
UC Davis
UC Davis Previously Published Works

Title
Work-Efficient Parallel GPU Methods for Single-Source Shortest Paths

Permalink
https://escholarship.org/uc/item/8qr166v2

Authors
Davidson, Andrew Alan
Baxter, Sean
Garland, Michael
et al.

Publication Date
2014-04-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8qr166v2
https://escholarship.org/uc/item/8qr166v2#author
https://escholarship.org
http://www.cdlib.org/

Work-Efficient Parallel GPU Methods for Single-Source Shortest Paths

Andrew Davidson
University of California, Davis

aaldavidson@ucdavis.edu

Sean Baxter
NVIDIA Research

sbaxter@nvidia.com

Michael Garland
NVIDIA Research

mgarland@nvidia.com

John D. Owens
University of California, Davis

jowens@ece.ucdavis.edu

Abstract—Finding the shortest paths from a single source to
all other vertices is a fundamental method used in a variety
of higher-level graph algorithms. We present three parallel-
friendly and work-efficient methods to solve this Single-Source
Shortest Paths (SSSP) problem: Workfront Sweep, Near-Far
and Bucketing. These methods choose different approaches to
balance the tradeoff between saving work and organizational
overhead.

In practice, all of these methods do much less work than
traditional Bellman-Ford methods, while adding only a modest
amount of extra work over serial methods. These methods are
designed to have a sufficient parallel workload to fill mod-
ern massively-parallel machines, and select reorganizational
schemes that map well to these architectures. We show that in
general our Near-Far method has the highest performance on
modern GPUs, outperforming other parallel methods.

We also explore a variety of parallel load-balanced graph
traversal strategies and apply them towards our SSSP solver.
Our work-saving methods always outperform a traditional
GPU Bellman-Ford implementation, achieving rates up to
14x higher on low-degree graphs and 340x higher on scale-
free graphs. We also see significant speedups (20–60x) when
compared against a serial implementation on graphs with
adequately high degree.

Keywords-GPU computing, graph traversal, single-source
shortest paths, sparse graphs

I. INTRODUCTION

In a graph, finding the shortest path from a single source
node to all connected nodes is a well-known and long-
studied problem with many practical applications on a wide
spectrum of graph types (e.g., road networks, 3D models,
AI, and social networks) [1], [2]. Known as “single-source
shortest path” (SSSP), this graph primitive will be one
of three core application kernels in the new Graph 500
benchmark [3].

The input to SSSP is a source node in a graph with v
vertices and e directed edges with non-negative weights.
We treat undirected edges as two directed edges, pointing in
both directions. Figure 1(a) shows an example graph with a
source and edge weights, and Figure 1(c) shows the resulting
final distances to all nodes. As an example, consider a
road network, where vertices are cities, (undirected) edges
are roads between cities, and weights are road distances.
Beginning with a home city (the source), SSSP calculates the
shortest distances between the home city and each other city.
The number of edges (roads) connected to each vertex (city)

is called the degree of the vertex; the number of hops in the
longest shortest path (the largest number of roads required
to travel between any two cities) is called the diameter of
the graph.

The traditional serial approach to SSSP is Dijkstra’s
method (Section II-A), which utilizes a priority queue where
one vertex is processed at a time. While this method is an
efficient (O(v log v+ e)) serial algorithm, it is poorly suited
for a parallel architecture such as a GPU that requires thou-
sands or more parallel threads to fully occupy the machine.
To expose more parallelism, we consider algorithms that can
process more vertices at the same time. The Bellman-Ford
algorithm (Section II-B) is one such method. It repeatedly
processes all edge connections, updating vertices continu-
ously until final distances converge. Though Bellman-Ford
is classically a serial algorithm, it is well-suited to parallel
execution across vertices, and unlike Dijkstra, also works
on graphs with negative-length cycles, which we do not
consider in this paper. However, these features come with a
higher cost: O(ev) work.

These two classic algorithms span a parallel vs. efficiency
spectrum. Neither is ideal: Dijkstra exposes no parallelism
across vertices, while Bellman-Ford is expensive. This paper
explores the space between these two endpoints, studying
algorithms that both exploit parallelism and maintain effi-
ciency. We develop and describe three such methods that
are targeted for fine-grained, massively parallel machines
such as GPUs. We analyze these three methods in the
context of the tradeoff between parallelism and efficiency
on a variety of graphs. With our implementations, we show
that in practice, we deliver good parallel efficiency while
adding only a modest amount of extra work: the overall work
complexity is usually much closer to Dijkstra than Bellman-
Ford. On all graphs, we demonstrate significant speedups
over the previous GPU state of the art, LonestarGPU’s
Bellman-Ford implementation [4], and on dense graphs that
are more amenable for parallel SSSP computation, speedups
over a variety of CPU and GPU implementations.

II. RELATED WORK

A. Dijkstra’s Algorithm

Dijkstra’s algorithm [5] is the most efficient sequential
algorithm on directed graphs. The algorithm maintains a pri-
ority queue of vertices prioritized by its shortest discovered

V0
(s)

V4

5

V6

V1

V5

V2

V8

V7

V3

V9

12

8 2

4

1

5

11
5

1
10

(a) SAMPLE GRAPH

Weights

1

12

4

5

6

10

2

8

3

2

7

5

0

11

8

1

5

4

9

5

9

1

8

5

3

11

4

0

1

4

1

5

2

6

0

8

1

8

1

9

1

10

1

11

1

12 13

Vertex

Adj. Size

Row
Offsets

Column
Values

0 1 2 3 4 5 6 7 8 9

(b) RESULTING CSR FORMAT

0

0

1

12

2

20

3

11

4

5

5

14

6

10

7

16

8

15

9

17

Vertex:

Distance:

(c) SHORTEST PATHS RESULT

Figure 1. An example weighted graph in CSR format with final distances calculated by SSSP. Figure 1(b) shows how a vertex array with adjacency
sizes can be represented by each vertex’s row offsets and edge pointers (column values). The bottom three arrays marked with red text are the only arrays
actually stored (total size: 2e+ v).

distance. It considers the top vertex on the queue and all
edges leaving that vertex. Vertices reached by these edges
are added back into the priority queue if they haven’t been
reached before, or the distance value is updated if a shorter
path has been discovered.

