
Threshold Load Balancing With Weighted Tasks

Petra Berenbrink∗, Tom Friedetzky†, Frederik Mallmann-Trenn∗, Sepehr Meshkinfamfard†, and Chris Wastell†

∗School of Computing Science, Simon Fraser University, Burnaby, Canada
Email: petra@sfu.ca, fmallman@sfu.ca

†School of Engineering and Computing Sciences, Durham University, Durham, UK
Email: tom.friedetzky@dur.ac.uk, sepehr.meshkinfamfard@dur.ac.uk, christopher.wastell@dur.ac.uk

Abstract—We study threshold-based load balanc-
ing protocols for weighted tasks. We are given an
arbitrary graph G with n nodes (resources, bins) and
m > n tasks (balls). Initially the tasks are distributed
arbitrarily over the n nodes. The resources have a
threshold and we are interested in the balancing time,
i.e., the time it takes until the load of all resources is
below the threshold.
We distinguish between resource-based and user

based protocols. In the case of resource-based pro-
tocols resources with a load larger than the threshold
are allowed to send tasks to neighbouring resources.
In the case of user-based protocols tasks allocated
to resources with a load above the threshold decide
on their own whether to migrate to a neighboring
resource or not.
For resource-controlled protocols we present re-

sults for arbritary graphs. Our bounds are in terms
of the mixing time (for above-average thresholds) and
the hitting time (for tight thresholds) of the graph.
We relate the balancing time of resource-controlled

protocols for above-average thresholds in arbitrary
graphs to the mixing time of the graph and to the
hitting time for tight thresholds.
Our bounds are tight and, surprisingly, they are

independent of the weights of the tasks. For the user-
controlled migration we consider complete graphs
and derive bounds for both above-average and tight
thresholds.

Keywords-Load balancing; Random walks; Thresh-
old; Mixing time of random walks; Weighted Tasks.

I. Introduction
We study threshold-based balls-into-bins schemes that

can be used to balance load in distributed systems. The
balls usually model tasks or data and the bins model the
resources used to process the tasks or to store the data.
The performance of a distributed system often depends
on the maximum load of any of the machines. The higher
the maximum load, the longer the execution time of the
entire system. Hence, good load balancing schemes are
crucial for efficient computations on distributed systems.

Most balls-into-bins games studied theoretically so far
assume that the balls are of equal size. The size of a ball
usually measures the computation time of the task it
models, or the size of the data. However, this assumption

is unrealistic in many cases. In this paper we study load
balancing schemes with weighted balls which are, for
example, able to model task with different runtimes.

Here we are given an arbitrary graph G with n
nodes representing the resources (machines) and m > n
weighted tasks (balls) with a total weight of W . Initially
the tasks are distributed arbitrarily over the n nodes.
Similar to [1], [2], we assume every resource has a
threshold which is the maximum load the resource can
accept. The threshold is the same for all resources. We
distinguish between a tight threshold of W/n + wmax,
and above-average thresholds of (1 + ε) ·W/n + wmax,
where wmax is the maximum weight of any task and ε is
an arbitrary positive constant. Note that the thresholds
must be chosen appropriately. i.e. they must be at least
the average load. We assume that the average load can
either be derived in quickly by, for example, using a
diffusion load balancing process, or the threshold are
given by some external restriction. In this paper we are
interested in the balancing time, i.e., the time it takes
until the load of all resources is below the threshold.

We distinguish between resource-based protocols
where the resources with a load above the threshold
(called overloaded resources) are allowed to send tasks
to a neighboring resources, and user-based protocols
where each task on an overloaded resource decides au-
tonomously whether or not to migrate to a neighboring
resource.

For resource-based protocols we consider arbitrary
graphs. Our results are expressed in terms of the mixing
time (for above-average thresholds) and hitting time (for
tight thresholds) of random walks on the underlying
graph. Subsequently we will show that these bounds are
tight. For user-based protocols we only consider com-
plete graphs. In all cases our bounds (for the weighted
case) match the bounds of [1], [2]. All protocols we
consider are decentralized and do not require a global
view of the system.

A. Contributions
We follow the work of [1], [2] and study threshold-

based balls-into-bins protocols, but in contrast to these

papers we assume that the balls (tasks) have arbitrary
weights.

Resource-Controlled Protocols: For arbitrary graphs
G and above-average thresholds we show (Theorem
2) that the balancing time is O (τ(G) · logm) w.h.p.,
where τ(G) is the mixing time of a random walk on
G. Note that this bound does not depend on the
weights of the tasks. In [2] the authors show a bound of
O (H(G) · logn+ τ(G) · logm) on the expected balanc-
ing time, where H(G) is the hitting time of a random
walk on G (See Section I-C). Note that our bounds for
weighted tasks match their bound for uniform tasks and
are even stronger in the sense that we do not have the
hitting time in our bound. The reader may refer to Table
I-A to find a comparison of hitting times and mixing
times of several common graphs. From Theorem 3.7 of
[2] it follows that our bound is tight.

