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Abstract

Graphs are a key form of Big Data, and performing scalable analytics over them is invaluable to many
domains. As our ability to collect data grows, there is an emerging class of inter-connected data which accumulates
or varies over time, and on which novel analytics – both over the network structure and across the time-variant
attribute values – is necessary. We introduce the notion of time-series graph analytics and propose Gopher, a
scalable programming abstraction to develop algorithms and analytics on such datasets. Our abstraction leverages
a sub-graph centric programming model and extends it to the temporal dimension using an iterative BSP (Bulk
Synchronous Parallel) approach. Gopher is co-designed with GoFS, a distributed storage specialized for time-series
graphs, as part of the GoFFish distributed analytics platform. We examine storage optimizations for GoFS, design
patterns in Gopher to leverage the distributed data layout, and evaluate the GoFFish platform using time-series
graph data and applications on a commodity cluster.

I. INTRODUCTION

With the proliferation of ubiquitous physical devices (e.g. urban monitoring, smart power meters)
and virtual agents (e.g. Twitter feeds, Foursquare check-ins) that sense, monitor and track human and
environmental activity, data is streaming more continuously and is intrinsically interconnected. Two
defining characteristics of such datasets, endemic to both the Internet of Things [1] and Social Networks,
are the temporal or time-series attributes and the topological relationships that exist between them. Such
datasets that imbue both these temporal and graph features have not been adequately examined from the
perspective of scalable Big Data management and analysis, even as they are becoming pervasive.

Graph datasets with temporal characteristics have been variously known in literature as temporal
graphs [2], kineographs [3], dynamic graphs [4] and time-evolving graphs [5]. Temporal graphs capture the
time variant network structure in a single graph by introducing a temporal edge between the same vertex
at different moments. Others construct graph snapshots at specific change points in the graph structure. In
particular, kineographs deal with graph that exhibit high dynamism. In this paper, we focus on a related
class of time-series graphs which we define to be graphs whose network topology is slow-changing but
whose attribute values associated with vertices and edges change (or are generated) more frequently. As
a result, we have a series of graphs, each of whose vertex and edge attributes capture the instantaneous
state of a system at a point in time (e.g. 2013-07-14 15:00 PST), or the cumulative states of the system
over time durations (e.g. 2013-07-14 15:00 PST – 15:05 PST), but whose numbers of, and connectivity
between, vertices and edges are less dynamic. Each graph in the time-series is an instance, while the slow
changing topology is a template (Fig. 1).

Many emerging “Big Data” datasets can be captured using such a time-series graph model. For e.g.,
when we consider images captured by a network of traffic or surveillance cameras in a large city like
Los Angeles or London, these cameras themselves are inter-connected by the roads that link them (i.e.
the graph topology) and their location changes less often. On the other hand, the periodic data that they
generate after image processing, such as vehicle license IDs at the vertices and the current travel-time
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Fig. 1: Time-series graph collection. Template captures static/slow-changing topology and attribute names.
Instances record temporally variant attribute values for this template.

on edges, form a time-series graph. Similarly, we can construct time-series graphs out of social network
feeds (friend network forms the “slow changing” topology while tweets or posts form the instances) or
even Internet trace-route statistics (Internet IPs on network hops form the topology while current latency
and bandwidth form instances). As such, these datasets are expected to have over O(106) vertices, O(107)
edges, and O(104) time points.

Many innovative analytics applications can leverage the topological and temporal information that a
time-series graph representation provides. While some are a temporal extension of existing algorithms,
others are more novel. For e.g., we can extend the Dikstra’s shortest path algorithm to a temporal version
over a road network with snapshots of historical traffic conditions accumulated every 5-min. We start
traversing at the source vertex of a graph instance and use its travel times in estimating the shortest path.
But after traveling 5-mins and reaching the temporal boundary of that graph instance (e.g. we determine
that the next position cannot be in the current graph instance due to traffic conditions such as the average
speed), we switch over to the next graph instance in the time-series with traffic information on the next
5-mins, and resume traversal. This gives us concentric waves of traversals. The space of such large-
scale temporal graph analytics applications is rich, ranging from studying time-evolving social network
communities to Internet router bottlenecks.

In our recent work [6], we extended the idea of scalable vertex centric Bulk Synchronous Parallel
(BSP) [7] graph programming model, championed by Google’s Pregel [8] and implemented by others like



Giraph [9], [10], into a sub-graph centric model, Gopher, that was targeted at commodity cluster and
Cloud platforms. The platform operated on a single graph and significantly out-performed Giraph in our
benchmarks. In this paper, we further expand Gopher to support time-series graph analysis in distributed
environments. Specifically, we propose structured programming abstractions for large-scale analytics across
multiple graphs using an iterative BSP model. In addition, we couple this with a distributed storage model
optimized for time-series graphs called Graph-oriented File System (GoFS), that we introduce here. GoFS
partitions the graph based on topology, groups instances over time on disk, and allows attribute-value pairs
to be associated with the vertices and edges of the instances. In particular, GoFS is designed to scale out
for common data access patterns over time-series graphs, and this data layout is intelligently leveraged
by Gopher during execution. Gopher and GoFS are part of the GoFFish graph analytics framework.