Using Fibonacci heaps, or relaxed heaps, the sequential
runtime for this method is bounded by O(v log v + e) [6].
These heap methods reduce the cost of setting vertex values
at the cost of added code complexity [2]. However, Fibonacci
heaps have large constant factors in practice, so using
simpler binary heaps can be more efficient. We test against
two implementations of Dijkstra’s algorithm: (1) a Boost
Graph Library [7] implementation using a relaxed heap, and
(2) our own implementation using a simpler binary heap.

Dijkstra’s method exposes no parallelism between ver-
tices; the only parallelism available is between edges leaving
the vertex at the top of the queue. It yields an efficient serial
implementation, but is poorly suited for parallel architectures
like GPUs that require large numbers of parallel threads for
efficient execution.

PHAST: The work we present in this paper begins with
a graph with no preprocessing, but recent work on parallel
hardware-accelerated shortest path trees (PHAST) [8] uses
preprocessing techniques using contraction hierarchies [9]
to expose more parallelism in SSSP calculation. PHAST’s
preprocessing step precomputes distances to highly ranked
high-degree vertices using a Dijkstra-like traversal. At run-
time, PHAST can then perform multiple searches in parallel
from these highly ranked vertices. In practice, contraction
hierarchies (and therefore PHAST) work well on low-degree,
high-diameter graphs such as road networks. However, for
highly connected graphs (such as power-law graphs), the
contraction hierarchy preprocessing step is expensive, as
the number of shortcuts explodes as the dimensionality
increases, while lower-degree graphs add extra parallelism
without the large amounts of extra work.

B. Bellman-Ford
Rather than operate on only the vertex with the lowest

weight, Bellman-Ford operates on all vertices independently.
Each vertex maintains its distance to the source. On each

Bellman-Ford iteration, a vertex checks each adjacent vertex,
updating its own distance to the source if it finds any
shorter path. This operation is repeated until the distances
converge. In the worst case, this operation repeats v − 1
times, performing O(ev) work, but for low-diameter graphs,
implementations typically converge with fewer iterations.

Given how easy it is to parallelize, Bellman-Ford is a
popular SSSP method for any parallel architecture, with
the LonestarGPU graph library [4], [10] representing the
current state of the art on GPUs. Their implementation
parallelizes over vertices, with one thread per vertex that
updates distance labels for all adjacent vertices. In order to
avoid race conditions, an atomic min is used for each of
these updates.

C. Delta-Stepping
The Delta (∆)-stepping method for SSSP, proposed by

Meyer and Sanders [11], extracts parallelism by relaxing
the one-vertex-at-a-time constraint imposed by a traditional
serial Dijkstra’s algorithm. Rather than considering one
vertex at a time from a priority queue like Dijkstra’s method,
delta-stepping groups vertices into buckets and processes all
vertices within a bucket simultaneously and in parallel.

In delta-stepping, all vertices are grouped into buckets
depending on the distance of the vertex from the source.
Vertices that lie in a specific distance range share the
same bucket. Delta-stepping then processes vertices from the
smallest bucket in parallel. Edges emanating out of a vertex
are grouped into two categories: light edges and heavy edges.
For light edges, the updated distance of the destination vertex
lies within the same bucket as the source vertex. Destination
vertices attached to heavy edges lie outside this range and
inside another bucket.

Delta-stepping first considers light edges in a bucket and
processes them until the entire bucket is emptied. Then it
turns to the heavy edges. Heavy edges that result in a smaller
delta for a particular vertex require moving that vertex to a
closer bucket (similar to relabeling in Dijkstra’s method).

Efficient delta-stepping methods have been successfully
implemented on coarse multi-threaded machines and vector
PRAM machines. We are aware of one previous GPU

Algorithm Wk. Complexity Type Parallelism

Dijkstra O(v log v + e) General Serial
Bellman-Ford O(ve) High-Degree Parallel

Delta Step O(v log v + e) General Coarse Parallel
PHAST O(v log v + e) Low-Degree Preprocessing

Parallel

Table I
SUMMARY OF PRIOR WORK IN SSSP ALGORITHMS.

implementation of delta-stepping by Baggio [12]. Baggio
tests his implementation on a fixed 2D grid (1024x1024
size) with possible edges emanating to neighbors on the
grid. Utilizing an NVIDIA 8600 GT, their implementation
remains inefficient; they achieve rates 8–17x times slower
than Dijkstra’s method.

There are three main characteristics that make delta-
stepping difficult to implement efficiently on a GPU-like ma-
chine. First, delta-stepping’s bucket implementation requires
dynamic arrays that can be quickly resized in parallel. Dy-
namic arrays are poorly suited to the current programming
model of GPUs, and implementing a custom memory man-
agement system for dynamic arrays (utilizing heaps) would
be difficult and inefficient. Second, fine-grained renaming
and moving vertices between buckets is difficult to paral-
lelize, likely requiring atomics and thus losing concurrency.
Finally, efficient GPU implementations require exploiting
the GPU’s three-layer memory hierarchy (global DRAM,
per-block shared memory, and per-thread registers), but such
a memory hierarchy is absent from the traditional delta-
stepping formulation.

III. GPU PRELIMINARIES

We briefly introduce the salient characteristics of GPUs
and efficient GPU programs. GPUs operate on a large
number of parallel threads organized into a computation
hierarchy. These threads are programmed with a single-
instruction, multiple-threads (SIMT) programming model
in which threads are grouped into small, divergent-free
groups called warps (on our GPU, warps have 32 threads).
These warps are then grouped into blocks whose threads
can communicate through a pool of on-chip shared mem-
ory. The GPU also features a memory hierarchy, with
per-thread registers, per-block shared memory, and global
DRAM accessible to all threads; memory accesses in global
memory are an order of magnitude faster when neighboring
threads read or write neighboring data (“coalescing”) when
compared to random accesses.

Therefore, in order to get high performance on GPU
graph algorithms, we prioritize methods that (a) contain
enough parallelism to fill the machine, (b) effectively use
the memory hierarchy, (c) avoid thread divergence within a
warp, and (d) limit scattered reads and writes. Designing
an SSSP method that fulfills all of these qualities is a
significant challenge. Bellman-Ford on large graphs, for

example, only fulfills the first. We also prioritize the use of
high-performance parallel algorithmic GPU primitives (e.g.,
scan, reduce, vector search) when applicable.

