
ar
X

iv
:1

60
1.

04
44

8v
3

 [c
s.

D
S

]
27

 O
ct

 2
01

6

On Competitive Algorithms for Approximations of Top-k-Position
Monitoring of Distributed Streams

Alexander Mäcker Manuel Malatyali
Friedhelm Meyer auf der Heide

Heinz Nixdorf Institute & Computer Science Department
Paderborn University, Germany

{amaecker, malatya, fmadh}@hni.upb.de

Abstract

Consider the continuous distributed monitoring model in which n distributed nodes, receiving individual data
streams, are connected to a designated server. The server isasked to continuously monitor a function defined over
the values observed across all streams while minimizing thecommunication. We study a variant in which the server
is equipped with a broadcast channel and is supposed to keep track of an approximation of the set of nodes currently
observing thek largest values. Such an approximate set is exact except for some imprecision in anε-neighborhood
of thek-th largest value. This approximation of the Top-k-Position Monitoring Problem is of interest in cases where
marginal changes (e.g. due to noise) in observed values can be ignored so that monitoring an approximation is suffi-
cient and can reduce communication.

This paper extends our results from [6], where we have developed a filter-based online algorithm for the (exact)
Top-k-Position Monitoring Problem. There we have presented a competitive analysis of our algorithm against an
offline adversary that also is restricted to filter-based algorithms. Our new algorithms as well as their analyses use
new methods. We analyze their competitiveness against adversaries that use both exact and approximate filter-based
algorithms, and observe severe differences between the respective powers of these adversaries.

1 Introduction

We consider a setting in whichn distributed nodes are connected to a central server. Each node continuously observes
a data stream and the server is asked to keep track of the valueof some function defined over all streams. In order
to fulfill this task, nodes can communicate to the server, while the server can employ a broadcast channel to send a
message to all nodes.

In an earlier paper [6], we introduced and studied a problem called Top-k-Position Monitoring in which, at any
time t, the server is interested in monitoring thek nodes that are observing the largest values at this particular time
t. As a motivating example, picture a scenario in which a central load balancer within a local cluster of webservers
is interested in keeping track of those nodes which are facing the highest loads. We proposed an algorithm based on
the notion of filters and analyzed its competitiveness with respect to an optimal filter-based offline algorithm. Filters
are assigned by the server and are used as a means to indicate the nodes when they can resign to send updates; this
particularly reduces communication when observed values are “similar” to the values observed in the previous time
steps.

In this paper, we broaden the problem and investigate the monitoring of an approximation of the Top-k-Positions.
We study the problem ofε-Top-k-Position Monitoring, in which the server is supposed to maintain a subset ofk nodes
such that all nodes observing “clearly larger” values than the node which observed thek-th largest value are within this
set and no node observing a “clearly smaller” value belongs to this set. Here, smaller/larger is meant to be understood
with respect toε and thek-th largest value observed. A detailed definition is given inSect. 2. Relaxing the problem
in this direction can reduce communication while, in many cases, marginal or insignificant changes (e.g. due to noise)

This work was partially supported by the German Research Foundation (DFG) within the Priority Program “Algorithms for Big Data” (SPP
1736) and by the EU within FET project MULTIPLEX under contract no. 317532.

1

http://arxiv.org/abs/1601.04448v3

in observed values can be ignored and justify the sufficiencyof an approximation. Examples are situations where lots
of nodes observe values oscillating around thek-th largest value and where this observation is not of any qualitative
relevance for the server. We design and analyze algorithms for ε-Top-k-Position Monitoring and, although we use
these very tools of filters and competitive analysis [6], theimprecision/approximation requires fundamentally different
online strategies for defining filters in order to obtain efficient solutions.

1.1 Our Contribution

In this paper we investigate a class of algorithms that are based on using filters and study their efficiency in terms of
competitive analysis.

As a first technical contribution we analyze an algorithm (Sect. 3) which allows the server to decide the logical
disjunction of the (binary) values observed by the distributed nodes. It uses a logarithmic number of rounds and a
constant number of messages on expectation. As a by-product, using this algorithm, the result on the competitiveness
of the filter-based online algorithm in [6] can be reduced from O(k logn + log∆ logn) to O(k logn + log∆), for
observed values from{0, 1, . . . ,∆}.

Second, we also propose an online algorithm (Sect. 4) that isallowed to introduce an error ofε ∈ (0, 1/2] in the
output and compare it to an offline algorithm that solves the exact Top-k-Position Monitoring problem. We show that
this algorithm isO(k logn+ log log∆ + log 1

ε
)-competitive. Note that this imprecision allows to bring the log∆ in

the upper bound down tolog log∆ for any constantε.
We also investigate the setting in which also the offline algorithm is allowed to have an error in the output (Sect. 5).

We first show that these results are not comparable to previous results; we prove a lower bound on the competitiveness
of Ω(n/k). Our third and main technical contribution is an algorithm with a competitiveness ofO(n2 log(ε∆) +
n log2(ε∆) + log log∆ + log 1

ε
) if the online and the offline algorithm may use an error ofε.

However, if we slightly decrease the allowed error for the offline algorithm, the lower bound on the competitiveness
of Ω(n/k) still holds, while the upper bound is reduced toO(n+ k logn+ log log∆ + log 1

ε
).

1.2 Related Work

Efficient computation of functions on big datasets in terms of streams has turned out to be an important topic of
research with applications in network traffic analysis, text mining or databases (e.g. [9] and [7]).

The Continuous Monitoring Model, which we consider in this paper, was introduced by Cormode et al. [2] to
model systems comprised of a server andn nodes observingdistributeddata streams. The primary goal addressed
within this model is the continuous computation of a function depending on the information available across alln data
streams up to the current time at a dedicated server. Subjectto this main concern, the minimization of the overall
number of messages exchanged between the nodes and the server usually determines the efficiency of a streaming
algorithm. We refer to this model and enhance it by a broadcast channel as proposed by Cormode et al. in [3].

An important class of problems investigated in literature are threshold computations where the server is supposed
to decide whether the current function value has reached some given thresholdτ . For monotone functions such as
monitoring the number of distinct values or the sum over all values, exact characterizations in the deterministic case
are known [2, 3]. However, non-monotone functions, e.g., the entropy [1], turned out to be much more complex to
handle.

A general approach to reduce the communication when monitoring distributed streams is proposed in [12]. Zhang
et al. introduce the notion offilters, which are also an integral part of our algorithms. They consider the problem
of continuous skyline maintenance, in which a server is supposed to continuously maintain the skyline of dynamic
objects. As they aim at minimizing the communication overhead between the server and the objects, they use a filter
method that helps in avoiding the transmission of updates incase these updates cannot influence the skyline. More
precisely, the objects are points of ad-dimensional space and filters are hyper-rectangles assigned by the server to the
objects such that as long as these points are within the assigned hyper-rectangle, updates need not be communicated
to the server.

Despite its online nature, by now streaming algorithms are barely studied in terms of competitiveness. In their work
[11], Yi and Zhang were the first to study streaming algorithms with respect to their competitiveness and recently this
approach was also applied in a few papers ([5, 10, 6, 4]). In their model [11], there is one node and one server and the
goal is to keep the server informed about the current value ofa functionf : Z+ → Z

d that is observed by the node
and changes its value over time, while minimizing the numberof messages. Yi and Zhang present an algorithm that

2

is O(d2 log(d · δ))-competitive if the last value received by the server might deviate byδ from the current value off .
Recently, Tang et al. [10] extended this work by Yi and Zhang for the two-party setting to the distributed case. They
consider a model in which the server is supposed to track the current value of a (one-dimensional) function that is
defined over a set ofn functions observed at the distributed nodes. Among other things, they propose an algorithm for
the case of a tree-topology in which the distributed nodes are the leaves of a tree connecting them to the server. They
show that on any instanceI their algorithm incurs communication cost that is by a factor of O(hmax log δ), where
hmax represents the maximimum length of a path in the tree, largerthan those of the best solution obtained by an
online algorithm onI.

Following the idea of studying competitive algorithms for monitoring streams and the notion of filters, Lam et
al. [5] present an algorithm for online dominance tracking of distributed streams. In this problem a server always
has to be informed about the dominance relationship betweenn distributed nodes each observing an online stream of
d-dimensional values. Their algorithm is based on the idea offilters and they show that a mid-point strategy, which
sets filters to be the mid-point between neighboring nodes, is O(d logU)-competitive with respect to the number of
messages sent in comparison to an offline algorithm that setsfilters optimally.