We make the following specific contributions in this paper:
1) We propose a time-series graph model and an iterative Bulk Synchronous Parallel programming

abstraction for composing sub-graph centric analytics over this data model (§ III–IV);
2) We discuss design patterns for classes of time-series graph analytics, and present a distributed graph

storage layout optimized for these access patterns (§ V);
3) We implement the iterative BSP abstraction and distributed layout as part of the GoFFish analytics

platform, and present an empirical evaluation of the abstractions and optimizations for sample graph
algorithms and datasets (§ VI).

II. RELATED WORK

With the advent of truly Big data sources with graph oriented structures in modern computing, there has
been a renewed focus on scalable and accessible platforms for their analysis. Current approaches can be
separated into three categories; Map/Reduce frameworks, Bulk Synchronous Parallel (BSP) frameworks,
and online processing systems. Our effort is focused on BSP and for offline queries. While many of the
mature frameworks offer complete distributed solutions, with fault tolerance and performance guarantees,
GoFFish focuses on exploring novel graph processing abstractions that are easy to use and can be scaled.
In this paper, we do not reinvent well understood reliability and recovery approaches.

Map/Reduce [11] has become a de facto abstraction for large data analysis, and has been applied to
graph data as well [12]. However its use for general purpose graph processing can lead to both performance
and usability concerns [13]. Iterative versions of Map/Reduce have been proposed to address some of the
limitations of the original abstraction [14]. Further extensions have added features for aggregation [15] and
SQL-like queries, but these are ill suited for graph processing, which is better served through a message
passing model [16]. However, it is possible to improve upon these frameworks through graph-specific
programming models. GoFFish is in this vein, combining prior work on BSP graph frameworks with
timeseries analysis using a sub-graph centric model [6], [17].

Google recently proposed the Pregel model [8] of vertex centric programming for large scale graph
processing, which also has similarities with GraphLab [18]. The Pregel model allows the programmer
to implement algorithms from the point of view of a single vertex which remarkably simplifies the
programming model for a large class of graph algorithms and allows for much simpler and quicker
development. Further, Pregel’s execution model is based on BSP [7], where computation is done through
a series of barriered iterations called supersteps. This model of parallel computing eliminates concerns of
deadlocks and data races common in asynchronous systems [16]. While the original BSP model fell out
of favor in parallel computing due to the large cost of superstep synchronization, for large graphs, one
can balance machine-level vertex computation load and use hierarchical synchronization to mitigate this
synchronization overhead. Further, with the push toward commodity hardware and Cloud infrastructure,
the emphasis is more on scalability than performance on HPC hardware.

The vertex-centric BSP model has been adopted by a variety of frameworks [17] like Giraph [9], Hama
and GPS [10] that implement improvements on the original idea. Giraph is currently the popular framework



in this space, being adopted by Facebook for large scale graph analysis on their network data. GPS is
a vertex-centric framework with support for dynamic repartitioning of the graph between hosts. Many
of these frameworks offer engineering optimizations to improve performance and simplify programming.
These include master compute methods, send- and receive-side message aggregation, dynamic partition
balancing, and message as well as graph memory compression techniques. Many of these optimizations
focus on reducing the effective number of messages passed around the system, both in memory and on
the network. This emphasis is because the number of messages correspond roughly to the number of
edges for a large class of graph algorithms. On large graphs with power law out-degree distributions, the
number of generated messages can flood both memory and network. However, part of the problem lies not
in engineering solutions but in that these frameworks do not deviate much from Pregel’s original vertex
centric model. This limits more significant optimizations possible within them.

Our earlier work on GoFFish improves on Pregel by proposing a subgraph centric model rather than
a vertex centric one [6]. For a large number of algorithms the amount of work performed per vertex is
so negligible that the overhead of massive parallelism can outweigh the benefits. By using a subgraph
as a unit of computation, we show that the efficiency of every worker is increased, and the number of
messages the framework must handle is dramatically reduced, since it is more a function of the number
of unique edges between sub-graphs that span partitions, rather than between vertices. This also results
in effectively more work being performed in each superstep, and thus requires fewer supersteps, with
associated synchronization overhead, to complete the application.

This comes at the cost of marginally increasing the complexity of the programming model, mixing
features of vertex centric and shared-memory graph abstractions. But for many applications the perfor-
mance and scalability improvements may be worth the costs. In this article, we further expand upon this
to support time-series graphs, which Pregel does not natively support and is punitive to implement naı̈vely
using the vertex centric approach. We also investigate a novel distributed data storage that is optimized for
time-series graphs. While Pregel does not prescribe any data storage, the Apache Giraph implementation
of Pregel retains the tuple-based HDFS for storing graphs, which impacts initial loading from disk to
memory even for single graphs.

Online processing systems such as Kineograph [3] and Trinity [19] are graph processing models that
focus heavily on the analysis of streaming information, and are thus purpose built for time evolving
graphs. These systems are able to process an large quantity of information with timeliness guarantees.
Kineograph’s approach can also potentially support time-series graphs using consistent snapshots with an
epoch commit protocol. Traditional graph algorithms are then run on top of each static snapshot. However,
GoFFish does not aim to provide streaming or online graph processing services, but rather more traditional
offline bulk processing on large datasets. Dealing with dynamic topologies and streaming data is not within
the scope of this paper.