IV. SSSP ALGORITHMS

Most graph algorithms, including SSSP, require three
components to solve their graph problem. These three com-
ponents are:

1) A data structure to store vertices
2) A graph traversal method that visits selected vertices
3) A methodology for organizing which vertices to pro-

cess next.
As an example, let us consider Dijkstra’s method. Here,

the data structure is a managed priority queue. All elements
within the priority queue will be considered at some point.
Since this method is serial, the graph traversal method is
straightforward: the serial thread considers each adjacent
vertex in order. The key to Dijkstra’s efficiency is the
methodology for organizing vertices within the priority
queue. It ensures that the next vertex to be processed at
each step is the vertex with the lowest labeled distance.

The three components for a parallel Bellman-Ford imple-
mentation are also straightforward. The data structure is a set
that contains all vertices; the graph traversal method maps
each thread to a single adjacency list; and on each iteration,
every vertex is processed until the graph converges.

The methods we develop also contain three components.
First, we maintain a work queue that divides all vertices
into one or more buckets, where the vertices within a bucket
can be processed in parallel within an iteration. Second, we
demonstrate a load-balanced method to efficiently traverse
the vertices within a bucket. The key difference between our
three methods is in the third component: how we organize
the vertices to be processed next.

A. Graph Data Structures

We select the Compressed Sparse Row (CSR) graph for-
mat to store our graphs. For a more in-depth look at possible
graph formats on the GPU, Bell and Garland [13] discuss
possible implementations, advantages, and disadvantages of
several formats for sparse matrices, which also apply in our
case to graphs. First, CSR is space-efficient, requiring one
entry for every vertex and one entry for every edge. Second,
CSR works well for general rather than specialized matrices,
and is commonly used by other libraries allowing for data
reuse. Finally, it is easy to strip out adjacency lists and find
offsets using scan, a common parallel primitive, on the row
offsets array. Figure 1(b) shows the CSR representation for
an example graph.

B. Graph Traversal

Our graph traversal methods input a subset of vertices and
visit all edges in their per-vertex adjacency lists. Because
these adjacency lists can vary greatly in size, traversing

these lists in parallel and in a load-balanced way is essential
when developing a work-efficient graph algorithm. A natural
way to parallelize this traversal is to assign one independent
thread per list (as in straightforward GPU implementations
of Bellman-Ford). However, since each edge list has a
variable length, such a method would be inherently load-
imbalanced. More complex strategies that evenly split work
within adjacency lists across threads will achieve better load
balance at the cost of extra work to split these work items
between threads.

Rather than independently processing per-thread adja-
cency lists, we can address load imbalance by cooperating
between threads. The following graph traversal methods use
this implementation strategy to efficiently traverse multiple
lists in parallel. Merrill et al. [14] discuss this problem in
the context of a parallel breadth-first search (BFS) algorithm.
They propose a three-pronged approach to traverse a set of
adjacency lists that we discuss in further detail below.

Though both our SSSP methods and Merrill’s BFS require
efficient graph traversal, they differ in several important
ways. In BFS, any race condition between edges visiting a
vertex is benign. However, SSSP maintains distances rather
than depths, so atomics are needed to resolve race condi-
tions. Secondly, in BFS, nodes are never visited in a later
iteration. In SSSP, if a new distance is updated, this vertex
will be reinserted into the work queue. Finally, BFS only
requires flags for visited and unvisited vertices, while SSSP
requires keeping track of edge weights, distances from a
source node, and the distance of the destination node. Due to
these difference we feel it important to explore a number of
graph traversal strategies, and measure there performance for
processing an SSSP work queue. These traversal methods in-
clude Group Blocking, Merrill’s CTA+Warp+Scan method,
and a Edge Partitioned method. All of these methods input
the same data structure, a workfront of vertices, and output
a set of updated adjacent vertices.

Cooperative Blocks: Our first traversal strategy assigns
a block of threads (a cooperative thread array (CTA)) to
process a set of n vertices in parallel. Each thread loads the
edge list offset for an assigned vertex into shared memory.
This offset list is similar in structure to the row offsets found
in Figure 1(b), but organized to fit in shared memory.

Threads cooperatively strip edges off the created edge list
and process each edge independently. In order to determine
the originating vertex, a binary search is initially performed
in the n offset list in shared memory; the destination vertex
can then be determined by subtracting the value from the
edge offset list. When a thread moves to a new work item,
it checks to see if a new vertex lookup is needed. For
large adjacency lists these searches are rarely needed, while
smaller lists require more frequent updates.

Since threads cooperate to solve a set of vertices, work
within a block is load-balanced. However, different blocks
of vertices may have more work than others, leading to a

possible interblock load imbalance. For many graphs, this is
usually not an issue since taking a CTA sized subset of the
graph will often be a representative average of all vertices.
For graphs of sufficient size (many blocks), the GPU’s ability
to quickly context-switch between blocks also contributes to
good overall load balance.

CTA+Warp+Scan: Since per-vertex adjacency lists can
be arbitrarily small or large, specializing strategies for cer-
tain types of adjacency lists can both reduce the amount of
overhead within each kernel and better utilize the GPU. The
CTA+Warp+Scan method separates adjacency lists into three
categories based on size: (a) larger than a CTA (the number
of threads per block); (b) larger than a warp (32 threads) but
smaller than a CTA; and (c) smaller than a warp.

First, we assign a group of vertices to a block. Within
that block, each thread owns one vertex, and determines
which type of adjacency list it contains. Threads assigned an
edge list larger than a CTA get first priority and arbitrate for
control of the entire block (each thread writes to a shared
memory location, and the winner is the last to write). Now
all threads within the CTA cooperate with this winner to
process that vertex. We then rearbitrate between threads
for control until all CTA-category vertices are processed.
Now all unprocessed vertices have size less than a CTA.
Next, threads that own vertices with adjacency lists larger
than a warp perform a similar operation. Each active thread
now arbitrates within its warp for control, and the winner
processes its edge list with help from all other threads in
the same warp. Finally, in the Scan portion of this traversal
method, threads owning lists smaller than a warp iteratively
update their vertex ID and edge offset into a shared memory
pool. Threads stall waiting for the largest list to be loaded
in a set. Then each thread grabs an edge (work item) to
be processed. The process is continued until all smaller
adjacency lists are processed.

The benefit of this approach is specialization for each type
of adjacency list, and correspondingly higher throughput.
However, since we are separating each work-group into three
separate stages within our kernel, we lose parallelism within
each type. Also, since each thread in the Scan portion of the
algorithm must communicate its whole adjacency list to the
rest of the CTA, other threads stall while waiting for all of
these items to be loaded.

