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Abstract—Many state-machine Byzantine Fault Tolerant (BFT)
protocols have been introduced so far. Each protocol addressed
a different subset of conditions and use-cases. However, if the
underlying conditions of a service span different subsets, choosing
a single protocol will likely not be a best fit. This yields robustness
and performance issues which may be even worse in services that
exhibit fluctuating conditions and workloads.

In this paper, we reconcile existing state-machine BFT pro-
tocols in a single adaptive BFT system, called ADAPT, aiming
at covering a larger set of conditions and use-cases, probably
the union of individual subsets of these protocols. At anytime,
a launched protocol in ADAPT can be aborted and replaced by
another protocol according to a potential change (an event) in the
underlying system conditions. The launched protocol is chosen
according to an “evaluation process” that takes into considera-
tion both: protocol characteristics and its performance. This is
achieved by applying some mathematical formulas that match the
profiles of protocols to given user (e.g., service owner) preferences.
ADAPT can assess the profiles of protocols (e.g., throughput) at
run-time using Machine Learning prediction mechanisms to get
accurate evaluations. We compare ADAPT with well known BFT
protocols showing that it outperforms others as system conditions
change and under dynamic workloads.

Keywords-Byzantine fault tolerance; Adaptive BFT; dynamic
switching

I. INTRODUCTION

Fault tolerance is becoming more challenging due to the

leap of on-line services, the reliance on clouds, and the

software bugs introduced with new software technologies and

programming languages due to human imperfection. This can

cause unpredictable arbitrary service problems that are some-

times dreadful and can affect a large population; the outages

of Amazon AWS [1] and Google Mail [2] are recent examples.

Byzantine fault tolerance [3], [4] (BFT) is a replication-

based approach used to improve the resilience of systems to

Byzantine (arbitrary) faults. A typical state-machine [5] BFT

protocol ensures consistency among system replicas if at most

a fraction of replicas (e.g., one third) can be Byzantine [3],

[4]. Although BFT trades the cost of replication and agree-

ment for fault tolerance, this cost is nowadays acceptable as

commodity hardware are becoming cheap; and as the cost of

existing non-BFT fault tolerance mechanisms, e.g., the three-

way replication of storage in Google file system, is comparable

to BFT [6].

A fairly high number of BFT protocols ([4], [7], [8], [9],

[10], [11], etc.) have been introduced in literature. Due to the

complexity of the Byzantine generals problem [3] and the vari-

ations in system conditions, it is almost impossible to establish

one-size-fits-all BFT protocol. For instance, PBFT [4] oper-

ates in the presence of Byzantine nodes; however, it suffers

from low performance as compared to speculative protocols

(e.g., [8], [9]). Q/U [7] and Quorum [9] exhibit the lowest

latency and fault scalability, however, only in contention-free

cases. Zyzzyva [8] and Chain [9] achieve a high throughput,

but they rather suffer from expensive recovery, etc. Unfortu-

nately, this suggests that a service can only benefit from some

properties (those provided by the chosen protocol) and give

up other interesting ones. Although this can be acceptable in

some systems, it can have significant drawbacks on systems

that encounter different conditions and workloads. We show

in this paper that it is possible to get closer to one-size-fits-all

protocol through combining existing protocols together, and

using a smart dynamic switching mechanism between them

(without the burden of again introducing a new protocol).

The abortability approach of Aliph [9] proposed a modular

way to use some existing BFT protocols and switch from one

to another when failures occur. In spite of its performance im-

provements in some cases, our experiments show that Aliph’s

performance can be close to existing protocols, e.g., Zyzzyva,

or even worse under fluctuating conditions and workloads.

The reason is that Aliph runs a (1) predefined static order

of a (2) specific set of protocols, with PBFT as backup under

failures, and (3) uses a backoff scheme to switch back from

PBFT to a faster protocols to gain some performance when

failures heal. These very reasons cause Aliph to fall short as

an efficient adaptive protocol for systems that are prone to

variable conditions and dynamic workloads. We explain how

our dynamic switching approach resolves these drawbacks to

improve reliability and performance.

In this paper, we propose an adaptive abortable BFT

system, called ADAPT. ADAPT launches a BFT protocol from a

set of candidate ones (any existing protocol). Once the system

conditions change (i.e., an event), ADAPT aborts the running

protocol, and launches another one that is “more adequate”

to the new conditions. To decide when to launch which
protocol, ADAPT launches an evaluation process to make run-

time evaluations of protocols and matches their properties and

performance against user preferences 1. The evaluation process

executes some mathematical formulas we introduce, powered

using Machine Learning techniques to make accurate run-time

1We refer to the “user” as the service owner that is using a BFT protocol.
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performance assessment.

To the best of our knowledge, this is the first adaptive

BFT approach that orchestrates multiple BFT protocols in

a dynamic way using Machine Learning techniques, namely

SVR [12]. (Theoretical analysis and simulation-based methods

like those in [13] and [14] only give a general inaccurate the-

oretical results that are not effective at run-time). In addition,

conducting run-time evaluations of protocols by considering

their characteristics, performance, and user preferences is also

novel to BFT.

The abortability in our system, i.e., ADAPT, is similar to

Aliph [9] by the fact that it runs a set of protocols and

switches between them; on the contrary, any existing BFT

protocol can be used in ADAPT; whereas, Aliph could not use

many protocols since it is not easy to define how and when

to efficiently switch from one to another. In addition, ADAPT

is adaptive since switching occurs using run-time evaluations

when “something happens”, thus relaxing the conditions of

Aliph that switches only when “something wrong happens”.

This brings three additional benefits over Aliph: (1) no order

or number of protocols has to be defined a priori, (2) switching

occurs not only upon failures but also when performance can

be gained, and (3) no backoff scheme is required since switch-

ing immediately occurs once a change in system conditions is

detected.

