
Auto-Tuning Dedispersion for Many-Core
Accelerators

Alessio Sclocco, Henri E. Bal
Faculty of Sciences

Vrije Universiteit Amsterdam
Amsterdam, the Netherlands

a.sclocco@vu.nl, h.e.bal@vu.nl

Jason Hessels, Joeri van Leeuwen
ASTRON

Netherlands Institute for Radio Astronomy
Dwingeloo, the Netherlands

hessels@astron.nl, leeuwen@astron.nl

Rob V. van Nieuwpoort
NLeSC

Netherlands eScience Center
Amsterdam, the Netherlands

r.vannieuwpoort@esciencecenter.nl

Abstract—Dedispersion is a basic algorithm to reconstruct
impulsive astrophysical signals. It is used in high sampling-rate
radio astronomy to counteract temporal smearing by intervening
interstellar medium. To counteract this smearing, the received
signal train must be dedispersed for thousands of trial distances,
after which the transformed signals are further analyzed. This
process is expensive on both computing and data handling. This
challenge is exacerbated in future, and even some current, radio
telescopes which routinely produce hundreds of such data streams
in parallel. There, the compute requirements for dedispersion
are high (petascale), while the data intensity is extreme. Yet, the
dedispersion algorithm remains a basic component of every radio
telescope, and a fundamental step in searching the sky for radio
pulsars and other transient astrophysical objects.

In this paper, we study the parallelization of the dedispersion
algorithm on many-core accelerators, including GPUs from AMD
and NVIDIA, and the Intel Xeon Phi. An important contribution
is the computational analysis of the algorithm, from which we
conclude that dedispersion is inherently memory-bound in any
realistic scenario, in contrast to earlier reports. We also provide
empirical proof that, even in unrealistic scenarios, hardware
limitations keep the arithmetic intensity low, thus limiting perfor-
mance. We exploit auto-tuning to adapt the algorithm, not only to
different accelerators, but also to different observations, and even
telescopes. Our experiments show how the algorithm is tuned
automatically for different scenarios and how it exploits and
highlights the underlying specificities of the hardware: in some
observations, the tuner automatically optimizes device occupancy,
while in others it optimizes memory bandwidth. We quantitatively
analyze the problem space, and by comparing the results of
optimal auto-tuned versions against the best performing fixed
codes, we show the impact that auto-tuning has on performance,
and conclude that it is statistically relevant.

Index Terms—auto-tuning; many-core; radio astronomy;
dedispersion

I. INTRODUCTION

Some astronomical sources, such as pulsars, emit mil-
lisecond duration, impulsive signals over a wide range of
radio frequencies. As this electromagnetic wave propagates
through the ionized material between us and the source, it
is dispersed. This causes lower radio frequencies to arrive
progressively later and without correction this results in a loss
of signal-to-noise that often makes the source undetectable
when integrating over a wide observing bandwidth. For a
fixed interval of frequencies, this dispersion is a non-linear
function of the distance between the emitting source and the

receiver, that can be reversed by simply shifting in time the
signal’s lower frequencies. This process is called dedispersion.
Dedispersion is a basic algorithm in high-time-resolution radio
astronomy, and one of the building blocks of modern radio
telescopes like the Low Frequency Array (LOFAR) and the
Square Kilometer Array (SKA). The amount of processing
needed for dedispersion varies per instrument, but can be
in the petaflop range. Hence, it is important to have a high
performance, adaptable and portable dedispersion algorithm.

Due to the nature of the problem, however, designing a high
performance dedispersion algorithm is far from trivial. In fact,
dispersion can be easily reversed if the distance of the source
from the receiver is known in advance, but this is not true
when searching for unknown objects in surveys for pulsars
or fast-transient sources. When searching for these celestial
objects, the distance is one of the unknowns, and the received
signal must be dedispersed for thousands of possible trial
distances. This results in a brute-force search that produces
many dedispersed signals, one for each trial distance. Clearly,
this search is both computationally and data intensive, and, due
to the extremely high data-rate of modern radio telescopes, it
must be performed in real-time, since the data streams are
too large to store in memory or on disk. Luckily, all these
different searches are independent from each other, and can
be performed in parallel.

We aim to achieve high performance by parallelizing this al-
gorithm for many-core accelerators. Recently, similar attempts
have been made by Barsdell et al. [1] and Armour et al. [2].
However, we believe that the performance analysis presented
there is not complete. Moreover, the focus in [1] and [2] is on
specific platforms and observational setups, while in this paper
we focus on designing a portable many-core algorithm that
can be tuned for different platforms and, more importantly,
different radio telescopes and observational setups. To our
knowledge, this is the first attempt at designing a dedispersion
algorithm that is not fine tuned for a specific platform or
telescope. Furthermore, even if dedispersion is an inherently
parallel algorithm, it is still interesting as it represents a class
of applications that, due to their low arithmetic and high
data intensity, is not often implemented on accelerators. We
believe that these applications do not only push the limit of
many-core architectures, but can also benefit from the higher

ar
X

iv
:1

60
1.

05
05

2v
1

 [
cs

.D
C

]
 1

8
Ja

n
20

16

memory bandwidth that most many-cores provide, compared
with traditional CPUs.

We designed and developed a many-core dedispersion al-
gorithm, and implemented it using the Open Computing
Language (OpenCL). Because of its low arithmetic intensity,
we designed the algorithm in a way that exposes the pa-
rameters controlling the amount of parallelism and possible
data-reuse. In this paper we show how, by auto-tuning these
user-controlled parameters, it is possible to achieve high
performance on different many-core accelerators, including
one AMD GPU (HD7970), three NVIDIA GPUs (GTX 680,
K20 and GTX Titan) and the Intel Xeon Phi. We not only
auto-tune the algorithm for different accelerators, but also use
auto-tuning to adapt the algorithm to different observational
configurations. In radio astronomy, observational parameters
are more variable than the platforms used to run the software,
so being able to adapt the algorithm to different observational
setups is of major importance. Furthermore, in this work we
measure how much faster a tuned algorithm is compared to
every other possible configuration of the parameters, and quan-
tify the statistical difference between optimum and average
performance. Finally, with this work we are able to provide a
comparison of modern accelerators based on a real scientific
application instead of synthetic benchmarks.

