
HAL Id: hal-01292135
https://hal.science/hal-01292135

Submitted on 30 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GinFlow: A Decentralised Adaptive Workflow Execution
Manager

Javier Rojas Balderrama, Matthieu Simonin, Cédric Tedeschi

To cite this version:
Javier Rojas Balderrama, Matthieu Simonin, Cédric Tedeschi. GinFlow: A Decentralised Adaptive
Workflow Execution Manager. 30th IEEE International Parallel & Distributed Processing Symposium,
May 2016, Chicago, United States. �hal-01292135�

https://hal.science/hal-01292135
https://hal.archives-ouvertes.fr


GinFlow: A Decentralised Adaptive Workflow
Execution Manager

Javier Rojas Balderrama
Signal and Image Processing Laboratory (LTSI)

Inserm – Université de Rennes 1, France
javier.rojas-balderrama@univ-rennes1.fr

Matthieu Simonin† Cédric Tedeschi‡
Institute for Research in IT and Random Systems (IRISA)

† Inria – ‡ Université de Rennes 1, France
{firstname.lastname}@inria.fr

Abstract—Workflow-based computing has become a dominant
paradigm to design and execute scientific applications. After
the initial breakthrough of now standard workflow management
systems, several approaches have recently proposed to decen-
tralise the coordination of the execution. In particular, shared
space-based coordination has been shown to provide appropriate
building blocks for such a decentralised execution. Uncertainty is
also still a major concern in scientific workflows. The ability to
adapt the workflow, change its shape and switch for alternate
scenarios on-the-fly is still missing in workflow management
systems. In this paper, based on the shared space model, we
firstly devise a programmatic way to specify such adaptive
workflows. We use a reactive, rule-based programming model to
modify the workflow description by changing its associated direct
acyclic graph on-the-fly without needing to stop and restart the
execution from the beginning. Secondly, we present the GinFlow
middleware, a resilient decentralised workflow execution manager
implementing these concepts. Through a set of deployments
of adaptive workflows of different characteristics, we discuss
the GinFlow performance and resilience and show the limited
overhead of the adaptiveness mechanism, making it a promising
decentralised adaptive workflow execution manager.

I. INTRODUCTION

Simulation experiments have become the dominant
paradigm for research in many scientific domains. These
simulations often relies on the composition of functional
building blocks to solve compute-intensive problems. Such
compositions are referred as scientific workflows. Formally, a
workflow can be represented as a graph in which each node
is a function, or service and each edge is data or a control
dependency between services. Workflow management systems
such as Taverna [1], Kepler [2] and MOTEUR [3] have focused
on providing tools to design and execute scientific workflows
with a high level of abstraction.

In this paper, we present a decentralised execution work-
flow engine. It is built upon a series of works in workflow
research which focus on tackling the limitations of centralised
engines through the direct cooperation between services. De-
centralisation brings about a better scalability and reliability
of the execution. In particular, works such as [4], [5] propose
mechanisms to make effective the collaboration by means of
a shared space containing the information about the workflow.

The output of scientific workflows (and their potential
intermediary data) is rather hard to characterise prior to ex-
ecution. This uncertainty comes together with the scientist’s
requirement to be able to explore different scenarios during
enactment, as different intermediary results may call for a

different versions of the subsequent workflow. Scientific work-
flows are meant to support fields where variability and uncer-
tainty is largely present during experimentation. Consequently,
workflow management systems should be able to propose ways
to specify and execute alternative workflow scenarios, each
one getting enabled only if some specific event is detected at
run time, such as a hardware failure or, more commonly the
non-satisfaction of a specific property or partial data results.
This would provide a new chance to obtain meaningful results
without having to restart the whole workflow. At run time,
this alternative workflow should be triggered on-the-fly by the
workflow engine, in a transparent way for the user, saving time
and computer power.

Firstly, we present a programmatic way to specify ex-
ception handling and alternate workflow scenarios, based
on a reactive, rule-based programming paradigm. We show
how this specification can get enacted over a decentralised
architecture, which relies on a shared space to exchange
information among services. Secondly, we introduce the design
of GinFlow, which implements these concepts on top of the
Kafka1 and ActiveMQ2 middleware for communications, and
Mesos [6] for scheduling. Thirdly, we detail the results of an
extensive experimental campaign of GinFlow, focusing on its
scalability and resilience in different settings. This campaign
was conducted on the Grid’5000 platform [7] and made use
of the Montage workflow.3

In Section II, we present the architectural and programming
framework we rely on. In Section III, we describe program-
ming abstractions allowing to modify the workflow on-the-
fly. In Section IV, the GinFlow middleware, in which these
concepts have been implemented, is introduced. Experimental
results of GinFlow in terms of performance, adaptiveness, and
resilience are detailed in Section V. Related works are dis-
cussed in Section VI. Finally, Section VII draws a conclusion.

II. SHARED-SPACE BASED COORDINATION

GinFlow was inspired by conceptual works intending to
decentralise the execution of workflows [5]. These works rely
on the use of a shared space to coordinate services involved in
the enactment. Services of a workflow can be seen as agents
reading and writing information in a shared data space. Such

1http://kafka.apache.org/
2http://activemq.apache.org/
3http://montage.ipac.caltech.edu/



a programming model takes its roots in languages such as
Linda [8] and KLAIM [9].