While we loosely motivated our search for approximate solutions by noise in the introduction, in other problems
noise is a major concern and explicitly addressed. For example, consider streaming algorithms for estimating statistical
parameters like frequency moments [13]. In such problems, certain elements from the universe may appear in different
forms due to noise and thus, should actually be treated as thesame element.

2 Preliminaries

In our setting there aren distributed nodes{1, . . . , n}. Each nodei receives a continuous data stream(v1i , v
2
i , v

3
i . . .),

which can be exclusively observed by nodei. At time t, vti ∈ N is observed and novt
′

i , t′ > t, is known. We omit the
indext if it is clear from the context.

Following the model in [3], we allow that between any two consecutive time steps, acommunication protocol
exchanging messages between the server and the nodes may take place. The communication protocol is allowed to use
an amount of rounds which is polylogarithmic inn andmax1≤i≤n(v

t
i). The nodes can communicate to the server while

the server can communicate to single nodes or utilize a broadcast channel to communicate a message that is received
by all nodes at the same time. These communication methods incur unit communication cost per message, we assume
instant delivery, and a message at timet is allowed to have a size at most logarithmic inn andmax1≤i≤n(v

t
i).

Problem Description Consider the Top-k-Position Monitoring problem [6], in which the server is asked to keep
track of the set of nodes currently holding thek largest values. We relax this definition and study an approximate
variant of the problem in which this set is exact except for nodes in a small neighborhood around thek-th largest
value. We denote byπ(k, t) the node which observes thek-th largest value at timet and denote by top-k := {i ∈
{1, . . . , k} : π(i, t)} the nodes observing thek largest values. Given an error0 < ε < 1, for a timet we denote
by E(t) := (1

1−ε
vt
π(k,t),∞] the range of values that are clearly larger than thek-th largest value and byA(t) :=

[(1− ε)vt
π(k,t),

1
1−ε

vt
π(k,t)] theε-neighborhoodaround thek-th largest value. Furthermore, we denote byK(t) := {i :

vti ∈ A(t)} the nodes in theε-neighborhood around thek-th largest value. Then, at any timet, the server is supposed
to know the nodesF(t) = FE(t) ∪ FA(t) = {i1, . . . , ik} according to the following properties:

1. FE(t) = {i : vti ∈ E(t)} and

2. FA(t) ⊆ K(t) = {i : vti ∈ A(t)}, such that|FA(t)| = k − |FE(t)| holds.

Denote by∆ the maximal value observed by some node (which may not be known beforehand). We useF1 = F(t) if
t is clear from the context,F2 = {1, . . . , n} \ F(t), and callF∗ theoutputof an optimal offline algorithm. If thek-th
and the(k+ 1)-st largest value differ by more thanε vt

π(k,t), F(t) coincides with the set in the (exact) Top-k-Position
Monitoring problem and hence,F(t) is unique. We denote byσ(t) := |K(t)| the number of nodes at timet which are
in theε-neighborhood of thek-th largest value andσ := maxt σ(t). Note that|K(t)| = 1 implies thatF(t) is unique.
Furthermore for solving the exact Top-k-Position Monitoring problem we assume that the values are distinct (at least
by using the nodes’ identifiers to break ties in case the same value is observed by several nodes).

3

2.1 Filter-Based Algorithms & Competitive Analysis

A set of filters is a collection of intervals, one assigned to each node, such that as long as the observed values at each
node are within its respective interval, the outputF(t) need not change. For the problem at hand, this general idea of
filters translates to the following definition.

Definition 2.1. [6] For a fixed timet, aset of filtersis defined as ann-tuple of intervals(F t
1 , . . . , F

t
n), Fi ⊆ N∪{∞}

andvi ∈ Fi, such that as long as the value of nodei only changes within its interval (i.e.vi ∈ Fi), the value of the
outputF need not change.

Observe that each pair of filters(Fi, Fj) of nodesi ∈ F(t) andj /∈ F(t) must be disjoint except for a small
overlapping. This observation can be stated formally as follows.

Observation 2.2. For a fixed timet, ann-tuple of intervals is a set of filters if and only if for all pairs i ∈ F(t) and
j /∈ F(t) the following holds:vi ∈ Fi = [ℓi, ui], vj ∈ Fj = [ℓj , uj] andℓi ≥ (1 − ε)uj.

In our model, we assume that nodes are assigned such filters bythe server. If a node observes a value that is larger
than the upper bound of its filter, we say the nodeviolates its filter from below. A violation from aboveis defined
analogously. If such a violation occurs, the node may reportit and its current value to the server. In contrast to [6], we
allow the server to assign “invalid” filters, i.e., there areaffected nodes that directly observe a filter-violation. However,
for such an algorithm to be correct, we demand that the intervals assigned to the nodes at the end of the protocol at time
t and thus, before observations at timet + 1, constitute a (valid) set of filters. We call such an algorithm filter-based.
Note that the fact that we allow invalid filters (in contrast to [6]) simplifies the presentation of the algorithms in the
following. However, using a constant overhead the protocols can be changed such that only (valid) filters are sent to
the nodes.

Competitiveness To analyze the quality of our online algorithms, we use analysis based on competitiveness and
compare the communication induced by the algorithms to thatof an adversary’s offline algorithm.

Similar to [5] and [6], we consider adversaries that are restricted to use filter-based offline algorithms and hence,
OPT is lower bounded by the number of filter updates. However,we compare our algorithms against several adver-
saries which differ in terms of whether their offline algorithm solves the exact Top-k-Position Monitoring Problem or
ε-Top-k-Position Monitoring. The adversaries are assumed to be adaptive, i.e., values observed by a node are given by
an adversary who knows the algorithm’s code, the current state of each node and the server and the results of random
experiments.

An online algorithm is said to have a competitiveness ofc if the number of messages is at most by a factor ofc
larger than that of the adversary’s offline algorithm.

2.2 Observations and Lemmas

Define for some fixed setS ⊆ {1, . . . , n} the minimum of the values observed by nodes inS during a time period
[t, t′] as MINS(t, t

′) and the maximum of the values observed during the same periodas MAXS(t, t
′).

Definition 2.3. Let t, t′ be given times witht′ ≥ t. For a subset of nodesS ⊆ {1, . . . , n} the valuesMAXS(t, t
′) :=

maxt≤t∗≤t′ maxi∈S(v
t∗

i) andM INS(t, t
′) are defined analogously.

Observe that it is sufficient for an optimal offline algorithmto only make use of two different filtersF1 andF2.

Proposition 2.4. Without loss of generality, we may assume that an optimal offline algorithm only uses two different
filters at any time.

Proof. Let [t, t′] be an interval during whichOPT does not communicate. We fix its outputF∗
1 and defineF∗

2 :=
{1, . . . , n} \ F∗

1 . If OPT only uses two different filters throughout the interval, we are done. Otherwise, usingF∗
1

as output throughout the interval[t, t′] and filtersF1 = [M INF∗

1
(t, t′),∞] andF2 = [0,MAXF∗

2
(t, t′)], which must

be feasible due to the assumption thatOPT originally assigned filters that lead to no communication, leads to no
communication within the considered interval.

The following lemma generalizes a lemma in [6] toε-Top-k-Position Monitoring. Assuming the optimal offline
algorithm did not change the set of filters during a time period [t, t′], the minimum value observed by nodes inF∗

1 can
only be slightly smaller than the maximum value observed by nodes inF∗

2 .

4

Lemma 2.5. If OPT uses the same set of filtersF1, F2 during[t, t′], then it holdsM INF∗

1
(t, t′) ≥ (1−ε) MAXF∗

2
(t, t′).

Proof. Assume to the contrary thatOPT uses the same set of filters throughout the interval[t, t′] and outputsF∗
1 ,

but MINF∗

1
(t, t′) < (1 − ε)MAXF∗

2
(t, t′) holds. Then there are two nodes,i ∈ F∗

1 and j /∈ F∗
1 , and two times

t1, t2 ∈ [t, t′], such thatvt1i = M INF∗

1
(t, t′) andvt2j = MAXF∗

2
(t, t′). Due to the definition of a set of filters and the

fact thatOPT has not communicated during[t, t′], OPT must have set the filter for nodei to [s1,∞], s1 ≤ vt1i , and
for nodej to [−∞, s2], s2 ≥ vt2j . This is a contradiction to the definition of a set of filters and Observation 2.2.