We implemented ADAPT in C/C++ code, and experimented

it on Emulab [15]) using Redis key-value store [16] as an

application. Our experiments convey that ADAPT outperforms

six well-known existing BFT protocols, including Aliph, under

any condition, and especially under dynamic workloads.

In the rest of the paper, we present a background about

the BFT protocols we consider in Section II. Section III

presents the architecture of ADAPT, and Section IV explains its

evaluation process. Experimentation results are then presented

in Section V. Finally, the paper discusses related works in

Section VI and concludes in Section VII.

II. BACKGROUND OF BFT PROTOCOLS

This section recalls the BFT fault model and selected

well-known BFT protocols that make our presentation easier,

following the criteria: these protocols are clearly different in

at least one important feature. In principle, any state-based

BFT protocol can be added to ADAPT, but we believe that the

protocols addressed here are enough to explain our idea. In

addition, we explain the BFT abortability approach [9] that is

also used in ADAPT.

A. Fault Model

BFT fault model [4] assumes a message-passing distributed

system using a fully connected network among nodes: clients

and servers. The network may (not infinitely) fail to deliver,

corrupt, delay, or reorder messages. Faulty replicas and clients

may either behave arbitrarily, i.e., in a different way to

their designed purposes, or they just crash (benign faults).

A strong adversary coordinates faulty replicas to compromise

the replicated service. However, we assume that the adversary

cannot break cryptographic techniques like: collision-resistant

hashes, encryption, and signatures. Liveness, however, is only

guaranteed when the system is eventually synchronous, i.e.,

during intervals in which messages reach their correct desti-

nations within some fixed worst case delay. ADAPT complies

with this BFT model.

B. BFT Protocols

BFT protocols maintain system resilience against Byzan-

tine failures using replication. A protocol ensures safety and

progress if up to a fraction (often 1/3) of the replicas is

faulty. (We refer to “faults” as Byzantine faults in this paper).

PBFT [4] is the first practical BFT protocol. Messages are

exchanged in three phases (see Fig. 1(a)): pre-prepare, pre-
pare, and commit. Since most replicas contribute in message

exchange, in each phase, consensus can be achieved even when

f replicas are Byzantine. This extensive all-to-all messaging

makes PBFT robust, but causes significant performance draw-

backs. Zyzzyva [8] is a speculative BFT protocol where a

client sends a request to a primary replica that assigns it

a sequence number and forwards it to other replicas. These

replicas speculatively execute the request and send their replies

(or digests) back to the client (Fig. 1(b)). This makes Zyzzyva

fast as long as the client receives matching replies from all

replicas. Otherwise, complex recovery phases are launched

when a replica or the primary is faulty; and consequently, its

performance drops sharply.

C. BFT Abortability Approach

Abortability [9] was introduced to reduce the complexity of

BFT protocols and improve their performance using modular-

ity: any BFT protocol is first launched on a set of replicas.

When “something wrong happens”, the current protocol is

aborted and another one is launched on the same set of

replicas, starting a new phase where replicas are initialized

with an abort history: a log of recently applied operations

(starting from the last checkpoint). The authors used aborta-
bility to build Aliph [9]. In Aliph, “something wrong happens”

practically means a fault is detected. Aliph used three abortable

protocols: Quorum, Chain, and backup (an “abortable” version

of PBFT). Aliph initially runs Quorum. Upon failures, caused

by contention, it aborts to Chain. Again, once failures occur,

due to any reason, Chain aborts to backup (simply PBFT in

the rest of the paper) in this specific order, then it continuously

tries to switch back to Quorum using a backoff scheme, either

rigorous (one try per request) or exponential (one try each

2n requests, n being the number of tries). Next, we recall

three important abortable protocols: Quorum [9], Chain [9],

and Ring [17].

Quorum [9] has the theoretical minimum latency among

BFT protocols in contention-free systems due to its simple

one-phase message pattern: a non-faulty client broadcasts a

request to all replicas, and the replicas reply back directly to

the client (see Fig. 1(c)). Since there is no central replica for

sequence number assignment in Quorum, problems can arise

under contention or Byzantine behaviors, and thus it aborts
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(a) PBFT (b) Zyzzyva (c) Quorum

(d) Chain (e) Ring

Fig. 1. Message patterns of the state-of-the-art BFT protocols; for f = 1.

to another protocol. Chain [9] is another abortable protocol

that has the highest theoretical throughput. All replicas are

ordered in a chain fashion. The head of the chain receives

a request from a client. Each replica forwards the request to

its successor in the chain until the tail sends the reply back

to the client (Fig. 1;(c)). Although this technique increases

the end-to-end delay, the throughput improves as the number

of MAC operations by each replica is close to one, i.e. the

theoretical lower bound. With large message payloads, Chain

loses its charm due to the network bottlenecks formed on

the head and tail replicas. Ring [17] is an abortable BFT

protocol (Fig. 1(e)) where replicas are organized in a ring

fashion, and each replica has a predecessor and a successor.

A client can send a request to any replica and receive the reply

from the predecessor of that replica. Any request is forwarded

in two rounds around the ring to complete. In the first, it

gets assigned a sequence number by a specific replica, called

“sequencer”; whereas the second round is needed to execute

it on all replicas (Fig. 1(e)). This long trip causes large delays

in Ring responses which makes Chain better in throughput, in

normal conditions (though both require one MAC operation

per replica). However, Ring has a high throughput when the

network becomes a bottleneck as all replicas can receive and

send requests from/to clients.

