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Abstract—Data replication, the main failure resilience strategy
used for big data analytics jobs, can be unnecessarily inefficient.
It can cause serious performance degradation when applied to
intermediate job outputs in multi-job computations. For instance,
for I/O-intensive big data jobs, data replication is especially
expensive because very large datasets need to be replicated.
Reducing the number of replicas is not a satisfactory solution as
it only aggravates a fundamental limitation of data replication:

its failure resilience guarantees are limited by the number of
available replicas. When all replicas of some piece of intermediate
job output are lost, cascading job recomputations may be
required for recovery.

In this paper we show how job recomputation can be made
a first-order failure resilience strategy for big data analytics.
The need for data replication can thus be significantly re-
duced. We present RCMP, a system that performs efficient
job recomputation. RCMP can persist task outputs across jobs
and leverage them to minimize the work performed during
job recomputations. More importantly, RCMP addresses two
important challenges that appear during job recomputations. The
first is efficiently utilizing the available compute node parallelism.
The second is dealing with hot-spots. RCMP handles both by
switching to a finer-grained task scheduling granularity for
recomputations. Our experiments show that RCMP’s benefits
hold across two different clusters, for job inputs as small as 40GB
or as large as 1.2TB. Compared to RCMP, data replication is
30%-100% worse during failure-free periods. More importantly,
by efficiently performing recomputations, RCMP is comparable
or better even under single and double data loss events.

I. INTRODUCTION

Data replication is the main failure resilience strategy used

for big data analytics jobs today. It consists of writing several

replicas (copies) of the same piece of data in different locations

in the hope that on failures at least one replica survives.

Unfortunately, when applied to intermediate job outputs in

multi-job computations (series of jobs with the output of

one job being the input of another), data replication can

be greatly inefficient. This is important because multi-job

computations are very popular. The primitives provided by big

data processing systems (e.g. Hadoop, MapReduce) constrain

the amount of work possible in a job. As a result, users need to

divide their algorithms into multiple jobs [16], [15] or rely on

higher level languages (e.g. Hive [23], Pig [19]) which usually

also get compiled into sequences of jobs. We are aware of one

computation requiring as many as 150 jobs to complete [1].

Even writing relatively few replicas (3 is common to-

day [12]) can be an expensive operation in the context of
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big data analytics because the large data transfers required

put significant stress on the network and the storage. Today’s

clusters are especially inefficient at handling large transfers

due to economical constraints and architectural bottlenecks

(e.g. oversubscribed networks [8], poor disk throughput [22]).

For instance, in our evaluation we show that in the absence

of failures, an I/O-intensive multi-job computation can double

its running time when the replication factor is increased from

1 to 3. Importantly, the large performance penalty induced by

data replication is paid on every use of replication, even during

failure-free periods.

However, reducing the number of replicas is unsafe. This

only aggravates the inherent limitation of data replication:

its failure resilience guarantees are fundamentally limited by

the number of replicas. Having insufficient replicas leaves

computations exposed to failures and this can severely impact

performance. The reason is that without the use of data

replication, failures can easily cause data loss which can

trigger cascading job recomputations: several jobs need to be

recomputed to regenerate the lost data. In the worst case,

the recomputation may have to revert all the way to the

beginning of the multi-job computation. This suggests the need

for devising efficient approaches to job recomputation.

Unfortunately, efficient recomputation support is noticeably

absent in today’s big data processing systems. The jobs

affected by failures can be resubmitted but the system treats

the resubmissions identically to the initial runs: it computes

the jobs entirely. In this paper we show that efficient job

recomputation can be made a first order failure resilience

strategy for big data analytics. If done right, recomputation

can be very efficient when failures do occur while bearing

no cost during failure-free periods. Thus, the need for data

replication can be greatly reduced. We present RCMP (name

derived from the word recomputation) a system that performs

efficient job recomputations in the context of the popular

MapReduce paradigm. While extending the MapReduce model

with support for efficient job recomputations is important and

practically relevant given its popularity, we believe that our

work on the importance and challenges of job recomputation

transcends the MapReduce paradigm. Our work should apply

to any big data parallel processing computation model based

on DAGs of tasks. We view recomputation not as a replace-

ment for replication but rather as a complement. Our position

is that enabling efficient recomputation will in turn enable

judicious use of replication thus facilitating improvements in

overall computation performance.

RCMP is efficient. It recomputes only the minimum number



2

of tasks necessary for each recomputed job. For this, RCMP

persists across jobs mapper outputs as well as reducer outputs

that are part of successfully completed intermediate jobs. On

failures that cause data loss, RCMP decides which jobs must

be recomputed and based on the persisted data it also deter-

mines the minimum number of tasks to recompute for each

recomputed job. RCMP’s capability to maximize data reuse is

shared by previous work in programming languages [20], [17]

or cloud computing (Nectar [14], RDD [27]).

However, determining what to recompute is not RCMP’s

main contribution. RCMP goes beyond that. Its uniqueness

stems from improving how a job is recomputed. In fact, recom-

puting the minimum number of tasks introduces challenges

that would not be encountered otherwise. In this respect we

identified and tackled in RCMP two fundamental challenges

that greatly limit the efficiency of recomputation runs: the

difficulty in fully leveraging the available compute-node paral-

lelism and the presence of hot-spots. The first challenge is that

during job recomputation, the recomputed tasks are unlikely

to be numerous enough to efficiently utilize the available

compute node parallelism. In other words, the task scheduling

granularity used during the initial run is insufficient for effi-

cient job recomputation. This results in underutilized compute

nodes and consequently inefficient recomputation. The second

challenge is that hot-spots appear during the recomputation of

a job’s mappers. In the initial run of the job, mapper accesses

to input are essentially balanced over all nodes. The number of

concurrent accesses on one node is limited. We find that during

recomputation, mapper accesses can concurrently concentrate

on one or a few storage locations. The resulting contention

significantly increases mapper running time and consequently

the whole job recomputation time. RCMP’s approach to both

challenges is to switch to a more fine-grained task scheduling

granularity only during recomputation by splitting recomputed

tasks. This better utilizes the available compute nodes and mit-

igates hot-spots by distributing computation and data accesses

over all the nodes used for recomputation.