The architecture is depicted in Fig. 1. As detailed in [5],
the shared space contains the description of the workflow.
During enactment, each time the execution moves forward,
this description is updated so as to reflect the execution
progress. The service agents (SAs) are essentially workers that
encapsulate the invocation of the services. This encapsulation
includes an engine able to read, interpret and update the
information contained in the shared space. For instance, when
a SA completes the invocation of a service and collects
the result, it pushes this information to the shared space,
allowing another service agent, which was waiting for this
result, to collect it and use it as input to invoke the service
it encapsulates. This coordination model was implemented as
a prototype and experimented in [10]. The current paper is
about 1) extending this approach to support adaptiveness, 2)
developing the software extensions allowing adaptiveness, and
3) extensively experimenting with the resulting software on a
distributed platform.

III. PROGRAMMATIC WORKFLOW ADAPTIVENESS

A workflow execution may fail due to several issues.
Firstly, it relies on services which are no longer available
or get executed on prone-to-failure platforms so modifying
the workflow can cope these problems by using different
services or running on other platforms. Secondly, the poten-
tial issue may be related to the workflow itself. Typically,
scientists devise a workflow without being sure of its exact
ability to solve the problem at stake, then observe its results
and finally adapt the workflow accordingly. This exploratory
process can be repeated several times until reaching some
acceptable version of the workflow. In this case, the workflow
is modified in an offline manner, the workflow being stopped
and restarted each time it is modified. In contrast, we are
interested in online adaptation, where scientists already know
that something during run time can possibly go wrong, and
they identify a functional part of the workflow to replace in
case it actually goes in that direction. The process involving to
find a workflow which is functionally equivalent to the failed
part—based for instance, on ontologies as discussed in [11]—
is out of scope. Our work is about dynamically rebranching
the workflow so as to go from its initial specification to the
alternative one. To achieve this, we rely on chemistry-inspired

SA

Completed Running Idle

SA

SA

SA

SA

SA SA

R/W

Fig. 1: Shared space-based coordination architecture.

programming, which allows to exploit the shared space at run
time, described earlier in Section II, for adaptation purposes.

A. HOCL

The GinFlow programming model takes its roots in the
Higher-Order Chemical Language (HOCL) [12]. HOCL is a
rule-based language in which data is left unstructured in a
multiset where a set of rules is applied concurrently. The
role of the programmer is to write this set of rules, which
given a particular input multiset will output another multiset
containing the results. In this model there is only one multiset
re-written by the rules. Such a programming approach allows
users to concentrate on the logic of the problem to be solved
without having to worry on what control and data structures
to implement to solve it.

Let us illustrate the HOCL expressiveness through the clas-
sic getMax problem, which consists in extracting the highest
values from a multiset of values. In HOCL, it is solved by the
following program (here on a specific input):

let max = replace x, y by x if x ≥ y in 〈2, 3, 5, 8, 9,max〉

The max rule consumes two integers x and y when x ≥ y
and replaces them by x. Initially, several such reactions are
possible in the provided multiset, max can use any couple of
integers satisfying the condition: 2 and 3, 2 and 5, 8 and 9, etc.
The program does not include proper variables, just data being
matched to patterns. At run time, the rule will be applied in
some order (not known at design time). Whatever the order is,
the final content of the multiset will be 〈9,max〉. This process
of applying rules until it is no longer possible to apply any rule,
is called reduction. Looking carefully, we see that max is part
of the program. This is due to the fact that HOCL provides
the higher order: rules are first-class citizens in the multiset.
In fact, max is present in the solution from the beginning to
the end of the execution. A corollary is that a rule can apply
on other rules. Removing max can be done by structuring the
multiset and adding a rule in the initial program, as illustrated
below:

let max = replace x, y by x if x ≥ y in
let clean = replace-one 〈max, ω〉 by ω in

〈〈2, 3, 5, 8, 9,max〉, clean〉

The program has been restructured to put our initial program
in an outer multiset containing it and a new clean rule which
will extract the result from the inner multiset, and remove max
at the same time. However, to be sure that the final (outer)
multiset contains the correct result, we need to apply this new
rule only when the execution of the inner multiset is completed.
This is what the HOCL execution model assumes. Note that
the clean rule is a replace-one rule. It is one-shot: it will
disappear from the multiset once triggered. The ω symbol has
a special meaning: it can match any molecule. In this case, at
run time, it will match the result.

The reason behind the chemical inspiration comes from its
natural description using the chemical analogy: the multiset
is a solution in which data atoms float and react accord-
ing to reaction rules when they meet. In the following, we
adopt the chemical vocabulary to designate artifacts of the
programming model. The terms solution and multiset can
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Fig. 2: A simple workflow DAG.

be used interchangeably. The multiset does not provide any
structuring of the atoms. An atom can be either a simple one
such as a number, a string, and a rule, or a structured one. A
structured atom can be either a subsolution (a multiset inside
the multiset), denoted 〈A1, A2, . . . , An〉 or a tuple (an ordered
multiset) denoted A1 : A2 : · · · : An. HOCL can also use
external functions that, given a set of atoms as input will return
another set of atoms. For instance, the HOCL interpreter used
within GinFlow can call Java methods. The previous example
shows how the program’s behaviour can change dynamically
through the injection or removal of some rules, paving the way
for online reconfiguration. It also suggests that the multiset is
a container for the state of the program, on which possibly
multiple engines can apply rules.