To summarize our contributions, in this paper we: (1) pro-
vide an in-depth analysis of the arithmetic intensity of dedis-
persion, providing analytical evidence and empirical proofs of
it being memory-bound, in contrast to earlier claims in the
literature; (2) show that by using auto-tuning it is possible
to adapt the algorithm to different platforms, telescopes, and
observational setups; (3) demonstrate that it is possible to
achieve real-time performance using many-core accelerators;
(4) quantify the impact that auto-tuning has on performance;
and (5) compare different platforms using a real-world scien-
tific application.

II. BACKGROUND

Waves traveling through a medium may interact with it
in different ways; the result of one of these interactions is
called dispersion. The most common example of dispersion
comes from the realm of visible light: rainbows. In the case
of a rainbow, the original signal is dispersed when passing
through raindrops and its composing frequencies are reflected
at different angles. As a result, we see the components of a
whole signal as if they were different ones.

The effect experienced in radio astronomy is similar. When
a celestial source emits an electromagnetic wave, all the
frequencies that are part of this emission start their journey
together. However, because of the interaction between the
wave itself and the free electrons in the interstellar medium,
each of these frequencies is slowed down at a different non-
linear rate: lower frequencies experience higher delays. As
a result, when we receive this signal on Earth, we receive
the different components at different times, even if they were
emitted simultaneously by the source. Figure 1 shows the
effect of dispersion on an impulsive radio signal. The top panel

Fig. 1. The effect of dispersion on a pulsar signal, courtesy of Lorimer and
Kramer [3].

shows the arrival time versus the observing frequency, while
the bottom panel shows the dedispersed pulse, which closely
approximates the originally emitted signal.

More formally, the highest frequency (i.e. fh) of a signal
emitted by a specific source at time t0 is received on Earth at
time tx, while all the other frequency components (i.e. fi) are
received at time tx + k. This delay k, measured in seconds,
is described by Equation 1; the frequency components of the
equation are measured in MHz.

k ≈ 4, 150×DM × (
1

f2i
−

1

f2h
) (1)

In this equation, the Dispersion Measure (DM) represents
the number of free electrons between the source and the re-
ceiver. Assuming a model for the distribution of these electrons
along the line-of-sight, this quantity can be interpreted as a
measure of the distance between the emitting object and the
receiver. When observing a known object, all the quantities
of Equation 1 are known, thus the effect of dispersion can
be easily reversed. This process is called dedispersion and
consists of shifting in time the lower frequencies in order
to realign them with the corresponding higher ones, thus
reconstructing the original signal.

However, applying this technique in the search for un-
known astronomical objects is more difficult because DM is
not known a priori. Therefore, the received signal must be
dedispersed for thousands of possible DM values in a brute-
force search that produces a new dedispersed signal for every
trial DM. So far, no better approach is known and there are no
heuristics available to prune the DM search space. The reason
for this is that when the DM is only slightly off, the source
signal will be smeared, and the signal strength will drop below
the noise floor, becoming undetectable. It is clear from this
that the process of dedispersion is computationally expensive,
because every sample in the input signal must be processed
for thousands of different trial DMs. In addition, modern radio
telescopes can point simultaneously in different directions by
forming different beams. These beams can be used to survey
a bigger part of the sky and discover astronomical sources at
a faster rate. This results in even more input signals to process
and greatly increases performance requirements. However,
all trial DMs and beams can be processed independently,
thus making it possible to improve the performance of the
dedispersion algorithm by means of large-scale parallelization.

III. ALGORITHM AND IMPLEMENTATION

Dedispersion is the process of reversing the effects of
dispersion, as described in Section II. We first describe the
sequential dedispersion algorithm in more detail, and analyze
its complexity in Section III-A. We then present our parallel
implementation and its optimizations in Section III-B.

A. Sequential Algorithm

The input of this algorithm is a channelized time-series, i.e.
a time-series with each frequency channel represented as a
separate component. The time-series is represented as a c× t
matrix, where c is the number of frequency channels and t
is the number of time samples necessary to dedisperse one
second of data at the highest trial DM. This number, t, is
always a multiple of the number of samples per second. The
output is a set of dedispersed time-series, one for each trial
DM, and it is represented as a d × s matrix, where d is the
number of trial DMs and s is the number of samples per sec-
ond. During dedispersion, the frequency channels are typically
integrated to reduce the data rate. Every data element in these
matrices is represented using a single precision floating point
number. To provide a quantitative example, the Apertif system
on the Westerbork telescope will receive 36 GB/s in input, and
produce 72 GB/s of dedispersed data.

The sequential pseudocode for the dedispersion algorithm
is shown in Algorithm 1. Even if the algorithm looks trivially
parallel, it is very data-intensive, so achieving high perfor-
mance is not trivial. To simplify the discussion, and without
losing generality, in this paper we describe the case in which
there is a single input beam, but all results can be applied to the
case of multiple beams. The algorithm consists of three nested
loops, and every output element is the sum of c samples: one
for each frequency channel. Which samples are part of each
sum depends on the applied delay (i.e. ∆) that, as we know
from Equation 1, is a non-linear function of frequency and
DM. These delays can be computed in advance, so they do
not contribute to the algorithm’s complexity. Therefore, the
complexity of this algorithm is O(d× s× c).