In our evaluation we quantitatively describe the magnitude

of the overheads that data replication can introduce as well

as the benefits of efficient recomputation. RCMP’s benefits

hold across two different clusters, with job inputs of either

40GB or 1.2TB. RCMP is implemented on top of Hadoop.

In our experiments, during failure-free periods replication is

30% to 100% worse compared to RCMP. More importantly,

by being efficient under recomputation, even under single and

double data loss events, RCMP yields better or comparable

total multi-job running time.

II. BACKGROUND

The MapReduce paradigm A MapReduce job applies in

a distributed fashion user-defined functions (UDF) to input

datasets. The job input and output are composed of key-value

pairs and are stored in a distributed file system. Jobs are further

subdivided into tasks. A task is a small portion of the work

and is assigned to only one compute node.

MapReduce has mapper and reducer tasks. Mappers run first

and process the job input by applying the same map UDF

Fig. 1. The set of tasks and data transfers (both in bold) that are part of the
recomputation of a MapReduce job under RCMP. M = mapper task, R=reducer
task. A failure occurs just before Job 2 completes. The outputs of tasks M11,
R11, M21 , R21 are lost due to the failure and need to be recomputed.

to each record (i.e. key-value pair) in the mapper input. The

union of all the mapper outputs comprises the input for the

reducers. Mapper outputs are stored outside of the distributed

file system, on the node that computed the mapper. Each

reducer processes a separate set of keys. It applies a reducer

UDF that takes as input one key at a time along with all the

values corresponding to it. Mappers and reducers exchange

data in the shuffle phase when each reducer copies from the

completed mappers the key-value pairs that correspond to the

keys it needs to process. Commonly, this shuffle phase results

in an all-to-all traffic pattern between the nodes running the

tasks. Finally, the union of all reducer outputs is the job output.

A compute node can only run a limited number of tasks

concurrently. This is enforced by the concept of mapper and

reducer slots. A job runs in multiple waves when the number

of tasks is greater than the number of slots.

Cascading recomputations This paper focuses on collo-

cated data center environments because of their popularity.

In this case each node performs computation and also stores

data that is part of the distributed file system (i.e. each node

is both a storage and a compute node). Our contributions

directly apply also to the non-collocated case where storage

and computation are separated.

Collocation is more challenging because node failures im-

pact both computation (tasks cannot finish) and storage (data is

lost). For the job running at the time of the failure, part of the

job input and some of the persisted mapper outputs are lost.

Thus, the affected job cannot continue if its input has been

insufficiently replicated. To recover using recomputation, it is

necessary to cascade back to previous jobs to regenerate the

lost data. In MapReduce this is especially important because

the computation DAG always has local components. A failure

can easily lead to the loss of data from all jobs already finished.

Thus, recomputation needs to be efficient. It may need to

cascade all the way to the beginning of the computation.

As an example, consider Figure 1 which illustrates recompu-

tation in RCMP. The failure occurs just before Job 2 finishes.

R21 is lost and needs to be recomputed. But R21 requires the

output of M21 which is also lost. In turn, M21 is based on

the output of R11 which was also on the failed node and was

lost. Thus, Job 2 cannot continue before R11 is recomputed.

Therefore, RCMP has to cascade back to Job 1 to recompute

the lost part of Job 2’s input. RCMP recomputes only the

tasks that had outputs on the failed compute node (M11, R11,
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M21, R21) as well as the data transfers that are required for

these recomputed tasks (bold lines in Figure 1). Note that

the recomputation work performed by RCMP is a fraction

compared to recomputing an entire job.

Notations and clarifications We refer to the first execution

of a job as the initial run of that job. During failure recovery,

parts of the job (some of its tasks) may have to be re-executed.

We call such a re-execution a recomputation run of that job.

This job-level recomputation should not be confused with

speculative execution in MapReduce. Speculative execution is

a task-level mechanisms useful only when the input to the

job is available. Speculative execution detects slow tasks and

duplicates or restarts them on other nodes in the hope that in

the new location they will progress faster.

This paper is about data replication (i.e. writing multiple

copies of the same data on multiple nodes). This should

not be confused with task replication, a completely different

mechanism outside the scope of this paper. For simplicity, we

use the term ”replication” to refer to data replication.

III. WHY REPLICATION IS PROBLEMATIC

In this section we provide detailed arguments to support

our claim that replication is too costly to be the only failure

resilience strategy used in big data analytics. Despite the

failure resilience guarantees and the performance benefits that

replication can offer in a few narrow cases, there are simply

too many practically relevant situations in which replication

costs far outweigh the benefits. This suggests the need for

devising more efficient failure resilience strategies.

Part of the overhead of replication stems from inefficiencies

in current systems. For example, data center networks are

often oversubscribed [8] and the disk throughput obtained by

applications can fall well short of the disk hardware capabil-

ities [22], [21]. A number of proposals improve I/O perfor-

mance and could also decrease the absolute replication costs.

