
HAL Id: hal-00772846
https://inria.hal.science/hal-00772846

Submitted on 11 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizing Resource allocation while handling SLA
violations in Cloud Computing platforms

Lionel Eyraud-Dubois, Hubert Larchevêque

To cite this version:
Lionel Eyraud-Dubois, Hubert Larchevêque. Optimizing Resource allocation while handling SLA
violations in Cloud Computing platforms. IPDPS - 27th IEEE International Parallel & Distributed
Processing Symposium, May 2013, Boston, United States. �10.1109/IPDPS.2013.67�. �hal-00772846�

https://inria.hal.science/hal-00772846
https://hal.archives-ouvertes.fr

Optimizing Resource allocation while handling SLA violations in Cloud Computing

platforms

Lionel Eyraud-Dubois, Hubert Larchevêque

INRIA Bordeaux – Sud-Ouest

University of Bordeaux

{lionel.eyraud-dubois|hubert.larcheveque}@labri.fr

Abstract—In this paper, we study a resource allocation
problem in the context of Cloud Computing, in which a set
of Virtual Machines (VM) has to be allocated on a set of
Physical Machines (PM). Each VM has a given demand (e.g.
CPU demand), and each PM has a capacity. However, VMs
only use a fraction of their demand. The aim is to exploit
the difference between the demand of the VM and its actual
resource usage, to achieve a higher utilization on the PMs.
However, the resource consumption of the VMs might change
over time (while staying under its original demand), implying
sometimes expensive “SLA violations” when the demand of
some VMs is not satisfied because of overloaded PMs. Thus,
while optimizing the global resource utilization of the PMs,
it is necessary to ensure that at any moment a VM’s need
evolves, a few number of migrations (moving a VM from PM
to PM) is sufficient to find a new configuration in which all
the VMs’ consumptions are satisfied. We model this problem
using a fully dynamic bin packing approach and we present
an algorithm ensuring a global utilization of the resources of
66%. Moreover, each time a PM is overloaded, at most one
migration is sufficient to fall back in a configuration with no
overloaded PM, and at most 3 different PMs are concerned
by required migrations that may occur to keep the global
resource utilization correct. This allows the platform to be
highly resilient to a great number of changes.

I. INTRODUCTION

A Cloud Computing platform consists in a set of Physical

Machines (PM) onto each of which several Virtual Machines

(VM) may be run. Each Virtual Machine comes with a

resource demand, for which a guarantee of resource avail-

ability has to be ensured by the provider at any moment if

the VM really needs it (see [1] for an introduction of the

trends of Cloud Computing). On such platforms, the provider

has to find the best way to allocate VMs onto PMs in order

to exploit as much as possible the resources offered by the

platform, while still maintaining the resources availability

guarantees. In practice, the real use of the reserved resources

is quite low, and those unused reserved resources can be used

to run other Virtual Machines, greatly improving the global

resource utilization of the complete system. This is the idea

of server consolidation, which is studied in this paper.

The main risk of using reserved resources to run other

Virtual Machines is that the reserved demand has to be

served to each VM when it really requires it, since the

consumer has paid for it. Since the VM load can vary quickly

and, as considered in this paper, unpredictably, it may

happen that the demands of some VMs suddenly becomes

unsatisfied. When a VM’s demand is not satisfied, it is said

to suffer a SLA violation. SLA violations are the downside

of server consolidation, and often represent a financial cost

for the provider : we could think of a price to pay to each

VM concerned by a SLA violation, or for each time slot a

VM spend in SLA violations during a given amount of time,

...

In this context, the aim is to develop algorithms that

provide a good balance between resource utilization and

SLA violations. Some works have explored the use of

techniques to predict the VMs’ resource consumptions to be

more efficient [2], [3]. For example, in [4] the authors try

to identify sets of VMs whose consumptions peaks happen

at different times in order to allocate them together on the

same PMs. This kind of method is out of the scope of this

paper, and can be seen as an additional brick that could be

plugged onto the kind of algorithms we propose, in order to

make them even more efficient.

In Cloud computing systems, live migration techniques

allow to modify the allocation of the VMs during their

execution, by effectively moving them from one PM to

another PM. There exists different strategies to perform

VM’s migrations, like pre-copy or post-copy [5], [6], but

studying their different behavior and modeling their cost is

out of the scope of this paper. In this paper, we are interested

in providing resource allocation algorithms which limit the

number of migrations necessary to handle the platform.

In this context, it is common to consider that four pa-

rameters have to be optimized when dealing with resource

allocation, while being a priori not compatible :

• Reactivity : Optimizing reactivity corresponds to min-

imizing the time spent in SLA violation after a change

in the load of a PM. This might require monitoring each

change in the load of the VMs, in order to react as soon

as a violation occurs, and, then, to move as quickly

as possible enough VMs on the right PMs to return

to a valid situation. The main drawback of a reactive

approach is the “ping-pong” like modifications in the

platform : if the load of a VM load suddenly increases,

a highly reactive system will probably migrate it to

another PM. Suppose now that, just after this migration,

the load of the target PM increases as well, the same

VM might have to be moved again. A less reactive

system would certainly have avoided some of those

migrations.