III. ADAPT ARCHITECTURE

ADAPT is composed of three sub-systems: BFT System

(BFTS), Event System (ES), and Quality Control System

(QCS). BFTS is composed of the libraries of BFT protocols

and abortability [9]. We adjusted existing BFT protocols to

fit the modular logic of BFTS. BFTS operates in a similar

manner to the abortability approach described in Section II-C

above. The Event System (ES), on the other hand, monitors the

whole system and collects the defined Impact Factors: chosen

metrics that have a significant impact on the performance

and reliability of the system (e.g., number of client, request

size, etc). ES sends periodic event notifications to the Quality

Control System (explained next) informing it with any changes

in the impact factors. In ADAPT, we used a simple version of

ES described in Section V-B; (a more sophisticated ES is a

future plan). Since this work focuses on dynamic switching,

and to gain some space, we skip any further discussions about

BFTS and ES, and we focus on the Quality Control System

(QCS) in the rest of the paper.

IV. QUALITY CONTROL SYSTEM (QCS)

A. Overview

QCS is the control unit of ADAPT that is in charge of taking

the decisions: whether switching is needed due to possible

changes in system state, and which protocol is the best to be

launched in the next phase. QCS works as follows: consider

the set of n BFT protocols in BFTS, and assume that BFTS

is initially running pi, i ∈ [1, n]. Once QCS receives an event

from ES indicating some change in the system state, i.e.,

the considered impact factors (e.g., request size), this event

triggers an evaluation process. If this process resulted in a

new protocol pj with a sufficient improvement, i.e., a pre-

defined threshold, over the current performance of the system,

then QCS orders the BFTS to abort the current protocol and

switch to pj ; otherwise, pi is kept running.

B. The QCS Evaluation Process

The evaluation process operates in three modes: static,
dynamic, and heuristic. In the static mode, the evaluation

process selects the best protocol according to its (predefined)

characteristics, and is done before the system starts. In the

other two modes, however, the evaluation process selects

the best protocols in a dynamic way at run-time. Evaluation

includes the characteristics of the protocols and their perfor-

mance. In addition, the heuristics mode (as explained later)

uses some heuristic rules to adjust the system behavior in

exceptional cases. In this paper, we focus on the dynamic and

heuristic modes whereas details about the static mode can be

found in [18], [19]. We make the evaluation process easy to

understand by providing a simple example in Fig. 2.

1) Evaluation metrics: Evaluations are conducted consid-

ering two types of metrics: Key Characteristic Indicators
(KCIs), and Key Performance Indicators (KPIs). The KCIs

represent the fixed (or static) characteristics of the protocol

like: whether it tolerates client faults, the number of replicas

needed to tolerate f faults, etc. The KPIs are the dynamically

computed metrics that evaluate the performance of a protocol,

e.g., throughput and latency. KCI values can be defined by an-

alyzing the BFT protocols, whereas, KPI values are computed

at run-time using prediction mechanisms.
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Example: A simple example that describes the computations of the evaluation process.

1. KCI Symbols: spec=Speculative, byz=toleratesByzantineClients, ip=NoIPMulticast
2. KPI Symbols: thr=Throughput, lat=Latency, and cap=Capacity.
3. Considered protocols: PBFT, Zyzzyva, and Quorum.
4. Given user preferences (metrics weights): U means a protocol must be tolerant to Byz. clients, with no IP multicast, and not necessarily speculative. V
means throughput is given higher priority over latency and capacity. W means no heuristics are used.

U =

⎛
⎝ 0

1
1

⎞
⎠ ← spec
← byz
← ip

;V =

⎛
⎝ 5

2
3

⎞
⎠ ← thr
← lat
← cap

; and W =

⎛
⎝ 1

1
1

⎞
⎠ ← thr
← lat
← cap

;

5. KCI and KPI values: The predefined KCI values are presented in matrix A. The KPI values in matrix B are theoretically estimated using message pattern
and MAC operations. (In Section V we use accurate experimental results). B± is derived from B using Eq. 3.

A =

⎛
⎝

spec byz ip

0 1 1
1 1 1
1 1 0

⎞
⎠ ← PBFT
← Zyzzyva
← Quorum

;B =

⎛
⎝

thr lat cap

0.36 0.4 0.8
0.43 0.3 0.7
0.5 0.2 0.3

⎞
⎠ ← PBFT
← Zyzzyva
← Quorum

⎫⎬
⎭ =⇒ B± =

⎛
⎝

thr lat cap

0 0 1
0.5 0.5 0.8
1 1 0

⎞
⎠

6. Computing C: C indicates that Quorum does not satisfy the KCI user requirements (in matrix U).

C =

[
1

a
. (A ∨̇ (ea − U))

]
=

⎡
⎣1

3
.

⎛
⎝
⎛
⎝ 0 1 1

1 1 1
1 1 0

⎞
⎠ ∨̇

⎛
⎝
⎛
⎝ 1

1
1

⎞
⎠−

⎛
⎝ 0

1
1

⎞
⎠
⎞
⎠
⎞
⎠
⎤
⎦ =

⎡
⎣
⎛
⎝ 1

1
2/3

⎞
⎠
⎤
⎦ =

⎛
⎝ 1

1
0

⎞
⎠ ← PBFT
← Zyzzyva
← Quorum

7. Computing P: P indicates that Quorum, theoretically, achieves the best performance (without considering matrix C yet).

P = B±.(V ◦W ) =

⎛
⎝ 0 0 1

0.5 0.5 0.8
1 1 0

⎞
⎠ .

⎛
⎝ 5

2
3

⎞
⎠ ◦

⎛
⎝ 1

1
1

⎞
⎠ =

⎛
⎝ 0 0 1

0.5 0.5 0.8
1 1 0

⎞
⎠ .