Graph Mixing Time Hitting Time
Complete Graph O(1) O(n)
Reg. Expander O(logn) O(n)
E.R. Random Graph O(logn) O(n)
Hypercube O(logn log logn) O(n)
Grid O(n) O(n logn)

Table I
Summary of mixing and hitting times for common graphs

For tight thresholds we show (Theorem 5) a bound of
O (H(G) · logm) on the expected balancing time. This
bound matches the bound presented in [2]. Again, the
bound is independent of the weight of the tasks. In
Observation 6 we show that this bound is also tight.

User-Controlled Protocols: We consider complete
graphs for above-average and tight thresholds. For
above-average thresholds we derive a bound of
O (wmax/wmin · logm) on the expected balancing time
(Theorem 9). wmax and wmin denote the maximum and
minimum weight of any task respecitively. Moreover,
for tight thresholds we derive (Lemma 10) a bound of
O
(
wmax/wmin

logm
n2

)
.

Both bounds match the bounds of [1] for uniform
weights. However for weighted balls our bounds include
the additional factor of wmax/wmin.

In Section IV, we briefly discuss experimental re-
sults highlighting cases where the theoretically derived
bounds for user-controlled migration are tight and where
not.

B. Related Work
There are many results about balls-into-bins games

for uniform balls. Here we concentrate on protocols for
weighted balls and on local protocols that use a threshold
to allocate the balls.

1) Thresholds: In [3] the authors consider parallel
threshold protocols, they investigate the trade-off be-
tween the number of rounds of communication between
the resources and the final load. Specifically, for given
number of rounds of communication r, they prove a
lower bound on the maximum load of Ω(r

√
logn log logn)

for n unit-sized balls and n resources.
The papers [1], [2] are the most closely related to our

work. However both publications only consider uniform
balls. In [1] the authors show results for threshold-
based balancing protocols for user-controlled migration
on complete graphs. For above-average thresholds they
show a bound on the balancing time of O(logm) and
O(n2 · logm) for tight thresholds. The results of [1]
were generalized to arbitrary graphs in [2]. For the
resource-controlled protocols they provide a bound of
O (H(G) logm) on the balancing time, where H(G) is
the hitting time of a random walk on G. They also show
an improved bound of O (H(G) · logn+ τ(G) · logm) for
above-average thresholds, where τ(G) is the mixing time
of a random walk on G. For the user-controlled protocol
they provide a bound of O

(
n5 · H(G) · logm

)
to reach

a balanced state.
In [4] the authors consider a sequential balls-into-bins

processes that randomly allocates m uniform balls into
n bins using thresholds. They analyze two allocation
schemes that achieve a close to optimal maximum load
ofdm/ne+ 1 and require only O(m) random choices.
2) Weighted balls: The authors of [5] were among

the first to consider the problem of allocating weighted
balls in parallel. Their key result is a generaliza-
tion of the upper bound presented in [6] to weighted
balls : Let wavg (wmax) denote the average (maxi-
mum) weight. They present a protocol that achieves
a maximum load of γ · (m/n · wavg + wmax) us-
ing O (log logn/(log γ · ((m/n) ·∆ + 1)) communication
rounds, where ∆ = wavg/wmax.

In [7] the authors investigate generic multiple-choice
balls-into-bins protocols with weighted balls, showing
some surprisingly counter-intuitive properties. In [8] the
authors investigate a sequential balls-into-bins process
where m weighted balls are allocated to n The process
allocates every ball into the least loaded of two randomly
chosen bins. The case where each of the m balls has
unit weight had been studied in [9]. The authors show
that the difference between the maximum load and the
average load does not increase with m. In [8] the authors
show that as long as the weight distribution has finite
second moment and satisfies a mild technical condition,
the gap between the load of the heaviest bin and the
load of the average bin is independent of the number
balls thrown. In [10] the authors consider the so-called
(1+β)-process where each ball goes to a random bin with
probability β and to the least-loaded of two randomly

chosen bins with a probability of (1 − β). The authors
show that for the (1 + β)-process the gap between
the minimum and average load is at most Θ(logn/β),
independent of m. They also show that the gap remains
Θ(logn/β) in the weighted case for a large class of weight
distributions.

In [11] the authors consider balls-into-bins games in
a user-controlled setting. In the beginning the balls are
arbitrarily distributed over the bins. The protocol works
in parallel rounds. In every round every user (ball) is
allowed to randomly select another bin and to move
to that bin if the load is smaller than the load of its
current bin. In particular, they provide an upper bound
on the balancing time of log logm+poly(n). In [12] these
results are generalized to weighted balls. They shows
that their protocol yields an expected balancing time
of O(nm∆3ε−2). Finally in [13] the latter result is gen-
eralized to weighted balls and resources with “speeds”.

C. Model
Let [m] = {1, 2, . . . ,m} be the set of tasks and let

[n] = {1, 2, . . . , n} be the set of resources. The resources
are connected by an arbitrary graph G = (V,E). Let
di be the degree of node i and d the maximum degree.
Tasks on a resource r can move to a neighboring resource
r′ if (r, r′) ∈ E.
Each task i ∈ [m] has an associated weight wi ∈ N.