• Robustness : Optimizing robustness is a bit less pre-

cise, but informally it corresponds to producing alloca-

tions on which modifications on the load of the VMs

have as little impact as possible, so as to minimize the

number of SLA violations encountered without doing

any migration. Robustness is in some way in opposition

with resource optimization, since it usually involves

reserving some extra PM capacity to handle load bursts.

As an example, the most robust allocation possible is

one which reserves for each VM its original demand,

but this comes at a high price in terms of resource

utilization.

• Resource Optimization : Optimizing resources cor-

responds to minimizing at each PM the resources not

effectively used by a VM. This parameter is usually

quantified by the ratio between the sums of the load of

the VMs on a platform, and the sum of the resources

offered by the PMs on this platform. This ratio is

always lower or equal than 1.

• SLA violation : SLA violations are a major concern

in the context of Cloud Computing on a server-side.

The problem of handling SLA violations can be con-

sidered as the problem of minimizing the number of

SLA violations happening at a VM/application/platform

during a certain amount of time, or the total time

spent in SLA violation by a VM/application/platform

during such a period. It can also be considered as

the problem of minimizing the time needed by a pair

platform/algorithm to handle a SLA violation, the time

needed to reach back a stable state.

Note that the main aim is to maximize the resource

allocation ratio while optimizing the SLA violation param-

eter, whatever the policy used to define it. Robustness and

reactivity are two parameters that design two opposite types

of approaches, with a whole set of possible approaches

mixing those two parameters in different proportions. In-

tuitively, augmenting robustness may imply lower resource

optimization, if robustness is ensured by keeping at each PM

an amount of resource to handle VM’s load variations, but

might be useful to minimize the number of SLA violations

to handle. On the contrary, improving reactivity allows to

handle quickly the SLA violations, what could allow a better

use of the resources offered by a platform.

This paper is organized as follows : in Section II we

present some related works. In Section III, we present some

definitions and the modeling we use for the study of the

problem. Section IV is the core part of the paper, in which

we present the algorithm and the proofs of its different

properties. Section V presents some practical details and

perspectives, and Section VI concludes the paper.

II. RELATED WORKS

Our work in this paper follows a long line of works on

the classical Bin Packing problem [7]. More precisely,we

are interested in an online variant of bin packing [8]. In

the classical version of online bin packing, items are to be

packed one by one as they arrive, and no information is

known about the future incoming items. In such a setting,

the solutions proposed are compared to an “offline” optimal

solution, that can be considered as knowing everything about

what is going to happen.

To measure the quality of a solution produced by an algo-

rithm A, we use the classical definition of an approximation

ratio R(A) defined as

R(A) = lim
n→∞

sup
OPT (L)=n

A(L)

OPT (L)

where A(L) and OPT (L) denote, respectively, the number

of bins used for packing the list L using algorithm A or

using an offline optimal solution.

Several works have considered dynamic bin packing [9],

[10], [11], a setting in which items may arrive and depart

at arbitrary times, but they cannot be moved to another bin

once they have been assigned, what strongly restricts the

quality of the packing. In [10], it is showed that no online

algorithm for dynamic bin packing can have a better ratio

than 2.428, and in [11] that the ratio of the classical first-

fit online algorithm for dynamic bin packing is greater than

2.5. In the context of Cloud Computing, where the technical

possibility of live migration exists, we can design a model

which allows to move items from bin to bin, and having this

capacity helps us to outperform the solutions they proposed,

since we present in this paper an algorithm ensuring an

approximation ratio of 3
2 .

In fact, the problem studied in this paper is very close

to the fully dynamic bin packing problem [12], which is a

variant of bin packing where :

• items can arrive and depart from the packing dynami-

cally,

• items may be moved from bin to bin as the packing is

adjusted to accommodate arriving and departing items.

In this paper, we also consider the slightly different context

in which the item sizes may change dynamically. Note that a

variation of an item’s size cannot be simulated by removing

this item and adding it with its new size. Indeed, when the

item is added again with a larger size, the packing algorithm

has to repack this item in a different bin. However when

an item’s size changes, a packing algorithm can choose to

move some other items from the same bin, and that cannot

be taken into account when considering only arrivals and

departures of items. Similarly, when the size of an item

decreases, it could be possible to keep the packing as it

is, whereas removing and reinserting it might involve much

more changes. On the other hand, it is possible to simulate

arrivals and departures of items by considering that their

sizes evolve from or to a size of 0.

In order to measure the performance of an algorithm

for our bin packing variant, we consider the number of

migrations used by this algorithm to fully process a change

(an insert, delete or a change in an item’s weight). In [12]

the authors presented a 5
4 approximation algorithm for

fully dynamic bin packing (i.e. only considering arrival and

departures of items), with a O(1) bound on the maximal

number of moves required, but the constant itself is very

large. In [13] authors are interested in the same variant, and

present a 1.33 approximation algorithm in which the number

of moves is upper bounded by 7. Moreover, these results are

obtained with the assumption that an arbitrary large number

of very small items can be considered as one “group” of

items if its overall size remains small, and that these groups

can be moved as if they were one single item, only counting

for one move. In the same context, the number of moves

required by the algorithm we present is at most 6.