III. ANALYTICS OVER TIME-SERIES GRAPHS

A. Time-series Graphs
Time-series graphs can be considered as snapshots of a graph recorded over time (Fig. 1). We define

a collection of time-series graphs as Γ = 〈Ĝ, G〉, where Ĝ is called a graph template that is the time
invariant topology, and G is an ordered set of graph instances, capturing time-variant values. Ĝ = (V̂ , Ê)
gives the set of vertices, v̂i ∈ V̂ , and edges, êj ∈ Ê : V̂ → V̂ , common to all instances. The graph
instance gt ∈ G at timestamp t is given by (V t, Et, t) where V and E capture the vertex and edge values
for V̂ and Ê at time t, |V t| = |V̂ | and |Et| = |Ê|. The set G is ordered in time.

Vertices and edges in the template have a defined set of typed attributes, A(V̂ ) = {id, α1, . . . , αm}
and A(Ê) = {id, β1, . . . , βn} respectively. All vertices and edges share the same set of attributes with



id being one of the unique identifier attribute. These similar attributes are also present in the instances,
except for the id attribute, which is set in the templateThus each vertex vti ∈ V t for a graph instance gt at
time t has a set of attribute values {v̂i.id, vti .αk, . . . , v

t
i .αm}, and each edge etj ∈ Et has attribute values

{êj.id, etj.βl, . . . , etj.βn},
A slow changing graph topology can be captured using the special isExists attribute flag that allows us

to simulate the appearance/disappearance of vertices or edges throughout the time-series.

B. Sample Applications
Analytics over individual graphs fall broadly into traversal (e.g. shortest path under changing conditions),

centrality detection (e.g. betweenness centrality at different points in time) and clustering algorithms (e.g.
evolution of community), among others. Applications over time-series graphs expand on these possibilities.

Centrality detection algorithms form a class of applications where the state of a vertex is analyzed
in raport with the rest. Example applications include the page rank algorithm where each vertex’s rank
relative to the other vertices’ rank is analyzed at each time snapshot. Since each graph instance contains
all the information required to determine if a vertex is present in a path, at a particular moment, such
analytics can operate on each instance independently. In that sense, they are similar to algorithms for
individual graphs, except that they are repeated for each graph instance.

Clustering algorithms discover the existence of localized, time-evolving patterns. While each pattern
can be identified independently for each instance, the individual results need to be aggregated at the end of
the execution to get the global view. Applications that can pe placed in this category range from studies on
the PageRank stability over time to analyzing the dynamics of a person’s social network and identifying
frequent clusters in gene expression networks. Here, the application initially operates on each instance
independently, but has to eventually perform an aggregation or analysis that spans the synthesized result
from each instance.

Traversal algorithms show a linear dependence between instances as information gathered in the past
drives traversals in the future. The shortest path over time-varying traffic conditions, presented in § I,
falls in this space, and can be applied to network packet tracing or meme propagation. Further, this
class includes minimum spanning trees to determine the optimal route for patrolling, and epidemiological
studies to find the time for a disease to spread. Here, there is either a strict sequential dependence between
one instance and its predecessor, or using information from a prior instance will help efficiently localize
the search on the next.

C. Design Patterns for Graph Analytics over Time
Based on these sample classes of algorithm we can synthesize three types of composition patterns for

temporal graph analytics. These are illustrated in Fig. 2 and described next.
1) Analysis over every graph instance is independent. The result from the application is just a union

of results from each graph instance;
2) Graph instances are eventually dependent. Each instance can execute independently but results

from all instances need to be aggregated or summarized to produce the final result;
3) Graphs instances are sequentially dependent. Here, analysis over a graph instance cannot start (or,

as a variation, complete) before the results from the previous graph instance are available.
These patterns have two purposes in mind: make it easy for users to design common time-series graph

analytics, and make it possible to efficiently scale them in a distributed environment. In the abstraction
(§ IV) and evaluation sections (§ VI) we show exemplar applications mapped to these three patterns and
empirically analyze them.

The independent pattern is similar to a Parallel For-Each construct. It allows concurrent execu-
tion over each graph instance with the parallelism that can be ideally exploited being equal to the number
of graph instances.
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Fig. 2: Design patterns for analytics on time-series graphs.

The eventually dependent pattern captures the Fork-Join paradigm. This brings in additional syn-
chronization capability for aggregation without compromising the parallelism. Pipelining can be facilitated
if the pattern is extended to an “incremental” join where the Merge step starts as soon as the first graph
instance completes, and ends when the last instance has finished executing.

The sequentially dependent pattern is a traditional sequential execution model. While it does not offer
concurrency across time (i.e. instances), as we shall see, the subgraph centric BSP abstraction allows for
spatial concurrency across vertices within a graph instance.

These models are not meant to be a comprehensive list and serve as the building blocks to help construct
a large class of applications while retaining concurrency. While they can be incrementally extended to
more complex patterns, e.g., monotonic dependency (a relaxation of sequential dependency), random
access across instances, etc. we omit discussing these cases in this paper in the interests of being concise.

IV. PROGRAMMING TIME-SERIES GRAPH ANALYTICS

In developing abstractions to fit the design patterns from § III, we build upon our recent work on
sub-graph centric programming abstractions targeted at distributed programming over single graphs. We
first present this initial model and then extend it with our novel iterative BSP model, along with several
time-series graph algorithms mapped to it.