Load-Balanced Partitioning: Instead of grouping an
equal number of vertices to be traversed by a block, our load-
balanced partitioning traversal attempts to organize groups
of edges of equal lengths. To perform this division, since
adjacency lists have arbitrary size, we must find the inter-
section of each block’s edge-list start and end points within
the work queue. We can do this easily with an efficient
sorted search [15], which maps edge start and end points
with our scanned edge offset queue. Like group blocking,
when we strip edges to be processed, if we encounter a
change in a vertex, we must do an update. Using this method,

asia
-ro

ad

cal-ro
ad

delaunay

msdoor
cir

cu
it

yahoo.so
cia

l
rm

at
flic

kr
0.6

0.8

1.0

1.2

1.4

1.6

N
o
rm

a
liz

e
d
 T

im
e

Cooperative Blocks

CTA+WARP+SCAN

Load-Partitioning

Figure 3. Performance of our graph traversal strategies on a variety of
graph types (summarized in Table II).

we ensure perfect load-balance between blocks. Since each
thread within the block is always finding and consuming
work, we are also load-balanced within a block.

Figure 3 shows the relative performance of all traver-
sal methods on a variety of graph types. For very low-
degree graphs, all of these traversal methods have similar
performance. However, CTA+Warp+Scan performs poorly
on medium-degree graphs, and Partitioning performs very
well on high-degree dense graphs. Due to its ability to handle
pathological cases, and its overall edge in performance on
our tested datasets, we utilize the Partitioning method for
our graph traversals.

C. Work Organization

Finally, we turn to the problem of selecting the vertices
to process. Here we trade off parallelism and work: the
more effort we put into managing an ordering of vertices
to process, the more work we save. However, this comes at
the cost of overhead to manage this ordering, extra iterations
(step-efficiency) to solve the entire problem, and a reduction
in parallelism.

We develop three different variants to organize and select
what work to process: Workfront Sweep, Near Set and Far
Pile (Near-Far), and Bucketing. For all of these implemen-
tations, the initial setup is the same. We initialize the source
distance to zero, and all other distances to infinite.

Workfront Sweep: The simplest strategy to improve on
Bellman-Ford is to prune the list of active vertices on each
iteration to avoid reprocessing a vertex whose computation
has not changed from the previous iteration. We begin with
a vertex queue containing only the source. On each iteration,
we visit all associated edges in parallel for each vertex in
the queue and update the distances of the vertices attached
to those edges. Since these edges are being processed in
parallel in a non-deterministic order, we must either save
updated distances and process them later or instead use
atomics (an atomic min) to ensure proper behavior. On any
iteration, if a vertex is marked as updated, it is inserted into
the vertex queue for processing in the next iteration. We
continue to process this queue until it becomes empty.

Since we do not know the order in which distances will
be compared using atomics, it is possible (and for highly
connected graphs very likely) to add duplicate vertices
into the queue. In terms of correctness, these reinsertions
are benign, but will affect performance due to redundant
computation. After each workfront expansion iteration, we
can remove duplicates in parallel with one simple pass. Each
vertex attempts to write its workfront index to a lookup table
indexed by vertex id. Then each workfront item reads back
from the same lookup table. If the item read is equal to the
workfront index, then it is declared the owner of that vertex,
and remains valid. Otherwise that index is marked invalid
and is compacted away before beginning the next iteration.

This queue management system is similar to Shun and
Blelloch’s Ligra [16], designed for multi-core CPUs. Though
they do the same amount of work, the parallel distribution of
these two methods differs greatly. Ligra utilizes a different
graph representation and traversal strategy better suited for
non-bulk-synchronous programming. For each valid vertex it
finds, it automatically splits work within the adjacency list
(utilizing a parallel for), rather than our bulk-synchronous
management of vertices, splitting of adjacency lists, and
traversal of edges.

In Workfront Sweep, the amount of extra work to organize
the queue at each iteration is minimal, but leads to substan-
tial savings in edges touched. Our next two methods add
additional organizational overhead to prioritize which ver-
tices to process first, further increasing the work efficiency.

Near-Far Pile: Workfront sweep treats all vertices within
the work queue with equal priority. Rather than processing
all vertices in the work queue, we can instead select a subset
of vertices to process based on some scoring heuristic. A
simple and effective heuristic is to select a splitting distance
and then process only those vertices less than that distance.
After all elements below this distance are processed, we
update this split point by adding some incremental weight.
We will define this incremental weight as delta (∆). At any
iteration, the vertices being processed will always fall into
a range between i∆ and (i+ 1)∆; since we do not consider
negative weights in our graphs, no visited vertex will be
updated with a distance less than i∆.

Our Near-Far Pile method splits the work queue of
vertices into two sets: one set (the Near Set) with distances
less than i∆, to be processed next, and the second with
distances outside that range (the Far Pile), deferred for later
processing.

We first process work in the near set. We traverse all
edges from the vertices in the near set and split the resulting
vertices that have been updated into two piles. We append
elements outside of our range to the end of the far pile, and
begin the next iteration only processing the near pile. Once
we run out of elements to process in the near set, we check
the far pile for valid elements, compact all duplicates, and
run another split with an updated range ((i + 1)∆). In all

V0
d=19

50
9

V5

5

V3

V1 V2

V4
32

24

(a) SAMPLE GRAPH

V0

V1 V2 V3 V4 V5

Input Vertex Buffer Output Vertex Buffer Far Pile

Sweep Near-Far Delta (15)

V0
15 30

V1 V3 … V2 V4

V0
20

V1 V3 V2 V4 V5

Bucketing Delta(10)

15 30

10

20 30 40 50 60 70

(b) BUCKETING STRATEGY OVERVIEW

Figure 2. Priority queue strategies for each of our three variants.

cases, our split primitives can be performed quite cheaply
with a simple scan and modified compaction routine.

The key to this method’s efficiency is that in many cases,
unprocessed work in the Far Pile can be discarded as closer
vertices are processed, therefore minimizing the number of
times we must touch data in the Far Pile. When we perform
our split we merely append data to the end of the pile,
requiring no extra data movement. Thus the Far Pile data
is only touched when we run out of work queue items.
There are two costs to adding this functionality. First we
are reducing the amount of available parallelism within the
work queue. Second, we add the overhead of a split on every
iteration.