Let wmax be the maximum weight and letW =
∑m
i=1 wi

be the total weight of all tasks. We assume that wmin ≥
1. If this is not the case, then one can easily scale all
parameters, such that wmin = 1.
Let

x(t) = (x1(t), x2(t), . . . , xn(t))

denote the load vector at the beginning of step t (before
the task removal) where xr(t) is the load of resource r.

X(t) = (X1(t), X2(t), . . . , Xn(t))

denotes the state of the system at the beginning of step
t, where Xr(t) is the random variable that denotes the
load of resource r. We use br(t) to denote the number
of balls on machine r at time t. Our protocols will use a
threshold

Tr = (1 + ε) ·W/n+ wmax

with ε ≥ 0.

D. Random walks
For an undirected, connected graph G let Pi,j be

the probability that the random walk moves from node
i to node j. We consider standard random walks for
non-regular graphs with transition matrix P , where
Pi,j = 1/d for i 6= j and (i, j) ∈ E and Pi,i = (d− di)/d.
Let P t be the t-th power of P . Then P ti,j is the prob-
ability that a random walk starting from node i is

located at node j after exactly t steps. The stationary
distribution of the random walk on G is called π(G) and
it is the uniform distribution for this random walk. Note
that, in general, the results in this paper hold for all
random walks where the stationary distribution equals
the uniform distribution.

In [14] the authors give a bound on the mixing time
τ(G) of the random walk, which is defined as the ex-
pected time it takes for the random walk (defined above)
on G to approach its the stationary distribution. A
statement of the result can be found in Lemma 12 the
appendix. From Lemma 12 it follows that we can assume
that τ(G) = 4 logn/µ, where µ is the spectral gap of P .
With λ1 ≥ λ2 ≥ . . . ≥ λn the n Eigenvalues of P we
have

µ := 1− max
2≤i≤n

{|λi|}.

The hitting time Hu,v(G) of a random walk is defined
as the time for a random walk to reach node v ∈ V
when starting from node u ∈ V . We define the maximum
hitting time as

H(G) := max
u,v∈V

Hu,v(G).

II. Resource-Controlled Migration

In this section, we consider a protocol in which each
overloaded resource determines whether or not tasks
should migrate (Algorithm II.1). Tasks which are cur-
rently assigned to resource r can only move to neigh-
boring resources of r (see the algorithm below). The
protocol is distributed and every node requires only
knowledge of its own load and the global threshold. The
algorithm in Figure II.1 shows one step of our protocol.

We assume that every resource stores all its tasks
in a stack data structure. If several balls arrive at the
same resource in one time step the balls are stored in an
arbitrary order. The height hir(t) of task i on resource r
at time t is the sum of the weights of all tasks in the data
structure that are positioned before i. We say task i is
cutting the threshold Tr if hir(t) < Tr and hir(t)+wi > Tr.
Each task on resource r ∈ [n] can either be completely

above, completely below, or cutting the threshold. Let
Iar (t) (Ibr(t)) be the sets of tasks on resource r that
are completely above (completely below) the threshold
at the beginning of step t. Icr(t) denotes the tasks
on resource r which partially above threshold at the
beginning of step t.
We say that a task is accepted by a resource if the

height of the task plus its weight is less than or equal
to the threshold. Note that once a task is accepted by a
resource, it will never leave that resource again. We call
these tasks inactive, and the tasks that are not accepted
by a resource are called active.

Algorithm II.1 Resource Controlled
for all All resources r in parallel do

if xr(t) > Tr then
Remove any task i ∈ Iar (t) ∪ Icr(t) and reallocate
the task to a neighboring resource that is chosen
according to transition matrix P .

Assign new heights to all migrated balls

A. Above-Average Thresholds
In this section, we assume thresholds are larger by

some constant factor than the average load W/n. The
next lemma will be used in the proof of this sections
main result. It estimates the probability that a randomly
chosen resource has a load below or equal to the thresh-
old. The result is quite easy to see and it allows us in
Section III to simplify the potential analysis of [1].

Lemma 1. Assume that r is a resource chosen uniformly
at random in step t. Then

P [X(t+ 1) ≤ Tr] ≥ ε/(1 + ε).

Proof: From a simple pigeonhole argument it follows
that at any point in time (meaning also at the end of a
step) there is a fraction of ε/(1 + ε) resources that can
accept an additional task of any weight not larger than
wmax. Assume this is not the case. Then there are at
least

(1− ε/(1 + ε)) · n+ 1

many resources with a weight of at least (1 + ε) ·W/n.
Then

((1− ε/(1 + ε)) · n+ 1)(1 + ε) ·W/n > W,

which is a contradiction.
The following result holds for arbitrary graphs. It is

stated in terms of the performance a random walk on
G. Let τ(G) denote the mixing time of the underlying
Markov chain. For complete graphs the result shows a
balancing time of O(logm).

Theorem 2. Assume Tr = (1+ε)·W/n+wmax. Assume
that G is an arbitrary graph with mixing time τ(G). Let
c be an arbitrary constant. Then, with a probability of
1− n−c all tasks are allocated after

4(c+ 1) · τ(G) · logm
log(1 + ε)

time steps.