III. MODEL

As explained in the previous Section, we model the

problem using a classical bin packing approach, in which

each VM is modeled as an item having a size (or weight)

in (0, 1], and each PM is modeled as a bin with an overall

capacity of 1. The bin packing problem can be defined as

follows :

Definition 3.1: Given a set of items I = {i1, . . . , im},
with weights w(i) ∈ [0, 1)∀i ∈ I , find a collection of disjoint

subsets b1, . . . bn of I called bins, of minimal cardinality n

such that ∀j ≤ n,
∑

i∈bj
w(i) ≤ 1.

In this paper, we take into account only one kind of

resource demand, i.e. only CPU demand for example. This

can be realistic in a context where CPU is the only limiting

factor for resource allocation. In most of the cases though,

other resources like memory or I/O consumption need to

be taken into account. However, the goal of this paper

is to propose a way to address the problem with a more

theoretical approach, that has to be adapted to each practical

case encountered. We discuss extensions of our work to the

multi-dimensional case in Section V.

Note also that we do not place an a priori bound on the

number of PMs available to host the VMs. This assumption

is common in the context of bin packing. In practice, when

dealing with a fixed number of PMs, the platform provider

needs to implement a policy to decide which VMs to

accept into the system, which can be a compromise between

the optimization about resource utilization and the SLA

violation which may arise fro ma high load. However, the

design of such policies is out of the scope of this paper and

is left for future works.

The context of this study is to consider that an assignment

of items to bins already exists, and an event occurs: either

the weight of an item evolves (increase or decrease), or a

new item has to be placed, or an item disappears.

Definition 3.2 (Correct configuration): A correct packing

configuration is an assignment of items to bins in which each

bin holds a weight lower than 1.

Since items’ weight evolve, the overall weight of the bins

also vary. An event occurs either when the overall weight of

a bin is goes beyond 1 (overload event) or when its overall

weight is considered too small (underload event). At each

event, some items can be moved from bin to bin. Such a

move is called a migration.

Since many migrations can occur, even for handling one

same event, we will say that two migrations are independent

from each other if they can be performed in parallel with no

risk of entering an incorrect configuration. Two migrations

are not independent if, for example, the destination bin b

of the first one is the same as the source bin of the second

one. In such a case, it might happen that performing the first

migration before the second one overloads b and makes the

configuration incorrect between the two migrations.

IV. A 3
2 -ASYMPTOTIC APPROXIMATION ALGORITHM FOR

HANDLING SERVER CONSOLIDATION

In this section, we present a 3
2 -asymptotic approximation

algorithm for handling server consolidation on a homoge-

neous Cloud Computing platform. As stated in Section III,

we consider that VMs have only one kind of resource

demand/utilization, and, thus, only one type of characteristic

for each PM.

In the context of this paper, there are two main reasons

for minimizing the number of violations: the first one is to

limit resource usage – migrations are very stressful to the

network, so it is important to perform as few migrations as

possible to allow the system to handle a high variability of

the VM load. The second reason is that migrations take time,

and as long as the necessary modifications are not finished,

some VMs might keep experiencing an SLA violation. Both

of these reasons lead to slightly different measures of the

number of migration – we can count the total number of

migrations for a given event, and we can count the number

of migrations before getting into a correct configuration. As

will be seen in the remainder of the section, the algorithm

we propose optimizes both measures.

In the context described in Section III, we prove the

following theorem :

Theorem 4.1: Algorithm 1 ensures that each time an

overload event occurs, it performs one migration to obtain

a correct bin packing configuration. Moreover, it performs

additional migrations to reach a new configuration into

which an asymptotic approximation ratio of 3
2 is ensured.

All migrations linked to a given event in order to build a

new compact configuration concern at most 3 different bins,

and are independent from each other.

Proof: Theorem 4.1 is a combination of Lemma 4.2,

Lemma 4.3, Lemma 4.5 and Lemma 4.4 that are proved

later in this paper.

A. Algorithm

In this section, we describe Algorithm 1. To describe it,

we divide items into different types based on their sizes :

• B-item : item i for which w(i) ∈ (23 , 1]

• L-item : item i for which w(i) ∈ (12 ,
2
3]

• S-item : item i for which w(i) ∈ (13 ,
1
2]

• T -item : item i for which w(i) ∈ (0, 1
3]

We will denote each bin by a notation corresponding to

the set of items it contains. For example a B-bin contains

one B-item, while an SS-bin contains two S-items, and a

LT∗-bin contains one L-item and possibly several T -items.

A particular case is the case of T∗-bins. A T∗-bin will be

named as “filled” if its overall weight is greater or equal to
2
3 , and “unfilled” otherwise. Those unfilled T∗-bins will be

denoted by UT .

The algorithm we propose performs additional migrations

to obtain a compact configuration, defined as follows:

Definition 4.1 (Compact configuration): A compact

packing configuration is a correct configuration in which

there exists at most one unfilled T∗-bin, at most one S-bin,

and in which there is not at the same time an unfilled

LT∗-bin and an ST∗-bin or a T∗-bin.

Algorithm 1 is applied each time an event occurs, either an

overload event, i.e. the overall weight of a bin is growing

above 1, or an underload event, which happens when the

configuration is not compact anymore. In such an approach,

many changes in the items’ weights may occur before an

item move is really needed, since changes of an item’s

weight does not necessarily imply an overload or underload

event.

In case of an overload event, Algorithm 1 is working in

two phases: in a first phase, at most one item is moved from

the overloaded bin in order to obtain a correct configuration.