A. Sub-graph Centric Programming Abstraction
A sub-graph centric distributed programming abstraction defines the graph application logic from the

perspective of a single sub-graph within a partitioned graph. A graph G = (V,E) is partitioned into n

partitions, 〈P1 = (V1, E1), · · · , Pn = (Vn, En)〉 such that
n⋃

i=1

Vi = V ,
n⋃

i=1

Ei = E, and ∀i 6= j : Vi∩Vj = ∅,

i.e. a vertex is present in only one partition, and all edges appear in one partitions, with the exception being
“remote” edges that can span two partitions; Ri = {ep|ep ∈ Ei and ∀ep : vq → vr, vq ∈ Vi and vr 6∈ Vi},
if the edges are directed. If undirected, then either the source or the sink vertex is present is another
partition. Conversely, “local” edges for a partition are those edges that are not remote; Li = {ep|ep ∈
Ei and ∀ep : vq → vr, both vq, vr ∈ Vi}. Typically, partitioning tries to ensure that the number of vertices,
|Vi|, is equal across partitions and the total number of remote edges,

∑n
i=1 |Ri|, is minimized.



Given this, a sub-graph within a partition is a maximal set of vertices that are connected through
“local” edges. A partition i may have between one and |Vi| sub-graphs.

In sub-graph centric programming, the user defines an application logic as a Compute method that
operates on a single sub-graph, independently. The method, upon completion, can exchange messages with
other sub-graphs, typically those that share a remote edge with the source sub-graph. A single execution
of the Compute method on all sub-graphs, each of which can execute concurrently, forms a superstep.
Execution proceeds as a series of coordinated supersteps, executed in a Bulk Synchronous Parallel (BSP)
model. Messages generated in one superstep are transmitted in “bulk” between supersteps, and available
to the Compute of the destination sub-graph in the next superstep. Execution stops when all Compute
methods Vote to Halt and there are no messages generated within a superstep. Fig. 3 illustrates this
execution model.

The sub-graph centric programming abstraction is itself an extension to the vertex centric model, where
the Compute logic is from the perspective of a single vertex [8]. Our prior work [6] shows the performance
benefits of this innovation by limiting both the number of supersteps requiring costly synchronization and
the number of messages exchanged. It also ease the programmability through the reuse of efficient, shared-
memory graph algorithms within a single sub-graph.

B. Iterative BSP for Time-series Graph Programming
Sub-graph centric BSP programming offers natural parallelism across the graph topology. But it operates

on a single graph instance. In a sense, a single BSP execution corresponds to one box in Fig. 2 that
operates on a single graph instance. Here, we use BSP as a building block to define an iterative BSP
(iBSP) abstraction that meets the design patterns proposed before. An iBSP application is a set of BSP
steps, also referred to as timesteps since each operates on a single graph instance in time. While the BSP
timestep itself can be opaque, we use the sub-graph centric abstraction consisting of supersteps as its
constituent. In a sense, the timestep iteration acts as an “outer loop” while the supersteps over sub-graphs
represent the “inner loop”. The execution order of the timesteps and the messages passed between them
decides the iBSP application’s design pattern as in § III.

Orchestration and Concurrency. An iBSP application operates over a graph collection, Γ, which, as
we defined earlier, is a list of time ordered graph instances. As before, the users implement a Compute
method which is invoked on every sub-graph and for every graph instance. In case of an eventually
dependent pattern, an optional Merge method is available for invocation after all instance timesteps
complete.

For a sequentially dependent pattern, only one graph instance and hence BSP timestep is active at a
time. The Compute method is called on all sub-graphs of the first instance to initiate the BSP, after the
completion of whose supersteps, the Compute method is called on all sub-graphs of the next instance
for the next timestep iteration, and so on till the last graph instance. So, while there is spatial concurrency
across sub-graphs in a BSP superstep, each timestep iteration is itself sequentially executed after the
previous. In case of an independent pattern, the Compute method can be called on any graph instance
independently, as long as the BSP is run on each instance exactly once. The application terminates when
all the BSP timesteps complete. Here, we have both spatial concurrency across sub-graphs and temporal
concurrency across graph instances. An eventually dependent pattern is similar, except that the Merge
method is called after the BSP timesteps complete on all instances of the graph collection. The parallelism
is similar to the independent pattern, except for the merge BSP which has to be additionally executed
last.

User Logic. The signatures of the Compute method and the Merge method, in case of an eventually
dependent pattern, implemented by the user are follows. The parameters are passed to these methods by
the execution framework.

Compute(SubgraphInstance sgInstance, int timestep, int superstep, Message[] msgs)
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on a single graph instance, and is itself decomposed into multiple supersteps as part of the sub-graph
centric abstraction. Graph instance data access takes place at the start of each BSP timestep.

Merge(SubgraphTemplate sgTemplate, int superstep, Message[] msgs)

Here, the SubgraphInstance has the time variant attribute values of the corresponding graph
instance for this BSP, in addition to the sub-graph topology that is time invariant. The timestep is
a sequential number that corresponds to the graph instance’s index, while the superstep corresponds
to the superstep number inside the BSP execution. If the superstep number is 1, it indicates the beginning
of an instance’s execution. Hence, it offers a context for interpreting the list of messages, msgs. In case
of a sequentially dependent application pattern, messages received when superstep=1 have arrived
from its preceding BSP instance upon its completion. Hence, it indicates the completion of the previous
timestep, start of the next timestep and helps to pass the state from one instance to the next. If, in
addition, the timestep=1, then this is the first BSP timestep and the messages are the inputs passed
to the application. For an independent or eventually dependent pattern, messages received when the
superstep=1 are application input messages since there is no notion of a previous instance. In cases
where superstep>1, these are messages received from the previous superstep inside a BSP.