Selecting a reasonable delta that separates our near pile
from our far pile is important in the tradeoff between
parallelism vs. work-saved. If we select a delta range that is
too small, we serialize the algorithm into something much
closer to Dijkstra’s algorithm. Selecting too large of a delta
transforms this method into our workfront sweep method,
but with extra overhead and the additional work of updating
bucket information for each element in our near pile. Meyer
and Sanders [11] show that a value of ∆ = Θ(1/d), where d
is the degree, gives a good tradeoff between work-efficiency
and parallelism. We select a similar heuristic, ∆ = cw/d,
where d is the average degree in the graph, w is the average
edge weight, and c is the warp width (32 on our GPUs).

When we run out of items in our near set, we must first
update a new split value then retrieve items from the far pile
that are below this split point. We first check to see if any
vertex in the far pile has already been updated and processed
in the near pile (by checking its distance). We mark those
vertices as invalid and compact away invalid and duplicate
vertices as we split the far pile into a new near set and far
pile. Figure 4 shows how the size of the data structures in
Workfront Sweep and Near-Far change as we iterate over
the graph.

Bucketing with Far Pile: The original CPU-based delta-
stepping work did not use two but instead many finer-grained
buckets, considering the smallest bucket on each iteration.
Their implementation does not map efficiently onto a GPU:
rather than using delta-stepping’s dynamic bucketing scheme
to push and pop vertices on and off buckets, we instead
design an implementation better suited for bulk-synchronous
programming.

In our implementation, we partition active elements into A
buckets. At each iteration, reorganizing active elements into
buckets is expensive, so we use relatively few buckets; A =
10 delivers the best performance in our implementation. We
also use a far pile for vertices that fall beyond the last bucket
in a similar way to the far pile in the previous method. Using
more buckets limits the number of times we must process the
far pile. Given that the number of elements in intermediate
buckets is generally much fewer than the number of elements
in the far pile, reducing the number of visits to the far pile
should be advantageous.

The ideal primitive to reorganize elements into buckets
is a multisplit that splits on distance. Such a primitive has
not been efficiently implemented on GPUs to date, so we
instead use Thrust’s radix sort [17] to sort into buckets by
distance. We then process the smallest bucket. The resulting
output set is split again into two sets: those inside our bucket
range, and those outside. We sort the bucketable output set
(vertices within our bucketable range) and perform a merge
back into our bucket array. We append the other output set
to the far pile. Once all buckets are processed, we compact
the far pile, split the set into A new buckets and the far pile,
and repeat the process.

This method most closely resembles delta stepping, and
the amount of work (measured in edges touched) is less
with this bucketing strategy than our other two methods.
However, the reduction in work comes with much higher
overhead per iteration.

V. TIMING RESULTS

We test our implementations against eight graphs grouped
into three types: (1) road networks, (2) meshes, and (3)
scale-free graphs. Road networks tend to have high diameter
and low degree, while scale-free graphs show the opposite
behavior with relatively high degree and low diameter.
Meshes lie somewhere in the middle of these extremes.

We have collected these datasets from a variety of online
repositories [3], [18], [19] and summarize them in Table II.
We compare our implementations against two serial Dijkstra
implementations, one from the highly composable and easily
usable Boost graph library utilizing relaxed heaps [7] and
a second implementation that we developed using binary
heaps. We also compare against Lonestar’s Bellman-Ford
implementation, and for some larger graphs where Lones-
tar’s Bellman-Ford returns errors or crashes, against our own

0 5 10 15 20 25 30
Iteration

0

200000

400000

600000

800000

1000000

1200000

V
e
rt

ic
e
s

Vertex Front
Nodes Labeled
Final Nodesx10

0.0

0.5

1.0

1.5

2.0

2.5

T
o
u
ch

e
d

1e7

Edges Touched

rmat Workfront Sweep: Utilizing the Work-
front Sweep algorithm on a scale-free graph
results in a early large spike in vertices consid-
ered. Due to the high connectivity, all shortest
paths are found in a relatively short number
of iterations. However, the number of vertices
that must be considered during the peak are
quite high (up to 800K), and the total number
of edges touched is close to 1.2M.

0 10 20 30 40 50
Iteration

0

200000

400000

600000

800000

1000000

1200000

V
e
rt

ic
e
s

Near Set
Far Pile
Nodes Labeled
Final Nodesx10

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
o
u
ch

e
d

1e7

Edges Touched
rmat Near-Far: Using Near-Far instead leads
to more iterations, but most candidate vertices
are placed into the Far Pile early on. When
work in the near set runs out, elements are
loaded from the Far Pile and placed into the
Near set. The amount of work saved (measured
in edges touched) over Workfront Sweep is
nearly 2x. Though it requires more iterations to
solve, utilizing this method results in a modest
1.3x performance boost over Workfront Sweep.

0 50 100 150 200 250
Iteration

0

10000

20000

30000

40000

50000

60000

70000

80000

V
e
rt

ic
e
s

Vertex Front
Nodes Labeled
Final Nodesx10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
o
u
ch

e
d

1e8

Edges Touched

msdoor Workfront Sweep: This dataset of a
3D model has less dense connectivity than the
scale-free graph. In this case it takes more iter-
ations (larger diameter) to compute the shortest
paths problem. The amount of extra work being
done by this method is quite high (around
300M edges touched for 4.15M vertices).

0 50 100 150 200 250 300
Iteration

0

20000

40000

60000

80000

100000

120000

V
e
rt

ic
e
s

Near Set
Far Pile
Nodes Labeled
Final Nodesx10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

T
o
u
ch

e
d

1e7

Edges Touched msdoor Near-Far: Switching to the Near-Far
method greatly reduces the amount of work
done. Instead of touching around 300M edges
(as in Workfront Sweep), the analysis shows
we only touch around 45M edges. On average
we consider fewer than 20K vertices at every
iteration, at the cost of more iterations. Though
the Far Pile tends to get large, most of these
candidates will be thrown out when everything
in the Near set is considered. Near-Far solves
the SSSP problem 1.74x faster than Workfront
Sweep due to the amount of work saved.

Figure 4. As we traverse the graph, the sizes of the workfront (Workfront Sweep) and near set and far pile (Near-Far) grow and shrink. On both a mesh
(msdoor) and a scale-free graph (rmat), the size of the near set is much smaller than the workfront. Also, every time we compact the far pile, we discard
a large percentage of its vertices due to duplication or invalidation.