In this paper, we use an extended version of HOCL
named HOCLflow. It is introduced specifically for workflow
matters. HOCLflow provides extra syntactic facilities. Firstly,
it includes lists (which are not natively supported by HOCL).
Secondly, it offers some syntactic sugar avoiding to double
mention catalysts in reaction rules. More precisely, rules of
the form: replace-one X by X, M where X and M are
multisets of molecules, can be written: with X inject M .
Thirdly, it includes reserved keywords for specific atoms to
ease the workflow management. They will be explained when
used hereafter.

B. Workflow representation

A workflow is mostly a set of tasks to be executed in a
certain order. A task can be seen as an abstract function, to be
implemented by a service. A workflow can be represented as
a directed acyclic graph (DAG). Fig. 2 illustrates one possible
way to translate this graph into an HOCL multiset. An HOCL
workflow definition is composed of as many subsolutions as
there are tasks in the workflow. The HOCL code for the
workflow in Fig. 2 is given in Fig. 3. Each subsolution
is similar and contains (initially) four atoms. The first two
tuple atoms, prefixed by the reserved keywords SRC and DST,

3.01 〈
3.02 T1 : 〈SRC : 〈〉, DST : 〈T2, T3〉, SRV : s1, IN : 〈input〉〉,
3.03 T2 : 〈SRC : 〈T1〉, DST : 〈T4〉, SRV : s2, IN : 〈〉〉,
3.04 T3 : 〈SRC : 〈T1〉, DST : 〈T4〉, SRV : s3, IN : 〈〉〉,
3.05 T4 : 〈SRC : 〈T2, T3〉, DST : 〈〉, SRV : s4, IN : 〈〉〉
3.06 〉

Fig. 3: HOCL definition of a simple workflow.

4.01 gw_setup =
4.02 replace-one SRC : 〈〉, IN : 〈ω〉
4.03 by SRC : 〈〉, PAR : list(ω)

4.04 gw_call =
4.05 replace-one SRC : 〈〉, SRV : s, PAR : `PAR, RES : 〈ω〉
4.06 by SRC : 〈〉, SRV : s, RES : 〈invoke(s, `PAR), ω〉

4.07 gw_pass =
4.08 replace Ti : 〈RES : 〈ωRES〉, DST : 〈Tj , ωDST〉, ωi〉,
4.09 Tj : 〈SRC : 〈Ti, ωSRC〉, IN : 〈ωIN〉, ωj〉
4.10 by Ti : 〈RES : 〈ωRES〉, DST : 〈ωDST〉, ωi〉,
4.11 Tj : 〈SRC : 〈ωSRC〉, IN : 〈ωRES, ωIN〉, ωj〉

Fig. 4: Generic workflow enactment rules.

specifies the incoming and outgoing dependencies of the task,
respectively. The two latter atoms provides the data needed to
invoke the service, namely, its name (in the SRV atom) and
its parameters (in the IN atom). Recall that SRC, DST, SRV
and IN are reserved keywords in HOCLflow. Still, if the code
in Fig. 3 is given as input to an HOCL interpreter, it will not
trigger anything—it does not comprise rules. Thus, we need to
design a set of rules able to, when combined with a workflow
description, execute the specified workflow. We now devise a
set of three simple rules which constitutes the minimal set of
rules allowing any workflow to run. We call these rules generic
and prefix their name with gw. They are defined in Fig. 4.

The first two rules prepare and call the service implement-
ing a task. They will act inside the subsolution of a service.
The third one acts at the workflow level (and will consequently
appear at the outermost multiset). It moves data between
services as specified by the dependencies. Rule gw_setup
detects that all the dependencies of a task have been satisfied
by checking that the SRC : 〈〉 atom is empty (meaning that it
does not have to wait for another element to start) and fills the
parameter list in the PAR atom.4 This activates the gw_call
rule which calls the service (with the list of parameters in the
PAR atom), collects the result, and puts it back in the task’s
subsolution (in the RES) atom. Rule gw_pass is responsible
for transferring results from one source to one destination. Its
scope spans two services (one source and one destination). It
is triggered after the result has been obtained and placed in
the RES atom of the source. It moves the resulting value from
the source to each declared destination, through its repeated
application. It updates SRC : 〈〉 and DST : 〈〉 each time it is
applied, to remove a satisfied dependency.

Adding these rules (gw_setup and gw_call within each
subsolution, and gw_pass inside the global solution) to the
abstract workflow described in Fig. 3 makes it a fully func-
tional workflow execution program, to be interpreted by an
HOCL interpreter. The DAG is the only requirement from the
user because the generic rules are inserted automatically prior
to execution.

The HOCL workflow description is internal to GinFlow

4Before the execution the IN atom can contain data. This input, combined
with the data received from other tasks will constitute the list of parameters
of the service (stored in the PAR atom). The list() function creates a list.
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and it is not required directly from the user, who can provide
a more user-friendly description of the workflow, for instance
using a JSON format (detailed in Section IV). This JSON
definition will be then translated internally so as to obtain the
required HOCL representation.

C. Adaptive workflow

In this section, we present a programmatic way to change
the shape of the workflow on-the-fly. We devise a set of rules,
to be included in the HOCL program at run time that will enact
this reconfiguration upon the raise of an exception without the
need for human intervention during enactment.