At last a result from [6] is restated in order to calculate the(exact) top-k set for one time step.

Lemma 2.6. [6] There is an algorithm that computes the node holding the largest value usingO(logn) messages on
expectation.

3 Auxiliary Problem: Existence

In our competitive algorithms designed and analyzed in the following, we will frequently make use of a protocol for
a subproblem which we call EXISTENCE: Assume all nodes observe only binary values, i.e.∀i ∈ {1, . . . , n} : vi ∈
{0, 1}. The server is asked to decide thelogical disjunctionfor one fixed time stept.

It is known that forn nodes each holding a bit vector of lengthm the communication complexity to decide the
bit-wise disjunction isΩ(nm) in the server model [8]. Observe that in our model1 message is sufficient to decide the
problem assuming the nodes have a unique identifier between1 andn and the protocol usesn rounds.

We prove that it is sufficient to use a constant amount of messages on expectation and logarithmic number of
rounds. Note that the algorithm in the following lemma is a Las Vegas algorithm, i.e. the algorithm is always correct
and the number of messages needed is based on a random process.

Lemma 3.1. There is an algorithmEXISTENCEPROTOCOL that usesO(1) messages on expectation to solve the
problemEXISTENCE.

Proof. Initially all nodes are active. All nodesi deactivate themselves, ifvi = 0 holds, that is, these nodes do not
take part in the following process. In each roundr = 0, 1, . . . , logn the active nodes send messages independently
at random with probabilitypr := 2r/n. Consequently, if the last roundγ = log n is reached, all active nodesi with
vi = 1 send a message with probability 1. As soon as at least one message was sent or theγ-th round ends, the
protocol is terminated and the server can decide EXISTENCE.

Next, we analyze the above protocol and show that the bound onthe expected number of messages is fulfilled.
Let X be the random variable for the number of messages used by the protocol andb be the number of nodesi with
vi = 1. Note that the expected number of messages sent in roundr is b·pr and the probability that no node has sent a
message before is

∏r−1
k=0(1− pk)

b.
Observing that the functionf(r) = b · pr(1− pr−1)

b has only one extreme point and0 ≤ f(r) < 2 for r ∈
[0, logn], it is easy to verify that the series can be upper bounded by simple integration:

E[X] ≤
b

n
+

log(n)
∑

r=1

b2r

n

r−1
∏

k=0

(

1−
2k

n

)b

≤ 1 +

log(n)
∑

r=1

b2r

n

(

1−
2r−1

n

)b

≤ 1 +

∫ log(n)

0

b2r

n

(

1−
2r−1

n

)b

dr + 2

5

≤3 +

[

b

(b+ 1)n ln(2)
(2r − 2n)

(

1−
2r−1

n

)b
]logn

0

≤3 +
1

n ln(2)
·

(

(2logn − 2n)

(

1−
2logn−1

n

)b

+ 2n

(

1−
20−1

n

)b
)

≤3 +
1

n ln(2)

[

(n− 2n)

(

1−
1

2

)b

+ 2n

(

1−
1

2n

)b
]

≤3 +
1

n ln(2)

[

(−n)
1

2b
+ 2n

(

1−
1

2n

)b
]

≤3 +
1

ln(2)

(

2

(

1−
1

2n

)b

−
1

2b

)

≤3 +
1

ln(2)

(

2−
1

2b

)

≤ 3 +
2

ln(2)
≤ 6 .

This protocol can be used for a variety of subtasks, e.g. validating that all nodes are within their filters, identifying
that there is some filter-violation or whether there are nodes that have a higher value than a certain threshold.

Corollary 3.2. Given a timet. There is an algorithm which decides whether there are nodeswhich observed a
filter-violation usingO(1) messages on expectation.

Proof. For the distributed nodes to report filter-violations we usean approach based on the EXISTENCEPROTOCOL to
reduce the number of messages sent in case several nodes observe filter-violations at the same time. The nodes apply
the EXISTENCEPROTOCOLas follows: Each node that is still within its filter applies the protocol using a0 as its value
and each node that observes a filter-violation uses a1. Note that by this approach the server definitely gets informed if
there is some filter-violation and otherwise no communication takes place.

The EXISTENCEPROTOCOL can be used in combination with the relaxed definition of filters to strengthen the
result for Top-k-Position Monitoring fromO(k logn + log∆ logn) to O(k logn + log∆). We first introduce a
generic framework and then show how to achieve this bound.

A generic approach Throughout the paper, several of our algorithms feature similar structural properties in the
sense that they can be defined within a common framework. Hence, we now define a generic approach to describe the
calculation and communication of filters, which we then refine later. The general idea is to only use two different filters
that are basically defined by one value separating nodes inF(t) from the remaining nodes. Whenever a filter-violation
is reported, this value is recalculated and used to set filters properly.

The approach proceeds in rounds. In the first round we define aninitial intervalL0. In ther-th round, based on
intervalLr, we compute a valuem that is broadcasted and is used to set the filters to[0,m] and[m,∞]. As soon as
nodei reports a filter-violation observing the valuevi, the coordinator redefines the intervalLr+1 := Lr ∩ [0, vi] if
the violation is from above andLr+1 := Lr ∩ [vi,∞] otherwise. The approach finishes as soon as some (predefined)
condition is satisfied.

Corollary 3.3. There is an algorithm that isO(k logn+ log∆)-competitive for (exact) Top-k-Position Monitoring.

Proof. Our algorithm proceeds in phases that are designed such thatwe can show that an optimal algorithm needs to
communicate at least once during a phase and additionally, we can upper bound the number of messages sent by the
online algorithm according to the bound on the competitiveness.

We apply the generic approach with parameters described as follows. The initial interval is defined asL0 := [ℓ, u],
whereℓ = vt

π(k+1,t), u = vt
π(k,t). This can be done by determining the values of the nodes holding thek + 1 largest

values usingO(k logn) messages on expectation. In ther-th round, based on intervalLr, we compute the midpoint of

6

Lr as the valuem which is broadcasted and used to set the filters. As soon as a filter-violation is reported, the generic
framework is applied. In caseLr is empty the phase ends.

Note that the distance betweenu andℓ gets halved every time a node violates its filter leading toO(log(u0−ℓ0)) =
O(log∆) messages on expectation per phase. Also, it is not hard to seethat during a phaseOPT has communicated
at least once and hence, we obtain the claimed bound on the competitiveness.

4 Competing against an Exact Adversary

In this section, we propose an algorithm based on the strategy to choose the nodes holding the k largest values as an
output and use this set as long as it is feasible. It will turn out that this algorithm is suitable in two scenarios: First,
it performs well against an adversary who solves the Top-k-Position Monitoring problem (cf. Theorem 4.5); second,
we can use it in situations in which an adversary who is allowed to introduce some error and cannot exploit this error
because the observed data leads to a unique output (cf. Sect.5).

In particular, we develop an algorithm started att that computes the output setF1 := F(t) using the protocol from
Lemma 2.6 and for all consecutive times witnesses whetherF1 is correct or not. Recall that while computing the set
F(t) from scratch (cf. Lemma 2.6) is expensive in terms of communication, witnessing its correctness in consecutive
rounds is cheap since it suffices to observe filter-violations (cf. Definition 2.1 and Corollary 3.2).

The algorithm tries to find a valuem which partitionsF1 from F2 according to the generic framework, such that
for all nodesi ∈ F1 it holdsvi ≥ m and for all nodesi ∈ F2 it holdsvi ≤ m. We call such a valuem certificate.

Guessing OPT’s Filters In the following we consider a time period[t, t′′] during which the outputF(t) need not
change. Consider a timet′ ∈ [t, t′′]. The online strategy to choose a certificate at this time contingents on the size of
some interval

L∗ from which an offline algorithm must have chosen
the lower boundℓ∗ of the upper filter at timet

such that the filters are valid throughout[t, t′]. The algorithm TOP-K-PROTOCOL keeps track of (an approximation
of) L∗ at timet′ denoted byL = [ℓ, u] for which L∗ ⊆ L holds. The online algorithm tries to improve the guess
where OPT must have set filters by gradually reducing the sizeof intervalL (while maintaining the invariantL∗ ⊆ L)
at times it observes filter-violations.