Message Passing. Besides message passing between sub-graphs in supersteps, supported by the sub-
graph centric abstraction, the Compute and Merge methods can use these additional message passing
and application termination constructs, depending on the design pattern. SendToNextTimeStep(Message



msg), used in sequentially dependent pattern, passes message from a sub-graph to the next instance
of the same sub-graph, available at the start of the next timestep. This can be used to pass the end
state of an instance to the next instance. SendToSubgraphInNextTimeStep(long sgid, Message msg),
is similar, but allows a message to be targeted to another sub-graph in the next timestep’s instance.
SendMessageToMerge(Message msg) is used in the eventually dependent pattern by sub-graphs in any
timestep to pass messages to the merge method, which will be available after all timesteps complete
execution. VoteToHalt(), depending on context, can indicate the end of a BSP timestep, or the end of
the iBSP application in case this is the last timestep of a sequentially dependent pattern. It is also used
by the merge method to terminate the application.

Gopher Framework. Gopher is a distributed framework implementation of the sub-graph centric BSP
abstraction [6], which has been extended for the proposed iterative BSP model. It supports the new
user logic and messaging APIs mentioned above, and allows composition and distributed execution of
iBSP applications based on the three design patterns. Gopher works in tandem with the GoFS distributed
data storage for time-series graphs introduced next. This cooperation utilizes some of the computational
concurrency offered by the abstractions while also leveraging the data locality present in GoFS.

C. Sample iBSP Application
Algorithm 1 shows a sequentially dependent iBSP application that locates a vehicle, based on its license

place V, within a road network and tracks the vehicle over time across multiple instances. The graph
template is a road network, and the graph instances have vertex attributes with license plates of vehicles
seen at the intersection, for the duration of that instance (e.g. 5mins). The first timestep determines the
vehicle’s location in the entire graph and traces it spatially across sub-graphs, using message passing
across supersteps, it until it goes missing in the instance’s time duration. It then moves to the next
timestep containing the instance for the next 5mins, and resumes the traversal from the last known sub-
graph location, using message passing between timesteps. The algorithm terminates once all instances are
exhausted.

V. DISTRIBUTED STORAGE AND EXECUTION PATTERNS

Big data applications can quickly become I/O bound unless the data storage and layout on disk are
well planned for the intended usage patterns. While advanced database schema planning has given way
to flat, schema-free distributed storage using HDFS and no-SQL databases, the interconnected nature of
graph datasets, with the additional temporal dimension considered here, pose challenges to tuple-based
storage models.

We propose a Graph oriented File System (GoFS) for distributed storage of time-series graphs on
commodity clusters or Cloud VMs, with spinning disks. GoFS is architected for the data access patterns
associated with time-series graph analytics, though in effect, both the programming abstractions and the
data layout were co-designed. The typical usage model of GoFS is by Gopher, which loads subgraphs
in the local host’s graph partition, and scans through instances as part of the BSP timestep iterations.
The key tenets observed in this co-design are to: maximize concurrent execution, minimize network data
movement, reduce disk I/O, and increase the compute to I/O ratio. Given the write once/read many model
of GoFS, we trade off data layout cost against improved runtime performance. These choices are reflected
in the GoFS data layout design and Gopher runtime execution optimizations.

A. Partitioned Storage using Slices
GoFS can store multiple time-series graph collections, though we limit our discussions to storing a

single collection for simplicity. A subgraph within the entire graph forms the unit of computation for the
BSP model, so maximizing the concurrent execution of subgraphs in an instance is key. Since instances
share the same topology, GoFS partitions the graph template into as many partitions as the number of



Algorithm 1 Temporal Path Traversal using iterative BSP
1: procedure COMPUTE(Instance sgi, int iteration, int superstep, Message msgs[])
2: searchRoots ← ∅ . Vertices to begin search for V on
3: if superstep = 1 then . Initialize from previous iteration
4: if iteration = 1 then . Initialize from user input
5: v ← initial location
6: searchRoots.add(v)
7: else . Get the last vertex seen with the search value, V, from the previous iteration timestep.
8: v ← (argmaxm∈msgs{m.TimeStamp}).vertex
9: searchRoots.add(v)

10: end if
11: else . Process messages from previous superstep
12: for all Message m in msgs do
13: v ← m.vertex
14: searchRoots.add(v)
15: end for
16: end if

. Depth first search on sub-graph from last seen location
17: 〈 remoteSet, foundLocs 〉 ← DFS(sgi, searchDepth, V)

. If DFS crosses to neighboring sub-graph, send message to remote sub-graph to continue search in next superstep
18: for all 〈 remoteSG, remoteVertex 〉 in remoteSet do
19: Message m ← 〈 remoteVertex 〉
20: SENDTOSUBGRAPH(remoteSG, m)
21: end for
22: if Locations 6= ∅ then . If current instance exhausted, continue search in next timestep
23: for all 〈 vertex, TimeStamp 〉 in remoteSet do
24: . Send last known location message to next instance of the same sub-graph
25: Message m ← 〈 vertex, TimeStamp 〉
26: SENDTONEXTTIMESTEP(vertex, TimeStamp)
27: end for
28: end if
29: VOTETOHALT( )
30: end procedure

hosts in the cluster, and identifies one or more subgraphs for a partition. So each host works on at least
one subgraph for each instance.