Bellman-Ford implementation. For our parallel implementa-
tions, we run our benchmarks on an NVIDIA GTX 680; for
our serial implementations (Dijkstra), a 2-core 3.2 GHz Intel
i5-650 CPU. Finally we also compare our Workfront Sweep
method versus Ligra’s Bellman-Ford reported results on a
10-CPU 40-core 2.4 GHz Intel E7-8870 Xeon workstation.

We show the timing results for each method on each
dataset in Figure 5(a). These times are normalized to our
binary-heap serial Dijkstra implementation, which in all
cases was faster than Boost’s. In Figure 5(b), we show the
throughput performance in edges touched per second for
each of these methods.

All of our work-saving methods yield speedups versus
the traditional Bellman-Ford method, and versus Dijkstra on
non-road-network graphs. On {road-network, meshes, scale-
free graphs}, our Workfront sweep and Near-Far methods
outperform Bellman-Ford in runtime by factors of {1.3–14,
3.9–19.85, 34.7–343}, and Dijkstra by {0.24–0.6, 2–29.4,
22–64}. Shun and Blelloch solve SSSP on a 17M-vertex,
90M-edge rmat graph with 40 CPU cores, achieving a
throughput of 130 MTEPS [16]; their SSSP implementation,
unlike ours, handles negative weights. Similarly Nguyen et
al. report slight speedups on a similar rmat graph achieving
a maximum throughput of 141 MTEPS [21] using their
library for graph algorithms. We solve an rmat matrix of
similar size and parameters utilizing Near-Far on a single
GPU with a throughput of 350 MTEPS (2.4–2.7x increase
in performance). This increase in performance illustrates the
potential benefits of a bulk-synchronous implementation of
SSSP and the benefits of Near-Far as a GPU-friendly work-
saving strategy.

Our speedup is primarily due to our effective work-saving
strategies and intelligent graph traversal. Though we would
expect Bellman-Ford to behave reasonably well on low-
diameter graphs, Bellman-Ford is in practice much slower
on these graphs. This is mostly due to heavy load imbalance
in the size of the adjacency lists. For example, flickr has an
average edge degree of 11, but one vertex in this dataset
is connected to over 3 million other vertices. In this case,
having one thread assigned to traverse that list is wildly
inefficient.

For high-diameter road networks, without preprocessing,
our implementations are unable to outperform an efficient
serial implementation. This is expected behavior; the lack
of parallelism in processing these networks means that
a good serial implementation should outperform a good
parallel one. Also, because computing SSSP on these graphs
requires many steps, our implementation suffers from the
high aggregate cost of per-iteration overhead.

While our Bucketing method is faster than Dijkstra and
Bellman-Ford on higher-degree graphs, it is slower than our
other two strategies. Since bucketing requires a sort on the
incoming vertices, and a merge into the workfront, it requires
by far the most overhead at every iteration. We note an

Work Saved Iterations
Method Name vs. B-F Parallelism vs. B-F

Workfront 9.6x 87,998 1.05x
Near-Far Pile 260x 17,138 1.66x
Bucketing 353x 8,135 2.27x

Table III
SUMMARY IN REDUCTION OF WORK, AVERAGE PARALLELISM AND

INCREASE IN ITERATION (MULTIPLIER) FOR EACH OF OUR METHODS
VERSUS TRADITIONAL BELLMAN-FORD.

interesting dilemma when we change delta. If we decrease
delta, we save work overall, but at the cost of more iterations
in which we must perform an expensive reorganization of
the buckets. If we instead increase delta to reduce iteration
count, the increase in work rises to an amount similar to
workfront expansion, removing any benefit bucketing would
offer. Therefore, bucketing is the least appealing of the
methods we propose in the absence of faster primitives than
sort and merge with their high overhead.

VI. ANALYSIS

The effectiveness of our work-saving methods and the
amount of parallelism we are able to extract affect the step
efficiency of our methods (Figure 6(b)). Bellman-Ford will
of course have the best step efficiency, because all nodes
are processed at every iteration, allowing for the fastest
propagation from the source to other nodes. Dijkstra has the
worst step efficiency since it can only process one vertex
at any given iteration. We aim to build methods that have
enough parallelism to fully occupy the GPU, work efficiency
much closer to Dijkstra’s method than Bellman-Ford, and
finally step efficiency much closer to Bellman-Ford.

Figure 6(a) measures the parallelism-to-work-efficiency
tradeoff for each method on each dataset. For high-diameter
graphs, Bellman-Ford does anywhere from 100–1000x more
work than Dijkstra’s method. Even for lower-diameter scale-
free graphs, Bellman-Ford does over an order of magni-
tude of additional work. Our simplest work-saving method
(Workfront Sweep) is able to reduce this amount of unnec-
essary work by around 10x, at the cost of some parallelism
and the overhead of managing a vertex queue. However, the
amount of parallelism is still more than sufficient for large
graphs to fill modern GPUs.

Our Near-Far method further reduces the amount of work
done (anywhere from 2–10x over Workfront Sweep), still
has enough parallelism (for all but our road-network graphs),
and doesn’t increase the iteration count by a substantial
amount. Table III summarizes these tradeoffs. Figure 7
illustrates the work vs. parallelism tradeoff when modifying
delta. Too small of a delta leads to a lack of parallelism,
while too large of a delta leads to more unnecessary work.
Our heuristically selected delta is shown by the vertical line.

Road-network datasets tend to have a low parallelism-
to-work-efficiency tradeoff. Though Near-Far is nearly as

Graph Name Description Vertices Edges Avg. Degree Diameter Graph Type Weight Type BFS
Front

road-asia [19] Road network in
Asia

11M 25M 2.27 38576 Road Network Distances

road-cal [19] California road net-
work

1.9M 4.6M 2.47 2575 Road Network Distances

delaunay [3] Three-dimensional
mesh

1M 6.3M 6 380 Regular Mesh Uniform Random

msdoor [18] Three-dimensional
mesh

4.15M 20.65M 4.98 167 Regular Mesh Uniform Random

circuit [18] Circuit simulation
problem

3.5M 19M 5.43 135 Freescale DC Analysis

yahoo-social* [20] Links between users
and friends

1.2M 4M 3.14 16 Social Graph Uniform Random

rmat [3] Synthetically created
graph

3M 20M 6.66 15 Power Law Uniform Random

flickr* [18] Social graph 820K 9.8M 11.95 12 Power Law Uniform Random

* Indicates this dataset either crashed or failed to produce the correct answer on the Lonestar GPU Bellman-Ford implementation. Therefore we utilized
our own Bellman-Ford implementation to compare against these datasets.