Batching optimizations can mitigate the detrimental effect of

excessive seeks caused by concurrent disk accesses [22], [21].

Leveraging raw access to disk [18] mitigates inefficiencies

resulting from layering a distributed file system on top of

general purpose file systems which are not optimized for

big data workloads [22]. While such solutions incrementally

improve performance, the fundamental limitation remains.

Replication adds extra I/O work to the system. Thus, the

relative overhead of replication is expected to persist.

A. Overrated benefits of replication

Failures are not an ubiquitous threat Replication does

provide some useful failure resilience guarantees. Current

replication strategies [12] protect against the simultaneous

failure of two nodes or against single rack-level failures. This

is particularly useful when a job has a high probability of

encountering a failure. One example are large-scale, long-

running jobs spanning thousands of nodes. However, most

data analytics users do not run such large scale jobs and few

companies have extremely large clusters. In 2011, Cloudera

reported that the median size of a data analytics cluster was

less than 30 nodes [3] while the average was around 200 nodes.
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Fig. 2. CDF of new failures per day for two clusters at Rice University.

At this moderate scale node failures are expected only at an

interval of days [21].

Figure 2 depicts the rate at which machines become un-

available for the STIC (218 nodes) and SUG@R (121 nodes)

clusters at Rice University. The traces have been made publicly

available [2]. The traces are based on daily, automated checks

of node unavailability, end in Sept 2012 and start in Sept

2009 for STIC and Jan 2009 for SUG@R. Only 12% of days

for SUG@R and 17% of days for STIC show new failures.

Discussions with IT revealed that most failure events reported

in Figure 2 are likely hardware issues that take at least a day to

solve. The few days with many nodes becoming unavailable

are unplanned situations (scheduler and file system outages

or performance degradation). Our numbers corroborate with

estimates from other studies [21] and suggest that for the

popular moderate-sized clusters occasional failures should be

expected but are not an ubiquitous threat. Therefore, in these

situations continuous use of replication for failure resilience

is unwarranted.

Data locality is oftentimes inconsequential If a node

storing a piece of data also processes it, then the computation

is said to be data-local. Increased data locality can lead to

improved job running times when it is more efficient to

process data locally (e.g. cluster with a highly oversubscribed

network). Replication can improve the chance of scheduling

data-local tasks. More replicas result in better chances that a

node having a replica of a task’s input data will be selected

by the scheduler to run the task.

However, there are many situations in which data locality

is either not applicable, is inconsequential or easily obtainable

without replication. First, data locality is not even applica-

ble [18] to non-collocated environments. All transfers are

remote in this case. Second, data locality is inconsequential

when the network is not the bottleneck. Such systems are

often proposed today even for the large scale [13], [4] and

have long been economically viable at moderate scale. Future

trends point to advances in networking that will outpace

advancements in disk drive technologies thus eventually mak-

ing data locality completely irrelevant [5]. Third, oftentimes

data locality is easily achievable without replication. In the

collocated case, data locality is trivially obtained by distribut-

ing data evenly across exactly the same set of nodes that

perform computations. Thus, each node will have plenty of

local data to compute on and little or no remote access is
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required. Moreover, researchers have also proposed improving

data locality with smart scheduling decisions [26]. Even when

none of the above applies, the benefits of data locality may

not necessarily offset the overhead of replication.

Benefits to speculative execution are limited Replication

may also benefit the speculative execution of mappers. If a

slow mapper needs to be duplicated (or restarted), the duplicate

can read its input from another replica, potentially bypassing

the problem that hampered the initial task. This benefit only

applies when the slowness is caused by inefficiencies in

reading input data (bad drives, slow network transfers). If the

slowness is computation-related, then speculative execution

may succeed even in a single-replicated system. Still, the

benefits of speculative execution should not be overestimated.

Studies show that up to 90% of speculatively executed tasks

provide no benefits [10] because it is hard to gather enough

information to understand the causes of stragglers [6].

B. Indirect costs of replication

Apart from increased job running time, replication also has

several less obvious disadvantages. First, replication in one job

indirectly affects concurrently running jobs by increasing disk

and network contention. Second, replication increases the costs

necessary for provisioning a cluster that can sustain a given

job execution rate because extra compute nodes or disks are

necessary to compensate for the overhead of replication. Third,

replication makes scaling difficult in collocated environments.

Future projections show that the number of cores in a com-

modity compute node will increase significantly but this trend

will not be matched by a similar increase in the throughput

of commodity disk drives [5]. The only way to increase local

I/O throughput will be increasing the number of disk drives.

This trend is already challenging current solutions for cooling

and chassis design with as many as 24 disks being installed

in one compute node [18]. The extra overhead of replication

further aggravates this unsustainable trend.

IV. ACHIEVING EFFICIENT RECOMPUTATIONS WITH RCMP

Next, we detail the design and capabilities of RCMP. To

provide a theoretical quantification of the magnitude of the

challenges and of RCMP’s benefits this section uses a simple

model of the environment and of the MapReduce paradigm.

We assume N compute nodes each having S mapper and S

reducer slots. Each node runs WM waves of mappers and WR

waves of reducers. Each compute node runs the same number

of tasks and each task performs the same amount of work. We

make these assumptions only to simplify illustration. RCMP

does not need them. We further assume that the key-value pairs

lost on failure can be traced back to the reducer that created

them. Today this is easily achieved by dividing the job output

file into separate partitions with one partition per reducer [25].