⎛
⎝ 5

2
3

⎞
⎠ =

⎛
⎝ 3

5.9
7

⎞
⎠ ← PBFT
← Zyzzyva
← Quorum

8. Computing E: E indicates that Zyzzyva is chosen as the best protocol (theoretically) since Quorum is now ruled out.

E = C ◦ P =

⎛
⎝ 1

1
0

⎞
⎠ ◦

⎛
⎝ 3

5.9
7

⎞
⎠ =

⎛
⎝ 3

5.9
0

⎞
⎠ ← PBFT

← Zyzzyva
← Quorum

Fig. 2. A simple example about using the BFT evaluation process.

2) Best protocol selection: The evaluation process ends

up by selecting the preferred BFT protocol among a set

of candidate ones in BFTS under the new conditions; this

is achieved through computing the evaluation scores of the

competing protocols, and then selecting the protocol that

corresponds to the maximum score. More formally, for any

state s, and protocol pi ∈ BFTS that has an evaluation score

Ei,s; the best protocol ppref is chosen according to Eq. 1:

ppref = pi, s.t. Ei,s = max
1≤j≤n

Ej,s. (1)

Any evaluation score Ei,s is calculated according to the

formulas introduced in Eq. 2 which is explained next.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E = C ◦ P
where C =

[
1

a
. (A ∨̇ (en − U))

]

and P = B±.(V ◦W ).

(2)

a) Matrix E: The evaluation matrix E is the Schur
product 2 of the KCI matrix C and the KPI matrix P . C

represents the part of the evaluation that deals with the KCIs

of the protocols; whereas, P represents the evaluation part

that deals with the KPIs. E is calculated after computing the

2A Schur, a.k.a., Hadamard, product of two matrices with entries aij and
bij , resp., returns a new matrix where an entry cij = bij × aij ∀i, j.

values of C and P. The combination of C and P in computing

evaluations is important as it eliminates the protocol that does

not match the characteristics required by the user and, at

the same time, recommends the protocol that has the best

performance. If the mode of the system is dynamic or heuristic,

then E may change at run-time as P also changes.

b) Matrix C: The matrix C =
⌊
1
a . (A ∨̇ (en − U))

⌋
matches given the user preferences against the characteristics

of different protocols. Matrix A represents the profiles (i.e.,

the KCIs) of the protocols; each row represents a vector of a
different KCIs. U is a vector matrix that represents the given

user preferences (i.e., the weights). The operator ∨̇ is similar to

the product operator with using ‘∨’ boolean operator instead of

the dot ‘.’. This is used to calculate the total number of KCIs

that do match user preferences in U, per each protocol. The

column matrix en is a unit matrix that is only used to invert

the values of the matrix U to −U . The use of 1/a within the

integer value operator [ ] rules out the protocol that does not

match all user preferences in matrix U (see Fig. 2).

c) Matrix P: Matrix P is defined in the formula: P =
B±.(V ◦W ). B represents the matrix of considered KPIs

of the protocols, one protocol per row. Since all KPIs are

represented in the same matrix and the same formula, a

special care must be taken to avoid “comparing oranges to

apples”. For instance, consider the two KPIs: throughput and

latency. Throughput can have very high numbers (e.g., in
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thousands) whereas latency can have small numbers (likely

less than 1 sec). Simply adding or multiplying their values

would give high significance for throughput. In addition, a

higher throughput is better, while a higher latency is worse,

which gives a wrong evaluation.

To handle these issues, we say that a KPI has the property

Tendency=‘high’ if a higher value means better evaluation

score E, e.g., throughput; this KPI is denoted by β+. On the

contrary, a KPI of type β− has the property Tendency=‘low’,

e.g., latency, where a higher KPI value means a worse evalua-

tion score E. Now, suppose the number of β-KPIs is b, then the

matrix B can be divided into b column matrices (i.e., vectors):

B1, B2, Bi, ..., and Bb. Let the maximum (resp., minimum)

entry value of each vector Bi be maxi (resp., mini), Then,

we compute a new normalized matrix B± whose entries can

be calculated according to Eq. 3:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β+
ji = 1− maxi − βji

maxi −mini
;

β−ji = 1− βji −mini

maxi −mini
;

where i ≤ b and j ≤ n.

(3)

where the entries of the matrices B± and B are denoted by

β± and β, respectively. This brings three benefits: (1) all the

KPI values are now bounded by the same interval [0, 1] which

does not give any significance for a KPI over the others; (2)

a higher value in B± means a better performance whatever is

the KPI; (3) values are now small floats which are easier to

compute by the processor.

V is a column matrix that represents the KPI user-defined

weights for evaluations. The matrix follows two constraints:

(1) its entries are in [0, 10], and (2) their sum
∑b

i=1 vi1 = 10.

Matrix W is a column matrix only used in the heuristic mode.

W is important to adjust the user preferences given in V (using

the Schur product V ◦W ) according to predefined heuristic

rules (discussed next). Finally, the computation of P becomes

straightforward (see Fig 2).

C. Heuristics

The weights in matrix V are offered by the user telling

which KPI is given a higher priority. However, our experience

shows that there are practical considerations that make these

weights less effective and thus require special intervention,

which we enforce using heuristic rules. To clarify our idea,

consider the following two heuristic rules:

(H1) when concurrent clients are few, latency becomes more

important than throughput and capacity and

(H2) under high contention, capacity and throughput be-

come significantly more critical than latency.

The first heuristic rule is valid as no bottlenecks are present

and thus the priority is to give faster replies to current users.

Thus regardless of the weights provided by the user in matrix

V, latency must be given high priority under this condition,

this is achieved by giving a large weight for latency in the

matrix W. The second rule follows the opposite logic and thus

latency is given low priority regardless of the user choice. The

values of matrix W have the same constraints as matrix V

explained in the previous section. Using these rules improves

the evaluations that would have resulted using V alone (notice

that V and W are Schur multiplied). (Defining a more complete

set of heuristic rules can be a future study).