Let us consider the workflow depicted in Fig. 5. This is
a simple example where Task T2 is considered as potentially
faulty at run time. If T2 actually fails, it is to be replaced
by T2′ . The corresponding HOCLflow program is given in
Fig. 6. The workflow provided is now organised in two parts.
The first part, above the dashed line, is the original workflow
(without adaptiveness). The second part, below the dashed
line, specifies an alternative behaviour. Line 6.06 defines an
alternative task named T2′ , which is triggered in case T2 fails.
The two last lines express the actual adaptation: if the result
of T2 is ERROR, then three actions need to be performed:
T2′ is injected (to replace T2, and links must be redirected
accordingly). Specifically, T1 needs to resend its result to the
new destination T2′ and T4 will not receive its input from T2

but from T2′ . ADDDST and MVSRC atoms are simple ways to
express these two specific reconfiguration needs, respectively.

This code example has been simplified for the sake of
clarity. This abstract adaptive workflow, can again be easily
derived from the information given by the user, but still

6.01 〈
6.02 T1 : 〈SRC : 〈〉, DST : 〈T2, T3〉, SRV : s1, IN : 〈input〉〉,
6.03 T2 : 〈SRC : 〈T1〉, DST : 〈T4〉, SRV : s2, IN : 〈〉〉,
6.04 T3 : 〈SRC : 〈T1〉, DST : 〈T4〉, SRV : s3, IN : 〈〉〉,
6.05 T4 : 〈SRC : 〈T2, T3〉, DST : 〈〉, SRV : s4, IN : 〈〉〉,

6.06 T2′ : 〈SRC : 〈T1〉, DST : 〈T ′
2〉, SRV : s2’, IN : 〈〉〉,

6.07 with T2 : 〈RES : 〈ERROR〉, ω〉 inject
6.08 TRIGGER : T2′ , ADDDST:T1 : T2′ , MVSRC:T4 : T2 : T2′

6.09 〉

Fig. 6: HOCL definition of an adaptive workflow.

7.01 add_dst1 =
7.02 replace-one DST : 〈〉, ADAPT
7.03 by DST : 〈T2′〉

7.04 mv_src4 =
7.05 replace-one SRC : 〈ωSRC〉, IN : 〈ωIN 〉, ADAPT
7.06 by SRC : 〈ωSRC , T2′〉, IN : 〈〉

7.07 trigger_adapt =
7.08 replace-one T2 : 〈RES : 〈ERROR〉, ω2〉, T1 : 〈ω1〉, T4 : 〈ω4〉
7.09 by T2 : 〈ω2〉, T1 : 〈ADAPT, ω1〉, T4 : 〈ADAPT, ω4〉

Fig. 7: Adaptation rules.

needs to get extended to run as intended. The set of rules
needed is illustrated in Fig. 7. Firstly, we need rules to
adapt destinations and sources. These rules can be derived
from the initial ADDDST and MVSRC atoms provided by the
user. These rules, namely add_dst1 and mv_src1, are made
explicit in Lines 7.01-7.06. The first one adds T2′ as a new
destination to which T1 needs to send its results. The second
one replaces the source from which T4 expects to receive its
input (T2 failed to send its result to T4, and is thus replaced
by T2′ ). Also, it empties the IN tuple atom, which might
contain results that will not be relevant after reconfiguration.
Note that the presence of ADAPT is mandatory to apply these
adaptation rules. This will make these rules disabled as long
as ADAPT is not included. The ADAPT atom is injected into
these subsolutions when a failure is detected on T2 (which
is materialised by the trigger_adapt rule). Now we have all
the elements to have a concrete adaptive workflow. The full
definition for this adaptive workflow is provided in Fig. 8.

Execution: Let us review the execution of the workflow
specified in Fig. 8, which illustrates the initial state of the
multiset, when the program starts. In this state, the only
enabled rule is gw_setup in T1. After it is applied, the gw_call
rule can be applied as gw_setup initialised the PAR atom,
required to apply gw_call. A first result is thus created, making
gw_pass enabled, matching T1 as the source, and T2 and T3

as destinations. Note that gw_pass is applied twice, filling the

8.01 〈
8.02 gw_pass,
8.03 T1 : 〈SRC : 〈〉, DST : 〈T2, T3〉, SRV : s1, IN : 〈input〉,

gw_setup, gw_call, add_dst1〉,
8.04 T2 : 〈SRC : 〈T1〉, DST : 〈T4〉, SRV : s2, IN : 〈〉,

gw_setup, gw_call, trigger_adapt〉,
8.05 T3 : 〈SRC : 〈T1〉, DST : 〈T4〉, SRV : s3, IN : 〈〉,

gw_setup, gw_call〉,
8.06 T4 : 〈SRC : 〈T2, T3〉, DST : 〈〉, SRV : s4, IN : 〈〉,

gw_setup, gw_call,mv_src4〉,

8.07 T2′ : 〈SRC : 〈T1〉, DST : 〈T ′
2〉, SRV : s2’, IN : 〈〉〉

8.08 〉

Fig. 8: The concrete adaptive workflow.