A. Overall system design

We now present the design of RCMP using Figure 3 as the

illustration. RCMP extends Hadoop’s design with advanced

functionality necessary for efficient recomputation.

Fig. 3. RCMP system overview.

The initial job submission is similar to Hadoop. We describe

it here for completeness. The user submits the multi-job

computation and describes the job dependencies. A middle-

ware program uses the dependencies to decide the order of

job submission. A job is submitted only after the jobs that

it depends upon are successfully computed. The jobs are

submitted to the Master one by one. The Master possesses no

knowledge of job dependencies and knows only how to run

individual jobs to completion. Upon receiving a regular job

(not recomputation), a job initialization component (JobInit)

in the Master creates the tasks (circles in Figure 3) that need

to be executed and the scheduler assigns them to cluster nodes.

Job execution is modified in RCMP. RCMP recognizes that

during the computation of a job a significant amount of data

(map and reducer outputs) needs to be materialized anyway

for the job to complete. RCMP persists this data across jobs

to benefit potential future recomputation, effectively trading-

off storage space for recomputation speed-up. The rationale is

that in the common case, failures are likely to lead to the loss

of only a small portion of a job’s persisted data. Therefore,

most of the data persisted on an initial run can be reused to

minimize the work performed on recomputation.

Upon failure detection, RCMP is much more advanced.If

those failures cause irreversible data loss (all replicas of some

data are lost), then the Master informs the middleware which

files (job outputs) were affected and also which specific re-

ducer outputs were affected. The middleware then immediately

cancels the currently running job since it cannot complete

without the lost data. The middleware uses the job dependency

information and the affected files to infer which jobs need

to be recomputed and in which order so that the lost data

is regenerated. When submitting a recomputation job, the

middleware tags it with the reducer outputs that need to be

recomputed and with the job IDs of any previous successful

attempts to compute this job. If a new failure occurs while

RCMP is recovering from a previous one, RCMP’s behavior

remains unchanged. It interrupts the currently running job

and starts recomputation. RCMP need not recover from each

failure separately. A recomputation job can service any number

of data loss events. RCMP only needs to be careful and tag the

submitted recomputation job with the reducer outputs damaged

by all failures.
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JobInit uses the tagged information to decide what persisted

data to consider for job recomputation. JobInit checks the

metadata on the list of already persisted map outputs and

readies for execution only the minimum necessary number

of mappers. Most persisted mappers are reused. They are

treated as if they had already finished. See end of §IV-B1

for one subtle exception. Concerning reducers, JobInit readies

for execution only the reducers for which the outputs were

affected. Note that on recomputation, RCMP significantly

departs from Hadoop. Hadoop does not decide which lost data

actually needs to be recomputed because it does not understand

the notion of a recomputation job. It treats each job submitted

to the system as a brand new job and re-executes it entirely.

RCMP performs job recomputations at the granularity of

tasks. It is possible to optimize further and use a per-record

granularity but we believe that this makes the system un-

necessarily complex. For example, under a single failure,

recomputed mappers would ideally only do a small portion of

the initial records (1/N for a balanced computation), strictly the

amount necessary for the 1/N recomputed reducers. However,

it is difficult to make mappers skip specific input records

because the reducer destination of each map output record is

only decided after the map function is applied to the record.

B. RCMP during recomputation

To give a sense of the benefits that RCMP provides during

recomputation by reusing persisted data, consider that after

a single node failure, RCMP only needs to recompute 1/N

of the mappers and 1/N of the reducers. This also results in

1/N of the shuffle traffic compared to the initial run of the

job. If the 1/N mappers took WM waves in the initial run,

they can now be recomputed in ceil((WM ∗S)/((N−1)∗S)) =
ceil(WM/(N − 1)) waves if they can be distributed over all

compute nodes. The same holds for the WR waves of reducers.

While these are important performance benefits, RCMP’s

uniqueness stems from how it efficiently executes recompu-

tation jobs. This provides additional, significant performance

benefits. This subsection details the challenges in providing

efficient recomputation and the way RCMP tackles them.

1) Maximizing the use of compute nodes for recomputation:

Ideally, all available nodes will be used for recomputations.

RCMP’s case is challenging. Because RCMP may end up

recomputing a fraction of a job’s tasks there is a real danger

that these tasks may be too few to fully utilize all available

nodes.

One may attempt to configure a job so that it is efficient on

recomputation. However, this is bound to be inefficient in the

failure-free case. For example, to efficiently recompute after

single failures, each of the N nodes should run N-1 reducers so

that each of the surviving N-1 nodes helps with recomputation.

This results in WR = (N − 1)/S reducer waves in the failure-

free case. If WR is high (e.g N = 100,S = 10) then, in failure-

free runs, time is wasted performing a shuffle for each wave

of reducers. One can keep WR small by increasing S (e.g.

N = 10,S = 10) but then performance is impacted because

too many reducers are running concurrently on each node and

contend for resources.

Fig. 4. Maximizing resource use for recomputation using reducer splitting.

The root of the problem thus lies in the task scheduling

granularity. A coarser granularity is often desired for the initial

run because it simplifies scheduling, offsets task start-up and

shut-down costs and can improve performance while using

resources efficiently because many tasks need to be executed.

Unfortunately, the same coarse granularity can severely under-

utilize nodes under recomputation when only a few tasks need

to be recomputed. Consider the case when WR ∗ S << N (i.e

the total number of reducers ran by a node for a job is smaller

than the total number of nodes used). In this case, reducer slots

will be severely under-utilized during recomputations. After a

single failure, most nodes (i.e. N−WR∗S) will run no reducers.