D. Worthy Switching

The evaluation process described above runs the protocol

that is roughly better than others under the current state

(Eq. 1). This is theoretically sound; however, in practice,

it can impose a high cost due to the switching overhead,

discussed in Section V. This makes it costly and useless

to switch from one protocol to another if the improvement

induced by the new one is not significant. Therefore, it makes

sense to only switch when the new protocol brings sufficient

benefits, i.e., exceeding a predefined switching threshold: Sthr.

Consequently, Eq. 1 can be confined with the following

constraint:
pmax

pcurr
≥ Sthr

where pmax and pcurr are the evaluation scores corresponding

to the best protocol (under the current state) and the currently

running one, respectively. Sthr can be defined by the service

administration (e.g., 10%).

It can happen that the current switching phase was triggered

by a malicious behavior event (induced by ES) and that the

performance of other protocols is not sufficiently better than

the current one. This is however safe, since the evaluation

process considers KCIs too, which will exclude the protocols

that are not robust to the current malicious state. In Section V,

we show that ADAPT switches to PBFT under faults, being the

most robust protocol in BFTS.

E. Prediction of KPIs

The evaluation process strictly depends on the values of

KCIs and KPIs. As mentioned above, KCIs are fixed val-

ues defined before the system starts. However, KPI values

must be computed at run-time in order to perform a correct

evaluation since a protocol’s performance can change as the

system conditions vary. In ADAPT, we assess the KPI values,

experimentally, as it gives run-time accurate numbers; to the

contrary of theoretical analysis and simulation-based methods

in [13] and [14] that give a general inaccurate theoretical

results. This is done using prediction mechanisms, like Support

Vector Machines for Regression [12] (SVR).

We briefly describe the prediction process of a single KPI

in the following. First, each protocol is run a period of time

while tuning the impact factors and getting the KPI values

under each state. After a sufficient set of records is collected,

i.e, a training set, a prediction function is designated and

trained on it. The prediction function takes the impact factors

as input and outputs a KPI value. The purpose is to find the

parametric values of the prediction function that give the most

accurate predictions. Once training is done, at any instant

while the system is running, when ES sends an event with

new values for the impact factors, the prediction function is
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executed on these values and returns a new predicted value

for each KPI (that is used in matrix B above). To get accurate

predictions, the training set must always be updated by ES,

while the system is running, such that the prediction function

periodically “improves itself”.

F. A Robust QCS

The role of QCS is essential in ADAPT as it controls the

entire system and thus must also be Byzantine resilient. To

achieve this, a shadow control channel runs QCS using PBFT

protocol on the same set of replicas, in parallel with the

other running protocol. The parallel protocols are completely

separated and not allowed to interfere. This means that QCS

is run on all replicas and the switching decisions are taken

by the primary replica in the current PBFT view. QCS runs

PBFT since it is a robust protocol suitable for critical services,

like QCS, where performance is not a requirement, being not

exposed to clients (the clients in this case are the replicas

themselves). Since the evaluation process often occurs silently,

while the current protocol is running, using PBFT has no effect

on the performance of this process. The only affected case is

when the system switches due to some fault; this forces the

current protocol to abort and wait until evaluation finishes. In

this case, the delay to achieve consensus in PBFT imposes

additional time on the evaluation process that we discuss in

Section V-G.

V. EVALUATION

A. Evaluation Methodology

To evaluate our approach, we first briefly describe ADAPT

code, and then we move to the experimental settings including

the code setup, applications, and prediction methods. Second,

we present the scores inferred by the evaluation process

showing that different protocols are chosen in different con-

ditions. These scores are also important to help explain the

performance graphs of ADAPT that dominates those of other

protocols. Then, we show how ADAPT improves the switching

dynamics of Aliph, and that the switching cost in ADAPT is

also not significant. At the end, we present an experiment with

dynamic workload showing that Zyzzyva sometimes perform

better than Aliph due to the classical static switching used;

and that this issue is absent in ADAPT. In our experiments,

we considered:

- Five BFT protocols: PBFT, Zyzzyva, Quorum, Ring, and

Chain; we have chosen these protocols as they have clear

improvement over others which helps explaining our idea.

- Three KPIs: throughput, latency, and capacity; being

the most important metrics for performance. Capacity in our

context means the maximum number of clients that a protocol

tolerates.

- Four impact factors: number of clients, request size,

response size, and faulty replicas; as we noticed through our

experiments that these are the most significant factors on most

BFT protocols.

For the evaluation process (introduced in Section III),

we used the client preferences represented by the following

matrices: U = en meaning that no constraints are made on

the KCIs of the protocols, i.e., all protocols are accepted

to show the strengths of the dynamic switching using KPIs.

V = (3, 3, 4) corresponding to (throughput, latency, capacity),

meaning that the three metrics are given similar weights. In

addition, we translate the heuristic rules, H1 and H2, defined

in Subsection IV-C to using W = (1, 8, 1) and W = (2, 1, 7),
respectively.

B. The Implementation in Brief

The code of ADAPT is divided into several modules. The

QCS is implemented in 1274 lines of C/C++ code compris-

ing the evaluation process and the mathematical equations

introduced above. We used one thread per KPI such that

evaluations of different KPIs take place in parallel. A plug-

in of eight Bash scripts was also implemented to interface

the control module with the prediction library used, i.e., the

Java LIBSVM [20]. Another module implements the switching

logic of abortability which is a modified version of the one

used in Aliph [9]. This module also collects the BFT libraries

of the considered protocols in our experiments. Finally, we

implemented a simple module in C++ to act as an Event

System in order to conduct our experiment, e.g., we use

message buffers and sockets to get the number of concurrent

clients and to check the message sizes, etc.