IN atom in T2 and T3. The process can restart in parallel for
T2 and T3. For the sake of illustration, imagine T2 invocation
of s2 fails, in which case an ERROR atom appears in T2. This
triggers trigger_adapt, making the ADAPT atom appear in
T1 and T4. The presence of this particular atom makes the
add_dst1 and mv_src4 enabled, which adds a destination in
T1 and updates the sources in T4 so as to switch to the alternate
scenario (include T2′ ). Given this new configuration, gw_pass
is re-enabled and sends T1’s result to T2′ which can invoke
s2’. During this time, T3 sent its results to T4. When the
result of T2′ also enters T4 subsolution (using gw_pass), the
workflow finishes by triggering gw_call on s4.

Generalisation: The previous examples dealt only with
one task being replaced by another one. GinFlow supports
more complex adaptations. Any connected part of the workflow
can be replaced by another workflow given the following
requirement: there must be only one destination for all final
services of both (initial and replacement) workflows and it
must be the same. The reason behind this restriction is that,
if the faulty workflow already produced the output for one
of its outgoing links when it fails, this prior-to-failure result
will propagate through the rest of the workflow in spite of the
computation being replayed through the alternate workflows,
possibly leading to conflicting set of data later in the workflow.
While this problem could be solved by stopping the workflow,
cleaning the execution environment, redesigning the workflow,
and restarting it, this falls out of the scope of the paper, which
focus on what can be done online.

Note that GinFlow can support several adaptations for the
same workflow if they concern disjoint sets of tasks. Fig. 9
illustrates these cases: (a) and (b) show valid cases of adapta-
tions. In both cases, the programmer defines an alternative sub-
workflows satisfying the replacement hypothesis (one common
single destination).(c) shows an invalid sub-workflow in the
sense that it has multiple outgoing links (leading to potentially
inconsistencies in case of adaptation), (d) shows an incorrect
reconfiguration: the replacement task communicates with one
more service than the service it replaces. As this may have have
already been triggered, it could lead again to inconsistencies
if it is invoked again. In terms of rules, to propagate the
error and trigger the adaptation where required, trigger_adapt
rules must be added to any task in the potentially faulty sub-
workflow the programmer considers as requiring adaptation
if it fails. To allow the sources of the sub-workflow to resend
their result, add_dst rules should be added to all the sources of
the sub-workflow. To modify the expected sources of result on
the destinations of the sub-workflow, a mv_src rule should be
added to the destination of the sub-workflow. Each adaptation
requires a specific set of the three rules according to the case.

IV. IMPLEMENTATION

This section presents the GinFlow workflow middleware.
It is the result of a significant refactoring and extension of the
prototype presented in [10]. It sits on the HOCL-core language
and interpreter which consists in 18 000 lines of Java code. The
middleware itself represents approximately 2 000 more lines of
Java code. Fig. 10 depicts the general GinFlow architecture.
GinFlow’s distributed core is presented in Section IV-A. Gin-
Flow’s resilience mechanisms are discussed in Section IV-B.

X
X

(a) (b)

(c) (d)

Potentially faulty subworkflow Replacement workflow links added upon adaptation

Fig. 9: Valid and invalid cases of adaptations.

Sections IV-C and IV-D focus on the upper layers, namely the
executors and the API.

A. The HOCL distributed engine

At the core (the lower layer in Fig. 10), the GinFow
middleware consists in a distributed engine. This engine is
composed of service agents (SAs) communicating through a
shared space (specifically a multiset) containing the description
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Fig. 10: Architecture of the GinFlow software.



of the current status of the workflow. A SA is composed of
three elements. The first element is the service to invoke, any
wrapper of an application representing this service, or any
interface to the service enabling its invocation. The second
element is a storage place for a local copy of the multiset.
The local copy acts as a cache of the service’s subsolution. The
third element is an HOCL interpreter that reads and updates
the local copy of the multiset each time it tries to apply one of
the rule in the subsolution. In other words, a SA locally stores
only its own status. The cache is only read and written locally
by this single interpreter, and often pushed back (written) to the
multiset. This ensures that coherency problems cannot arise.

Once each SA collect data from the multiset, it communi-
cates directly with other agents in a point-to-point fashion, for
instance when transmitting data between two workflow tasks.
Remind that, as earlier described in Fig. 4, enactment rules
have to be generated and injected into the workflow description
prior to its execution, (i.e., before any agent starts collecting
its initial information from the multiset).

More precisely, the rules presented in Section III-B do not
enable a decentralised execution by themselves. In particular,
the gw_pass rule is supposed to act from outside subsolutions
since it requires to match the atoms from several subsolutions.
In the GinFlow environment, this was modified to act from
within a subsolution: once the result of the invocation of the
service it manages is collected, a SA triggers a local version of
the gw_pass rule which calls a function that sends a message
directly to the destination SA. It also sends a message to the
multiset so as to update the status of the workflow. When the
message is received in the multiset, it is simply pushed to the
right subsolution. In distributed settings, the trigger_adapt
works similarly. The interpreter detecting the failure of its
service sends a message to the nodes containing the service to
be adapted, by sending them the message containing ADAPT.

In GinFlow, the inter-agents communications rely on a
message queue middleware which can be either Apache Ac-
tiveMQ or Kafka. The choice for one or the other depends on
the level of resilience needed by the user, as we detail below.