Algorithm 1 Pseudocode of the dedispersion algorithm.
for dm = 0 → d do

for sample = 0 → s do
dSample = 0
for channel = 0 → c do

dSample += input[channel][sample + ∆(channel, dm)]
end for
output[dm][sample] = dSample

end for
end for

In the context of many-core accelerators, there is another
algorithmic characteristic that is of great importance: Arith-
metic Intensity (AI), i.e. the ratio between the performed
floating point operations and the number of bytes accessed in
memory. The AI is extremely important, because in many-core
architectures the gap between computational capabilities and
memory bandwidth is wide, thus a high AI is a prerequisite
for high performance [4]. Unfortunately, Algorithm 1 shows

that dedispersion’s AI is inherently low, as there is only
one floating point operation for every input element loaded
from global memory. A bound for the AI of dedispersion
is presented in Equation 2, where ε represents the effect of
accessing the delay table and writing the output.

AI =
1

4 + ε
<

1

4
(2)

The low AI of Equation 2 identifies dedispersion as a
memory-bound algorithm on most architectures, thus the per-
formance of this algorithm is limited not by the computational
capabilities of the architecture used to execute it, but by its
memory bandwidth. A way to increase dedispersion’s AI, thus
improving performance, is to reduce the number of reads
from global memory by implementing some form of data-
reuse. Analysis of Algorithm 1 suggests that some data-reuse
may indeed be possible. Given that the time dimension is
represented with discrete samples, it may happen that, for
some frequencies, the delay is the same for two close DMs,
dmi and dmj , so that ∆(c, dmi) = ∆(c, dmj). In this case,
the same input element can be used to compute two different
sums, thus offering the opportunity for data-reuse and an
improved AI. If this data-reuse is exploited, we can compute a
new upper bound for the AI; this new upper bound is presented
in Equation 3.

AI <
1

4× (1
d

+ 1
s

+ 1
c
)

(3)

The bound from Equation 3 goes towards infinity. It may be
tempting to overestimate this theoretical result and believe that,
by exploiting data-reuse, dedispersion’s AI can be increased
enough to make the algorithm itself compute-bound. However,
we found this is not the case in any realistic scenario. To
approximate this upper bound, data-reuse should be possible
for every combination of DMs and frequencies, but the delay
function is not linear, and delays diverge rapidly at lower
frequencies. This means that, in realistic scenarios, there will
never be enough data-reuse to approach the upper bound of
Equation 3. Moreover, using the same delay for every combi-
nation of DMs and frequencies would produce the same result
for every dedispersed time-series, thus making the computed
results useless (i.e. the DM step is too small). Therefore we
conclude that, even if data-reuse is possible, it depends on
parameters like DM values and frequencies that cannot be
controlled and this makes the upper bound on the algorithm’s
AI presented in Equation 3 not approachable in any realistic
scenario. In this conclusion we differ from previous literature
like [5] and [1]. We will prove our claim with experimental
results in Section V-C.

B. Parallelization

The first step in parallelizing the dedispersion algorithm for
many-cores is to determine how to divide the work among
different threads and how to organize them; in this work
we use OpenCL as our many-core implementation frame-
work, thus we utilize OpenCL terminology when referring to
threads and their organization. From the description of the

sequential dedispersion algorithm and its data structures we
can identify three main dimensions: DM, time and frequency.
Of these three dimensions, DM and time are the ones that
are independent from each other. Moreover, they also lack
internal dependencies, thus every two time samples or DMs
can be computed independently of each other. These properties
make the two dimensions ideal candidates for parallelization,
avoiding any inter- and intra-thread dependency. In our imple-
mentation, each OpenCL work-item (i.e. thread) is associated
with a different (DM, time) pair and it executes the innermost
loop of Algorithm 1. An OpenCL work-group (i.e. a group
of threads) combines work-items that are associated with the
same DM, but with different time samples.

This proposed organization has another advantage other than
thread independence: it simplifies the memory access pattern
making it possible to have coalesced reads and writes. In many
architectures, memory accesses generated by different threads
are coalesced if they refer to adjacent memory locations, so
that the different small requests are combined together in
one bigger operation. Coalescing memory accesses is a well-
known optimization, and it is usually a performance requisite
for many-core architectures, especially in case of memory-
bound algorithms like dedispersion. In our implementation,
consecutive work-items in the same work-group write their
output element to adjacent, and aligned, memory locations,
thus accessing memory in a coalesced and cache-friendly way.

Reads from global memory are also coalesced but, due to the
shape of the delay function, are not always aligned. This lack
of alignment can be a problem because, on most architectures,
memory is transferred in cache-lines, and unaligned accesses
can require the transfer of more than a cache-line, thus
introducing memory overhead. In the case of dedispersion, the
delay function is part of the algorithm and cannot be modified,
but, if a cache-line contains the same number of element as
the number of work-items executed in parallel by a Compute
Unit (CU), then the memory overhead is at most a factor two.
Luckily, this property holds for most many-cores. A factor
two overhead may have a big impact on performance, but
this worst-case scenario applies only if the number of work-
items per work-group is the same as the number of work-items
executed in parallel by a CU. In the case of work-groups with
more work-items, there is a high chance that the unnecessarily
transferred elements will be accessed by other work-items in
the near future, thus compensating the introduced overhead
with a basic form of prefetching.

We affirmed, in Section III, that data-reuse is possible when,
for two different DMs, the delay corresponding to a particular
frequency channel is the same. To exploit this data-reuse,
and thus increase the algorithm’s AI, the parallel algorithm
needs to be slightly modified to compute more than one
DM per work-group. So, the final structure of our many-
core dedispersion algorithm consists of two-dimensional work-
groups. In this way a work-group is associated with more
than one DM, so that its work-items either collaborate to
load the necessary elements from global to local memory,
a fast memory area that is shared between the work-items

Platform CEs GFLOP/s GB/s
AMD HD7970 64× 32 3,788 264
Intel Xeon Phi 5110P 2× 60 2,022 320
NVIDIA GTX 680 192× 8 3,090 192
NVIDIA K20 192× 13 3,519 208
NVIDIA GTX Titan 192× 14 4,500 288

TABLE I
CHARACTERISTICS OF THE USED MANY-CORE ACCELERATORS.

of a same work-group, or rely on the cache, depending on
the architecture. Therefore, when the same element is needed
by more than one work-item, the accesses to memory are
reduced. There is no penalty introduced with this organization,
and everything discussed so far still holds because the one-
dimensional configuration is just a special case of the two-
dimensional one. Work-items can also be modified to compute
more than one output element, thus increasing the amount of
work per work-item to hide memory latency. Accumulators
are kept in registers by the work-items, a further optimization
to reduce accesses to global memory.