Initially u andℓ are defined as follows:u := vt
π(k,t) = M INF1

(t, t) andℓ := vt
π(k+1,t) = MAXF2

(t, t) and are
redefined over time. Although defining the certificate as the midpoint ofL = [ℓ, u] intuitively seems to be the best
way to choosem, the algorithm is based on four consecutive phases, each defining a different strategy.

In detail, the first phase is executed as long as the property

log log u > log log ℓ+ 1 (P1)

holds. In this phase,m is defined asℓ+ 22
r

afterr filter-violations observed. If the property

log log u ≤ log log ℓ+ 1 ∧ u > 4ℓ (P2)

holds, the valuem is chosen to be2mid wheremid is the midpoint of[log ℓ, logu]. Observe that2mid ∈ L = [ℓ, u]
holds.

The third phase is executed if property

u ≤ 4 ℓ ∧ u >
1

1− ε
ℓ (P3)

holds and employs the intuitive approach of choosingm as the midpoint ofL. The last phase contains the remaining
case of

u ≤
1

1− ε
ℓ (P4)

and is simply executed until the next filter-violation is observed using the filtersF1 = [ℓ,∞] andF2 = [0, u].
In the following we propose three algorithmsA1,A2, andA3 which are executed if the respective property hold

and analyze the correctness and the amount of messages needed.

7

Lemma 4.1. Given timet, an outputF(t), and an intervalL = [ℓ, u] for which (P1) holds, there is an algorithmA1

that witnesses the correctness ofF(t) until a timet′ at which it outputsL′ = [ℓ′, u′] for which (P1) does not hold. The
algorithm usesO(log log∆) messages on expectation.

Proof. The algorithmA1 applies the generic framework and defines the valuem, the server broadcasts, asm :=
ℓ0 + 22

r

, whereℓ0 is the initial value ofℓ. If log log u′ − log log ℓ′ ≤ 1 holds, the algorithm terminates and outputs
L′ = [ℓ′, u′] with ℓ′ andu′ defined as the redefinition ofℓ andu respectively.

To analyze the amount of messages needed and express it in terms of∆, observe that in the worst case the server
only observes filter-violations from nodesi ∈ F2. In case there is a filter-violation from above, i.e. a nodei ∈ F1

reports a filter-violation, the conditionlog log u′ − log log ℓ′ ≤ 1 holds. At least in roundr = log log(u− ℓ), which is
by definition upper bounded bylog log∆, the algorithm terminates.

If F(t) is not valid at timet′, there are nodesi1 ∈ F1, i2 ∈ F2 and time pointst1, t2 (t1 = t′ ∨ t2 = t′) for which
vt1i1 < vt2i2 holds. Thus,A1 observed a filter-violation by eitheri1 or i2 followed by a sequence alternating between
filter-violations and filter-updates. At some point (but still at timet′) log log u′− log log ℓ′ ≤ 1 holds and the algorithm
outputs(ℓ′, u′), provingA1’s correctness for timet′.

Lemma 4.2. For a givenF(t) and a given intervalL = [ℓ, u] for which (P2) holds, there is an algorithmA2 that
witnesses the correctness ofF(t) until a timet′ at which it outputsL′ = [ℓ′, u′] for which (P2) does not hold. The
algorithm usesO(1) messages on expectation.

Proof. We apply the generic approach and choose the valuem to be broadcasted by2mid, wheremid is the midpoint
of [log ℓ, log u].

To analyze the amount of messages needed, boundL = [ℓ, u] in terms of values that are double exponential in
2. To this end, leta ∈ N be the largest number such thatℓ ≥ 22

a

holds. Now observe since (P2) holds,u ≤ 22
a+2

follows. Since the algorithm chooses the midpoint of the interval[log ℓ, logu] in order to getm and halves this interval
after every filter-violation, one can upper bound the numberof rounds by analyzing how often the interval[log ℓ, logu]

gets halved. This is[log ℓ, logu] ⊆
[

log
(

22
a
)

, log
(

22
a+3
)]

= [2a, 8 ∗ 2a] can be halved at most a constant number

of times, until it contains only one value, which implies that 4 · ℓ > u holds.

Lemma 4.3. For a givenF(t) and a given intervalL = [ℓ, u] for which (P3) holds, there is an algorithmA3 that
witnesses the correctness ofF(t) until a timet′ at which it outputsL′ = [ℓ′, u′] for which (P3) does not hold. The
algorithm usesO(log 1/ε) messages on expectation.

Proof. The algorithm applies the generic framework and uses the midpoint strategy starting with the intervalL0 :=
[ℓ, u]. Observe that it takes at mostO

(

log 1
ε

)

redefinitions ofL to have the final size, no matter whether the algorithm
observes only filter-violations from nodesi ∈ F(t) or i /∈ F(t). This together with the use of the EXISTENCEPRO-
TOCOL for handling filter-violations yields the needed number of messages on expectation. The correctness follows
similarly as shown for Lemma 4.1.

Now we propose an algorithm started at a timet which computes the outputF(t) and witnesses its correctness
until some (not predefined) timet′ at which the TOP-K-PROTOCOL terminates using a combination of the algorithms
stated above. Precisely the TOP-K-PROTOCOL is defined as follows:

Algorithm TOP-K-PROTOCOL

1. Compute the nodes holding the(k + 1) largest values and defineℓ := vtk+1, u := vtk andF(t).

2. If (P1) holds, callA1 with the argumentsF(t) andL = [ℓ, u]. At the timet′ at whichA1 outputsL′ = [ℓ′, u′]
setℓ := ℓ′ andu := u′.

3. If (P2) holds, callA2 with the argumentsF(t) andL = [ℓ, u]. At the timet′ at whichA2 outputsL′ = [ℓ′, u′]
setℓ := ℓ′ andu := u′.

4. If (P3) holds, callA3 with the argumentsF(t) andL = [ℓ, u]. At the timet′ at whichA3 outputsL′ = [ℓ′, u′]
setℓ := ℓ′ andu := u′.

8

5. If u ≥ ℓ andu ≤ 1
(1−ε)ℓ holds, set the filters toF1 := [ℓ,∞], F2 := [0, u]. At the timet′ at which nodei ∈ F2

reports a filter-violation from below defineℓ := vt
′

i . In case nodei ∈ F1 reports a filter-violation from above,
defineu := vt

′

i .

6. Terminate and output(ℓ, u).

Lemma 4.4. Consider a timet. The algorithmTOP-K-PROTOCOL computes the top-k set and witnesses its correct-
ness until a timet′ at which it outputsL = [ℓ, u], whereℓ ≤ MAXF2

(t, t′), M INF1
(t, t′) ≤ u, andℓ > u holds (i.e.L

is empty). The algorithm usesO(k logn+ log log∆ + log 1
ε
) messages on expectation.

Proof. We first argue on the correctness of TOP-K-PROTOCOLand afterwards shortly analyze the number of messages
used.

The algorithm computes in step 1. a correct outputF1 at timet by using the algorithm from Lemma 2.6 fork times.
In consecutive time stepst′ > t the correctness of TOP-K-PROTOCOL follows from the correctness of algorithms
A1,A2, andA3 in steps 2. - 4. For the correctness of step 5. observe that by setting the filters toF1 = [ℓ,∞] and
F2 = [0, u] and the fact thatu ≤ 1

1−ε
ℓ holds the filters are valid. Thus, as long as all nodes observevalues which are

inside their respective filters the output need not change.
At the time stept′ the protocol terminates and outputsL = [ℓ, u] it holdsu < ℓ. Thus, there are nodesi1 ∈ F1

andi2 ∈ F2 and time stepst1, t2 ∈ [t, t′] with: vt1i1 ≤ u andvt2i2 ≥ ℓ, and thus,vt1i1 < vt2i2 .
To argue on the number of messages observe that the first step can be executed usingO(k logn) number of

messages. At the time the condition of steps 2. - 5. are checked these steps can be performed usingO(k logn) number
of messages, by computing the nodes holding thek + 1 largest values. The algorithmsA1,A2, andA3 are called at
most once each thus the conditions are also checked at most once. After executing step 5. the algorithm terminates
which leads to the result on the number of messages as stated above.

Theorem 4.5. The algorithmTOP-K-PROTOCOL has a competitiveness ofO(k logn+ log log∆ + log 1
ε
) allowing

an error ofε compared to an optimal offline algorithm that solves the exact Top-k-Position Monitoring problem.