C. Experimental Settings

1) The Setup: We experimented ADAPT on a cluster of 25
64-bit Xeon machines with 2 GB of memory, running Ubuntu
OS, and deployed on Emulab [15] test-bed. All modules were

installed on all replicas, whereas, the QCS was only run on

one machine. The number of replicas is four (i.e., f=1). Each

replica runs on a separate machine and the client processes

share 20 machines. The maximum bandwidth of the network

is set to 100Mb to be able to easily saturate the network and

observe the behavior of the protocols. To compare our results,

we use the standard a/b benchmark 3 with different payload

sizes [4]: 0/0, 4/0 and 0/1. (We experimented other payload

sizes too but we don’t present them since they are similar to

the presented ones, and because we believe these are enough

to clarify our idea.)

2) About Applications: We considered three different ap-

plications in our experiments: (1) a simple integer-increment,

(2) the key-value store Redis [16], and (3) OpenLDAP [21].

The purpose was to cover a wide range of applications where

BFT protocols may behave differently. It turned out that as

the execution time of the considered application increases, the

different protocols converge in performance. For instance, our

results, confirm the results published in literature, e.g., [4],

[7], [8], [9], [10], [11], while negligible execution time is

considered, as in case (1). On the contrary, with OpenLDAP

(having more than 1ms execution time), the performance of

the protocols was very close ([22] explains this observation

in more detail). Consequently, ADAPT is not very effective

3In a/b benchmarks, a, and b correspond to request size, and response size
in KB, respectively.
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Fig. 3. The protocols with the highest evaluation scores (E) under different
conditions.

with OpenLDAP since no switching will occur. On the other

hand, using a naive application like integer incrementing is

not too realistic, though it can show the strengths of ADAPT

more clearly. This encourages us to only consider Redis (due

to space limitations) as a trade-off, and being a cutting-

edge application that spans a wide market. Redis server was

installed on all system replicas, and accessed locally by each

BFT library through its API.

3) Computing Predictions: KPI predictions were done us-

ing the Machine Learning SVR method [12] with the Radial

Basis Kernel (RBK) supported by the LIBSVM library [20].

The parameters of the SVR prediction function (C and γ)

were chosen using the five-fold cross-validation [12] over a

training set and test set. In total, the size of the data instances

was around 500 records of the form (number of clients,

request size, response size, throughput, latency, capacity). We

divided the data instances into: a training set (85%), and a

test set (15%). The former was used to train the prediction

function, and the latter to evaluate its accuracy. We have

run the five protocols for 10 continuous days with varying

the values of the four impact factors introduced above. In

essence, we used nine request size in the range [0B, 4KB];

and used three response size: 0B, 64B, and 1KB. The number

of simultaneous clients ranged between 1 to 450 clients, with

running more frequent experiments with fewer clients. The

achieved prediction accuracy using RBK was more than 95%

which was sufficient to get accurate evaluation scores for

ADAPT. (We omit prediction details for space limits). The

prediction database (raw data files) of the QCS was hosted

by the same replica where QCS is located.

D. Evaluation Scores

ADAPT launches the protocol that achieves the best eval-

uation score as described in Section III. Fig. 3 conveys

the results of the evaluation scores (y-axis) returned by the

evaluation process with different payloads 0/0, 4/0, and 0/1 as

the number of concurrent clients change (x-axis). (We present

0/1 instead of 0/4 since we had problems with Zyzzyva code).

The figure only depicts the protocols with the highest scores,

i.e., those will be launched by ADAPT in the corresponding

conditions. The figure shows that different protocols are better

under different conditions. For instance, Quorum leads other

protocols with small message sizes and few clients, e.g., up

to 30 clients in the 0/0 payload experiment. We expected this

since Quorum has the lowest latency among other protocols,

and due to using the heuristic rule H1 in this case. Beyond 30

clients, Chain is chosen as best protocol since it theoretically

requires almost one MAC operation per replica. With larger

message sizes, e.g., 4/0 and 0/1 experiments, Chain saturates

the network (since a request visits all replicas); consequently,

Zyzzyva is chosen in this case up to 80 clients. This is referred

to the short messaging pattern in Zyzzyva and having replicas

to respond with response digests directly to the clients. Under

high contention, e.g., beyond 80 clients in the 4/0 experiment,

Ring achieves the highest evaluation score since it allows

all replicas to receive requests from clients. Finally, PBFT

protocol is the only protocol that operates in presence of

faults, and thus it gets the highest evaluation score under these

conditions. Next, we show how these evaluation scores impact

the performance of ADAPT.

E. Performance Comparison

In general, a chosen protocol in Fig. 3 would mean a

high throughput and low latency in the performance graphs

presented next in Fig. 4. For brevity, we only present the

results for 4/0 and 0/1 payloads (other payloads are similar).

a) 0/1 benchmark.: As shown in Fig. 4(a) and 4(b),

ADAPT outperforms other protocols with large responses, i.e.,

0/1 payloads, in throughput and latency. ADAPT launches

Quorum up to 10 clients (using heuristic rule H1) and then

switches to Zyzzyva as noticed before in Fig. 3. Using Quorum

with few clients makes the throughput of ADAPT slightly better

than Zyzzyva, however, significantly better than Zyzzyva in

latency (since H1 says that latency is more important with few

clients). The throughput of ADAPT, as well as latency, is close

to Aliph that also runs Quorum with few clients. Then, the

throughput and latency of ADAPT becomes close to Zyzzyva

since ADAPT switches to Zyzzyva that leads other protocols.