B. Resilience

In this section, we present a mechanism that automates the
recovery of failed server agents. This mechanism is orthogonal
to the dynamic reconfiguration of the workflow, presented
before, and runs in conjunction with it. It takes place at the SA
level: when one SA fails, for instance following a hardware
crash, another SA will be automatically started to replace it.
The difficulty here stands in the ability to replay the work done
by the faulty SA prior to its failure.

The state of a SA is reflected by the state of its local
solution. Changes in the local solution can result from two
mutually exclusive actions : (a) reception of new molecules
and (b) reduction of the local solution. Note that a reduction
phase is systematically triggered when new molecules are
received. This reduction modifies the state of the local solution
only if some rule were actually applied during reduction. The
SA lifecyle is thus a sequence of receptions and reductions.
Consequently, being able to log all incoming molecules of a
SA and replay them in the same order on a newly created SA
will lead the second SA in the same state as the first.

This soft-stateness nature of the SAs let us envisage a
mechanism of fault-recovery which will rebuild the state of
a faulty SA. It is assumed that the services invoked are
idempotent, or at least free from non-desirable side effects
since they can be called several times in case of fault recovery.
Thus some duplicated results might be received by some
successors of a recovered SA (in case the first SA failed after
invoking the service but before finishing the transmission of
its results to all its successors). However, the one-shot nature
of the rules gw_setup and gw_call ensures that the successors
will take into account only the first result received and thus
prevent a cascade of useless re-executions.

In the current implementation we exploit the ability of
Kafka to persist the messages exchanged by the services and
to replay them on demand to facilitate the implementation of
this mechanism. The section V-D will present an evaluation of
the fault-recovery mechanism.

C. The executors

The role of the executor is to enact the workflow in a
specific environment which can be centralised or distributed.
The centralised executor will use a single HOCL interpreter to
execute the workflow. A distributed executor will (1) claim
resources from an infrastructure and (2) provision the dis-
tributed engine (i.e., the SAs) on them. In the current version
of GinFlow two executors are implemented: SSH-based and
Mesos-based. Users have to decide which executor fits the best
to their environment. The SSH-based executor starts the SAs
on a predefined set of machines, to be specified in the GinFlow
configuration file. The Mesos-based executor delegates the
deployment of the SAs to the Mesos scheduler [6]. Besides
these executors, the abstract nature of the code allows other
executors to be implemented (e.g., an EC2 executor to run
GinFlow’s distributed engine on EC2-compatible cloud).

D. The client interface

Clients can interact in different ways with the GinFlow
framework. Firstly, they can use the command line interface,
which gives control over various execution options (executor,
messaging framework, credentials, etc.). In this case the work-
flow is given in a JSON format which will be translated into
an HOCL workflow prior to execution. The transformation is
done through a Java API. This API is also accessible from
another Java program and can be used directly to build the
workflow programmatically. Since users only deal with generic
workflows (Fig. 2), the phase of rules injection discussed in
Section III-C takes place in a transparent way before the actual
execution of the workflow starts.

V. EXPERIMENTAL RESULTS

In this section, we present the results of the experimental
evaluation of GinFlow. The results exhibited in the following
are presented and concerns four dimensions. Firstly, Sec-
tion V-A presents a set of performance tests conducted to mea-
sure the overhead of the system when increasing the number
of services. Secondly, the adaptiveness mechanism is tested
in similar settings, and results are presented in Section V-B.
Thirdly, in Section V-C, another experiment has been set
to evaluate the different configurations of GinFlow, and the
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Fig. 11: Diamond workflow, simple and fully connected.

impact of choosing different combinations of executors and
messaging middleware. Finally, the SA recovery mechanism
detailed in Section IV-B is evaluated in Section V-D using
the Mesos/Kafka combination to execute large workflows built
with the Montage toolbox. Note that we considered only dis-
tributed environments, as it constitutes the natural playground
of GinFlow. Thus, the centralised execution of the workflows
have not been evaluated.

Experimental setup: All the experiments ran using up
to 25 nodes of the Grid’5000 testbed. Nodes are connected
through 1Gbps Ethernet. Debian/Linux Wheezy is installed on
the nodes and we used ActiveMQ 5.6.0 and Kafka 0.8.1.1 as
the communication middleware. Mesos 0.20 was also installed
on the nodes. A total of 568 cores and 1.5 TB RAM were
available. The number of SAs per core was limited to two,
which allowed to deploy up to 1 000 services. Section V-A
and section V-B use ActiveMQ as communication layer.

Case study: Possible shapes of workflows are virtually
infinite, however four major patterns, namely split, merge,
sequence and parallel have been recognised to cover the
basic needs of many scientific computational pipelines [13].
We consequently decided to conduct the experiments of Sec-
tions V-A, V-B and V-C using a diamond shape depicted in
Fig. 11, with h number of services in parallel (for horizontal),
and v number of services in a sequence (for vertical). This
workflow shape covers all mentioned patterns. This configura-
tion comes in two flavours: simple-connected tasks and fully-
connected ones. The former is used as base reference and the
latter to stress test the executor engine in terms of messages
exchanged across the distributed environment. Since we are
mainly interested in the coordination time, the tasks (up to
1 000) themselves only simulate a simple script with a (very
low) constant execution time. Section V-D uses a workflow
whose shape is depicted in Fig. 15. The services are taken
from the the well-known Montage toolbox that build mosaic
images out of hundreds of astronomical images. This workflow
comprises a total of 118 tasks. The output of the workflow is a
3-degree centered image of the M45 star cluster (the pleiades)
composed of 100 million pixels.

