

0 to 255, with the minimum and maximum LQI values (0 and 255) associated with

the lowest and highest quality IEEE 802.15.4 signals detected by the receiver [18].

It should be interesting to study using such physical property to fingerprint sensor

nodes as well.

Finally, our RSSD-based method requires collaboration between sensor nodes

since we need the received signal strength characteristics at several points in the

field. We have the assumption that every node has a number of trusted ”friends”

in its neighborhood who are identified during the initial compromise-free deployment

phase. However, after the sensor network is on operation for a while there is a high

chance that some of the friends may be compromised and are no longer trustwor-

thy. Therefore the security of such collaboration between sensor nodes and their

neighborhood needs further study.
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