The general structure of the algorithm can be specifically
instantiated by configuring four user-controlled parameters.
Two parameters are used to control the number of work-items
per work-group in the time and DM dimensions, regulating
the amount of available parallelism. The other two parameters
are used to control the number of elements a single work-item
computes, also in the time and DM dimensions, regulating the
amount of work per work-item. The source code implementing
a specific instance of the algorithm is generated at run-time,
after the configuration of these four parameters.

IV. EXPERIMENTAL SETUP

In this section we describe how the experiments are carried
out and all the necessary information to replicate them. We
start by describing the many-core accelerators we used, the
software configuration of our systems and the observational
setups. We then describe the specificities of each of the three
experiments that are the focus of this paper. Table I contains
a list of the many-core accelerators we used in this work,
and reports some basic details for each of them. In particular,
the table shows each platform’s number of Compute Elements
(CEs), peak performance and peak memory bandwidth.

We run the same code on every many-core accelerator; the
source code is implemented in C++ and OpenCL. The OpenCL
runtime used for the AMD HD7970 GPU is the AMD APP
SDK 2.8, the runtime used for the Intel Xeon Phi is the
Intel OpenCL SDK XE 2013 R3 and the runtime used for
the NVIDIA GPUs is NVIDIA CUDA 5.0; the C++ compiler
is version 4.4.7 of the GCC. The accelerators are installed
in different nodes of the Distributed ASCI Supercomputer 4
(DAS-4). DAS-4 runs CentOS 6, with version 2.6.32 of the
Linux kernel. In all experiments, the algorithm is executed ten
times, and the average of these ten executions is used for the
measurements. Dedispersion is always used as part of a larger
pipeline, so we can safely assume that the input is already
available in the accelerator memory, and the output is kept on

device for further processing. There is no need in this scenario
to measure data-transfers over the PCI-e bus.

The experiments are performed in two different observa-
tional setups. These setups are based on the characteristics of
two radio telescopes operated by the Netherlands Institute for
Radio Astronomy (Astron): LOFAR and the Apertif system on
Westerbork. In our Apertif setup, the time resolution is 20,000
samples per second. The bandwidth is 300 MHz, divided
in 1,024 frequency channels of 0.29 MHz each; the lowest
frequency is 1,420 MHz, the highest frequency is 1,720 MHz.
In our LOFAR setup, the time resolution is higher, 200,000
samples per second, but the bandwidth is lower, 6 MHz
divided in 32 frequency channels of 0.19 MHz each; the lowest
frequency is 138 MHz, the highest frequency is 145 MHz. In
both setups, the first trial DM is 0 and the increment between
two successive DMs is 0.25 pc/cm3.

The differences between the two setups are important be-
cause they highlight different aspects of the algorithm. Specif-
ically, the Apertif setup is more computationally intensive, as
it involves 20 MFLOP per DM, three times more than the
LOFAR setup with just 6 MFLOP per DM. However, the
frequencies in Apertif are much higher than in LOFAR, thus
the delays are smaller and there is more available data-reuse.
Therefore, we represent two different and complementary sce-
narios: one that is more computationally intensive, but offers
more possible data-reuse, and one that is less computationally
intensive, but precludes almost any data-reuse.

A. Auto-Tuning

Our first experiment consists of the auto-tuning of the four
algorithm parameters described in Section III. The goal of this
experiment is to find the optimal configuration of these param-
eters for the five many-core accelerators, in both observational
setups. Without auto-tuning we have no a priori knowledge
that can guide us into selecting optimal configurations, thus
the need for this experiment. Moreover, we are interested in
understanding how these configurations differ, and if a generic
configuration can be identified.

The algorithm is executed for every meaningful combination
of the four parameters, on every accelerator, and for both
operational setups. A configuration is considered meaningful if
it fulfills all the constraints posed by a specific platform, setup
and input instance. An input instance is defined by the number
of DMs that the algorithm has to dedisperse. In this experiment
we use 12 different input instances, each of them associated
with a power of two between 2 and 4,096. Due to memory
constraints, some platforms may not be able to compute
results for all the input instances. The optimal configuration is
chosen as the one that produces the highest number of single
precision floating point operations per second. The output of
this experiment is a set of tuples representing the optimal
configuration of the algorithm’s parameters; there is a tuple
for every combination of platform, observational setup and
input instance.

B. Impact of Auto-Tuning on Performance

Our second experiment measures the performance of the
previously tuned dedispersion algorithm. The goal of this
experiment is twofold. On the one hand, we want to show per-
formance and scalability of the tuned algorithm, and evaluate
the suitability of many-core accelerators to perform this task
for current and future radio telescopes. On the other hand, we
want to provide a scientific evaluation of the impact that auto-
tuning has on the performance of dedispersion. The byproduct
of this experiment is a comparison of different platforms in
the context of radio astronomy.

The algorithm is executed on every accelerator, for each
combination of observational setup and input instance. For
each of these runs, the optimal configuration is used (which
we found in the first experiment). The metric used to express
performance is the number of single precision floating point
operations per second. To quantify the impact of auto-tuning
on performance we present the signal-to-noise ratio of the
optimums.

C. Data-reuse and Performance Limits

Our third experiment consists of measuring the performance
of dedispersion in a situation in which optimal data-reuse is
made possible by artificially modifying the delays. The goal
of this experiment is to show how much the observational
setup affects performance. Moreover, we want to provide
empirical proof that, even with perfect data-reuse, it would
not be possible to achieve high AI because of the limitations
of real hardware, in contrast to what reported in literature.