A. Performance

Fig. 12 shows the timespan for both diamond configura-
tions. We observe a sustained time increase when the number
of services grows. In a simple-connected configuration, the
coordination time of the whole workflow execution is close
to 54 seconds for 31 × 31 services. This time includes the
exchange information between linked services and the update

of the shared multiset. These results are expected because the
number of tasks has a direct influence on the time needed
for the reduction of sub-solutions: in an HOCL engine, the
complexity of the pattern matching process depends on the
size of the solution. However, the load of evaluating molecules
in the global solution is distributed among all co-engines
preventing a combinatorial explosion. The same behaviour is
observed confirmed with the fully connected configuration.
In this case, we observe the higher cost of coordination and
the impact of connections between services. Since a service
has to wait for all services of the previous layer, an implicit
coordination barrier is set in each service growing the final
execution timespan (up to 178 seconds for 31× 31 services).
We can also identify this effect on the projection of the
vertical services on the time-vertical plane which shows a
higher slope than the time-horizontal one. While a chemical
engine has a potential perfomance bottleneck for a large set
of services, increasing the number of co-engines limits the
final coordination time due to the parallelism, ensuring the
scalability of GinFlow in distributed settings.

B. Adaptiveness

In order to evaluate the adaptiveness feature presented in
Section III-C, we executed both diamond-shaped workflow
flavours in adaptive scenarios. Initially, we performed a regular
execution (without adaptiveness) as a reference using square
configurations (i.e., with h = v). Then, we executed the
same workflows, but raising an execution exception on the
last service of the mesh, and replacing the whole body of
the diamond on-the-fly. The goal is to observe the effect of
adaptiveness after the execution of most of the workflow,
and compare it to a complete re-execution of the workflow.
These executions are performed in three different scenarios:
(1) replacing a simple-connected diamond body by another
equivalent, (2) replacing a simple-connected body by another
which is fully connected, in a similar way to the schema shown
in Fig. 9(b), and (3) replacing a fully connected workflow by
another one which is simple-connected. These scenarios were
designed to evaluate the cost of adaptiveness when multiple
links need to be reconfigured in the outermost (first and last)
services of the diamond workflow, to support the replacement
of the whole body of the diamond. Fig. 13 exhibits the ratio
between the execution with adaptiveness and its counterpart
without it, for the three scenarios. In the first scenario, the
ratio never exceeds 2. In other words, adaptiveness, in the
worst case where every service (except the final one) needs to
be replayed, is more performant than a complete re-execution
whose time is at least twice the execution of the workflow
without adaptiveness. The second scenario shows that for
configurations bigger than 1×1 the adaptiveness ratio remains
in the same order, between 2 and 3, in spite of the significant
number of links to reconfigure and the involved services (up
to 21 × 21). Finally, the third scenario shows that the ratio
remains constant or even decreases when the reconfiguration
of the links is simplified during the process of adaptiveness.

C. Executor and messaging middleware impact

Fig. 14 depicts the average time (on ten runs) to execute of
a 10× 10 diamond workflow in each executor/communication
middleware combination for different numbers of nodes. It is
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Fig. 12: Coordination timespan of diamond-shaped workflows.

split in (a) the deployment time (the time taken by the executor
to deploy the SAs) and (b) the execution time. Note firstly that
the deployment time depends on the scheduling strategy used.
The SSH-based executor starts SAs in a round-robin fashion
on a preconfigured list of nodes. As the SSH connections are
parallelized, the deployment time slighly increases with the
number of nodes. GinFlow, on top of Mesos, starts one SA
per machine for each offer received from the Mesos scheduler.
Thus, increasing the number of nodes will increase the number
of machines in each offer and consequently the parallelization
in starting the SAs. This explains the linear decrease of
the deployment time observed for the Mesos-based executor.
Secondly, ActiveMQ outperforms Kafka, as the execution time
is approximately 4 times higher in the latter case. Nevertheless,
the choice of deploying GinFlow with Kafka is justified by the
resilience it helps to provide, as it is experimented in the next
section.

1x1 6x6 11x11 16x16 21x21
configuration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ra
ti

o

Simple to simple

Simple to full

Full to simple

Fig. 13: With-adaptiveness-over-without-adaptiveness ratio.

D. Resilience

We now evaluate the resilience mechanisms exposed in
Section IV-B. The experiment is based on a realistic workflow
(namely, the Montage workflow) and makes use of the Mesos-
based executor and Kafka as the communication middleware.
The shape of the workflow and tasks’ duration cumulative
distribution function (CDF) are depicted in Fig. 15. Note that
the services taken from the Montage toolbox are idempotent, in
the sense that they can restart safely in regards to a previous
failed execution of the same service in the same workflow.
The methodology for injecting failures was the following: each
running agent failed with a predefined probability p after a
certain period of time T . Note that a restarted agent can fail
again. Thus, in this model we can expect p

1−p × NT failures
where NT is the number of services whose duration is greater
than T . For each chosen values of p and T , we repeated the
execution of the workflow up to 10 times. All the following
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mentioned values are obtained by averaging the values on these
runs. The bar plots of Fig. 16 show the execution time with
various values for p and T . The dashed line on each subplot
corresponds to an execution without any failure. In this case the
execution time is 484s in average and the standard deviation
is 13.5 seconds.