Proof: Following our algorithm we can assume that
every active task performs a random walk with transition
matrix P , until it reaches a resource that has a load that
is small enough to accept the task. If a task is accepted
by a resource, the task becomes inactive. All other tasks

are active. We now divide the time steps into phases of
length 2τ(G) each, where τ is the mixing time of the
random walk on G.

We fix a phase j and an active task i and assume that
task i is still active in the last step of phase j. Let ri,j
be the resource that it visits in the last step of phase j.
From Lemma 12 it follows for every 1 ≤ k ≤ n that

P [ri,j = k] = n−1 ± n−3.

From Lemma 1 it follows that the probability that
task i is successful in the last step in phase j is at least

εn

1 + ε
·
(

1
n
− 1
n3

)
≥ ε

2(1 + ε) .

Now assume that after ` logm many rounds, with ` =
2(c + 1) · logm/ log(1 + ε), there exists a task i that is
still active. A necessary condition for the task to still be
active is that it was not accepted by any resource in any
of the last steps of the ` phases. The probability that
the task was not accepted by an resource in any of the
last steps of each of the ` rounds is at most(

1− ε

2(1 + ε)

)`
≤
(

1
m

)c+1
.

The result follows from the union bound.

B. Tight Threshold
The next theorem shows results for a tighter threshold

Tr = W/n+ 2wmax.

Our result bounds the balancing time in terms of the
hitting time H(G).

We call an assignment of the weighted tasks to the
resources proper if no resource has a weight of more that
W/n+wmax. Note that it is trivial to calculate a proper
assignment. The simple first fit rule will work.

To analyze the protocol we will use a potential func-
tion that counts the weights of the tasks that are par-
tially or completely above the threshold. At any t ≥ 0
the potential Φ is defined as

Φ(X(t)) =
∑

i∈Ia(t)∪Ic(t)

wi. (1)

For any t > 0 the potential change between subsequent
states X(t) and X(t+ 1) is defined as

∆Φ(t+ 1) = Φ(X(t))− Φ(X(t+ 1)). (2)

The next observation shows that the potential func-
tion is non-increasing.

Observation 3. For any t > 0 we have

∆Φ(t+ 1) ≥ 0.

Proof: Based on the definition, at any time t > 0,

any task i can either be in Ic(t) ∪ Ia(t) or Ib(t). For
the ease of presentation we assume that the protocol
considers the tasks sequentially in an arbitrary order. In
the following, we call a step where one of the tasks is
considered a sub-step. Assume that task i is one of the
tasks that is moved to a neighboring resource in sub-step
t′. Note that task i can be moved to another resource if
and only if i ∈ Ic(t) ∪ Ia(t) at the beginning of step t.
At the beginning of step t + 1, either i ∈ Ic(t + 1) ∪
Ia(t+ 1) or i ∈ Ib(t+ 1). In the first case the potential
remains unchanged, in the latter case ∆Φ(t + 1) = wi.
Also, note that due to our stack ordering the potential
does not change due to a task that did not move to
another resource in sub-step t′.

The next lemma estimates the one-step potential de-
crease.

Lemma 4. Assume Tr = W/n+ 2wmax.

E [∆Φ(t+ 2H(G)) | X(t) = x(t)] ≥ Φ(X(t))
4 .

Proof: Here we consider a phase of length 2H(G),
where H is the hitting time. At the beginning of a phase
we assign each active task to one of the resources such
that the maximum load of any resource is at mostW/n+
wmax. This bin is called the target bin of the task. Then
for every active task we place a pebble on its resource.
The pebbles perform a random walk of length H(G). If a
pebble hits the target bin of the corresponding task then
the task is coloured blue. Otherwise the task is coloured
red.

Let B (R) be the set of blue (red) tasks and W (B)
(W (R)) be the total weight of the blue (red) tasks. Recall
that Φ(X(t)) is the weight of the active tasks at the
beginning step t and

Φ(x(t)) = W (B) +W (R).

Let X ′ be the state in which all tasks are assigned
to the same resource as in X(t). In addition to these
tokens, we assign all the blue tasks to their targets. Let
∆Φ′(X(t)) be the potential drop which happens due to
the assignment of the blue tasks. Using Markov’s bound
it follows that a random walk hits its target with a
probability of 1/2. Hence

∆Φ′(X(t)) ≥ Φ(X(t))/2.

Now we consider the original process where every task
performs a random walk until it reaches a resource that
has a load that is small enough to accept the task. Our
goal is to show

Φ(X(t))− Φ(X(t+ 2H(G))) ≥ ∆Φ′(X(t))
2 ≥ Φ(X(t))

4 .

Without loss of generality, we assume that the tasks

follow their pebble, as long as they were not accepted
by one of the resource (in which case they are accepted
by the resource and become inactive). We now split the
resources into two sets. Resources that were not able to
accept all incoming tasks during the phase are called full.
These resources have a load larger thanW/n+wmax. The
other resources are called good. Note that a resource is
either full or good.