In a second phase, additional items are moved in order to

obtain a compact configuration. The structure of the bins

implied by the compactness of the resulting configuration,

as will be shown, allows us to ensure an asymptotic approx-

imation ratio of 3
2 .

First, we present the different primitives needed by Algo-

rithm 1. x denotes any item on which the procedure can be

applied. cb denotes the current bin (to which x is allocated),

whereas b denotes another bin, s denotes a small item (the

procedure insert() only applies to small items) :

• new(x) or new(x,y) : Open a new bin and put

x (respectively x and y) in it. This corresponds to

switching on a new PM, or use a PM that was not

already in use.

• move(x,b) : Move item x to bin b. This procedure

corresponds to a migration of x from cb to b.

• insert(s)

1: if ∃b a S-bin then

2: move(s, b)
3: else

4: new(s)
5: end if

• fill(b) : This procedure is used to fill a LT∗-bin

with T -items so that it reaches a weight greater than 2
3

when possible.

1: while w(b) ≤ 2
3 and (∃t a T∗-bin or ∃st a ST∗-

bin) do

2: if ∃ut a UT -bin then

3: move(x, b), x ∈ ut

4: else

5: if ∃t a T∗-bin then

6: move(x, b), x ∈ T∗-bin.

7: else

8: move(x, b), x ∈ ST∗-bin.

9: end if

10: end if

11: end while

• merge(ut1,ut2) : This procedure is used to merge

two UT -bins into one, ensuring that at most one of

them remains unfilled (the other is either empty or

filled).

1: ut← uti ∈ (ut1, ut2) such that

w(uti) = min(w(ut1), w(ut2))
2: t← utj ∈ (ut1, ut2) such that i 6= j

3: while w(ut) > 0 and w(t) ≤ 2
3 do

4: move(x, t), x ∈ ut

5: end while

In the following, we present Algorithm 1, which is run

when an event occurs at bin cb. An overload event occurs

when w(cb) > 1. In such a situation, the greatest item of

the current bin is moved to a new bin (or to an S-bin or a

UT -bin if it is a S-item or a T -item, respectively).

An underload event is said to occur if w(cb) < 2
3 . If cb is

composed only of T -items and its weight is under 2
3 , it is a

UT bin that can be kept in this state if no UT bin already

exists. In a underload situation, if the main item is a L-item,

the fill() procedure is used to fill the current bin, if it is

a S-item, the procedure insert() is used to move it, and if

there are only T -items in the bin, it has to be merged with

the possibly already existing UT -bin.

Note that if cb is overloaded at first, it can become

underloaded after some of the migrations performed by

Algorithm 1, but the contrary is not true (assuming that the

weights of the items do not evolve during the execution of

Algorithm 1). Thus Algorithm 1 handles underload events

after having handled overload situations. Note that it is

possible to postpone the actual execution of the migrations

until all the required moves for a given event have been

computed.

while w(cb) > 1 do

if ∃b ∈ cb a B − item then

new(b)
else if ∃(s1, s2) ∈ cb two S − items then

new(s1, s2)
else if ∃l ∈ cb a L− item then

if ∃s ∈ cb a S − item and w(cb)− w(s) ≤ 1 then

insert(s)
else

fill(new(l))
end if

else if ∃s ∈ cb a S − item then

insert(s)
else

find x with w(x) = maxe∈cb(w(e))
if ∃ut a UT − bin then

move(x, ut)
else

new(x)
end if

end if

end while

while w(cb) ≤ 2
3 do

if ∃l ∈ cb a L− item then

fill(cb)
else if ∃s ∈ cb a S − item then

insert(s)
else if ∃ut a UT − bin and cb 6= ut then

merge(cb, ut)
end if

end while
Algorithm 1: Handling overload and underload events

occuring at bin cb

B. Proofs of the asymptotic approximation ratio

We first prove that at the end of the execution of Algo-

rithm 1, the configuration is always compact. Then we prove

that in a compact configuration, the asymptotic ratio is 3
2 .

Lemma 4.2: After an event has been detected in a con-

figuration that was compact, and after Algorithm 1 has been

executed to solve it, the bins are in a compact configuration

if no new event has occurred.

Proof: First of all, since no new event occurs, at

the end of the execution of Algorithm 1, there exists at

most one S-bin, otherwise an “insert()” action would have

been performed, that would have merged the two S-items

together. There also exists at most one UT -bin, otherwise a

“merge()” action would have been performed.

Now suppose that there exists an unfilled LT∗-bin. By

definition of the procedure “fill”, there is no ST∗-bin and

no T∗-bin in the configuration. Hence the configuration is

compact.

Lemma 4.3: In a compact configuration, at most
3
2OPT (L) + 2 bins are used, where OPT (L) denotes the

number of bins used for packing the list L in an optimal

solution.

Proof: Consider a compact configuration C, like the one

obtained using Algorithm 1. We divide the proof in two

cases, depending on the presence of T∗-bins in C :

• If there exists a T∗-bin (filled or unfilled) in C, then

there exists at most one UT -bin, and at most one S-bin

whose overall weight is strictly less than 2
3 (hence the

additional 2 term in the lemma statement). Moreover,

since there does not exists any unfilled LT∗-bin, all

bins except maybe 2 have weight at least 2
3 . This yields

the announced approximation ratio when the number of

bins is sufficiently large.