This result is interesting since as it shows the strengths of

the dynamic switching of ADAPT in comparison to static

switching in Aliph. In fact, Aliph switches from Quorum to

Chain with 80 clients once Quorum crashes. Between 10 and

80 clients, ADAPT runs Zyzzyva that significantly dominates

Quorum (almost double its throughput). Then, Aliph has the

only choice to switch to Chain; whereas, ADAPT switches in

a smart way to Zyzzyva, thus achieving a higher throughput

than Aliph; this limitation is due to the pre-defined order of

protocols in Aliph (i.e., Chain, Quorum, then PBFT).

b) 4/0 benchmark.: With 4/0 payloads, ADAPT leads

the other protocols too, as depicted in Fig. 4(c) and 4(d).

ADAPT launches Zyzzyva with up to 80 clients, after which

Ring leads Zyzzyva, and thus, ADAPT switches to Ring to

benefit from its performance under high load (see Fig. 3);

consequently, ADAPT outperforms both Zyzzyva and Ring.

ADAPT outperforms Quorum and Chain too. We refer this to

using message digests with MAC authentication in Zyzzyva

instead of Quorum that uses complete messages and RSA

authentication. On the other hand, sending message digests
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Fig. 4. Performance comparison of BFT protocols.

directly to the client in Zyzzyva avoids the network bottlenecks

found in Chain. Moreover, ADAPT dominates Aliph since the

latter uses Quorum with few clients an switches to Chain

with 80 clients (when Quorum crashes). Aliph could not

benefit from the performance of Ring and Zyzzyva, as ADAPT

does, due for two reasons: (1) its predefined switching order:

Quorum, Chain, and then PBFT; and (2) since it lacks the sense

of intelligent dynamic switching like ADAPT (e.g., switch

when you can gain performance). As for latency, Fig. 4(d)

shows that the latencies of ADAPT, Aliph, and Zyzzyva

are close. The reason is that Quorum and Zyzzyva exhibit

similar latencies under these conditions, and since ADAPT

and Aliph run Zyzzyva and Quorum, respectively. Notice that

with more than 400 clients, ADAPT launches Ring as it has

a higher capacity to clients (2000 clients), though the latency

of Zyzzyva is lower. This is explained by the heuristic rule

H2 that gives more weight to throughput and capacity as the

number of clients gets very high (to avoid the risky running

of Zyzzyva).

F. The Case of Faulty Replicas

Fig. 4(e) depicts a 0/0 payload comparison of throughput

between ADAPT and Aliph with one faulty replica, where both

protocols switch to PBFT. We do not plot other protocols

since Chain and Quorum could not run under failures; whereas

Zyzzyva achieves 15% lower throughput than PBFT under

failures as the authors mention in [8]. Ring is worst than

PBFT under faults too [17] due to its long two-chain-rounds
messaging pattern.

For Aliph, Fig. 4(e) plots the curves for the default rigorous

switching and for the exponential backoff switching. To simu-

late faulty replicas, we disconnect one replica for 30 seconds.

During this period, ADAPT switches to PBFT (as already seen

in Figure 3). Once the faulty replica comes back, ADAPT

switches back to Quorum that achieves the best evaluation

score with 0/0 payload. On the contrary, Aliph with the

rigorous scheme repeats the process of “executing one request

using PBFT, switching back to Quorum, it fails, an then

switches to PBFT again” until the faulty replica comes back,

where Aliph finally runs Quorum. The throughput during these

30 seconds period is close to zero. With exponential backoff

scheme, Aliph runs PBFT for 2 requests and attempts to switch

to Quorum, it fails, and runs back PBFT each time with 2i

requests (where i is the switching attempt number). Aliph with

backoff scheme switches back to Quorum where i = 14; thus,

executing around 36K operations during 45 seconds. Notice

that, in this scheme Aliph could not immediately switch back

to Quorum after the faulty replica recovers, at 30 seconds.

Therefore, during 45 seconds, ADAPT executes around 66K

operations by the time Aliph switches back to Quorum with

36K operations in the backoff scheme, and 30K operations in

the rigorous scheme. This is expected since ADAPT switches

either upon failures or when performance changes, whereas

Aliph only switches upon failures.

G. Switching Cost

We only compare switching cost in ADAPT with Aliph

since it is the only protocol among others that uses switching.

The results in Fig. 4(f) show that the switching overhead of

1KB requests is negligible (up to 30 ms), even with an abort
history (AH) of 250 requests. In fact, ADAPT uses a similar

fine-grained checkpoint algorithm as in Aliph [9], which

prevents AH from getting too large. Although applications

can have long request execution times (which is ≈ 20μs in
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Redis [16]), this does not affect ADAPT and Aliph since they

do not execute operations that are previously executed. The

switching time of ADAPT is close to Aliph with no faults since

ADAPT runs the evaluation process before switching, and only

switches if it is worthy (as explained in Subsection IV-D).

Upon failures, however, ADAPT runs the evaluation process

(including predictions) after aborting; this causes a higher

switching overhead that goes up to 100 ms with 250 AH size.

This cost is considered tolerable and has no big impact on the

performance as explained in Subsection V-E above.

H. Performance Under Dynamic Workloads

We compare ADAPT, Aliph, and Zyzzyva under dynamic

workloads. We discard the other protocols as they exhibit

poor performance in this case. We injected to the system

1M operations in three bursts of different message payloads:

7 × 105 0/0, 6 × 104 4/0, and 25 × 104 0/1. We used fewer

requests with larger payloads since it is very time consuming

(though ADAPT can perform better than others under these

conditions since it runs Ring). For each burst, we changed

the number of clients from 5, to 30, and then to 250. To

consider workload under faults, after each burst, we reduced

the number of clients to 5 and we disconnected one replica

(not the primary), then we injected 20K 0/0 operations.

Fig. 5 shows that Aliph and Zyzzyva require 24% and

16.5% additional time to finish the 1M requests, respectively.

We expected this result as ADAPT uses a combination of

Aliph (that uses Quorum, Chain, and PBFT), Zyzzyva, and

Ring, choosing the best protocol under different conditions.