This experiment performs the same steps of experiments
1 and 2, with the only difference that all the DM values
are the same: the only DM value used is 0, thus there are
no shifts. With no shifts applied, perfect data-reuse becomes
theoretically possible as every dedispersed time-series is ex-
actly the same and uses exactly the same input. We tune
the algorithm in this modified setup, and then measure the
performance obtained using the optimal configurations. The
obtained results are compared with the ones obtained in
experiment 2 to measure the impact that data-reuse has on
performance, and understand the limitations that real hardware
poses on performance.

V. RESULTS AND DISCUSSION

In this section we present the results of the experiments
described in Section IV. For every experiment, we first report
the measured results, and then discuss them. When results
are different from what one would expect, we provide a
further explanation. After each experiment, we provide a short
summary of the main findings. To conclude, Section V-D
contains some additional performance comparisons.

A. Auto-Tuning

In this section we present the results of the auto-tuning
experiment described in Section IV-A. We begin by examining
the results for the Apertif case. Figure 2 shows the optimal

number of work-items per work-group identified by auto-
tuning. The GTX 680 requires the highest number of work-
items (1,024), the Xeon Phi requires the lowest (16), and
the other three platforms require between 256 and 512 work-
items per work-group. The first noticeable pattern is that the
optimal configuration, for each platform, is more variable with
smaller input instances and then becomes more stable for
bigger instances. The reason is the amount of work made
available by every instance. In fact, smaller instances expose
less parallelism and also have a smaller optimization space
associated. When the number of DMs increases, so does the
amount of work and the optimization space; thus, after a
certain threshold, there are no more sensible variations in the
number of work-items necessary for optimal performance.

Figure 3 presents the results of the experiment using the
LOFAR observational setup. These results are similar to the
Apertif setup, but not completely. The first difference that can
be identified is that the behavior is more stable: the platforms
already reach their optimum with smaller inputs. The reason
is that the LOFAR setup has less available data-reuse, so it
is easier to find the optimum because memory-reuse is not
increased, even if there are more DMs to compute. The GTX
680 remains the platform that needs the highest number of
work-items (i.e. 1,000) to achieve its top performance, and
the Xeon Phi still needs the lowest. The HD7970 maintains
its optimum at 256 work-items per work-group, its hardware
limit for the number of work-items per work-group. Titan and
the K20 can be clustered at a mid-range interval.

Overall, the two setups seem similar and the different
platforms behave coherently. However, in Section III we
pointed out that the total number of work-items per work-
group is determined by the interaction of two parameters, with
each work-group organized as a two-dimensional structure.
Therefore, what looks like the same result may in fact be
obtained in a complete different way. As an example, the GTX
680 seems to find the same optimum in both setups: 1,024
work-items for Apertif and 1,000 for LOFAR. However, even
if the numbers are similar, they are the results of two different
configurations: for Apertif the work-group is organized as a
square matrix of 32 × 32 work-items, while for LOFAR the
matrix is rectangular and composed of 250 × 4 work-items.
Taking into account the meaning of these matrices, described
in Section III-B, it is possible to see that in the Apertif
setup, where more data-reuse is potentially available, the auto-
tuning identifies a configuration that exploits this data-reuse
intensively, while in the LOFAR setup, where less reuse is
available, the optimal configuration relies less on reuse and
more on the device occupancy. This result is clearly important
because it shows not just that the algorithm can be adapted to
different observational setups, but also that there is no single
optimal configuration.

The combination of the other two parameters of our dedis-
persion algorithm affects the number of registers that a work-
item uses, thus affecting the amount of work that a single
work-item is responsible for. Figure 4 illustrates the results
for the Apertif setup. In the figure, the K20 and GTX Titan

 0

 200

 400

 600

 800

 1000

 1200

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

w
o
rk

-i
te

m
s

Dispersion Measures

HD7970
Xeon Phi
GTX 680

K20
GTX Titan

Fig. 2. Tuning the number of work-items per work-group, Apertif.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

w
o
rk

-i
te

m
s

Dispersion Measures

HD7970
Xeon Phi
GTX 680

K20
GTX Titan

Fig. 3. Tuning the number of work-items per work-group, LOFAR.

top the group, followed by Xeon Phi and GTX 680, while the
last stand is taken by the HD7970. In these results we can spot
another architectural property: K20 and Titan have the highest
number of potentially available registers per work-item among
our accelerators, and auto-tuning exploits this property. In fact,
combining the K20 and Titan’s results from both Figures 2 and
4, it is possible to see that the optimal configuration found by
auto-tuning for these accelerators is to have fewer work-items
than the maximum, but with more work associated.

Figure 5 presents the results for the LOFAR setup. The
HD7970 uses the lowest number of registers, keeping its work-
items lighter than the other platforms, while the Xeon Phi
uses a highly variable number of them. K20 and GTX Titan
use the largest number of registers, but the distance from the
GTX 680 is less pronounced than in the previous setup. In this
case, the optimum for these two platforms trades registers for
work-items, relying more on parallelism than on heavyweight
work-items. Moreover, by analyzing the composition of these
results we can observe once more how auto-tuning enhances
the adaptability of dedispersion. In fact, the optimal register
configuration for K20 and Titan is 25 × 4 in the Apertif
setup, and 25 × 2 in the LOFAR setup: also in this case, the
configurations reflect the amount of possible data-reuse and
show how auto-tuning makes it possible to adapt the algorithm
to different scenarios.

To summarize the results of this experiment, we identified
the optimal configurations of the four parameters of our
dedispersion algorithm for five different many-core acceler-
ators and two different observational setups. We identified the
interactions between the configurations of these parameters,
and noticed how auto-tuning provides the algorithm with
the ability to adapt to different scenarios. We observed that,
in general, NVIDIA GPUs require more resources, either

 0

 20

 40

 60

 80

 100

 120

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

R
e
g

is
te

rs

Dispersion Measures

HD7970
Xeon Phi
GTX 680

K20
GTX Titan

Fig. 4. Tuning the number of registers per work-item, Apertif.