• If there exists no T∗-bin in C, a first subcase is when

all bins have weight at least 2
3 except for at most one

S-bin. Then the approximation ratio is proved.

If some bins have weight lower than 2
3 , such bins are

necessarily LT∗-bins that have not been filled enough

to reach 2
3 . Indeed, all other types of bins have weight

at least 2
3 . Note that there cannot be any ST∗-bin by

definition of a compact configuration.

Since such LT∗-bins are unfilled, and since there are no

T∗-bin and no ST∗-bin, we can remove all existing T

from the list L without changing the number of existing

bins in C. We denote this new list L′, and it is easy to

see that OPT (L′) ≤ OPT (L). As before, there is at

most one S-bin, which we ignore for now and will

count at the end.

To perform the analysis, we need to consider the

possible structure of the bins present in C, i.e. the set

{B,L,LS, SS} (since we removed the T -items), which

is also the set of possible structure of the bins of an

optimal solution on the same set of items.

Now we denote by nC(B) the number of B-bins in C,

and by nOPT (B) the number of B-bins built by an

optimal solution. We extend this notation to all types

of bins.

Note that an optimal solution does not use several S-

bins, otherwise they could be merged together. If it

uses one, we can also disregard it (and count it in the

additional term at the end). Since both solutions contain

all of the items, we have the following equations :

nC(B) = nOPT (B)

nC(L) + nC(LS) = nOPT (L) + nOPT (LS)

nC(LS) + 2nC(SS) = nOPT (LS) + 2nOPT (SS)

Summing all these equations to compute the number of

bins used in C, we obtain :

nC = nC(B) + nC(L) + nC(LS) + nC(SS)

≤ nOPT (B) + nOPT (L) +
3

2
nOPT (LS) + nOPT (SS)

≤
3

2
nOPT

This yields the lemma statement, and the asymptotic

approximation ratio of 3
2 .

C. Impact on migrations

In this Section, we analyze the migration cost of Algo-

rithm 1, in three different ways. We first bound the number

of migrations required to reach a correct configuration in

Lemma 4.4. Then we prove in Lemma 4.5 that at most 3
bins are impacted by the migrations associated to a given

event. Finally, we provide in Lemma 4.6 a bound on the

total number of migrations performed when considering that

small items can be moved together (which is a common

assumption in dynamic bin packing).

Lemma 4.4: At any moment, when an event has to be

handled, Algorithm 1 needs to perform at most one migra-

tion to obtain a new correct configuration.

Proof: Note that the algorithm reacts after the change

of size of one item. This means that when the weight of

a bin gets above 1, there exists one item in the bin whose

weight has just increased.

After the weight modification in the bin, if the bin contains

a B, a L or a S-item, it is sufficient to move it in this order

of preference. The exception is for the case when the bin

ends in the LST∗ configuration, where it might be more

efficient to move the S instead of the L-item, if moving the

S-item is sufficient to reduce the bin’s weight under 1. Even

in that case, moving one item is sufficient. If the problematic

bin only contains T -items, moving the largest one is enough

to get the bin weight under 1, since either it is the growing

one, or it has a larger weight than it.

Lemma 4.5: At any moment, when an event has to be

handled, all the migrations Algorithm 1 needs to perform

are independent. Moreover, all the migrations concerning

the same event concern at most 3 different bins (plus the

considered one).

Proof: All the migrations Algorithm 1 need to perform

concern either a new bin, a S-bin or a UT -bin. We first

analyze these three cases in more detail.

Moving an item from the current bin to a new bin does

not impact any other migration, and concerns one bin (the

new one). No more than one new bin is necessary to handle

an event, into which the largest items are placed.

Moving an item from the current bin to a S-bin does not

impact any other migration either, and also concerns at most

one bin (the S-bin). At most one S-bin is concerned for an

event, since if two S-items are to be moved, they are moved

together in a new bin. It is possible that three S-items have

to be moved if moving the two first ones in a new bin leave

the current bin in an underloaded situation. In such a case,

the last S-item has to be moved in the S-bin if it exists. But

still, this last migration is the only one that may concern

the S-bin. No more than three S-items can be in the same

bin when an event occurs, otherwise an event would have

occurred in a previous step (since a bin which contains 4
items, three of them being S-items, has necessarily a weight

larger than 1).

A careful analysis of Algorithm 1 shows that at most two

migrations of the type “move to a new bin” or “move to a

S-bin” are necessary to handle a given event. Indeed, a first

one might be necessary to handle the overload event, but in

that case no other such migration is necessary. A second such

migration may be required to handle the underload situation

if one occurs in the current bin.

When filling a LT∗-bin, the only other bin concerned is

the UT bin. However this UT -bin might not contain enough

T -items to fill the current bin to a weight greater than 2
3 . In

such a case, an existing filled T∗-bin, if such a bin exists,

has to be used as if it was a UT -bin, even if its current

weight is still greater than 2
3 . T -items will be taken from

this bin to fill the current LT∗-bin.

In some cases, like when handling an overloaded LLT∗-
bin, a new bin containing one of the L-items needs to

be filled, and the current bin may also need to be filled

with some additional T -items. In the worst case, an overall

weight of at most 1
3 has to be moved (16 for each “fill”

action). In such a case, even if the first UT -bin considered

does not contain enough T -items, since the second T -bin is

necessarily filled, and thus has weight at least 2
3 , then it is

sufficient to consider those two T -bins to fill both LT∗-bins.