Additionally, we partition the blue tasks and the red
tasks into three sets. The tasks of Bg are blue tasks that
are accepted by a good resource, and the tasks of Rg
are red tasks that are accepted by a good resource. Note
that this means that they did not steal the position of
another task in its target bin. The tasks Bf (Rf) are
blue (red) tasks accepted by a full resource. Finally, the
tasks that are still active at the end of Phase i are in
the sets Bn and Rn. Note that

∆Φ′(X(t)) = W (B) = W (Bg) +W (Bf) +W (Bn)

and

Φ(X(t+ 2H))
= Φ(X(t))− (W (Bg) +W (Bf) +W (Rg) +W (Bf)).

In the following, we show that W (Bf) + W (Rf) ≥
W (Bn). Then it follows from Observation 13 in the
appendix that

Φ(X(t)) ≥ ∆Φ′(X(t))
2 .

To show that W (Bf) + W (Rf) ≥ W (Bn) we assume
that `b is the total weight of the tasks that are accepted
by resource b at the beginning of the phase. Then we get
that

W (Bn) ≤
∑

b∈Full

W

n
+ wmax − `b.

This holds since
∑
b∈Full W/n + wmax − `b is an upper

bound on the total number of blue tasks that can
assigned to a full resource during the phase (recall, A′
uses the threshold T ′ = W/n+ wmax). Additionally,

W (Rf) +W (Bf) ≥
∑

b∈Full

W

n
+ wmax − `b.

This holds due to the definition of a full resource which
is a resource that has a load larger than W/n + wmax
(recall that A uses the threshold T = W/n + 2wmax).
This concludes the proof of this lemma.

Now we use the above lemma to show the following
result.

Theorem 5. Assume Tr = W/n+ 2wmax. Let H(G) be
the hitting time of the random walk on G with uniform
stationary distribution. Let T be the time it takes until

all balls are allocated. Then

E [t] = O (H(G) · ln(W)) .

Proof: Since the maximum potential is bounded by
W this follows from the Drift Theorem in Lemma 11 in
the Appendix.
The next observation shows that the bound of Theo-

rem 5 is tight for uniform tasks. For weighted tasks the
bound is not tight because the total weight W is super-
polynomial in m.

Observation 6. There is a class of graphs such that the
resource based protocol converges to a balanced state in
an expected number of steps of Ω (H(G) · logm) for tight
thresholds.

Proof: The proof follows the same line of argument
as the proof of Theorem 3.7 in [2]. Instead of two cliques
glued together with k edges we use the following graph
G. Let G consists of a clique K of n − 1 nodes and
one single node u. This single node is connected to
exactly k nodes of the clique for some arbitrary k < n.
The hitting time of this graph is Θ(n2/k). Initially, we
distribute the tasks on nodes of K in such a way that
all nodes in K have a load of W/n the remaining balls
are distributed on an arbitrary node of K.. . By using
the same arguments as in [2] the required time becomes

Ω (H log(m/n)) = Ω (H log(m))

for m� n.

III. User-Controlled Migration

In this section, we consider user-controlled protocols
for complete graphs. Before defining the protocol, we
first present some necessary definitions.

We assume that the resources store the tasks in a
stack data structure. Recall, the height hir(t) of task i in
resource r is the sum of the weights of all task that are
positioned before i. We say task i is cutting the threshold
if hri (t) < Tr and hir(t) +wi > Tr. Then the potential of
an overloaded resource r is called Φr(t) and counts the
weight of the task which is cutting the threshold (if there
is any) plus the weights of the tasks which are above the
threshold. The potential of a non-overloaded resource is
zero. The potential Φ(t) at step t is defined as

Φ(t) =
n∑
i=1

Φi(t).

The user-controlled protocol works as follows. Tasks
leave an overloaded resource with a probability of α ·⌈

φr

wmax

⌉
· 1
br

and move to a randomly chosen resource.

Algorithm III.1 User-Controlled
for all All users do in parallel do
Let r(i) be the resource allocated by user i.
if xr(i) > Tr then
With probability α ·

⌈
φr

wmax

⌉
· 1
br

migrate to re-
source choosen uniformly at random.

A. Above-Average Thresholds

To analyze the potential change we assume that the
resources store the tasks in a stack data structure. We
consider tasks leaving one after the other starting with
all tasks leaving Resource 1, then Resource 2, and so on.
For every resource we consider the tasks in the order of
increasing heights. If it is clear from the context and the
time step t is fixed, we will just write Φr, br, and xr.
The potential Φ(t+ 1))
• decreases by wi for every task i which was above

the threshold (hr(t) + wi > Tr) and migrates to a
resource r′ such that hr′(t+ 1) + wi ≤ Tr

• does not change for every task i which was above
the threshold (hr(t) + wi > Tr) and migrates to a
resource r′ such that hr′(t+ 1) + wi > Tr

• increases by wi for every task i which was below
the threshold (hr(t) + wi ≤ Tr) and migrates to a
resource r′ such that hr′(t+ 1) + wi > Tr.

For the sake of presentation, the potential change
caused by task i leaving r is accounted for at resource r
as opposed to at the resource r′.
First observe the following.

Observation 7. Let t be an arbitrary time step and
Φr(t) > 0. Then the number of tasks required to leave
r such that x(t+ 1) < Tr is at least

φ′r = dΦr/wmaxe.

We now calculate the one-step potential change. First
we assume wmin = wmax = 1, then the potential change
can be estimated in the following way.