This case is the norm today because it is more efficient to set

the number of reducers so that WR is 1. This allows the shuffle

phase to overlap with the map computation [25]. Thus, using

the task granularity from the initial run for recomputations has

profound negative implications. The job recomputation time,

instead of being bounded by the number of available nodes,

ends up being bounded by the impact of the failure (i.e. the

number of tasks affected by failure) and the job configuration

(which dictates the number of tasks per node).

RCMP addresses this resource usage challenge by switch-

ing to a finer-grained task scheduling granularity only dur-

ing recomputations. RCMP effectively balances the benefits

of the two types of task granularities using each when it

is most efficient. Note that RCMP differs from most big

data processing systems today which use a single, static

task scheduling granularity defined at job configuration time.

RCMP’s approach is to split tasks that belong to recomputation

jobs. We focus on reducer splitting because mappers are

less likely to under-utilize resources since they are usually

far more numerous and there is no negative side-effect to

having WM >> 1. Nevertheless, mappers can be trivially split

since each record is usually processed individually. Reducer

splitting works as follows. An initial reducer is responsible for

a number of keys. During recomputation the keys are simply

divided among the multiple splits of the reducer. Each split

still is responsible for all the value belonging to one key and

this ensures computations correctness. Users should configure

RCMP to split reducers only if the application logic allows it.

For example, a reducer performing a top-k computation may

not be split. Fortunately, such cases are rare.

Figure 4 illustrates the benefits of task splitting using a

recomputation job during which one single reducer (R1) needs

to be recomputed. The mappers M1, M2 and M3 have already

been recomputed. In case a) reducer splitting is not used and
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Fig. 5. Splitting correctly is not trivial. Grayed boxes represent failed tasks.

2 compute nodes have idle reducer slots. One node has to

recompute R1 entirely. With splitting (case b), the reducer

work is divided among all available nodes and each split

reducer contributes a portion of R1’s output data. Note that

reducer splitting helps not only because it better uses the

available compute node parallelism but because it also load

balances data transfers across more disks and network links.

Correctly performing splitting may seem trivial but is not.

Figure 5 presents a subtle challenge resulting from the inter-

action between non-locality, splitting and data partitioning. In

the initial run, mappers M1 and M2 each process half the

keys from R1’s output. A failure occurs and the outputs of the

grayed tasks (R1 and M1) are lost and need to be recomputed.

The output of M2 survived because M2 was a non-local task.

During recomputation R1 is split in two (R1.1 and R1.2). The

keys initially processed by R1 are now partitioned between

the two splits using hash-partitioning. R1.1 processes the odd

keys and R1.2 the even. It may seem that RCMP could reuse

the output of M2 and not even recompute R1.2 and M2*.

This would be incorrect! M2 and M2* are not the same

because of the hash partitioning. Re-using M2 would cause

keys 11,13,15,17,19 to appear twice in the job output, and

keys 2,4,6,8,10 to never appear. RCMP solves this problem

by not re-using the map outputs (such as M2) for which the

reducer they depend on has been split during recomputation.

2) Avoiding hot-spots: Under recomputation there is also

the danger of hot-spots when many mappers concurrently

converge on one storage location to obtain their input. Con-

sider Figure 6. Case a) illustrates an initial job run in which

node Y computes reducer R1 and in the subsequent job it

computes 3 mappers in 3 different waves, because it has just

one mapper slot. These 3 mappers are based on R1’s output.

Suddenly, node Y dies and R1 and the 3 mappers (M1, M2,

M3) need to be recomputed. During recomputation (case b)

node Z recomputes reducer R1 but the 3 mappers based on

R1’s output are recomputed in 1 single wave because they are

distributed over 3 surviving nodes. Since they run in one single

wave, all mappers will attempt to simultaneously access node

Z to get their input, thus severely increasing contention on Z.

To quantify the magnitude of the contention, consider that

during the map phase of the initial run, the average number of

concurrent mapper accesses on node Y’s local storage is on

the order of S, which is the number of mapper slots on a node.

Under recomputation, the contention on node Z can be as high

as S∗N which is the number of mapper slots over all available

nodes. A network bottleneck may also appear because of the

Fig. 6. Increase contention (hot-spots) on storage during recomputation.

large number of simultaneous transfers.

RCMP can also use reducer splitting to mitigate the hot-

spots. This works because reducer splitting distributes the

reducer computation over many or all available nodes. Thus,

this also implicitly distributes reducer output data over the

nodes, mitigating the contention in the subsequent map phase.

In effect, reducer splitting helps speed-up both the current

recomputation job as well as the subsequent one.

We have also analyzed an alternative solution for mitigating

hot-spots. Specifically, instead of splitting, RCMP can tell the

reducers belonging to recomputed jobs to spread their output

over many nodes. This solution also balances the mapper ac-

cesses in the subsequent job but compared to reducer splitting,

it does not have the added benefit of dividing reducer output

writing or shuffle work among several nodes. As a result, its

capability to lower job running times is reduced, especially

when the shuffle phase is significantly more expensive than the

map phase. In this case, speeding up just the map phase may

not improve overall job running time because the shuffle will

still be the bottleneck. This shuffle-bottleneck can appear when

only a small fraction of the mappers need to be recomputed or

when the network is slow. In both cases the cause is that the

recomputed reducers need to shuffle data from all mappers,

including the persisted ones.