Our default partitioning balances the number of vertices per partition and minimizes the remote edge
cuts. While this can translate to more even computational load per host and less messaging across them,
reality differs. Given that the unit of computation is a subgraph and hosts have multiple cores, an additional
partitioning goal should ensure equal number of uniform sizes subgraph per partition, preferring the number
of subgraphs as a multiple of the cores per host. This keeps all cores busy with work that has similar
time complexity. Intuitively, the BSP model is limited by the slowest subgraph in each superstep which
leads to idle workers [6]. This secondary goal is part of future work.

Slices are the unit of storage and access from disk (Fig. 4). A slice translates to a single file with a
serialized graph data structure. Given that a single slice may contain many chunks of information, bulk
reading of a slice at a time ensures that the disk latency is amortized across a chunk of logically related
bytes rather than performing random access. Slice types vary, and may contain graph topology, attributes,
metadata, and so on, as discussed below. Given this diversity and the inherent irregularity of graph data,
we allow slices sizes to span a range (O(MB)) while retaining the disk latency:bandwidth benefits.
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B. Iteration, Filtering and Projection
The large size of a time-series graph collection implies that we cannot retain it entirely in distributed

memory. At the same time, the time-series nature offers an inherent order to the instances that applications
may leverage (e.g. using a sequentially dependent pattern). As with other tuple-based No-SQL storage,
the GoFS access API provides an iterative model to retrieve graph instances in time order. The API itself
is subgraph centric; it provides an iterator over subgraphs within the partition (space), and an iterator over
instances for each subgraph (time).

Iterator<SubgraphTemplate> Partition.getSubgraphs()
Iterator<SubgraphInstance> SubgraphTemplate.getInstances(Time start, Time end,

AttrName[] vertexAttrs, AttrName[] edgeAttrs)

Template slices capture the topology and attribute schema for the subgraphs in the partition. If the
analytics is scoped to just the graph structure, only the template slices need to be accessed. The API only
operates on slices present on the local host and partition. This eliminates network transfer at the GoFS
layer at runtime and pushes cross-machine coordination to the Gopher application. So, within a partition,
a graph instance devolves to set of subgraph instances, described by their attribute values. Given this API,



a subgraph instance forms a logical unit of instance storage in the partition.
GoFS is a distributed graph data store, not a graph database. While ad hoc queries are out of scope,

the flexibility of a time-series graph model, with name-value pairs on vertices and edges, means that
applications are unlikely to access the entire collection on every run. Two queries we support in the GoFS
API are filtering instances on time and projecting attributes.

A collection may span many years or be stored at a very fine time granularity. While each instance can
capture a non-overlapping time duration (rather than a strict moment in time), analytics will often scan
over a temporal subset of instances. The GoFS access API allows a start and end time to be passed in as
arguments. A metadata slice maintains an index from time ranges in the collection to specific slices that
contain data related to a range, limiting temporal queries to access only those slices on disk.

Each vertex and edge may have many typed attributes, with corresponding values per instance. Ap-
plications frequently need only a few of these attributes. The GoFS API lets users pass vertex and edge
attribute names whose values should be returned (projected) in the subgraph instance. Rather than store all
attribute values for a subgraph instance on the same slice, we maintain separate attribute slices for each
attribute of an instance, with a metadata slice mapping the attribute name to the relevant slices (Fig. 4).
This too helps localize disk access.

Lastly, we also support constant and default values to be specified for a vertex or an edge attribute
as part of its template schema. This allows non-changing or infrequently changing attribute values to be
stored just once in the template slice, and overridden (if a default value, not if constant) by an instance.
The GoFS API makes the value inheritance transparent. It also gives users the ability to do more with
just the graph template.

C. Temporal Instance Packing
Spatial partitioning into subgraphs and projecting of attributes into slices helps separate independent

units of concurrent executions by the design patterns while minimizing the disk I/O. Now, we need to
ensure aggregation of data within slices, based on their colocated execution suggested by the design
patterns. This allows us do more compute per slice I/O read from disk to memory.

Co-temporal data is likely to show highly localized execution patterns. The iteration in the BSP is over
graph instances over linear time. While a sequentially dependent pattern exhibits a causal relationship
over time with a time-ordered execution, the other two patterns can also leverage (though they do not
have to) temporal locality across independent BSP timesteps. Hence, instances that are temporally local
will be accessed in close proximity during execution.

We take advantage of these patterns by packing nearby instances together within a single slice (Fig. 4).
Thus, an attribute slice storing a subgraph instance values will contain adjacent instances, and the slice
will contain instances that span a time duration. So reading this slice from disk to access one instance
will effectively load a sequence of instances. If this slice is cached in memory (as we discuss in § V-E),
operating over the next instance will not require a disk read.

The number or time duration of instances packed into a slice can be tuned. But the key aspect is that this
value has to be consistent across all subgraph instances. The typical BSP application loads and operates
on all subgraphs of a graph instance. So if even one of them forces a slice read due to skewed packing,
the penalty will be paid by all.