E [∆Φr|i balls leave] ≥
{

ε
1+ε · i if i ≤ φ′r balls leave
φ′r − i if i > φ′r balls leave.

In the first case fewer than φ′ tasks leave, meaning
that the potential decreases. Note that it does not matter
if tasks above the threshold or below the threshold leave
since wmax = wmin, but also since i ≤ φ′ which is a key
insight for the case where wmax 6= wmin. The second case
is pessimistic and assumes 1) that the φ′r tasks leaving
from above the threshold move to an overloaded resource
and 2) that an additional (i−φ′r) tasks leave from below
the threshold and move to a resource with a load ≥ Tr
such that they are above the threshold.

From Lemma 1 it follows that there is a fraction of
ε/(1 + ε) ·n resources which can accept additional tasks
and which are still not overloaded at the end of a round.
Hence, the probability that a leaving task decreases the
potential Φ is at least ε/(1 + ε).
In the weighted setting, the potential decreases if

i ≤ φ′r tasks leave and land on an underloaded resource.
Since every task leaves with the same probability we can
assume that the expected size of a leaving task is xr/br.
If i > φ′r tasks leave resource r, then we forget about
the tasks that move from above the threshold again and
assume a potential increase by at most (i − φ) · xr/br.
Hence, in the weighted setting we have the following
bounds on the potential change.

E [∆Φr|i balls leave] ≥
{

ε
1+ε · i ·

xr

br
if i ≤ φ′r balls leave

(φ′r − i)xr

br
if i > φ′r balls leave.

We note that for the first case, due to the definition of
φ′r, the potential decreases in expectation by xr

br
for every

leaving task even if the height of this task is below the
threshold .

In the next lemma we use that observation to calculate
the one-step potential drop.

Lemma 8. Let α = ε
120(1+ε) . Assume Tr = (1 + ε) ·

W/n+ wmax and Φ(X(t)) > 0. We have

E [∆Φ(t+ 1) | X(t) = x(t)] ≥ 1
2 ·

ε

1 + ε
· Φ(X(t)).

Proof: Let pr(i) denote the probability that exactly
i tasks leave resource r. We emphasize that all tasks on
a given resource have the same probability to leave. For
1 ≤ i ≤ br we define a random variable Yr(i) which is
one if task i on resource r leaves and zero otherwise.

E [∆Φr(t+ 1) | X(t) = x(t)]

=
br∑
i=0

E [∆Φr|i balls leave] · pr(i)

≥
φ′

r∑
i=1

ε

1 + ε
· i · xr

br
· pr(i)−

br∑
i=φ′

r+1
i · xr
br
· pr(i)

≥ xr
br

br∑
i=1

ε

1 + ε
· i · pr(i)− 2xr

br

br∑
i=φ′

r+1
i · pr(i)

= xr
br

ε

1 + ε
· E

[
br∑
i=1

Yr(i)
]
− 2 · xr

br

br∑
i=φ′

r+1
i · pr(i),

where for the last step we used the fact that all tasks
move with the same probability. Since

E[Yr(i)] = α ·
⌈

Φr
wmax

⌉
· 1
br
,

we get E
[∑br

i=1 Yr(i)
]

= α ·
⌈

Φr

wmax

⌉
. We now bound∑br

i=φ′
r+1 i · pr(i). We first observe that the term is

maximized for small values of φr. Since φ′r ≥ 1 we derive
br∑

i=φ′
r+1

i · pr(i) =
br∑

i=φ′
r+1

i

(
br
i

)(
α

⌈
Φr
wmax

⌉
· 1
br

)i

·
(

1− α
⌈

Φr
wmax

⌉
· 1
br

)br−i

≤
br∑

i=φ′
r+1

i

(
br
i

)(
α

⌈
Φr
wmax

⌉
· 1
br

)i

≤
br∑

i=φ′
r+1

i

(
α
e · br
i
·
⌈

Φr
wmax

⌉
· 1
br

)i

≤
br∑

i=φ′
r+1

i

α e · br⌈
Φr

wmax

⌉⌈ Φr
wmax

⌉
· 1
br

i

≤
∞∑
i=2

i(eα)i ≤ 30α2.

For α = 1
120(1+ε) we have

E [∆Φr(t+ 1) | X(t) = x(t)]

≥ 1
(1 + ε)

⌈
Φr
wmax

⌉
· α · xr

br
− 60α2 · xr

br

≥ α · 1
2(1 + ε) ·

xr
br
· (Φr)
wmax

≥ α · 1
2(1 + ε) ·

wmin
wmax

· Φr

Summing over all resources r with Φr > 0 yields

E [∆Φ(t+ 1) | X(t) = x(t)]

≥ α · ε

2(1 + ε) ·
wmin
wmax

· Φ.

We can now use the above lemma to show the follow-
ing result for complete graphs.

Theorem 9. Assume Tr = (1 + ε) ·W/n + wmax and
α = ε

120·(1+ε) . Let T be the time it takes until all tasks
are allocated. Then

E [T] = 2 · 1 + ε

α · ε
· wmax
wmin

· logm.