C. Bounding recomputation time with replication

Combining recomputation with replication can ensure that

under common failure scenarios, cascading recomputations

revert only to the last replication point and not all the way

to the start of the computation. We have also implemented

this hybrid failure resilience approach in RCMP by replicating

the output of a job if its ID modulo a statically chosen value

equals 0. While this hybrid approach is not the focus of this

paper we also briefly evaluated it and the results are promising.

As future work we are considering a dynamic approach that

intelligently chooses between replication and recomputation

using job and environment-related information.

A second benefit of this hybrid approach is allowing

RCMP to reclaim storage space. After replication, RCMP

could reclaim the space used for persisting outputs for the

jobs that finished before the replication. While RCMP does

not currently implement this feature, it is a straightforward

addition to the system. In storage-constrained environments,

RCMP may need to more aggressively reclaim storage space

even in-between replications to make room for data required
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for the job to finish. As future work we are considering an

eviction policy that maximizes the speed-up that the remaining

persisted outputs bring on recomputation. We plan to start

by analyzing the benefits of deleting persisted outputs at the

granularity of waves.

V. EVALUATION

A. Methodology and computing environment

This section analyzes RCMP’s benefits using experiments

on two different clusters. In addition, numerical analysis is

used to make extrapolations starting from the experiments.

What we compare We compare Hadoop 1.0.3 with RCMP

(also based on Hadoop 1.0.3) and an intuitive strategy which

we call OPTIMISTIC. Hadoop uses a replication factor of

2 or 3 (called REPL-2 and REPL-3). With a factor of 1,

Hadoop cannot survive any failure. RCMP uses a factor of

1 (writes one HDFS replica locally) since it can recover by

recomputing. OPTIMISTIC assumes that failures never happen

so it also uses a factor of 1. On failure, OPTIMISTIC discards

everything and re-starts from the beginning. The numbers for

RCMP and Hadoop are from real experiments. The numbers

for OPTIMISTIC are obtained using numerical analysis by

combining the average job running time before and after the

failures for RCMP without splitting.

The computing environment We use two clusters, STIC

from Rice University and DCO from Zurich, Switzerland.

STIC nodes have 8-core 2.76GHz Intel Xeon CPUs, a 10GbE

interconnect and 24GB RAM. Each STIC node has only one

100GB S-ATA HDD. DCO nodes have 16-core AMD Opteron

6212 CPUs, 128GB RAM, use 10GbE and are distributed in

3 different racks. On each DCO node, a 2TB S-ATA HDD

is dedicated to RCMP. All compute nodes are non-virtualized

and we had exclusive access to them. In §V-D we also emulate

an environment with a much slower network speed.

The multi-job computation used We built a custom 7-job,

I/O-intensive, chain computation. Each mapper and reducer,

for every input record, performs two computations which help

us check correctness. One is based on the MD5 hash of a

record’s value while the other is based on the sum of all bytes

in a record value. In addition, each mapper randomizes the

key of each record to ensure load balancing of data across

tasks for every job. RCMP is geared towards I/O-intensive

computations. The exact computation performed by the tasks

is inconsequential for the message of the paper as long as the

I/O-intensive nature is preserved.

Our job has a ratio of input/shuffle/output size of 1/1/1.

This ratio is in between the range of ratios encountered in

practice [7], [11]. It is the same ratio used for sorting, a popular

barometer of cluster performance. The relative benefits of

RCMP vs Hadoop are expected to increase when the job output

is relatively larger compared to the input and shuffle (i.e. ratios

of the form x : y : z where z > y and/or z > x encountered in

jobs like Pig Cogroup or creating a web index [7]).

The 7-job computation uses randomly generated, triple

replicated, binary input data. The HDFS block size is 256MB.

On STIC each node processes 4GB (16 mappers of 256MB).

On DCO each node processes 20GB(roughly 80 mappers).

Fig. 7. The different moments at which failures are injected and their effects
on the multi-job computation when using RCMP.

For STIC the results are averages over 5 runs of the 7-job

computation. For DCO we performed 3 runs. The reducer

splitting ratio is chosen to use efficiently the available compute

nodes under recomputation. For DCO we enabled JVM reuse

in Hadoop and RCMP as disabling it unnecessarily penalizes

job performance.

How the jobs are numbered Each job (initial or recom-

putation) that starts running, receives as an unique ID the

next available integer number starting with 1. Re-computations

increase the total number of jobs ran. For an illustration

consider Figure 7, case c). A failure occurred during the 7th

job. As a result, RCMP recomputes the first 6 jobs and then

restarts the 7th. In this case RCMP started a total of 14 jobs;

each of the different 7 jobs was started twice. On the other

hand, since Hadoop uses replication for failure resilience it

always starts a total of 7 jobs.

How failures are injected We inject failures by killing

both the Hadoop TaskTracker and DataNode processes on a

randomly chosen compute node. We injected failures 15s after

the start of some job. The only exception is when we inject two

failures in the same job. Then, the second failure is injected

15s after the first one. Both Hadoop and RCMP have been

configured with failure detection timeouts of 30s. Thus, a first

failure is detected roughly 45s after the job start.

For RCMP, we chose the moments to inject failures as

follows. We do not inject failures during the first job since

its input is replicated. Case b) in Figure 7 represents a single

failure impacting the computation early. RCMP recomputes 1

job. In case c), the failure impacts the computation when it is

close to completion. RCMP recomputes 6 jobs. Case d) shows

double failures injected early while in case e) the failures

are injected when the multi-job approaches completion. Case

f) shows a nested failure: the second failure occurs while

recomputation is still being performed to address the first

failure. For Hadoop we inject failures at jobs 2 or 7.