Table II
DATASETS FOR BENCHMARKING, INCLUDING BOTH REAL AND SYNTHETIC DATASETS, SORTED BY DECREASING DIAMETER.

asia
-ro

ad

cal-ro
ad

delaunay

msdoor
cir

cu
it

yahoo.so
cia

l
rm

at
flic

kr
0.01

0.10

1.00

10.00

100.00

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

LonestarBF

Workfront Sweep

Near+Far Pile

Bucketing

Serial Dijkstra

Boost Dijkstra

(a) NORMALIZED RUNTIME PERFORMANCE

asia
-ro

ad

cal-ro
ad

delaunay

msdoor
cir

cu
it

yahoo.so
cia

l
rm

at
flic

kr
0.1

1.0

10.0

100.0

M
T
E
P
S

LonestarBF

Workfront Sweep

Near+Far Pile

Bucketing

Serial Dijkstra

Boost Dijkstra

(b) EDGE THROUGHPUT PERFORMANCE

Figure 5. We benchmark our three SSSP variants against Dijkstra’s method (our implementation and in Boost) and Bellman-Ford. We show both normalized
throughput to serial Dijkstra (left, higher is faster) and raw throughput measured in millions of edges touched per second (MTEPS). For a fair comparison,
the number of edges per problem is defined as the number of edges required by a Dijkstra traversal.

(a) WORK DONE VS. PARALLELISM (b) ITERATIONS VS. WORKFRONT

Figure 6. Four dimensions affect performance for our methods: (1) work efficiency; (2) parallelism; (3) iteration count; and (4) overhead per iteration.
We show the tradeoffs that our methods take within this domain on each of our datasets. The left graph shows the tradeoff between degree of parallelism
(x-axis) and work normalized to the serial Dijkstra’s algorithm (y-axis). Each oval indicates the range of these tradeoffs over all datasets for one method.
In general, the best parallel algorithms are at the bottom right, exhibiting a high degree of parallelism with little additional work over the serial case, and
the methods we describe in this paper, particularly Near-Far, exploit ample parallelism with little additional work over the serial case. The right graph
shows the tradeoff between degree of parallelism (x-axis) and iteration count (y-axis).

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

0.05
0.00
0.05
0.10
0.15
0.20

T
im

e
(s

)

rmat

NearFar(s)

Workfront Exp(s)

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
Delta

107

108

E
d
g
e
s

T
o
u
ch

e
d

Edges Touched (E)

Serial (E)

0
20000
40000
60000
80000
100000
120000
140000
160000

A
v
g
.

W
o
rk

fr
o
n
t

Average Parallel Workload

(a) RMAT MEASUREMENTS

0 10000 20000 30000 40000 50000 60000 70000 80000
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

T
im

e
(s

)

delaunay

NearFar(s)

Workfront Exp(s)

0 10000 20000 30000 40000 50000 60000 70000 80000
Delta

106

107

108

109

E
d
g
e
s

T
o
u
ch

e
d

Edges Touched (E)

Serial (E)

0
10000
20000
30000
40000
50000
60000

A
v
g
.
W

o
rk

fr
o
n
t

Average Parallel Workload

(b) DELAUNAY MESH MEASUREMENTS

0 5000 10000 15000 20000 25000 30000

0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6

T
im

e
(s

)

msdoor

NearFar(s)

Workfront Exp(s)

0 5000 10000 15000 20000 25000 30000
Delta

107

108

109

E
d
g
e
s

T
o
u
ch

e
d

Edges Touched (E)

Serial (E)

0
2000
4000
6000
8000
10000
12000
14000
16000

A
v
g
.
W

o
rk

fr
o
n
t

Average Parallel Workload

(c) MSDOOR MEASUREMENTS

0 50000 100000 150000 200000 250000 300000 350000

0

5

10

15

T
im

e
(s

)

road-cal

NearFar(s)

Workfront Exp(s)

0 50000 100000 150000 200000 250000 300000 350000
Delta

106

107

108

E
d
g
e
s

T
o
u
ch

e
d

Edges Touched (E)

Serial (E)

0
200
400
600
800
1000
1200
1400
1600

A
v
g
.

W
o
rk

fr
o
n
t

Average Parallel Workload

(d) USA-CAL ROAD MEASUREMENTS

Figure 7. We show more detailed analysis on a subset of our datasets as we change delta. Choosing a small delta leads to a lower amount of work,
but serializes the algorithm. Choosing a large delta transforms this method into Workfront sweep, but with unnecessary overhead. Finding the sweet spot
between these two extremes leads to a method with both adequate parallelism and significantly lower work than Workfront sweep. The vertical line in the
graphs indicates the delta selected by our simple heuristic.

work-efficient as a serial implementation, the amount of
parallelism at every iteration is extremely low (100–200
vertices). This amount of parallelism is too low to saturate
the GPU, and therefore is unable to outperform an efficient
serial implementation. However, for any graph in which the
vertex front will grow to a substantial size, Near-Far does a
good job of reducing unnecessary work while maintaining
enough parallelism to saturate the machine.

Though our bucketing method saves work when compared
to the Near-Far method, this amount is not significantly
higher than the improvements from Workfront Sweep to
Near-Far. Together with the higher iteration count, lower
parallelism, and higher overhead per iteration, we see lower
performance from this method compared to our other im-
plementations.

VII. CONCLUSION AND DISCUSSION

In this paper we have demonstrated the effectiveness
of work-saving SSSP methods on GPUs for a variety of
datasets. The fine-grained primitives we have used to reorga-
nize data have proved effective enough to achieve impressive
speedups. Furthermore, our methods find a good balance
between parallelism, step-efficiency and work-efficiency.