Proof: The theorem follows from Lemma 8 together
with the Drift Theorem (see Lemma 11).

B. Tight Threshold
In this section we show results for tight thresholds on

complete graphs.

Theorem 10. Assume Tr = W/n+wmax and α ≤ 1
120n .

Let T be the time it takes until all tasks are allocated.
Then

E [T] = 2 · n
α
· wmax
wmin

· logm.

Proof: It is easy to see that at any point in time
there is at least one resource which can accept an
additional task of any weight at most wmax. Therefore,
by replacing ε/(1 + ε) with 1/n and setting α � 1

n in
the proof of Theorem 9 the result follows.

IV. Simulations
In this section, we show some simulation results for

the user-controlled protocol and complete graphs. Note
that our bounds for the resource-controlled protocols
are tight. In our simulations we assume wmin = 1,
ε = 0.2, and α = 1. We also assume that all tasks are
initially situated on the same resource. Each data point
is obtained by averaging over 1000 trials.

In Figure 1 we have two different task sizes. All tasks
have with wmin = 1 or wmax = 50. The x-axis shows
the total task weight W . k denotes the number of tasks
with weight wmax and m(W,k) = W − k · wmax is the
number of tasks with weight wmin = 1.
The simulation shows that the balancing time is pro-

portional to the logarithm of m(W,k) + k. Hence, the
results seems to be more or less independent of the
number of big balls.

2000 3000 4000 5000 6000 7000 8000 9000 10000
W

0

50

100

150

200

250

300

b
a
la

n
ci

n
g
 t

im
e
 (

ro
u
n
d
s)

k=1

k=5

k=10

k=20

k=50

Figure 1. Balancing time in terms of k, where k denotes the
number of tasks with weight wmax = 50 and n = 1000.

Given the outcome of the first simulation, we now
consider in Figure 2 the case where there is only one task
with weight wmax. On the x-axis we have the number of
tasks and on the y-axis the balancing time, normalized
by logm. We show results for different sizes of maximum
ball weights. This simulation suggests that the upper
bound of Theorem 9 is tight up to a constant factor; the
balancing time of the simulation is logarithmic in m and
almost linear in wmax/wmin.

0 1000 2000 3000 4000 5000
number of tasks

0

10

20

30

40

50

60

70

80

b
a
la

n
ci

n
g
 t

im
e
 (

ro
u
n
d
s)

 /
 l
o
g
(m

)

w_max=1

w_max=2

w_max=4

w_max=8

w_max=16

w_max=32

w_max=64

w_max=128

w_max=256

Figure 2. Balancing time in terms of wmax with n = 1000.

Our simulations show that a small value of α is not
necessary. We are leaving it as an open question whether
the theoretical bound can also be shown for α = 1.

References
[1] H. Ackermann, S. Fischer, M. Hoefer, and

M. Schöngens, “Distributed algorithms for qos
load balancing,” Distributed Computing, vol. 23,
no. 5-6, pp. 321–330, 2011. [Online]. Available:
http://dx.doi.org/10.1007/s00446-010-0125-1

[2] S. Hoefer and T. Sauerwald, “Threshold load balancing
in networks,” CoRR, vol. abs/1306.1402, 2013. [Online].
Available: http://arxiv.org/abs/1306.1402

[3] M. Adler, S. Chakrabarti, M. Mitzen-
macher, and L. Rasmussen, “Parallel random-
ized load balancing,” Random Struct. Algorithms,
vol. 13, no. 2, pp. 159–188, 1998. [On-
line]. Available: http://dx.doi.org/10.1002/(SICI)1098-
2418(199809)13:2<159::AID-RSA3>3.0.CO;2-Q

[4] P. Berenbrink, K. Khodamoradi, T. Sauerwald, and
A. Stauffer, “Balls-into-bins with nearly optimal load
distribution,” in 25th ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’13, Montreal, QC,
Canada - July 23 - 25, 2013, 2013, pp. 326–335. [Online].
Available: http://doi.acm.org/10.1145/2486159.2486191

[5] P. Berenbrink, F. Meyer auf der Heide, and
K. Schröder, “Allocating weighted jobs in parallel,”
in Proceedings of the Ninth Annual ACM Symposium on
Parallel Algorithms and Architectures, ser. SPAA ’97.
New York, NY, USA: ACM, 1997, pp. 302–310. [Online].
Available: http://doi.acm.org/10.1145/258492.258522

[6] V. Stemann, “Parallel balanced allocations,” in
Proceedings of the Eighth Annual ACM Symposium
on Parallel Algorithms and Architectures, ser.
SPAA ’96. New York, NY, USA: ACM,
1996, pp. 261–269. [Online]. Available:
http://doi.acm.org.proxy.lib.sfu.ca/10.1145/237502.237565

[7] P. Berenbrink, T. Friedetzky, Z. Hu, and R. Martin,
“On weighted balls-into-bins games,” Theor. Comput.
Sci., vol. 409, no. 3, pp. 511–520, 2008. [Online].
Available: http://dx.doi.org/10.1016/j.tcs.2008.09.023