On the efficiency of RCMP’s implementation For sim-

plicity, for the job during which the failure occurs, RCMP

currently discards the partial results computed before the

failure. Thus, the 45s taken by RCMP to react to one failure

are pure overhead. Ideally, RCMP would freeze the affected

job, recompute and then reuse the partial results after restarting

the frozen job. Hadoop does not suffer from this inefficiency

as it uses replication. Thus, if we had set the failure detection

timeout to more than 30s, or if we injected failures later in a
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job, then RCMP would be at an even greater disadvantage.

B. Overall system comparisons

No failure Figure 8a shows that RCMP provides signif-

icant benefits in the failure-free case across both clusters.

Hadoop REPL-2 is 30% slower while REPL-3 is 65%-100%

slower. OPTIMISTIC is on par with RCMP since neither uses

replication. Combining REPL-3 with 2 mapper and 2 reducer

slots per node (SLOTS 2-2) causes too much contention on

STIC and leads to performance degradation.

Single failure Figures 8b and 8c describe single failures.

Even under failure RCMP is still fastest. The gap between

RCMP SPLIT and NO-SPLIT is larger when the failure

is injected at job 7 because more job recomputations are

performed. For each of these recomputed jobs RCMP NO-

SPLIT uses one node for the reduce phase while RCMP SPLIT

distributes reducer work over many nodes. OPTIMISTIC is

very inefficient when the failure occurs late (2.23x slower)

because it nearly runs the same job twice. For the case STIC

SLOTS 1-1 in Figure 8c we can also showcase the benefits

of RCMP using the hybrid strategy that combines replication

(factor of 2 once every 5 jobs) and recomputation. Though not

plotted this would appear as 0.93 in the figure.

Double failures Figure 9 shows the results for double

failures using 10 nodes on STIC. FAIL X,Y means two failure

are injected one at job X and one at job Y. Here we only

compare RCMP against Hadoop REPL-3 because REPL-2

cannot protect against all double failures. Hadoop performs

better when the failures are injected late since only a small

portion of the computation needs to be executed with the fewer

remaining nodes. However, it is challenging to assess under

which sequence of double failures is RCMP most efficient. If

the failures occur late (e.g. FAIL7,14), then RCMP needs to

recompute many jobs but after the recomputation is finished

few jobs will have to be fully completed with fewer nodes.

If the failures occur early (e.g. FAIL 2,4), RCMP recomputes

few jobs but after that many jobs will have to be completed

with the fewer surviving nodes. Thus, deciding the best and

worst cases depends on the speed of recomputation compared

to the overhead of using fewer compute nodes.

In all runs RCMP performs well, consistently beating

Hadoop REPL-3 when reducer splitting is used. Splitting

benefits case FAIL7,14 the most because most recomputations

occur then. RCMP successfully and efficiently handled a

nested double failure (FAIL 4,7) where the second failure

occurs while the RCMP is still recovering from the first.

More failures To protect against F failures with repli-

cation, F + 1 replicas are needed. If F + 1 replicas exist but

fewer than F failures occur, then replication was unnecessarily

inefficient. If more than F failures occur, the computation

has to be restarted. Thus, setting the right replication factor

requires guesswork. In contrast, RCMP can recover from any

number of failures while performing the minimum necessary

amount of recomputation work.

Longer chains We now use numerical analysis to extrap-

olate RCMP’s speed-up when the computation has more than

7 jobs. Figure 10 extrapolates based on Figure 8b for the

STIC cluster, case SLOTS 2-2. The value 1 is RCMP with

splitting 8-wise. The extrapolation works as follows. For any

chain length, for RCMP, the running time is a combination of
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jobs running with 10 nodes before the failure, with 9 nodes

for recomputation and with 9 nodes after the recomputation

finishes. All these jobs appear in the experiments with the 7-

job chain computation and we use the averages from those.

For Hadoop the extrapolation is similar only there is no

recomputation to consider. In both cases we also account for

the job during which the failure occurred.

RCMP’s benefits are stable regardless of the chain length

and match well the values in Figure 8b. This is because when

the failure occurs early, the speed-up provided by RCMP is

basically the ratio of how fast Hadoop runs a job with 9 nodes

and how fast RCMP does the same. Similarly (not pictured)

the speed-up for longer chains when failures occurs at the last

job is also very stable and matches the values in Figure 8c.

In that case, the speed-up is defined by the ratio of how fast

Hadoop runs a job with 10 nodes and how fast RCMP does

the same plus recomputing the same job with 9 nodes.

C. Breakdown of RCMP specific benefits

Recomputing using all available nodes Next, we vary the

number of DCO nodes while keeping per-node work constant

(20GB of data). After a failure, the 20GB on the failed node

are recomputed. We want to quantify the benefits that RCMP

can extract from recomputing using more nodes. The reducer

split ratio is N-1 where N is the number of nodes.

Figure 11 shows how fast a job is recomputed compared

to the initial run of that same job. Without reducer splitting

(RCMP NO-SPLIT), there is little benefit to having more

nodes because one compute node needs to fully recompute

the reducer that was on the failed node. The rest of the nodes

have idle reducer slots. Small benefits may be obtained when

increasing the number of nodes even in the RCMP NO-SPLIT

case, because the map phase is recomputed in fewer waves.

Splitting provides significant benefits. Recomputation is able

to benefit much more from an increase in the number of nodes,

as each node performs a diminishing amount of reducer work.