Proof. The correctness of TOP-K-PROTOCOL and the number of messages follow from Lemma 4.4. Now we argue
that OPT had to communicate at least once in the interval[t, t′] during which TOP-K-PROTOCOLwas applied. If OPT
communicated, the bound on the competitiveness directly follows. Now assume that OPT did not communicate in
the interval[t, t′]. We claim that the intervalL maintained during TOP-K-PROTOCOL always satisfies the invariant
L∗ ⊆ L. If this claim is true, we directly obtain a contradiction tothe fact that OPT did not communicate because
of the following reasons. On the one hand, because OPT has to monitor the exact Top-k-Positions, OPT chooses the
same set of nodesF∗ = F1 which was chosen by the online algorithm. On the other hand, at the timet′ the algorithm
TOP-K-PROTOCOL terminates,u′ < ℓ′ holds. Thus, the intervalL′ is empty and sinceL∗ ⊆ L′ holds, it follows that
L∗ is empty and hence, OPT must have communicated.

We now prove the claim. Recall that TOP-K-PROTOCOL is started with an intervalL that fulfills L∗ ⊆ L by
definition. To show thatL∗ ⊆ L holds during the entire interval[t, t′], it suffices to argue that each of the previous
algorithms makes sure that when started with an intervalL such thatL∗ ⊆ L, it outputsL′ with L∗ ⊆ L′. Our
following reasoning is generic and can be applied to the previous algorithms. Consider the cases in which filter-
violations are observed and hence the intervalL is modified: If a filter-violation from below happened at a time
t1 > t, there is a nodei ∈ F2 with a valuevt1i > ℓ′ and thus,ℓ∗ > ℓ′ holds. If a filter-violation from above happened
at a timet′, there is a nodei ∈ F1 with a valuevt

′

i < u′ and thus,u∗ < u′ holds. This case-distinction leads to the
result, thatL∗ has to be a subset of[ℓ′, u′].

5 Competing against an Approximate Adversary

In this section, we study the case in which the adversary is allowed to use an approximate filter-based offline algorithm,
i.e. one that solvesε-Top-k-Position Monitoring. Not surprisingly, it turns out that it is much more challenging for
online than for offline algorithms to cope with or exploit theallowed error in the output. This fact is formalized in the
lower bound in Theorem 5.1, which is larger than previous upper bounds for the exact problem. However, we also
propose two online algorithms that are competitive againstoffline algorithms that are allowed to have the same errorε
and a smaller errorε′ ≤ ε

2 , respectively.

9

5.1 Lower Bound for Competitive Algorithms

We show a lower bound on the competitiveness proving any online algorithm has to communicate at least(σ − k)
times in contrast to an offline algorithm which only usesk + 1 messages. Recall that the adversary generates the data
streams and can see the filters communicated by the server. Note that as long as the online and the offline algorithm
are allowed to make use of an errorε ∈ (0, 1) the lower bound holds, even if the errors are different.

Theorem 5.1. Any filter-based online algorithm which solves theε-Top-k-Position Monitoring problem and is allowed
to make use of an error ofε ∈ (0, 1) has a competitiveness ofΩ(σ/k) compared to an optimal offline algorithm which
is allowed to use a (potentially different) error ofε′ ∈ (0, 1).

Proof. Consider an instance in which the observed values ofσ ∈ [k + 1, n] nodes are equal to some valuey0 (the
remainingn−σ nodes observe smaller values) at timet = 0 and the following adversary: In time stepr = 0, 1, . . . , n−
k, the adversary decides to change the value of one nodei with vri = y0 to bevr+1

i = y1 < (1 − ε) · y0 such that a
filter-violation occurs. Observe that such a valuey1 exists ifε < 1 holds and a nodei always exists since otherwise
the filters assigned by the online algorithm cannot be feasible. Hence, the number of messages sent by the online
algorithm until time stepn − k is at leastn − k. In contrast, the offline algorithm knows then − k nodes whose
values change over time and hence, can set the filters such that no filter-violation happens. The offline algorithm sets
two different filters: One filterF1 = [y0,∞] for thosek nodes which have a value ofy0 at time stepn − k using
k messages and one filterF2 = [0, y0] for the remainingn − k nodes using one broadcast message. By essentially
repeating these ideas, the input stream can be extended to anarbitrary length, obtaining the lower bound as stated.

5.2 Upper Bounds for Competitive Algorithms

Now we propose an algorithm DENSEPROTOCOLand analyze the competitiveness against an optimal offline algorithm
in the setting that both algorithms are allowed to use an error of ε.

The algorithm DENSEPROTOCOL is started a timet. For sake of simplicity we assume that thek-th and the
(k + 1)-st node observe the same valuez, that isz := vt

π(k,t) = vt
π(k+1,t). However, if this does not hold we can

define the filters to beF1 = [vt
π(k+1,t),∞] andF2 = [0, vt

π(k,t)] until a filter-violation is observed at some timet′

usingO(k log n) messages on expectation. If the filter-violation occurred from below definez := vtπ(k,t) and if a
filter-violation from above is observed definez := vt

π(k+1,t).
The high-level idea of DENSEPROTOCOL is similar to the TOP-K-PROTOCOL to compute a guessL on the lower

endpoint of the filter of the outputF∗ of OPT (assuming OPT did not communicate during[t, t′]) for which the
invariantℓ∗ ∈ L∗ ⊆ Lr holds. The goal of DENSEPROTOCOL is to halve the intervalL while maintainingℓ∗ ∈ L
until L = ∅ and thus show that no value exists which could be used by OPT.

To this end, the algorithm partitions the nodes into three sets. Intuitively speaking, the first set which we callV1

contains those nodes which have to be part of the optimal output, V3 those nodes that cannot be part of any optimal
output andV2 the remaining nodes. The sets change over time as follows. Initially V t

1 contains those nodes that
observes a valuevti > 1

1−ε
z. Since the algorithm may discover at a timet′ > t that some nodei has to be moved to

V t′+1
1 which also contains all nodes from previous rounds, i.e.V t′

1 ⊆ V t′+1
1 . On the other handV t

3 initially contains
the nodes which observed a valuevti < (1 − ε)z. Here also the algorithm may discover at a timet′ > t that some
nodei has to be moved toV t′+1

3 which (similar toV1) contains nodes from previous rounds. At the timet the setV t
2

simply contains the remaining nodes{1, . . . , n} \ (V t
1 ∪ V t

3) and its cardinality will only decrease over time.
In the following we make use of setsS1 andS2 to indicate that nodes inV2 may be moved toV1 or V3 depending

on the values observed by the remaining nodes inV2. Nodes inS1 observed a value larger thanz but still not that large
to decide to move it toV1 and similarly nodes inS2 observed smaller values thanz but not that small to move it toV3.

Next we propose the algorithm DENSEPROTOCOL in which we make use of an algorithm SUBPROTOCOL for the
scenario in which some nodei exists that is inS1 and inS2. At a time at which the SUBPROTOCOL terminates it
outputs thatℓ∗ has to be in the lower half ofL or in the upper half ofL thus, the intervalL gets halved (which initiates
the next round) or moves one node fromV2 to V1 or V3. Intuitively speaking SUBPROTOCOL is designed such that, if
OPT did not communicate during[t, t′], wheret is the time the DENSEPROTOCOL is started andt′ is the current time
step, the movement of one nodei ∈ V2 to V1 or V3 implies thati has necessarily to be part ofF∗ or not. For now we
assume the algorithm SUBPROTOCOL to work correctly as a black box usingSUB(n, |L|) number of messages.

Note that in caseLr contains one value and gets halved, the intervalLr+1 is defined to be empty. In case the
algorithm observes multiple nodes reporting a filter-violation the server processes one violation at a time in an arbitrary

10

order. Since the server may define new filters after processing a violation one of the multiple filter-violations may be
not relevant any longer, thus the server simply ignores it.

Algorithm: DENSEPROTOCOL

1. Definez := vtk = vtk+1 and the following sets:
V1 := {i ∈ {1, . . . , n} | vti >

1
1−ε

z},

V3 := {i ∈ {1, . . . , n} | vti < (1− ε)z},
V2 := {1, . . . , n} \ (V1 ∪ V3).