[8] K. Talwar and U. Wieder, “Balanced allocations: the
weighted case,” in Proceedings of the 39th Annual ACM
Symposium on Theory of Computing, San Diego, Califor-
nia, USA, June 11-13, 2007, 2007, pp. 256–265. [Online].
Available: http://doi.acm.org/10.1145/1250790.1250829

[9] P. Berenbrink, A. Czumaj, A. Steger, and
B. Vöcking, “Balanced allocations: The heav-
ily loaded case,” SIAM J. Comput., vol. 35,
no. 6, pp. 1350–1385, 2006. [Online]. Available:
http://dx.doi.org/10.1137/S009753970444435X

[10] Y. Peres, K. Talwar, and U. Wieder,
“The (1 + beta)-choice process and weighted
balls-into-bins,” in Proceedings of the Twenty-
First Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2010, Austin, Texas, USA, January 17-
19, 2010, 2010, pp. 1613–1619. [Online]. Available:
http://dx.doi.org/10.1137/1.9781611973075.131

[11] P. Berenbrink, T. Friedetzky, L. Goldberg,
P. Goldberg, Z. Hu, and R. Martin, “Distributed
selfish load balancing,” SIAM J. Comput., vol. 37,
no. 4, pp. 1163–1181, 2007. [Online]. Available:
http://dx.doi.org/10.1137/060660345

[12] P. Berenbrink, T. Friedetzky, I. Hajirasouliha, and
Z. Hu, “Convergence to equilibria in distributed,
selfish reallocation processes with weighted tasks,”
Algorithmica, vol. 62, no. 3-4, pp. 767–786, 2012.
[Online]. Available: http://dx.doi.org/10.1007/s00453-
010-9482-1

[13] C. Adolphs and P. Berenbrink, “Distributed selfish
load balancing with weights and speeds,” in
ACM Symposium on Principles of Distributed Comput-
ing, PODC ’12, Funchal, Madeira, Portugal, July 16-
18, 2012, 2012, pp. 135–144. [Online]. Available:
http://doi.acm.org/10.1145/2332432.2332460

[14] D. Levin, Y. Peres, and E. Wilmer, Markov chains and
mixing times. American Mathematical Society, 2006.

[15] B. Doerr and S. Pohl, “Run-time analysis of the (1+1)
evolutionary algorithm optimizing linear functions over
a finite alphabet,” in Genetic and Evolutionary Compu-
tation Conference, GECCO ’12, Philadelphia, PA, USA,
July 7-11, 2012, 2012, pp. 1317–1324. [Online]. Available:
http://doi.acm.org/10.1145/2330163.2330346

V. Appendix
A. Auxiliary Results

In this section we present some results that we used in
our proofs. The first result is a well-known drift theorem.
This version is from [15], similar results can be found in
many publications.

Lemma 11. Let S ⊆ R be a finite set of positive numbers
with minimum smin. Let {V (t)}t∈N be a sequence of
random variables over S ∪ {0}. Let T be the random
variable that denotes the first point in time t ∈ N for
which V (t) = 0. Suppose that there exists a constant
δ > 0 such that

E [V (t)− V (t+ 1) | V (t) = s] ≥ δs (3)

holds for all s ∈ S with P [V (t) = s] > 0. Then for all
s0 ∈ S with P [V (0) = s0] > 0,

E [T | V (0) = s0] ≤ 1 + ln(s0/smin)
δ

. (4)

The following Lemma is shown in [14].

Lemma 12. Let G be an arbitrary. Let P be the
transition matrix of a random walk on G with . Let
t ≥ 4 logn/µ, where µ is the spectral gap of P. Then
Pt

i,j = πi ± n−3.

B. Missing Proofs
The following observation is used in the proof of

Lemma 4

Observation 13. Using the definitions from Lemma 4
we get

∆Φ(t+ τ(G)) ≥ 1
2∆Φ′(t+ τ(G)).

Proof: Clearly W (Bg) ≥ 0 and W (Rf) ≥ 0, and
therefore W (Bg) +W (Rf) ≥ 0. Adding W (Rf) on both
sides gives

W (Bg) + 2W (Rf) ≥W (Rf).

Adding a W (Bf) on both sides gives

W (Bg) + 2W (Rf) +W (Bf) ≥W (Rf) +W (Bf)

Since W (Bf) +W (Rf) ≥W (Bn) we have

W (Bg) + 2W (Rf) +W (Bf) ≥W (Bn).

Dividing both sides by 2 gives

W (Bg)/2 +W (Rf) +W (Bf)/2 ≥W (Bn)/2.

Adding W (Bg)/2 +W (Bf)/2 on both sides gives

W (Bg) +W (Rf) +W (Bf)
≥W (Bg)/2 +W (Bf)/2 +W (Bn)/2

= 1
2(W (Bg) +W (Bf) +W (Bn)).

The LHS is just ∆Φ(t+ τ(G))−W (Rg), and the RHS
is 1

2∆Φ′(t+ τ(G)), so we obtain

∆Φ(t+ τ(G))−W (Rg) ≥
1
2∆Φ′(t+ τ(G)),

and asW (Rg) ≥ 0 the claim of ∆Φ(t+τ(G)) ≥ 1
2∆Φ′(t+

τ(G)) follows.