First, we would like to discuss some of the lessons leaned
from our lowest-performing method, bucketing. Bucketing

is inspired by the successful delta-stepping method for
coarse-grained parallel CPUs [11], but when reorganizing
data each iteration on the more fine-grained GPUs, we
see that the overhead of this reorganization is significant:
on average, with our bucketing implementation, the reor-
ganizational overhead takes 82% of the runtime. Thus it
is critical to choose reorganization methods that leverage
high-performance, fine-grained, bulk-synchronous primitives
rather than high-overhead dynamic buckets. The missing
primitive on GPUs is a high-performance multisplit that
separates primitives based on key value (bucket id); in our
implementation, we instead use a sort; in the absence of a
more efficient multisplit, we recommend utilizing our Near-
Far work-saving strategy for most graphs.

One fruitful future direction of work is a dynamic method
that switches between Workfront Sweep and Near-Far. Since
at the beginning of problems there is often a lack of par-
allelism, we would begin with a Workfront Sweep method
until the vertex queue becomes large enough to saturate the
GPU. Now that there is sufficient parallelism, we would
switch to our Near-Far Pile technique where work efficiency
is more important. Finally, after most of the graph has been
explored, and we return to a lack of sufficient parallelism,
we would switch back again to Workfront Sweep to finish
off the problem. This hybrid method would share some

similarities with BFS traversal work by Hou et al. [22]. In
their work, they begin with a BFS approach, while there
is limited parallelism. As the frontier expands and their
is adequate parallelism, they switch to a DFS for better
efficiency.

Another possible improvement targets road network
graphs in particular. The largest performance bottleneck for
these low-degree graphs was a lack of available parallelism.
Though our methods require no pre-processing, we could
combine our work-saving method with a PHAST-like pre-
processing step to identify more vertices from which to start
our SSSP sweeps. These vertices would then be loaded into
our vertex front with accurate distance labels, boosting the
amount of available parallelism in our algorithm.

ACKNOWLEDGMENTS

Thanks to Julian Shun for thoughtful comments on the
paper. We would like to acknowledge Yangzihao Wang
for feedback in algorithmic development, and early drafts
of this paper. We appreciate the funding support of the
Department of Defense’s XDATA program, the National
Science Foundation (grant # CCF-1017399), Sandia LDRD
award # 13-0144, and UC Lab Fees Research Program
Award # 12-LR-238449.

REFERENCES

[1] A. V. Goldberg, H. Kaplan, and R. F. Werneck, “Reach for
A*: Efficient point-to-point shortest path algorithms.” in Pro-
ceedings of the Eighth Workshop on Algorithm Engineering
and Experiments (ALENEX), Jan. 2006, pp. 129–143.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, Second Edition. The MIT Press,
Sep. 2001.

[3] “The Graph 500 list,” http://www.graph500.org/, Jul. 2013.
[4] M. Burtscher, R. Nasre, and K. Pingali, “A quantitative study

of irregular programs on GPUs,” in 2012 IEEE International
Symposium on Workload Characterization (IISWC), Nov.
2012, pp. 141–151.

[5] E. W. Dijkstra, “A note on two problems in connexion with
graphs,” Numerische Mathematik, vol. 1, no. 1, pp. 269–271,
1959.

[6] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their
uses in improved network optimization algorithms,” Journal
of the ACM, vol. 34, no. 3, pp. 596–615, Jul. 1987.

[7] J. G. Siek, L.-Q. Lee, and A. Lumsdaine, The Boost Graph
Library: User Guide and Reference Manual. Addison-
Wesley, Dec. 2001.

[8] D. Delling, A. V. Goldberg, A. Nowatzyk, and R. F. Werneck,
“PHAST: Hardware-accelerated shortest path trees,” Journal
of Parallel and Distributed Computing, vol. 73, pp. 940–952,
Sep. 2010.

[9] R. Geisberger, P. Sanders, and D. Schultes, “Better approx-
imation of betweenness centrality,” in Proceedings of the
Tenth Workshop on Algorithm Engineering and Experiments
(ALENEX), Jan. 2008, pp. 90–100.

[10] M. Kulkarni, M. Burtscher, C. Casçaval, and K. Pingali,
“Lonestar: A suite of parallel irregular programs,” in IEEE
International Symposium on Performance Analysis of Systems
and Software, Apr. 2009, pp. 65–76.

[11] U. Meyer and P. Sanders, “∆-stepping: a parallelizable short-
est path algorithm,” Journal of Algorithms, vol. 49, no. 1,
pp. 114–152, Oct. 2003, 1998 European Symposium on
Algorithms.

[12] D. L. Baggio, “GPGPU based image segmentation livewire
algorithm implementation,” Master’s thesis, Technological
Institute of Aeronautics, São José dos Campos, Brazil, 2007.

[13] N. Bell and M. Garland, “Implementing sparse matrix-vector
multiplication on throughput-oriented processors,” in SC ’09:
Proceedings of the 2009 ACM/IEEE Conference on Super-
computing, Nov. 2009, pp. 18:1–18:11.

[14] D. Merrill, M. Garland, and A. Grimshaw, “Scalable GPU
graph traversal,” in Proceedings of the 17th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming, ser. PPoPP ’12. New York, NY, USA: ACM, Feb.
2012, pp. 117–128.

[15] S. Baxter, “Modern GPU library,” http://www.moderngpu.
com/, 2013.

[16] J. Shun and G. E. Blelloch, “Ligra: a lightweight graph
processing framework for shared memory,” in Proceedings
of the 18th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, ser. PPoPP ’13, Feb. 2013,
pp. 135–146.

[17] N. Bell and J. Hoberock, “Thrust: A productivity-oriented
library for CUDA,” in GPU Computing Gems, Oct. 2011,
vol. 2, ch. 26, pp. 359–371.

[18] T. A. Davis and Y. Hu, “The University of Florida sparse
matrix collection,” ACM Transactions on Mathematical Soft-
ware, vol. 38, no. 1, pp. 1:1–1:25, Dec. 2011.

[19] “DIMACS implementation challenge - shortest paths,” http:
//www.dis.uniroma1.it/challenge9/download.shtml, Jul. 2013.

[20] “Yahoo labs dataset selections,” http://webscope.sandbox.
yahoo.com/, Jul. 2013.

[21] D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight
infrastructure for graph analytics,” in Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Prin-
ciples, ser. SOSP ’13, Nov. 2013, pp. 456–471.

[22] Q. Hou, X. Sun, K. Zhou, C. Lauterbach, and D. Manocha,
“Memory-scalable GPU spatial hierarchy construction,” IEEE
Transactions on Visualization and Computer Graphics,
vol. 17, no. 4, pp. 466–474, Apr. 2011.