Firstly, when T = 0, increasing p allows to appreciate
the recovery velocity. We observed 26, 114 and 487 failures
in average for p = 0.2, p = 0.5 and p = 0.8 respectively.
Fig. 16 shows an increase of 3s, 36s and 208s respectively
in the average execution time of the workflow, showing that
the recovery velocity slightly decrease when increasing the
failures rate. In other words, the ratio between the overhead and
the number of failures slightly increases. Secondly, choosing
T = 15s shows that services can recover even if they fail after
some processing. Moreover, note that, according to the CDF,
95% of the services have a running time which is greater than
15s and thus, they may be affected by failures. In our specific
workflow, we found that some services may fail silently. More
precisely, the durations of the services in the large parallel part
of the workflow are quite heterogeneous: from 60s to 310s.
Some services in this section can recover without impacting
the global execution time. For example, a 60s service can fail
five times without exceeding the execution time of a 200s
service that do not fail. On the contrary the execution time of
the workflow is more sensitive to the failures of some specific
services (e.g., the merge sevices). These two considerations
can explain the increase of the standard deviation observed
in Fig. 16. Finally choosing T = 100s will impact exclusively
services in the large parallel part of the workflow. For each
value of p we observed that the maximum number of failures
for a service was respectively 3, 6 and 21 (averaged on 10
runs), leading to a maximum increase of 300s, 600s and 2100s
of the average execution time of the workflow. This values are
consistent with Fig. 16.

This experiment, based on a specific but well-known work-
flow shows that GinFlow is robust enough to enact workflows
even on a very unstable infrastructure dealing with long task
executions and large workflows.

VI. RELATED WORKS

Decentralising the coordination of the workflow execution
was first pursued relying on direct interactions (based on
messaging) between services. In [14], the authors introduce
service invocation triggers, a lightweight infrastructure that
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Fig. 16: Execution time with different failure scenarios.

routes messages directly from a producer service to a consumer
one, where each service invocation trigger corresponds to the
invocation of a service. In [15], a distributed execution engine
is proposed based on a peer-to-peer architecture wherein
nodes (similar to local engines) are distributed across multiple
computer systems, and communicate by direct point-to-point
notifications. A continuation-passing style, where information
on the remainder of the execution is carried in messages, has
been proposed in [16]. Nodes interpret such messages and thus
conduct the execution of services without consulting a cen-
tralised engine. However, nodes need to know explicitly which
nodes to interact with and when, in a synchronous manner. A
distributed workflow system based on mobile libraries playing
the role of engines was presented in [17]. However, the details
of the coordination are not described.

To increase loose coupling between services, a series of
works relying on a shared space to exchange information
between nodes have been proposed [4], [18], [19]. Following
the Linda programming model [8], a tuplespace works as
a piece of memory shared by all interacting parties. Thus,
using tuplespace for coordination, the execution of a part
of a workflow within each node is triggered when tuples,
matching the templates registered by the respective nodes,
are present in the tuplespace. In the same vein, works such
as KLAIM [9], propose a distributed architecture based on
Linda where distributed tuplespaces store data and programs
as tuples, allowing mobile computations by transferring pro-
grams from one tuple to another. However, in these works,
the tuplespace is only used to store data information. The
chemical programming model enhances the tuplespace model
by providing a support for dynamics, and allows us to store
both control and data information in the multiset.

The idea of using chemical programming to enact work-
flows autonomously is not new [20], [21]. These works,
however, remain very abstract, and only few clues are given in
these works on how to implement such approach. The recent
series of work [5], [10], [22] paved the way in terms of
programming model and software prototyping for the present
work. The contributions of the present paper over them are
(1) a programmatic way to enable on-the-fly workflow updates,
(2) the implementation and experimentation of this adaptation
in decentralised settings.

Most of workflow manager systems initiatives achieve the
required enactment flexibility by means of the infrastructure
(e.g., re-submissions strategies [23], pilot jobs [24], task



replications [25]). On the other hand, Tolosana-Calasanz et
al. [26] propose an adaptive exception handling for scientific
workflows at definition level. Their work proposes two patterns
to manage the exception handling based on the Reference Nets-
within-Nets formalism: propagation and replacement. In spite
of mechanisms for dynamically adapting the workflow struc-
ture at run time without having to be aware of the underlying
infrastructure, the resulting representation with their reference
model suggests a quite complex workflow definition, where
the original scenario and the alternative path are mixed.

VII. CONCLUSION

Shared space-based coordination for workflow execution
has shown to provide appropriate building blocks for the
decentralised execution of workflows. In this paper, we have
devised a programmatic way to specify adaptive workflows in
decentralised environments. We have shown how, based on
the chemical programming model, it is possible to modify
the workflow description on-the-fly without needing to stop
and restart the workflow from the beginning. We have imple-
mented these concepts in the GinFlow middleware. GinFlow
was evaluated using synthetic and real workflows extensively
in distributed environments. The obtained results show its
scalability and resilience even in extremely unreliable settings.

GinFlow is currently being integrated inside the Tigres
workflow execution environment, developed at Lawrence
Berkeley National Laboratory [27].
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