D. Subgraph Bin Packing and Ordered Iterators
In an ideal partitioning, we would have exactly as many uniform-sized subgraphs per partition as the

number of cores in the host. In reality, partitioning large graphs results in partitions with hundreds of
subgraphs with highly variable vertex and edge counts (§ VI-A). This causes two problems: numerous
slice files (sometimes, millions) and highly variable file sizes, causing imbalances in slice read times
across subgraphs and also imbalances in execution. While we could pack more time ranges into slices or



grouping multiple attributes into a slice, the locality between these is weaker, thus wasting disk I/O or
memory, and they fail to address imbalances in computation between large and small subgraphs.

To ameliorate this problem we introducing a subgraph bin packing scheme. Within a BSP timestep for
a graph instance, users will end up accessing all subgraphs in the partition. So there is high topological
locality. By having a fixed number of slices (bins) and packing multiple subgraphs into a slice (bin) to
balance the number of vertices/edges/vertices+edges in a bin, we limit the slice size and count. While the
GoFS API makes this binning opaque, it does suggest a balanced execution order for a BSP by returning
subgraphs in a bin-major order through the partition iterator. This also ensures that spatial locality for
slice access from disk is preserved, processing all subgraphs in a bin before moving to the next.

E. Slice Caching
The net effect of these optimizations is that a single slice (file on disk) can contain information for

several subgraphs and for several instances, which are colocated based on expected access patterns. To
fully take advantage of this locality, GoFS caches slices in memory, once loaded from disk, up to a
predetermined number of slots. We use a least recently used algorithm for cache eviction. The impact of
this is a marked reduction in the number of disk reads. The cache size is again configurable, and has to
balance the memory needs of the analytics application with the locality of its access instance pattern. The
API makes the caching transparent to the user.

In summary, GoFS implements a number of data layout optimizations to leverage instance locality and
caching. The temporal packing and subgraph binning offer increased read efficiency and cache hits, and
decrease the number of files on disk and open handles. These optimizations are targeted at graph instances,
which are incrementally loaded based on the application’s design pattern. The graph template is loaded
once and retained in memory, and hence has a fixed overhead.

VI. PERFORMANCE ANALYSIS

In this section, we empirically validate the use of the iBSP abstraction to construct analytics over
time-series graphs using Gopher. We also evaluate the impact of our proposed data layout optimizations
in GoFS, on various graph access patterns using micro-benchmarks, as well as on Gopher applications.

A. Dataset and Application
Time-series graphs are not yet collected and curated frequently in their natural form. Instead of

synthetically generating instance data from several widely available real graph topologies 1, we rather
use a single real world time-series graph dataset for our validation that captures temporal snapshots of
internet-work behavior. The graph template is a subset of the Internet constructed by periodically sending
network traceroutes from a dozen vantage hosts to 10 Million hosts around the world. Destination hosts
and intermediate routers form vertices in the template, identified by the their IPv4 address, and edges
represent hops in the trace. These traces are sent periodically to measure the latency and bandwidth,
among others, and a graph instance is created for every 2 hour window. The vertices and edges have both
static/slow changing attributes (e.g. IP address), and fast changing ones (e.g. hop latency, destination IP),
and zero or more values for each during each 2 hour window, depending on the numbers of traces that
passed through them during this period. We refer to this traceroute-based time-series graph as TR.

In all, the template has 19, 442, 778 vertices, 22, 782, 842 edges, a diameter of 25, and a small-world
structure reflecting the Internet topology. There are 7 attributes each for vertices and edges, with boolean,
integer, float and string types, and zero or more values per attribute per vertex/edge. There are 146 graph
instances, each spanning a 2 hour window, and covering a 12 day period of network statistics collection.

The TR time-series graph collection is partitioned across 12 hosts in a commodity cluster. The partitions
have between 1 and 285 sub-graph each, with the number of vertices/edge per sub-graph ranging from

1Stanford Network Analysis Project, http://snap.stanford.edu
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1/0 to 5, 803, 661/6, 511, 896 (Fig. 5). As can be imagined, there is an inverse correlation between the
number of sub-graphs in a partition and the sizes of sub-graphs in it. Each host has an 8-core Intel Xeon
CPU, 16 GB RAM and 1 TB SATA HDD and is inter-connected by a Gigabit Ethernet. The hosts run
64-bit Java 7 on Ubuntu Linux.

We implement three different applications, that span the three design patterns emphasized in this paper:
Single Source Shortest Path (SSSP) (sequentially dependent), N-hop latency (eventually dependent), and
PageRank (independent). SSSP finds the shortest path from a source IP address for an instance to all
other IP addresses using the A?/Dijkstra’s algorithm, with latency as the edge weight. These distances are
incrementally aggregated between instances. N-hop latency builds a histogram of latency times taken to
reach IPs that are ’N’ hops from a source IP; we use N = 6. These histograms are folded into a composite
in the merge step. Lastly, PageRank offers a form of network centrality, and is executed on each instance
independently by only considering edges that were active in a trace for that instance’s period.

These applications validate the ability to map meaningful time-series graph analytics to our design
patterns using the iBSP model. However, in the interests of space, we limit our detailed analysis to SSSP
because: (1) it is a popular, well-understood algorithm that is representative of other traversals; and (2) it
uses the sequential design pattern which is the most restrictive in terms of concurrency, hence outlying
the system’s behavior under constraints. Furthermore, we can compare these results with prior ones for
SSSP on a single template graph using a non-iterative sub-graph centric BSP [6].