The surprising result, however, is that Zyzzyva finished before

Aliph. We did not expect this at first; however, after deeper

observation, we referred this to two reasons:

- The first reason is that, under faults, and although the

throughput of Aliph (i.e., 871KB/s) is better than Zyzzyva 4

(i.e., 760KB/s), Aliph is delayed 27 seconds after two faulty

4Since our Zyzzyva code does not work properly under faults, we estimated
Zyzzyva’s throughput under faults according to the Zyzzyva paper [8] stating
that it performs 15% worst than PBFT under failures.

periods, labeled in blue on Figure 5, due to the exponential

backoff scheme. In the first faulty period (at 38sec), for

example, we noticed that Aliph was forced to switch back

and forth from Quorum to PBFT 15 times; and thus executing

215=32K requests instead of 20K, meaning that it executed

32K-20K=12K requests while running PBFT (of throughput

871KB/s) instead of Quorum (of throughput 2290KB/s), yield-

ing a backoff overhead of 14 seconds. Zyzzyva, however,

finished these 12K requests in 4.5 seconds as it has a 2820KB/s

throughput. Notice that ADAPT does not pay this handoff cost

as it immediately switches to Zyzzyva once the faulty replica

recovers.

- The second reason is that Zyzzyva performs better than

Chain (that is used by Aliph) with large responses (1KB and

more). This is expected since Zyzzyva replicas (except one

replica) send response digests directly to the client, whereas a

response in Chain visits all replicas that overloads the network.

Simply using Zyzzyva in Aliph (in addition to Quorum, Chain,

and PBFT) is not trivial since it is not clear when to abort

from Chain to Zyzzyva or vice versa; unless similar methods

to those used in ADAPT are used.

VI. RELATED WORK

BFT Protocols. The Byzantine generals problem was in-

troduced by Leslie Lamport in [3]. Then, the first practical

BFT protocol (PBFT) was introduced in [4] by Castro et al.

PBFT has proven to be robust under faults, though it exhibits a

low performance in fault-free conditions. Later works ([7], [8],

[9], [11], [10], etc.) then appeared to enhance the performance

of PBFT, often using speculation in fault-free periods, and

an expensive recovery phase upon failures. Nevertheless, no

single protocol dominated the others under all conditions. The

notion of abortability, proposed in [9], enabled the use of

multiple BFT protocols and switching between them in a static

pre-defined order. This paper shows that abortability could not

achieve the expected results under dynamic payloads using the

simple static switching with backoff scheme, as in [9], and

proposes an alternative smart dynamic switching policy.

Performance Assessment. Analytical models like [13]

and [14] give a general idea about the performance of BFT

protocols; however, these models are not very accurate in

systems that have highly dynamic conditions, and they could

not be used efficiently at run-time. Our approach requires

accurate predictions in order to achieve meaningful decision

making. In this paper, we adopt a Machine Learning (ML)

prediction method (i.e., SVR [12]) based on real experimenta-

tion, leading more than 95% prediction accuracy. To the best

of our knowledge, the idea of using ML is new to fault tolerant

protocols either Byzantine or benign.

Adaptive Fault Tolerance. To the best of our knowl-

edge, this work represents the first dynamically adaptive BFT

approach. The abortable BFT protocol introduced in [9] is

statically adaptive, meaning that the protocols and their order

must be defined before deployment. Other adaptive fault

tolerant approaches existed in literature, e.g., in databases

[23] and clouds [24], but they are adaptive in the sense that
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they try to change the strategy of distributed objects across

replicas or by using a variant number of nodes; however, ours

is adaptive by changing the running protocol itself without

touching the data objects. For instance, the fault tolerant

database idea in [23] changes the replication scheme of an

object (number of reads/writes); in [24] the authors present a

fault tolerant cloud system where add/remove operations are

done according to the reliability level of an image. Other multi-

agent systems [25] and sensor networks [26] tackled similar

problems by changing the strategy played among agents, or

by changing paths in sensor networks, respectively.

VII. CONCLUDING REMARKS

The fault tolerance area was flooded by dozens of BFT

protocols trying to improve their robustness and performance.

But it remained hard to cope with systems that exhibit variable

conditions and workloads. A promising idea, i.e., abortability,

was introduced in [9] to combine existing protocols in a single

system that can run one of them at a time. In this paper, we

have shown that this approach does not achieve the anticipated

results without a dynamic switching mechanism to move from

one protocol to another, as the system conditions change.

We introduced ADAPT, an adaptive abortable BFT system

with a dynamic switching method that evaluates each protocol

at run-time, using Machine Learning predictions, and switches

to the protocol having the highest evaluation score. This is

triggered by an event sent by a system module that monitors

the system state (number of clients, faults, message sizes,

etc.). To compute the evaluation scores, we devised some

mathematical equations that match the characteristics of a

protocol and its performance metrics against the BFT user (i.e.,

service owner) preferences. We conducted some experiments

showing that ADAPT outperforms other protocols under most

conditions, and especially dynamic workloads.

Our approach is useful for systems having variable con-

ditions and workloads, and such that the execution time of

operations is small (e.g., up to 100ms). Longer execution

times mask the communication overhead of protocols and

makes their performance close. In this case, switching is a

waste of time. Furthermore, systems that experience stable

conditions and constant message payloads are advised to use a

single BFT protocol to avoid the switching overhead and the

added complexity induced by our approach. Our experience

shows that, in many cases, Zyzzyva (or another variant, e.g.,

Aardvark [10]) is known to perform very well, whereas PBFT

is recommended when the performance is not a major concern.

A future work can be to involve more BFT protocols in

ADAPT, and to define a set of heuristic rules to improve its

performance further. Introducing an Event System (ES) for

ADAPT is another possible future direction.
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