The only other action in which T -items are moved is when

merging two UT -bins, the current bin being one of them.

Such a merge concerns only the already existing UT -bin.

We now count the maximal number of different bins

concerned by the resolution of an event.

When handling an overload event, if a T -item is moved,

the current bin cannot become underloaded. Thus, at most

the target UT -bin is concerned for the overall resolution.

In all other cases, at most one bin is concerned by the

resolution of the overload event (either a new one, or the

S-bin). If the current bin does not become an underloaded

ST∗-bin, a “fill()” or a “merge()” action may be required,

concerning at most two more bins for a total of 3 concerned

bins (remember that even if handling the overload event

requires to fill the newly created bin, two “fill()′′ actions

only concern at most two T∗-bins).

If the current bin becomes an underloaded ST∗-bin after

the first migration, another new bin (or the current S-bin)

might be concerned by the subsequent “insert()” action.

In such a case, the first migration did not concern a S-

item (otherwise both would have been moved together). If

it concerned a B-item, then the only work still to be done

is to merge what is left in the current bin with the UT -bin.

The overall number of concerned bins is 3.

The last case (the first migration concerns a L-item) is not

possible. Indeed, by definition of Algorithm 1, this would

mean that w(L) +w(T∗) ≥ 1. Since w(L) ≥ 1
2 , this would

mean that w(T∗) ≥ 1
2 , and thus, because w(S) ≥ 1

3 , that

w(S) + w(T∗) ≥ 5
6 , in which case the current bin would

not be in an underloaded situation.

Note that the computation of the number and location

of migrations can be performed before beginning to handle

them Thus all migrations are independent, and at most 3
bins are implied.

Note on the total number of migrations Since the size

of T -items can be arbitrarily small (as long as they remain

positive), the number of T -items in a bin is not bounded.

In consequence, it is not theoretically possible to provide

a bound for the total number of migrations required by

Algorithm 1 to obtain a compact configuration. Indeed, the

“merge()” action may require an unbounded number of

moves.

However, it is common in the literature to consider [13]

that T -items can be grouped in the following way :

Definition 4.2 (T -items grouping): In any bin, T -items

are divided into non-overlapping groups such that all groups

have size less than 1
3 , but the sum of the weights of any two

groups from the same bin is larger than 1
3 .

Using this grouping technique, the number of migrations

induced by Algorithm 1 can be upper bounded, considering

that one T -items group accounts for only one migration.

Lemma 4.6: Algorithm 1 moves at most 6 groups/items

for each event it solves.

Proof: We start by considering the number of groups’

migrations involved when merging two UT -bins. Note that

this consists in identifying the most loaded one, and moving

the items of the other one into it. If only one of the two

bins has weight more than 1
3 , merging the other one into it

requires at most one migration. If both have weight more

than 1
3 , at most 3 groups need to be moved from one bin to

the other, since moving 4 groups from a bin would involve

an overall weight greater than 2
3 , and would overload the

destination bin. Thus the fusion of two UT -bins involves at

most 3 migrations.

We now consider the number of migrations involved when

filling a L-bin (or a LT∗-bin). Since the weight of an L-item

is at least 1
2 , by the group definition moving two groups from

the UT -bin is enough to perform the “fill()” operation.

However, the considered UT -bin may not contain enough

T -items, and may contain only one group. In that case, after

having moved the only group in this bin, another T -bin is

chosen, and two groups from this bin are enough to fill the

LT∗-bin. Overall, at most 3 groups are moved.

Handling an underloaded ST∗-bin involves at most one

migration to move the S-item away, followed by the fusion

of two UT -bins, thus involving at most 4 moves. Handling

an underloaded T∗-bin requires only 3 moves, and the case

of an underloaded LT∗-bin requires at most 3 moves to fill

the bin.

Using the same reasoning as in proof of Lemma 4.5, we

observe that the worst case, i.e. the configuration of an over-

loaded bin in which the maximum number of migrations is

required, is when Algorithm 1 has to deal with an overloaded

LLT∗-bin. In this case, one migration is necessary to place

an L-item on an empty bin. The worst case happens when

the current bin becomes unfilled, which requires to fill two

bins. In such a case, as proved for Lemma 4.5, only two T -

bins have to be considered, the current UT -bin and possibly

another one if the UT -bin does not contain enough items.

Filling each bin with weight at least 1
3 is achieved as soon as

two groups from the same T∗-bin are moved. Thus at most

5 groups from two different T -bins are moved to fill both

LT -bins. Adding the first migration of the L-item yields

that, when using this grouping technique, at most 6 moves

are necessary for Algorithm 1 to handle any event.

As stated in the introduction, this grouping trick is relevant

when items represent physical items which can be moved,

since in that case it is often indeed possible to pick several

small items at the same time. In the context of Cloud

computing, though, the cost associated to the migration of

a VM is not a priori correlated with its CPU consumption,

so there is no real reason to consider that small items are

somewhat easier to move.