Define an intervalL0 := [(1 − ε)z, z] and define setsS1, S2 of nodes which are initially empty and useS to
denoteS1 ∪ S2. Setr := 0 indicating the round.

2. The followingrules are applied for (some) roundr:
Let ℓr be the midpoint ofLr andur :=

1
1−ε

ℓr
For a nodei the filter is defined as follows:
If i ∈ V1, Fi := [ℓr,∞];
If i ∈ V2 ∩ S1, Fi := [ℓr,

1
1−ε

z].
if i ∈ V2 \ S, Fi := [ℓr, ur];
If i ∈ V2 ∩ S2, Fi := [(1− ε)z, ur].
if i ∈ V3, Fi := [0, ur].
The outputF(t) is defined asV1 ∪ (S1 \ S2) andk − |V1 ∪ (S1 \ S2)| many nodes fromV2 \ S2.

3. Wait until timet′, at which some nodei reports a filter-violation:

a. If i ∈ V1, then setLr+1 to be the lower half ofLr and defineS2 := ∅.

b. If i ∈ (V2 \ S) violates its filter from belowthen

b.1. If the server observed strictly more thank nodes with larger values thanur then setLr+1 to be the
upper half ofLr and defineS1 := ∅.

b.2. elseaddi to S1 and updatei’s filter.

c. If i ∈ S1 \ S2 violates its filterthen

c.1. If i violates its filter from belowthen movei fromS1 andV2 to V1 and updatei’s filter.

c.2. elseaddi to S2 and call SUBPROTOCOL.

d. If the server observedk nodes with valuesvi > ur andn − k nodes with valuesvi < ℓr then call
TOP-K-PROTOCOL

e. If Lr+1 was setif is empty, end the protocol, otherwise incrementr, updateur, ℓr, all filters using the
rules in 2., and goto step 3.

— And their symmetric cases —

a’. If i ∈ V3 then setLr+1 to be the upper half ofLr and defineS1 := ∅.

b’. If i ∈ (V2 \ S) violates its filter from abovethen

b’.1. If the server observed strictly more thann− k nodes with smaller values thanℓr then setLr+1 to the
lower half ofLr and defineS2 := ∅.

b’.2. elseaddi to S2.

c’. If i ∈ S2 \ S1 violates its filterthen

c’.1. If i violates its filter from above
then deletei from S2, deletei from V2, and addi to V3.

c’.2. elseaddi to S1 and call SUBPROTOCOL.

We analyze the correctness of the protocol in the following lemma and the number of messages used in Lemma 5.3.
We prove that OPT communicated at least once in Lemma 5.7.

Lemma 5.2. The protocolDENSEPROTOCOLcomputes a correct outputF(t′) at any timet′.

11

Proof. By definition the output consists of nodes fromV1, S1 and (arbitrary) nodes fromV2 \S2 (cf. step 2.). Observe
that by definition of the filters of the nodes in these subsets,the minimum of all lower endpoints of the filters isℓr
following the rules in step 2. Also observe that the maximum of all upper endpoints of the filters of the remaining
nodes isur. Since by definitionur = 1

1−ε
ℓr holds, the values observed by nodesi ∈ F1 are (lower) bounded byℓr

and nodesi ∈ F2 are (upper) bounded byur, thus the overlap of the filters is valid.
Now we argue that there are at leastk nodes in the setV1 ∪ S1 ∪ V2 \ S2. To this end, assume to the contrary that

t′ is the first time step at which strictly less thank nodes are in the union of these sets. Now observe that the cases in
the DENSEPROTOCOL in which nodes are deleted from one ofV1, S1 or V2 \ S2 are 3.c.1., 3.c.2., and 3.b’.2..

Observe that in step 3.c.1. the algorithm movesi from S1 andV2 to V1 and thusi is again part of the output and
does not change the cardinality. In step 3.c.2. the nodei is added toS2 and SUBPROTOCOL is called afterwards. At
this timet′ nodei is (again) part of the output of SUBPROTOCOLand thus there are sufficiently many nodes to choose
as an output which is a contradiction to the assumption. In the remaining case 3.b’.2. DENSEPROTOCOLaddsi toS2.
However, since at timet′ strictly less thank nodes are inV1 ∪ S1 ∪ (V2 \S2), there are strictly more thann− k nodes
in S2 ∪ V3 and thus, the algorithm would execute step 3.b’.1. instead.This leads to a contradiction to the assumption.
By these arguments the correctness follows.

Lemma 5.3. The protocolDENSEPROTOCOLuses at mostO(k logn+ σ log(εvk) + (σ + log(εvk)) · SUB(σ, |L|))
messages on expectation.

Proof. Initially the algorithm computes the top-k set and probes all nodes which are in theε-neighborhood of the node
observing thek-th largest value, usingO(k logn+ σ) messages on expectation.

During each roundr each node can only violate its filter at most constant times without starting the next round
r+1 or leading to a call of SUBPROTOCOLbased on the following simple arguments: All nodesi in V1 orV3 directly
start the next roundr+1 after a filter-violation. Now fix a nodei ∈ V2 and observe that if it is not contained inS1 and
S2 it is added toS1 if a filter-violation from below or toS2 if a filter-violation from above is observed. At the time
this nodei observes a filter-violation in the same direction (i.e. frombelow if it is inS1 and from above if it is inS2) it
is added toV1 or V3. In these cases the next filter-violation will start the nextround. The last case that remains is that
it is added to both sets,S1 andS2. Observe that the SUBPROTOCOL is called and starts the next round or decides on
one node (which may be different from the fixed nodei) to be moved toV1 or V3.

Observe that at mostσ+1 nodes can perform filter-violations without starting the next round since each node from
V1 or V3 directly starts the next round and the number of nodes inV2 is bounded byσ. Furthermore observe that after
each round the intervalL is halved thus, after at mostlog |L0|+ 1 rounds the setLr is empty.

Now focus on the SUBPROTOCOL which also halvesL after termination or decides on one nodei ∈ V t′

2 to be
moved toV t′+1

1 or V t′+1
3 . Thus, it can be called at mostσ + log(εvk) times, leading to the result as stated above.

The SUBPROTOCOL We propose an algorithm which is dedicated for the case in theexecution of DENSEPROTO-
COL that one nodei was added toS1 and toS2.

∈ V2 \S reported a filter-violation from below and from above and thus gets added toS1 and toS2 (in an arbitrary
order). In detail, it has observed a value which is larger than ur and a value which is smaller thanℓr. As a short
remark, ifi ∈ F∗ would hold, thenℓ∗ ≤ ℓr follows and on the other hand ifi /∈ F∗ holds, thenℓ∗ ≥ ℓr follows, but
in DENSEPROTOCOLcannot decidei ∈ F∗ in steps 3.c.2. or 3.c’.2.

Algorithm: SUBPROTOCOL

1. Define an intervalL′
0 := Lr ∩ [(1− ε)z, ℓr], S′

1 := S1, andS′
2 := ∅. Setr′ := 0 indicating the round.

2. The followingrules are applied for (some) roundr′:
Let ℓ′r be the midpoint ofL′

r′ andu′
r′ :=

1
1−ε

ℓ′r′ .
For a nodei the filter is defined as follows:
If i ∈ V1, F ′

i := Fi;
If i ∈ V2 ∩ (S′

1 \ S
′
2), F

′
i := [ℓr,

1
1−ε

z].
If i ∈ V2 ∩ S′

1 ∩ S′
2, F ′

i := [ℓ′r′ ,
1

1−ε
z];

if i ∈ V2 \ S′, F ′
i := [ℓr, u

′
r′].

if i ∈ V2 ∩ (S′
2 \ S

′
1), F

′
i := [(1 − ε)z, u′

r′];
if i ∈ V3, F ′

i := [0, u′
r′];

12

The outputF(t) is defined asV1 ∪ (S′
1 \ S

′
2) ∪ (S′

1 ∩ S′
2) and sufficiently many nodes fromV2 \ S′

2.

3. Wait until timet′, at which nodei reports a filter-violation:

a. If i ∈ V1, then terminate SUBPROTOCOL and setLr+1 to be the lower half ofLr.

b. If i ∈ (V2 \ S′) violates its filter from below

b.1. If the server observed strictly more thank nodes with larger values thanur then
– setL′

r′+1 to be the upper half ofL′
r′ and redefineS′

1 := S1.