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

R
e
g

is
te

rs

Dispersion Measures

HD7970
Xeon Phi
GTX 680

K20
GTX Titan

Fig. 5. Tuning the number of registers per work-item, LOFAR.

work-items per work-group or registers, to achieve their top
performance, compared with the AMD and Intel accelerators.
We believe that it would not be possible to identify the optimal
configurations a priori and that auto-tuning is the only feasible
way to properly configure the dedispersion algorithm, because
of its number of parameters, their interaction with each other,
and the impact that they have on a fundamental property
like the algorithm’s AI. Moreover, optimal configurations are
platform and observation specific, and there is no general
configuration that can be used in every situation.

B. Impact of Auto-Tuning on Performance

In this section we present and analyze the results of the
experiment described in Section IV-B. We start by intro-
ducing the results of the Apertif setup. Figure 6 shows the
performance achieved by the auto-tuned dedispersion on the
various many-core accelerators that we used in this paper.
All the platforms show a similar behavior, with performance
increasing with the dimension of the input instance up to
a maximum, and plateauing afterwards. The first noticeable
result is that the tuned algorithm scales better than linearly up
to this maximum, and then scales linearly. The accelerators
can be clustered in three groups: the HD7970 achieves the
highest performance, the Xeon Phi the lowest, and the three
NVIDIA GPUs, close to each other in performance, sit in the
middle. On average the HD7970 is 2 times faster than the
NVIDIA GPUs, and 7.5 times faster than the Xeon Phi.

The results for the LOFAR scenario are different, as can be
seen from Figure 7. The first difference is in terms of absolute
performance, with performance for LOFAR being lower than
in the case of Apertif. The reason for lower performance can be
found in the fact that in this setup there is less available data-
reuse, thus the algorithm’s AI is lower. The other difference is
that the GPUs are closer in performance to each other, with the

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

G
FL

O
P
/s

Dispersion Measures

HD7970
Xeon Phi
GTX 680

K20
GTX Titan
real-time

Fig. 6. Performance of auto-tuned dedispersion, Apertif (higher is better).

 0

 20

 40

 60

 80

 100

 120

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

G
FL

O
P
/s

Dispersion Measures

HD7970
Xeon Phi
GTX 680

K20
GTX Titan
real-time

Fig. 7. Performance of auto-tuned dedispersion, LOFAR (higher is better).

HD7970 and the GTX Titan achieving the higher performance.
In fact, with less data-reuse available, the discriminant for
performance is memory bandwidth, and the two GPUs with
higher bandwidth achieve the top performance. In this setup
the GPUs are, on average, 2.5 times faster than the Xeon Phi,
but the differences between them are less pronounced than in
the Apertif setup.

The line labeled “real-time”, present in both Figures 6 and 7,
represents the threshold, different for each observational setup,
under which the achieved performance would not be enough
to dedisperse one second of data in less than one second of
computation. This constraint is fundamental for modern radio
telescopes, because their extreme data rate does not allow to
store the input for off-line processing. For all tested input
instances, performance achieved by the auto-tuned algorithm
is enough to satisfy this constraint, with the only exception
represented by the Xeon Phi. Projecting these results, it can
be seen that the GPUs are able to scale to even bigger instances
of the problem and still satisfy the real-time constraint.

This experiment aimed not just at showing performance and
scalability of the tuned dedispersion algorithm, but also at

 0

 1

 2

 3

 4

 5

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

S
N

R

Dispersion Measures

HD7970
Xeon Phi
GTX 680

K20
GTX Titan

Fig. 8. Signal-to-noise ratio of the optimum, Apertif.

 0

 1

 2

 3

 4

 5

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

S
N

R

Dispersion Measures

HD7970
Xeon Phi
GTX 680

K20
GTX Titan

Fig. 9. Signal-to-noise ratio of the optimum, LOFAR.

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300 350 400

C
o
n

g
u
ra

ti
o
n
s

GFLOP/s

HD7970
Average

Fig. 10. Example of performance histogram, Apertif.

measuring the impact that auto-tuning has on performance.
We believe that it is important to quantify how much faster the
tuned algorithm is compared with a generic configuration, and
what is the statistical relevance of the optimal performance.
Figures 8 and 9 present the signal-to-noise ratio of the tuned
optimums, i.e. the distance from the average in terms of units
of standard deviation. These results prove that, without using
auto-tuning, finding the configuration that provides the best
performance would be non-trivial. Applying Chebyshev’s in-
equality [6] we can quantify an upper bound on the probability
of guessing optimums with these SNRs: in the best case
scenario this probability is less than 39%, while in the worst
case it is less than 5%. In addition to these results, Figure 10
shows the shape of a typical distribution of the configurations
over performance in the optimization space: it can be clearly
seen that the optimum lies far from the typical configuration.
In this example, there is exactly one configuration that leads to
the best performance; the others perform significantly worse.
We believe that the results of this experiment are an empirical
proof of the importance of using auto-tuning, and a good
measure of the impact that auto-tuning has on performance.

C. Data-reuse and Performance Limits

In this section we present and analyze the results of the ex-
periment described in Section IV-C, i.e. we tune and measure
the performance of dedispersion using the same value, zero,
for all DMs. Figures 11 and 12 present the results for the
experiment in the Apertif and LOFAR setup, respectively. In
the case of Apertif, the difference between these results and
the ones in Figure 6 are negligible, both in terms of scalability
and achieved performance. However, results for the LOFAR
setup are clearly different: the performance results are higher
and in line with the measurements of the Apertif setup.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

G
FL

O
P
/s

Dispersion Measures

HD7970
Xeon Phi
GTX 680

K20
GTX Titan

Fig. 11. Performance in a 0 DM scenario, Apertif (higher is better).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

G
FL

O
P
/s

Dispersion Measures

HD7970
Xeon Phi
GTX 680

K20
GTX Titan

Fig. 12. Performance in a 0 DM scenario, LOFAR (higher is better).