Another, more appropriate approach to count the number

of moves is to assume that the CPU consumption of an

active VM can be lower bounded. In practice, VMs with

arbitrarily small CPU consumption do not exist: it is possible

to separate the VMs using a value wmin ∈ (0, 1
3) under

which a VM can be considered as sleeping, and above

which a VM is active (we consider this value lower than 1
3

otherwise there is no T -item to consider !). It is reasonable

to consider that a sleeping VM does not need to have its

CPU consumption served with a critical SLA, since it just

needs to be “kept alive”. Thus it makes sense to assume that

its CPU consumption can be disregarded.

If we consider that each T -item has a weight of at least

wmin, then there can be at most cmin = ⌊ 1
wmin

⌋ T -items in

a given bin.

The type of underload event in which Algorithm 1 has

to move the greatest weight of T -items is when handling

an underloaded T∗-bin, which requires to move an overall

weight of at most 2
3 . Moving a set of T -items with an overall

weight of 2
3 requires at most ⌊ 23cmin⌋ migrations.

When considering overload events, a fine analysis of

Algorithm 1 (that is omitted here due to lack of space)

shows that in each configuration, the weight of remaining

T -items can be upper bounded. For example, when dealing

with a BBT∗-bin, the item whose weight increased last is

a B-item, since no two B-items can stand in the same bin.

Thus, since a B-item and the same set of T -items did not

overload the bin before this load increase, the weight of the

set of T -items can be upper bounded by 1
3 (since the weight

of a B-item is at least 2
3).

The same reasoning can be used for each configuration,

and, using the reasoning of the proof of Lemma 4.5, we

conclude that the configuration which requires the largest

number of migrations is in the case of an overloaded bin of

the type LLT∗. In this case, two L-items need to be moved

from the current bin. By the reasoning described before, It

is possible to show that the overall weight of the T -items

is at most 1
2 . Two “fill(L)” actions have to be performed,

consisting in filling the new L-bins built upon the L-items.

Each fill(L) action requires to move an overall weight of at

most 1
6 . Hence, the two fill(L) actions require the migration

of at most 2⌊ 16cmin⌋ items. In conclusion, the maximum

number of migrations required to handle an overload event

(and any event, in fact) is 1+2⌊ 16cmin⌋ when the weight of

each item is lower bounded by wmin.

V. PRACTICAL CONSIDERATIONS AND PERSPECTIVES

A. Handling simultaneous events

Throughout the paper, we analyze Algorithm 1 by consid-

ering that no item size changes while a given event is being

solved. In practice, depending on how quickly the item sizes

evolve, a second event might occur before the migrations

linked to the first one have been completely performed.

However, even in that case, the migration performed by Al-

gorithm 1 to reach a correct configuration can be performed

immediately, without having to wait for migrations from the

previous event to finish.

Moreover, the structure of Algorithm 1, in which decisions

are depends only on the content of the current bin, and its

parallel property as proven in Lemma 4.5 allows to use

it easily in a distributed setting. Indeed, it only requires

a distributed structure which allows each PM to quickly

identify a UT -PM, a S-PM and an empty PM. Moreover,

it is possible to slightly generalize Algorithm 1 to allow

more than one UT -PMs and S-PMs at the same time.

Indeed, even allowing a small number (logarithmic, for

example) of these under-filled PMs would make such a

distributed structure much easier and much more efficient,

while keeping the approximation ratio on resource utilization

relatively small. Having a distributed resource management

system is desirable for many reasons (scalability and fault

tolerance, for example). In addition to that, having more

than one UT -bin would also makes Algorithm 1 even more

resilient to a high frequency of events. Indeed, two UT -bins

and two S-bins make it possible to handle simultaneously

and independently two different events. It would actually be

possible to increase the number of unfilled bins when the

load variability gets too high, and to decrease it afterwards

to improve the resource utilization.

B. Extension to multiple dimensions

In practice, there is often more than one critical resource

in the system. In addition to CPU consumption, the allo-

cation of VMs might also be constrained by the amount of

available memory on the PMs, and by the amount of storage

or I/O capacity. Modeling these additional constraints yields

multi-dimensional formulations, in which we define a con-

figuration to be correct if the total demand on a machine does

not exceed its capacity, for every dimension. Instead of bin

packing, this requires to solve the much more difficult vector

packing problem [14], which has been proved to not accept

any APTAS as soon as two dimensions are considered.

Chekuri et al. presented in [15] a 1+dǫ+O(ln ǫ−1) approx-

imation algorithm for this problem, where d is the number

of dimensions considered, while Bansal et al. presented

in [16] a ln d + 1 approximation algorithm. However all

those algorithms are offline and still highly dependent on

the number of dimensions.

Yet, interesting ideas can be explored: we can for example

assume that memory can be considered as possibly taking

a small number of different values (like 1GB, 2GB, 4GB,

...). Such reasonable assumptions allow to obtain offline ap-

proximation algorithms [17] despite the negative results. An

exciting line of research is to analyze which practical settings

allow to derive provably efficient dynamic algorithms.

VI. CONCLUSION

In this paper, we present a novel way to address the

problem of dynamic allocation of Virtual Machines onto

Physical Machines in a Cloud Computing environment. We

propose an algorithm which maintains an efficient allocation

despite unpredictable variations of the CPU consumption of

VMs over time, while keeping a good quality of service by

ensuring that SLA violations are corrected (via migrations)

as quickly as possible. More precisely, it ensures that at any

point in time, the global CPU utilization of the platform is

at least 66%, and that each time a PM becomes overloaded,

at most 3 other bins are implied in the migrations necessary

to repair the occuring SLA violations. Moreover all those

migrations are independent from each other, and the maxi-

mum number of migrations is bounded by 6, which is strictly

better than the algorithms already existing in the literature.