– If L′
r′+1 is defined to the empty setthen terminate SUBPROTOCOL and define the last nodei

which was inS′
1 ∩ S′

2 and observed a filter-violation from above to be moved toV3. If such a
node does not exist the nodei ∈ S1 ∩ S2 moves toV3.

b.2. Elseaddi to S′
1.

c. If i ∈ S′
1 \ S

′
2 violates its filter

c.1. If i violates its filter from belowthen movei from V2 andS′
1 to V1.

c.2. Elseaddi to S′
2 and updatei’th filter.

d. If i ∈ S′
1 ∩ S′

2 violates its filter

d.1. If i violates from belowthen movei to V1 terminate the SUBPROTOCOL.

d.2. else
– defineL′

r′+1 to be the lower half ofL′
r′ and redefineS′

2 := ∅.

– If L′
r′+1 is defined to be the empty setthen terminate SUBPROTOCOL and movei to V3.

e. If the server observedk nodes with valuesvi > ur andn − k nodes with valuesvi < ℓr then call
TOP-K-PROTOCOL

f. If L′
r′+1 was set incrementr′, updateu′

r′ , ℓ
′
r′ , all filters using the rules in 2., and goto step 3.

— And their symmetric cases —

a’. If i ∈ V3, then

– setL′
r′+1 to be the upper half ofL′

r′ and redefineS′
1 := S1.

– If L′
r′+1 is defined to the empty setthen terminate SUBPROTOCOL and define the last nodei which

was inS′
1 ∩ S′

2 and observed a filter-violation from above to be moved toV3. If such a node does not
exist the nodei ∈ S1 ∩ S2 moves toV3.

b’. If i ∈ (V2 \ S′) violates its filter from above

b’.1. If the server observed strictly more thann− k nodes with a value less thanℓr, then terminate SUB-
PROTOCOLand setLr+1 to be the lower half ofLr.

b’.2. elseaddi to S′
2.

c’. If i ∈ S′
2 \ S

′
1

c’.1. If i violates its filter from abovethen movei from V2 andS′
2 to V3.

c’.2. elseaddi to S′
1 and updatei’th filter.

Lemma 5.4. The protocolSUBPROTOCOLcomputes a correct outputF(t′) at any timet′ at which a nodei ∈ S1∩S2

exists.

Proof. By definition the output consists of nodes fromV1, S′
1 \ S′

2, S′
1 ∩ S′

2 and (arbitrary) nodes fromV2 \ S′
2 (cf.

step 2.). Observe that by definition of the filters of the nodesin these subsets, the minimum of all lower endpoints of
the filters isℓ′r′ (in case the node is inS1 and inS2) following the rules in step 2. Also observe that the maximumof
all upper endpoints of the filters of the remaining nodes (in subsetsV2 \ S′, S′

2 \ S
′
1 or V3) is u′

r′ . Since by definition
u′
r′ =

1
1−ε

ℓ′r′ holds, the values observed by nodesi ∈ F1 are (lower) bounded byℓ′r′ and nodesi ∈ F2 are (upper)
bounded byu′

r′ thus, the overlap of the filters is valid.
Now we argue that there are at leastk nodes in the setsV1, S1 \ S2, S1 ∩ S2, andV2 \ S2. To this end, simply

assume to the contrary that at a timet′ there are strictly less thank nodes in the union of the sets. It follows that at

13

this timet′, the algorithm has observed that there are strictly more than n − k nodes with a value smaller thanℓ′r′ .
Thus, the algorithm would continue (compare case b’.1.) with a lower value ofℓr or, in case the intervalLr is empty,
terminates (which is a contradiction).

By these arguments the correctness follows.

Lemma 5.5. The protocolSUBPROTOCOLuses at mostO(σ log |L|) messages on expectation.

Proof. During each roundr′ each node can only violate its filter at most constant times without starting the next round
r′ + 1 based on the following simple arguments: All nodesi in V1 or V3 directly start the next roundr′ + 1 after
a filter-violation. Now fix a nodei ∈ V2 and observe that if it is not contained inS′

1 andS′
2 it is added toS′

1 if a
filter-violation from below or toS′

2 if a filter-violation from above is observed. At the time thisnodei observes a
filter-violation in the same direction (i.e. from below if itis in S′

1 and from above if it is inS′
2) it is added toV1 or V3.

In these cases the next filter-violation will start the next round. The last case that remains is that it is added to both
sets,S′

1 andS′
2. Observe that TOP-K-PROTOCOL terminates ifi ∈ S′

1 ∩ S′
2 violates its filter from below (and moves

itoV1). Otherwisei violates its filter from above SUBPROTOCOL starts the next roundr′ + 1.
Observe that at mostσ+1 nodes can perform filter-violations without starting the next round since each node from

V1 or V3 directly starts the next round (r + 1 from the DENSEPROTOCOL or r′ + 1 this protocol) and the number of
nodes inV2 is bounded byσ.

Furthermore observe that after each round the intervalL′, the guess of OPTs lower endpoint of the upper filter,
is halved. The range ofL′ is upper bounded by the range ofL thus, after at mostlog |L| + 1 rounds the setL′ is
empty.

Lemma 5.6. Given a time pointt at whichSUBPROTOCOL is started. At the timet′ whichSUBPROTOCOL terminates,
there is one nodei that is moved fromV2 to V1 or V3 or the intervalLr (from DENSEPROTOCOL) is halved correctly.

Proof. Focus on the cases in whichL′ is halved or there is a decision on a nodei to move toV1 orV3 (cf. cases 3.b.1.,
3.d.1. 3.d.2., 3.a’., and 3.c’.1.).

In step 3.b.1. the server observed at the timet′ a filter-violation fromi ∈ V2 \ S′ and there are (strictly) more
thank nodes observed with a larger value thanu′

r′ . Observe that in this case for all subsetsS with k elements there
exists one nodei /∈ S which observed a valuevi ≥ u′

r′ , thus no matter which set is chosen by OPT, for the upper
boundu∗ for nodesi /∈ F∗ it holds: u∗ ≥ u′

r′ , and sinceu′
r′ = 1

1−ε
ℓ′r′ holds, it followsℓ∗ ≥ ℓ′r′ . Furthermore if

L′
r′+1 was defined as the empty set, and a nodei ∈ S′

1 ∩ S′
2 exists, observe thati gets a valuevi ≤ ℓ′r′ and since in

this caseu∗ ≥ u′
r′ holds,i /∈ F∗ follows. If such a nodei does not exist during the execution of SUBPROTOCOL,

the nodei ∈ S1 ∩ S2 which initiated the SUBPROTOCOL can be decided to move toV3 since during the execution of
SUBPROTOCOL the intervalL′ is only halved to the upper half, thusi ∈ S1 ∩ S2 observed a valuevi < ℓr = ℓ′r′ and
sinceu∗ ≥ u′

r′ holds, thisi /∈ F∗ follows.
In step 3.d.1. the nodei observed a valuevi which is larger than 1

1−ε
z and thus has to be part ofF∗.

In step 3.d.2. the nodei observed a valuevi < ℓ′r′ . If during the execution of SUBPROTOCOL the setL′ was
defined as the upper half at least once then there was a nodej ∈ V3 or strictly more thank nodes which observed
a larger value thanu′

r′ . It follows, that thisi cannot be part ofF∗. In case during the execution of SUBPROTOCOL

the setL′ is alway defined to the lower half, thenℓ′r′ is the lower end ofL and since nodei observed a value strictly
smaller thanℓ′r′ it cannot be part ofF∗.

The arguments for case 3.a’. are similar to 3.b.1.
For the remaining case 3.c’.1. simply observe thati observed a smaller value than(1 − ε)z thusi cannot be part

of F∗ follows.
First, focus on the steps in whichL is halved and observe that steps 3.a. and 3.b’.1. are the samecases as in the

DENSEPROTOCOL.

Lemma 5.7. Given a time pointt at whichDENSEPROTOCOL is started. Lett′ be the time point at whichDENSE-
PROTOCOL terminates. During the time interval[t, t′] OPT communicated at least once.

Proof. We prove that OPT communicated by arguing thatℓ∗, the lower endpoint of the upper filter, i.e. the filter for
the outputF∗, is in the guessLr at each roundr (ℓ∗ ∈ L∗ ⊆ Lr). Hence we show that although if we halve the
intervalLr, the invariantℓ∗ ∈ L∗ ⊆ Lr is maintained all the time of the execution of DENSEPROTOCOLand possible
calls of SUBPROTOCOL.