The reason of this sudden change is that in this experiment
both setups, even if maintaining their differences in terms
of computational requirements, expose a theoretically perfect
data-reuse to the algorithm, so their difference in performance
is reduced. On the one hand, the fact that performance for the
Apertif setup does not change between a real and a perfect
setup can be explained by the fact that reuse is already maxi-
mized for the real hardware that we tested, and just exposing
more data-reuse does not help increasing performance because
of hardware limitations. On the other hand, performance for
the LOFAR setup does change, because the increased data-
reuse is exploited until the hardware is saturated.

To summarize, with this experiment we once more showed
that the observational setup does affect performance. In par-
ticular, what ultimately determines performance is the amount
of data-reuse that the observational setup presents to the
algorithm, and this is a function of frequencies and DM values.
Data-reuse is so important that, if the observational setup does
not expose enough of it, the algorithm is unable to achieve its
potential maximum performance. However, even when perfect
data-reuse would make it possible to achieve a theoretically
unbounded AI, thus making the algorithm compute-bound,
limitations of real hardware do not permit to practically
achieve this result. We therefore conclude that dedispersion
is memory-bound for every practical and real scenario.

D. Discussion

In this section we present some results that are com-
plementary to the previous experiments, and discuss some
more general findings. We start by comparing the optimal
performance of our auto-tuned algorithm to the performance of
the best possible manually optimized version. This manually
optimized version uses a “fixed” configuration, i.e. it uses the
configuration that, working on all input instances, maximizes

 0

 1

 2

 3

 4

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

S
p

e
e
d

u
p

Dispersion Measures

HD7970
Xeon Phi
GTX 680

K20
GTX Titan

Fig. 13. Speedup over fixed configuration, Apertif (higher is better).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

S
p

e
e
d

u
p

Dispersion Measures

HD7970
Xeon Phi
GTX 680

K20
GTX Titan

Fig. 14. Speedup over fixed configuration, LOFAR (higher is better).

the sum of achieved GFLOP/s. We find the best possible
fixed version with auto-tuning. This configuration is different
for each accelerator and observational setup. Identifying a
single fixed configuration that works on all accelerators and
observational setups is possible, but performance would be too
low to provide a fair comparison. Figure 13 and 14 show the
speedup of the auto-tuned algorithm over fixed configurations.

For Apertif, we see that the tuned optimums are 3 times
faster than fixed configurations for all GPUs, while the gain
in performance for the Xeon Phi is less pronounced. This
difference in performance between tuned and fixed configu-
rations can be seen also in the LOFAR setup, but it is smaller
than for Apertif. In this case, the NVIDIA GPUs still gain
a 50% in performance by auto-tuning, but the HD7970 and
Xeon Phi tuned configurations are only slightly faster than
the fixed ones. This is because, as we noted in Section V-A,
the smaller optimization space of the LOFAR setup makes
the optimum more stable, thus making it easier to manually
tune the algorithm. We believe that these results are further
evidence of the importance that auto-tuning has in achieving
high performance.

We also believe that, currently and in the foreseeable
future, many-core accelerators are necessary to achieve high
performance for dedispersion. To provide additional strength
to this claim, we compare the performance of our tuned many-
core algorithm with an optimized CPU version. This CPU
version of the algorithm is parallelized using OpenMP, with
different threads computing different DM values and blocks
of time samples. Chunks of 8 time samples are computed at
once using Intel’s Advanced Vector Extensions (AVX). The
CPU used to execute the code is the Intel Xeon E5-2620;
all the experimental parameters are the same as described in
Section IV except for the used compiler, which is version

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

S
p

e
e
d

u
p

Dispersion Measures

HD7970
Xeon Phi
GTX 680

K20
GTX Titan

Fig. 15. Speedup over a CPU implementation, Apertif (higher is better).

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

S
p

e
e
d

u
p

Dispersion Measures

HD7970
Xeon Phi
GTX 680

K20
GTX Titan

Fig. 16. Speedup over a CPU implementation, LOFAR (higher is better).

13.1.1 of the Intel C++ Compiler (icc). The speedups over
this CPU implementation are presented in Figures 15 and 16.
These results show that our OpenCL dedispersion, running on
many-core accelerators, is considerably faster than the CPU
implementation in both observational setups.

With regard to the performance achieved using OpenCL on
the Xeon Phi, we believe that in future a better OpenCL imple-
mentation for the Phi will certainly increase its performance,
and we hope that dedispersion will be able to benefit from
the high memory bandwidth of this accelerator. The aim of
future investigations is to tune an OpenMP implementation of
the algorithm on the Xeon Phi, and compare its performance
with OpenCL. Furthermore, we also believe the K20 to be a
poor match for a memory-bound algorithm like dedispersion,
because it does not have enough memory bandwidth to feed
its compute elements and keep them busy.

With the performance results of this work, we can also
compute the number of accelerators that would be necessary
to implement real-time dedispersion for Apertif. Apertif will
need to dedisperse in real-time 2,000 DMs, and do this for
450 different beams. Using our best performing accelerator,
the AMD HD7970, it is possible to dedisperse 2,000 DMs
in 0.106 seconds; combining 9 beams per GPU it would still
be theoretically possible to dedisperse one second of data in
real-time, with enough available memory to store both the
input and the dedispersed time-series. Therefore, dedispersion
for Apertif could be implemented today with just 50 GPUs,
instead of the 1,800 CPUs that would be necessary otherwise.

VI. RELATED WORK

In the literature, auto-tuning is considered a viable technique
to achieve performance that is both high and portable. In
particular, the authors of [7] show that it is possible to use
auto-tuning to improve performance of even highly-tuned

algorithms. Even more relevant to our work is [8], and we
agree with the authors of [8] that auto-tuning can be used as a
performance portability tool, especially with OpenCL. How-
ever, auto-tuning has been used mostly to achieve performance
portability between different many-core accelerators, while we
also use it to adapt an algorithm to different use-case scenarios.