These strong theoretical guarantees strongly suggest that

this algorithm would behave particularly well on actual

scenarios. Average-case analysis of its performance thanks

to simulation experiments would give very interesting in-

sight about the robustness and feasibility of our approach.

In particular, it would allow to find out how much load

variability this algorithm can handle, as well as to explore

the compromise between resource utilization and robustness.

This would in turn provide a very interesting analysis of

the contexts in which it is feasible to use live migration to

increase server consolidation. However, realistic execution

traces (with information about load variation of individual

VMs) of actual Cloud environments are difficult to obtain.

On a more algorithmic side, it would be very interesting

to obtain the same kind of results in the multi-dimensional

case (i.e. when taking into account memory constraint in

addition to CPU consumption) and/or to the heterogeneous

case (i.e. when we do not assume that the capacities of

the PMs are all identical). Given the intrinsic difficulties of

the underlying offline problems, these generalizations will

probably require to identify relevant simplifying assumptions

which are realistic in practice and allow to derive provably

efficient solutions.

REFERENCES

[1] T. Dillon, C. Wu, and E. Chang, “Cloud computing: Issues
and challenges,” in Advanced Information Networking and
Applications (AINA), 2010 24th IEEE International Confer-
ence on, april 2010, pp. 27 –33.

[2] T. Vercauteren, P. Aggarwal, X. Wang, and T. Li, “Hierar-
chical forecasting of web server workload using sequential
monte carlo training,” Signal Processing, IEEE Transactions
on, vol. 55, no. 4, pp. 1286–1297, 2007.

[3] Z. Gong, X. Gu, and J. Wilkes, “Press: Predictive elastic
resource scaling for cloud systems,” in Network and Service
Management (CNSM), 2010 International Conference on, oct.
2010, pp. 9 –16.

[4] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and
D. Pendarakis, “Efficient resource provisioning in compute
clouds via vm multiplexing,” in Proceedings of the 7th
international conference on Autonomic computing, ser. ICAC
’10. New York, NY, USA: ACM, 2010, pp. 11–20. [Online].
Available: http://doi.acm.org/10.1145/1809049.1809052

[5] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, “Cost
of virtual machine live migration in clouds: A performance
evaluation,” Cloud Computing, pp. 254–265, 2009.

[6] M. R. Hines and K. Gopalan, “Post-copy based live
virtual machine migration using adaptive pre-paging and
dynamic self-ballooning,” in Proceedings of the 2009
ACM SIGPLAN/SIGOPS international conference on Virtual
execution environments, ser. VEE ’09. New York, NY,
USA: ACM, 2009, pp. 51–60. [Online]. Available: http:
//doi.acm.org/10.1145/1508293.1508301

[7] J. E. G. Coffman, M. R. Garey, and D. S. Johnson, “Ap-
proximation algorithms for bin packing: a survey,” pp. 46–93,
1997.

[8] S. S. Seiden, “On the online bin packing problem,” Journal
of the ACM, vol. 49, p. 2002, 2001.

[9] E. Coffman Jr, C. János, and A. Zsbán, “Dynamic bin
packing,” in SIAM J. COMPUT. Citeseer, 1983.

[10] W. tat Chan, T. wah Lam, and P. W. H. Wong, “Dynamic
bin packing of unit fractions items,” in Proceedings of the
32nd International Colloquium on Automata, Languages and
Programming (ICALP. Springer, 2005, pp. 614–626.

[11] J. Chan, P. Wong, and F. Yung, “On dynamic bin packing: An
improved lower bound and resource augmentation analysis,”
Algorithmica, vol. 53, no. 2, pp. 172–206, 2009.

[12] Z. Ivković and E. Lloyd, “Fully dynamic algorithms for bin
packing: Being (mostly) myopic helps,” Algorithms-ESA’93,
pp. 224–235, 1993.

[13] G. Gambosi, A. Postiglione, and M. Talamo, “Algorithms
for the relaxed online bin-packing model,” SIAM journal on
computing, vol. 30, p. 1532, 2000.

[14] G. Woeginger, “There is no asymptotic ptas for two-
dimensional vector packing,” Information Processing Letters,
vol. 64, no. 6, pp. 293–297, 1997.

[15] C. Chekuri and S. Khanna, “On multi-dimensional packing
problems,” in Proceedings of the tenth annual ACM-SIAM
symposium on Discrete algorithms. Society for Industrial
and Applied Mathematics, 1999, pp. 185–194.

[16] N. Bansal, A. Caprara, and M. Sviridenko, “Improved approx-
imation algorithms for multidimensional bin packing prob-
lems,” in Foundations of Computer Science, 2006. FOCS’06.
47th Annual IEEE Symposium on. IEEE, 2006, pp. 697–708.

[17] A. Caprara, H. Kellerer, and U. Pferschy, “Approximation
schemes for ordered vector packing problems,” Naval Re-
search Logistics (NRL), vol. 50, no. 1, pp. 58–69, 2003.

[18] L. Epstein and R. Van Stee, “Approximation schemes for
packing splittable items with cardinality constraints,” Approx-
imation and Online Algorithms, pp. 232–245, 2008.