14

In the following we assume to the contrary that OPT did not communicate throughout the interval[t, t′]. We
first argue for the execution of DENSEPROTOCOL and assume that the invariant by calls of SUBPROTOCOL hold by
Lemma 5.6.

First focus on the DENSEPROTOCOL, which halves the intervalLr in steps 3.a., 3.b.1., 3.a’., and 3.b’.1.:
In step 3.a. in which a nodei ∈ V1 violates its filter from above and observes a valuevi < ℓr, it holds: i ∈ F∗

thus,ℓ∗ < ℓr follows.
In step 3.b.1. there are (strictly) more thank nodes with a larger value thanur. It follows that for all subsetsS

(with k elements) there is one nodei /∈ S observing a value larger thanur and thus,ℓ∗ ≥ (1− ε)ur = ℓr holds.
The case 3.a’. (which is symmetric to 3.a.) is executed if a nodei ∈ V3 observed a filter-violation (vi > ur) which

implies that the upper endpointu∗ of filter F2 is larger thanvi and thus,ℓ∗ ≥ (1− ε)ur = ℓr.
In step 3.b’.1. (which is symmetric to 3.b.1.) there are (strictly) more thann− k nodes with a smaller value than

ℓr. It follows that for all subsetsS (with k elements) there is one nodei ∈ S observing a value smaller thanℓr and
thus,ℓ∗ ≤ ℓr holds.

Theorem 5.8. There is an online algorithm forε-Top-k-Position Monitoring which isO(σ2 log(εvk)+σ log2(εvk)+
log log∆ + log 1

ε
)-competitive against an optimal offline algorithm which mayuse an error ofε.

Proof. The algorithm works as follows. At timet at which the algorithm is started, the algorithm probes the nodes
holding thek + 1 largest values. Ifvt

π(k+1,t) < (1 − ε)vt
π(k,t) holds, the algorithm TOP-K-PROTOCOL is called.

Otherwise the algorithm DENSEPROTOCOL is executed. After termination of the respective call, the procedure starts
over again.

Observe that if the condition holds, there is only one uniqueoutput and thus, the TOP-K-PROTOCOLmonitors the
Top-k-Positions satisfiying the bound on the competitiveness as stated in Theorem 4.5. If the condition does not hold,
there is at least one value in theε-neighborhood ofvt

π(k,t) and thus, the DENSEPROTOCOLmonitors the approximated
Top-k-Positions as analyzed in this section.

The number of messages used is simply obtained by adding the number of messages used by the respective algo-
rithms as stated above.

To obtain the upper bounds stated at the beginning, we upper boundσ by n andvk by ∆: O(n2 log(ε∆) +
n log2(ε∆)+log log∆+log 1

ε
). Note that for constantε we obtain a slightly simpler bound ofO(n2 log∆+n log2 ∆)

on the competitiveness.

Corollary 5.9. There is an online algorithm forε-Top-k-Position Monitoring which isO(σ + k logn + log log∆ +
log 1

ε
)-competitive against an optimal offline algorithm which mayuse an error ofε′ ≤ ε

2 .

Proof. The algorithm works as follows. At the initial time stept the algorithm probes the nodes holding thek + 1
largest values. Ifvtπ(k+1,t) < (1− ε)vtπ(k,t) holds the algorithm TOP-K-PROTOCOL is called.

Otherwise the online algorithm simulates the first round of the DENSEPROTOCOL, that is nodes are partitioned
intoV1, V2, andV3 and the filters are defined as proposed (cf step 2. of DENSEPROTOCOL). Here all nodes with values
larger than 1

1−ε
(1 − ε

2)z are directly added toV1 instead of adding toS1, and nodes observing values smaller than
(1 − ε

2)z are added toV3. Furthermore, if a filter-violation from some nodei ∈ V2 is observed, it is directly moved
(deleted fromV2 and added) toV1 in case it violates from below, and added toV3 if violated from above.

Whenever a node fromV1 (or fromV3) violates its filter the algorithm terminates. Additionally if (strictly) more
than k nodes are inV1 the algorithm is terminated or if (strictly) less than k nodes are inV1 ∪ V2. If exactly k nodes
are inV1 andn− k nodes are inV3 the TOP-K-PROTOCOL is executed.

For the following argumentation on the competitiveness we focus on the case that TOP-K-PROTOCOL was not
called since the analysis of TOP-K-PROTOCOLholds here. Observe that OPT (with an error ofε′) had to communicate
based on the following observation:

Let t′ be the time at which the algorithm terminates. Assume to the contrary that OPT did not communicate during
[t, t′]. In case nodei ∈ V1 observes a filter-violation from above,

(

vi < (1− ε
2)z
)

andε′ ≤ ε
2 , OPT had to setℓ∗ ≤ vi

andu∗ ≥ z, which leads to a contradiction to the definition of filters. In case nodei ∈ V3 observes a filter-violation

from below,
(

vi >
1

1−ε
(1− ε

2)z
)

andε′ ≤ ε
2 , OPT had to setu∗ ≥ vi andℓ∗ ≤ z, which leads to a contradiction to

the definition of filters. The fact that OPT had to communicatein the remaining cases follows by the same arguments.
Since all cases lead to a contradiction, the bound on the competitiveness as stated above follows.

15

References

[1] Arackaparambil, C., Brody, J., Chakrabarti, A.: Functional Monitoring without Monotonicity. In: Proceedings
of the 36th International Colloquium on Automata, Languages and Programming, pp. 95–106. Springer, Berlin
(2009)

[2] Cormode, G.: The Continuous Distributed Monitoring Model. ACM SIGMOD Record 42.1, pp. 5–14. (2013)

[3] Cormode, G., Muthukrishnan, S., Ke, Y.: Algorithms for Distributed Functional Monitoring. ACM Transactions
on Algorithms 7, 21 (2011)

[4] Giannakopoulos Y., Koutsoupias, E.: Competitive Analysis of Maintaining Frequent Items of a Stream. Theoret-
ical Computer Science 562, pp. 23–32. (2105)

[5] Lam, T.W., Liu, C.-M., Ting, H.-F.: Online Tracking of the Dominance Relationship of Distributed Multi-
dimensional Data. In: Proceedings of the 8th InternationalWorkshop on Approximation and Online Algorithms,
pp. 178–189. Springer, (2011)

[6] Mäcker, A., Malatyali, M., Meyer auf der Heide, F.: Online Top-k-Position Monitoring of Distributed Data
Streams. In: Proceedings of the 29th International Parallel and Distributed Processing Symposium, pp. 357–364.
IEEE, (2015)

[7] Muthukrishnan, S.: Data Streams: Algorithms and Applications. Now Publishers Inc, (2005)

[8] Phillips, J., Verbin, E., Zhang, Q.: Lower Bounds for Number-in-Hand Multiparty Communication Complexity,
Made Easy. In: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 386–501.
SIAM (2012)

[9] Sanders, P., Schlag, S., Müller, I.: Communication Efficient Algorithms for Fundamental Big Data Problems. In:
Proceedings of the IEEE International Conference on Big Data, pp. 15–23. IEEE, Silicon Valley (2013)

[10] Tang M., Li F., Tao Y.: Distributed Online Tracking. In:Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pp. 2047–2061. ACM, (2015)

[11] Yi, K., Zhang, Q.: Multidimensional Online Tracking. ACM Transactions on Algorithms 8, 12 (2012)

[12] Zhang, Z., Cheng, R., Papadias, D. and Tung, A.K.H.: Minimizing the Communication Cost for Continuous
Skyline Maintenance. In: Proceedings of the ACM SIGMOD International Conference on Management of data,
pp. 495–508. ACM, New York (2009)

[13] Zhang, Q.: Communication-Efficient Computation on Distributed Noisy Datasets. In: Proceedings of the 27th
ACM Symposium on Parallelism in Algorithms and Architectures, pp. 313–322. ACM, (2015)

16

	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	2.1 Filter-Based Algorithms & Competitive Analysis
	2.2 Observations and Lemmas

	3 Auxiliary Problem: Existence
	4 Competing against an Exact Adversary
	5 Competing against an Approximate Adversary
	5.1 Lower Bound for Competitive Algorithms
	5.2 Upper Bounds for Competitive Algorithms