Mitigating hot-spots Figure 12 shows the negative effects

of hot-spots in the recomputation runs from Figure 8c when

RCMP uses 2 map and 2 reduce slots (SLOTS 2-2) per

node on STIC. All nodes used for recomputation attempt

simultaneously to read the map input from one node. This

significantly increases mapper running time. Reducer splitting

mitigates contention and in the process also improves reducer

running time. At the median a reducer took 103s without

splitting and 53s with splitting.

D. Speed-up from recomputing with fewer waves

Having analyzed splitting we turn to the other important

source of speed-up for RCMP: the reduction in the number

of waves during recomputation compared to an initial job. We

present two cases. One is the high-bandwidth STIC environ-

ment used so far (we call it FAST SHUFFLE). In the second,

we emulate a bottlenecked-network by introducing a 10s

delay at the end of each shuffle transfer (SLOW SHUFFLE).

Splitting is not used. We inject a single failure at job 7.

For reducers To isolate the benefits of the reducer phase

recomputation, no map outputs are reused. All mappers are

recomputed. We vary the number of reducer waves in the

initial run (1, 2, 4) by varying the total number of computed

reducers (10, 20, 40) and keeping the number of reducer slots

to 1. For the recomputed jobs all recomputed reducers (1, 2

or 4) fit in 1 wave.

Figure 13 shows the results. Recall that a shuffle phase is

performed for every reducer wave but only the first reducer

wave overlaps with the map phase. For SLOW SHUFFLE, the

speed-up increases linearly with the decrease in the number of

reducer waves recomputed. This is because the map phase is

insignificant compared to the bottlenecked shuffle phase and

thus each reducer wave in the initial run takes roughly the

same amount of time to complete. In comparison, for FAST

SHUFFLE, the speed-up increases sub-linearly because the

first reducer wave is more time-consuming that the rest.

For mappers We now isolate the impact of the map

phase by having 1 reducer wave during both the initial run and

recomputation. Figure 14 shows that for SLOW SHUFFLE, no

matter how fewer mapper waves execute during recomputation

the speed-up barely increases. Finishing the map phase faster

does not decrease the time necessary to complete the network-

bottlenecked shuffle. On the other hand, for FAST SHUFFLE,

the shuffle finishes shortly after the last map output is com-

puted. This results in a near-linear increase in speed-up with

a decrease in the number of mapper waves recomputed.

VI. RELATED WORK

Failure resilience for big data RDDs [27] are a general

purpose, distributed memory abstraction for sharing data be-

tween applications. RDDs provide fault-tolerance by logging
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the transformations used to build a dataset and using this

lineage information for recovery. There are several important

differences between RDDs and RCMP. First, RDDs are geared

towards applications that can fit most of their data in memory

while RCMP focuses on the general case where data may

not fit in memory and needs to be written to stable storage.

Second, the lineage information allows RDDs to determine

what to recompute on failure. RCMP also determines what

to recompute but goes beyond that by focusing on how to

recompute. That is, RCMP is designed to address specific chal-

lenges faced when performing recomputations: maximizing

resource use and mitigating hot-spots. RDD does not deal with

such challenges. Third, we quantitatively analyze the overhead

of replication and the benefits of recomputation, while the

work on RDDs only briefly mentions that replication may be

expensive. Note that RDD also mentions the term ”efficient

fault tolerance”, but does so when comparing against solutions

that use shared-memory as a distributed memory abstraction

which are expensive to provide failure resilience for. For

RCMP, ”efficient” means recomputing as fast as possible.

FTopt [24] is a cost-based fault-tolerance optimizer for

parallel data processing systems. FTopt automatically selects

the best strategy for each operator in a query plan in a manner

that minimizes the expected processing time with failures for

the entire query. FTopt focuses on three failure resilience

strategies: NONE, MATERIALIZE (akin to replication) and

CHCKPT (checkpoint operator state). FTopt does not provide

insights into the benefits and challenges of recomputation.

Re-using previously computed results There is also

related work on optimizing computations by leveraging pre-

viously computed results. Some big data computations are

amenable to such optimizations because they have similarities

in computation (shared sub-computations) [14] and similarities

in input (same input or a sliding window of the input data) [9].

The challenge faced by this related work is determining and

maximizing the opportunities for data reuse. While RCMP also

reuses previously computed task outputs it does not face the

same challenges because under failures it needs to perform

the same computation on the same input. RCMP goes beyond

data reuse and focuses on how to best recompute data that

cannot be reused. At a higher level, RCMP’s focus is also

different. RCMP deals with the problem of providing failure

resilience for applications while prior work in this area focuses

on improvements in performance and storage utilization.

In this space, Nectar [14] automates and unifies the man-

agement of data and computation in data centers. Data and

computation are treated interchangeably by associating the

data with the computation that produced it. Thus, duplicate

computations can be avoided by reusing cached results. Nectar

uses fingerprints of the computation and the input to determine

similarity to previous runs. A cache server allows the lookup of

stored entries based on the fingerprints. Nectar automatically

and transparently rewrites programs to cache intermediate

results and to take advantage of the cached results.

VII. CONCLUSION

RCMP is a system that uses efficient recomputation as a

first-order failure resilience strategy for big data analytics.

RCMP is geared towards multi-job, I/O-intensive computa-

tions. It leverages previously persisted outputs to speed-up

recomputed jobs but more importantly, during recomputations,

it ensures that compute node parallelism is maximized and hot-

spots are mitigated. RCMP’s benefits hold across two different

clusters, and for job inputs as small as 40GB or as large as

1.2TB. Not using data replication makes RCMP significantly

faster during failure-free periods. More importantly, by effi-

ciently performing recomputations, RCMP is competitive even

under single and double data loss events.
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