B. Micro-benchmarks on GoFS Data Layout
There are three aspects of GoFS layout optimizations that we investigate here: temporal packing of

instances, bin packing of sub-graphs within a partition, and caching. The configuration of the first two
have to be decided at deployment time since they impact slice creation, while the cache size can be
configured at runtime by the client using GoFS. We use 4 different deployments of the TR time-series
graph collection, which combines a temporal packing of either 1 instance (i1) or 20 instances (i20) per
slice with a sub-graph bin packing with 20 bins (s20) or 40 bins (s40) per partition. Note that i1 refers to
no temporal instance packing, while we do not consider the case without sub-graph bin packing since the
performance degradation is too high. We also run experiments with caching disabled (c0), and caching
enabled with 14 slice slots (c14), where 14 slots are sufficient to fit at least one slice from each of the
14 attributes available for vertices and edges.

As a high level comparison, for each of the deployments, we scan through all the sub-graphs, and for
each, we load all their instances. This translates to about 152,000 sub-graph instances read. We then sum
the total read time for all instances for each sub-graph, and plot this total read time cumulatively for all
the sub-graphs. Fig. 6 shows this, with the sub-graphs on the X axis sorted from largest to smallest. So
X = 1 identifies the time to read all 146 instances of the largest sub-graph, while X = 1044 is the total
time to read all instances of all 1044 sub-graphs across the 12 partitions. We plot the cached version for
all deployments, and one non-cached version is shown.

The plot illustrates the overall benefits of temporal packing, when we compare s20-i20-c14 and s20-i1-
c14 (light and dark blue solid lines), and s40-i20-c14 and s40-i1-c14 (light and dark green dotted lines).
For large sub-graphs on the left, the size of just a single sub-graph instance on disk is large, and even
without temporal packing (i=1), the disk latency cost is amortized over the loading time of the large,
single-instance slice. With packing (i=20), we actually see poorer performance for large sub-graphs since
the slice size is much larger for 20 instances and there may be file fragmentation and memory pressure
effects. However, as we include more modest sized sub-graphs, the benefits of temporal packing starts
to be exhibited. The cross over point is about 80 sub-graphs, for s20, beyond which temporal packing
outperforms non-packing.

Similarly, for sub-graph bin packing, using 20 bins shows a marked benefit over 40 bins, with the
benefits being larger when temporal packing is not used. This is understandable since not using temporal
packing and using a large number of bins causes slice sizes to be smaller and the disk latency to dominate.
With temporal packing, there is a tangible but smaller difference between bin sizes of 20 and 40. As the
bin size increases, and tends towards the number of sub-graphs in the partition, this degenerates to non-bin
packing approach.

The impact of caching is apparent in the single gray solid line at the top shown for s20-i20-c0. It is
almost three time as large as the cached version for s20-i20-c14. Hence, the benefits of temporal packing
and sub-graph binning are reaped only when combined with caching, as otherwise, they fail to leverage
the pre-fetching benefits of locality end up I/O bound.

C. Application Benchmark of SSSP
We evaluate the iBSP implementation of temporal traversal of SSSP over multiple instances using

a sequentially dependent pattern. The iBSP SSSP is run on three different configurations of the TR
time-series graph, s20-i20-c0, s20-i1-c14 and s20-i20-c14, which are respectively temporal packing of 20
without caching, no temporal packing with caching, and temporal packing and caching enabled, all with
sub-graph binning enabled with 20 bins.

Fig. 7 studies the time taken per timestep iteration, each corresponding to an SSSP on one graph instance.
The Y axis shows the total time taken by one BSP while the X axis show sequentially increasing instances,
with the first 11 being shown for conciseness. The bars in each cluster refer to a different configuration
of GoFS. We can see that the first timestep dominates, and this is because the graph template is loaded
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as part of this timestep. Note that the template is loaded just once at the start of the iBSP application.
As we progress along the second and subsequent timesteps, we see modest differences in the timings for
each timestep for different GoFS configurations. The penalty for not caching is evident in the first bar for
s20-i20-c0, while the distinction between enabling temporal packing or not, in the second and third bars,
is less obvious. The domination of compute time for SSSP hides the differences, which also means that
the application is more compute bound than I/O bound, as we prefer.

Fig. 8 offers a different view for this same experiment, from the perspective of the cumulative number
of slices that are read from disk as the timesteps progress. Here, the lack of caching shows the high slope
for the solid light blue line for s20-i20-c0, while we see a tangible difference in the number of slices read
with and without temporal packing.
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VII. CONCLUSIONS

In summary, we have introduced and formalized the notion of time-series graph models as a first class
Big Data constituent that is of growing importance. We propose several design patterns for composing
analytics on top of this data model, and define an iterative BSP abstraction to define such patterns for
distributed execution. This leverages our existing work on sub-graph centric programming for single
graphs, and offers a high degree of parallelism, in space and in time. This concurrency is made use of by
Gopher which executes iBSP on commodity clusters, on conjunction with the GoFS distributed graph data
store, which is optimized for time-series graphs and the proposed design patterns. The benefits of these are
empirically validated for several GoFS configurations for a canonical iterative SSSP application. These
form a compelling basis for further investigation into this novel Big Data and distributed abstractions
space, with additional optimization problems open to leverage the degrees of parallelism that we have
exposed.
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