While there are no previous attempts at auto-tuning dedis-
persion for many-cores, there are a few previous GPU im-
plementations documented in literature. The first reference
in the literature is [5]. In this paper dedispersion is listed
as a possible candidate for acceleration, together with other
astronomy algorithms. We agree with the authors of [5] that
dedispersion is a potentially good candidate for many-core
acceleration, because of its inherently parallel structure, but
we believe their performance analysis to be too optimistic,
and their AI’s estimate to be unrealistically high. In fact,
we showed in this paper that dedispersion’s AI is low in
all realistic scenarios, and that the algorithm is inherently
memory-bound. The same authors implemented, in a follow-
up paper [1], dedispersion for NVIDIA GPUs, using CUDA
as their implementation framework. However, we do not com-
pletely agree with their performance results for two reasons:
first, they do not completely exploit data-reuse, and we showed
how important data-reuse is for performance, and second,
part of their results are not experimental, but derived from
performance models.

Another GPU implementation of the dedispersion algorithm
is presented in [9]. Also in this case there is no mentioning
of exploiting data-reuse. In fact, some of the authors of [9]
published, shortly after the first work, another short paper
[2] in which they affirm that the previous algorithm does
not perform well enough because it does not exploit data-
reuse. Unfortunately, this paper does not provide sufficient
detail on either the algorithm or on experimental details such
as frequencies and time resolution, for us to repeat their
experiment. Therefore, we cannot verify the claimed 50% of
theoretical peak performance. However, we believe this claim
to be unrealistic because dedispersion has an inherently low
AI, and it cannot take advantage of fused multiply-adds, which
by itself already limits the theoretical upper bound to 50%.

VII. CONCLUSIONS

In this paper, we analyzed dedispersion, a basic radio
astronomy algorithm that is used to reconstruct smeared sig-
nals, especially when searching for new celestial objects. We
introduced the algorithm and our many-core implementation,
and analytically proved that dedispersion is a memory-bound
algorithm and that, in any real case scenario, its performance
is limited by low AI. With the experiments presented in
this paper, we also demonstrated that by using auto-tuning
it is possible to obtain high performance for dedispersion.
Even more important, we showed that auto-tuning makes the
algorithm portable between different platforms and different
observational setups. Furthermore, we highlighted how auto-
tuning permits to automatically exploit the architectural speci-
ficities of different platforms.

Measuring the performance of the tuned algorithm, we
verified that it scales linearly with the number of DMs for
every tested platform and observational setup. So far, the
most suitable platform to run dedispersion among the ones
we tested, is a GPU from AMD, the HD7970. This GPU
performs better than the other accelerators when extensive
data-reuse is available, and achieves good performance also in
less optimal scenarios, thanks to its high memory bandwidth.
If there is less data-reuse, the GPUs that we tested achieve
similar performance, but are still 2–7 times faster than the
Intel Xeon Phi. Although this is partially due to the Xeon Phi’s
immature OpenCL implementation, we have to conclude that,
at the moment, GPUs are better candidates for dedispersion.

Another important contribution was the quantitative evi-
dence of the impact that auto-tuning has on performance. With
our experiments, we showed that the optimal configuration is
difficult to find manually and lies far from the average, having
an average signal-to-noise ratio of 2–4. Moreover, we showed
that the auto-tuned algorithm is faster than manually tuned
versions of the same algorithm on all platforms, and is an order
of magnitude faster than an optimized CPU implementation.

Finally, our last contribution was to provide further em-
pirical proof that dedispersion is a memory-bound algorithm,
limited by low AI. In particular, we showed that achievable
performance is limited by the amount of data-reuse that dedis-
persion can exploit, and the available data-reuse is affected by
parameters like the DM space and the frequency interval. We
also showed that, even in a perfect scenario where data-reuse is
unrealistically high, the performance of dedispersion is limited
by the constraints imposed by real hardware, and approaching
the theoretical AI bound of the algorithm becomes impossible.

REFERENCES

[1] B. R. Barsdell, M. Bailes, D. G. Barnes, and C. J. Fluke, “Accelerating
incoherent dedispersion,” Monthly Notices of the Royal Astronomical
Society, 2012.

[2] W. Armour, A. Karastergiou, M. Giles, C. Williams, A. Magro, K. Za-
gkouris, S. Roberts, S. Salvini, F. Dulwich, and B. Mort, “A GPU-
based Survey for Millisecond Radio Transients Using ARTEMIS,” in
Astronomical Data Analysis Software and Systems XXI, 2012.

[3] D. Lorimer and M. Kramer, Handbook of pulsar astronomy, 2005.
[4] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful

visual performance model for multicore architectures,” Commun. ACM,
2009.

[5] B. R. Barsdell, D. G. Barnes, and C. J. Fluke, “Analysing astronomy
algorithms for graphics processing units and beyond,” Monthly Notices
of the Royal Astronomical Society, 2010.

[6] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions:
With Formulars, Graphs, and Mathematical Tables, 1964.

[7] Y. Li, J. Dongarra, and S. Tomov, “A note on auto-tuning GEMM for
GPUs,” in Computational Science ICCS 2009, 2009.

[8] P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, and J. Dongarra,
“From CUDA to OpenCL: Towards a performance-portable solution for
multi-platform GPU programming,” Parallel Computing, 2012.

[9] A. Magro, A. Karastergiou, S. Salvini, B. Mort, F. Dulwich, and
K. Zarb Adami, “Real-time, fast radio transient searches with GPU de-
dispersion,” Monthly Notices of the Royal Astronomical Society, 2011.

	I Introduction
	II Background
	III Algorithm and Implementation
	III-A Sequential Algorithm
	III-B Parallelization

	IV Experimental Setup
	IV-A Auto-Tuning
	IV-B Impact of Auto-Tuning on Performance
	IV-C Data-reuse and Performance Limits

	V Results and Discussion
	V-A Auto-Tuning
	V-B Impact of Auto-Tuning on Performance
	V-C Data-reuse and Performance Limits
	V-D Discussion

	VI Related Work
	VII Conclusions
	References

