arXiv:1601.04448v3 [cs.DS] 27 Oct 2016

On Competitive Algorithms for Approximations of TapPosition
Monitoring of Distributed Streams

Alexander Macker Manuel Malatyali
Friedhelm Meyer auf der Heide

Heinz Nixdorf Institute & Computer Science Department
Paderborn University, Germany

{amaecker, malatya, fmag@hni.upb.de

Abstract

Consider the continuous distributed monitoring model iriavh distributed nodes, receiving individual data
streams, are connected to a designated server. The seaskeid to continuously monitor a function defined over
the values observed across all streams while minimizingdinemunication. We study a variant in which the server
is equipped with a broadcast channel and is supposed to ta@spaf an approximation of the set of nodes currently
observing the; largest values. Such an approximate set is exact excepofioe gmprecision in as-neighborhood
of the k-th largest value. This approximation of the ThgRosition Monitoring Problem is of interest in cases where
marginal changes (e.g. due to noise) in observed valuesec@mbred so that monitoring an approximation is suffi-
cient and can reduce communication.

This paper extends our results from [6], where we have dpeel@ filter-based online algorithm for the (exact)
Top-k-Position Monitoring Problem. There we have presgrtecompetitive analysis of our algorithm against an
offline adversary that also is restricted to filter-baseatigms. Our new algorithms as well as their analyses use
new methods. We analyze their competitiveness againstsahies that use both exact and approximate filter-based
algorithms, and observe severe differences between theatge powers of these adversaries.

1 Introduction

We consider a setting in whichdistributed nodes are connected to a central server. Eatgheumtinuously observes
a data stream and the server is asked to keep track of the esoene function defined over all streams. In order
to fulfill this task, nodes can communicate to the server)emtie server can employ a broadcast channel to send a
message to all nodes.

In an earlier papel 6], we introduced and studied a problaled Top4-Position Monitoring in which, at any
time t, the server is interested in monitoring thenodes that are observing the largest values at this patitiole
t. As a motivating example, picture a scenario in which a etdad balancer within a local cluster of webservers
is interested in keeping track of those nodes which are dgttia highest loads. We proposed an algorithm based on
the notion of filters and analyzed its competitiveness wagpect to an optimal filter-based offline algorithm. Filters
are assigned by the server and are used as a means to indeatedes when they can resign to send updates; this
particularly reduces communication when observed valoessimilar” to the values observed in the previous time
steps.

In this paper, we broaden the problem and investigate theétororg of an approximation of the Top-Positions.
We study the problem of-Top-k-Position Monitoring, in which the server is supposed tontain a subset of nodes
such that all nodes observing “clearly larger” values thenrtode which observed theth largest value are within this
set and no node observing a “clearly smaller” value beloadisis set. Here, smaller/larger is meant to be understood
with respect ta and thek-th largest value observed. A detailed definition is give®att[2. Relaxing the problem
in this direction can reduce communication while, in mangesa marginal or insignificant changes (e.g. due to noise)

This work was partially supported by the German Researchdiion (DFG) within the Priority Program “Algorithms fori®@Data” (SPP
1736) and by the EU within FET project MULTIPLEX under comtrao. 317532.

http://arxiv.org/abs/1601.04448v3

in observed values can be ignored and justify the sufficiefieyy approximation. Examples are situations where lots
of nodes observe values oscillating around thil largest value and where this observation is not of anyitqtiae
relevance for the server. We design and analyze algoritems-Top-k-Position Monitoring and, although we use
these very tools of filters and competitive analyisis [6],ithprecision/approximation requires fundamentally difet
online strategies for defining filters in order to obtain édfit solutions.

1.1 Our Contribution

In this paper we investigate a class of algorithms that asedan using filters and study their efficiency in terms of
competitive analysis.

As a first technical contribution we analyze an algorithmct98) which allows the server to decide the logical
disjunction of the (binary) values observed by the disteédunodes. It uses a logarithmic number of rounds and a
constant number of messages on expectation. As a by-pragireg this algorithm, the result on the competitiveness
of the filter-based online algorithm ial[6] can be reducedrfr®(k logn + log Alogn) to O(klogn + log A), for
observed values frof0, 1, ..., A}.

Second, we also propose an online algorithm ($éct. 4) thalowed to introduce an error ef€ (0,1/2] in the
output and compare it to an offline algorithm that solves tteeeTop4-Position Monitoring problem. We show that
this algorithm isO(k log n 4 log log A + log 1)-competitive. Note that this imprecision allows to bringthg A in
the upper bound down tog log A for any constant.

We also investigate the setting in which also the offline atgm is allowed to have an error in the output (SEEt. 5).
We first show that these results are not comparable to prevesults; we prove a lower bound on the competitiveness
of Q(n/k). Our third and main technical contribution is an algorithrithwa competitiveness ab(n? log(eA) +
nlog? (eA) +loglog A + log %) if the online and the offline algorithm may use an errok of

However, if we slightly decrease the allowed error for théreé algorithm, the lower bound on the competitiveness
of Q(n/k) still holds, while the upper bound is reduced®n + k logn + loglog A + log %).

1.2 Related Work

Efficient computation of functions on big datasets in terrhstoeams has turned out to be an important topic of
research with applications in network traffic analysist taiing or databases (e.al [9] and [7]).

The Continuous Monitoring Modelwhich we consider in this paper, was introduced by Cormadds.42] to
model systems comprised of a server andodes observingdistributeddata streams. The primary goal addressed
within this model is the continuous computation of a funetitepending on the information available across.ahta
streams up to the current time at a dedicated server. Subjdists main concern, the minimization of the overall
number of messages exchanged between the nodes and theuseraiy determines the efficiency of a streaming
algorithm. We refer to this model and enhance it by a broddtesinel as proposed by Cormode et allin [3].

An important class of problems investigated in literaturetareshold computations where the server is supposed
to decide whether the current function value has reachea given threshold. For monotone functions such as
monitoring the number of distinct values or the sum over alugs, exact characterizations in the deterministic case
are known[[2| 3]. However, non-monotone functions, e.g,ahtropy([1], turned out to be much more complex to
handle.

A general approach to reduce the communication when mamitdistributed streams is proposedIlinl[12]. Zhang
et al. introduce the notion dflters, which are also an integral part of our algorithms. They afersthe problem
of continuous skyline maintenance, in which a server is egpg to continuously maintain the skyline of dynamic
objects. As they aim at minimizing the communication ovedhbetween the server and the objects, they use a filter
method that helps in avoiding the transmission of updateage these updates cannot influence the skyline. More
precisely, the objects are points ofialimensional space and filters are hyper-rectangles as$igythe server to the
objects such that as long as these points are within theresbsinyper-rectangle, updates need not be communicated
to the server.

Despite its online nature, by now streaming algorithms arelly studied in terms of competitiveness. In their work
[11], Yi and Zhang were the first to study streaming algorshmith respect to their competitiveness and recently this
approach was also applied in a few papers ([5, 10, 6, 4]).dir thodel [11], there is one node and one server and the
goal is to keep the server informed about the current valwefahctionf : Z+ — Z? that is observed by the node
and changes its value over time, while minimizing the nundfenessages. Yi and Zhang present an algorithm that

is O(d? log(d - §))-competitive if the last value received by the server mightiate bys from the current value of.
Recently, Tang et all_[10] extended this work by Yi and Zhaolie two-party setting to the distributed case. They
consider a model in which the server is supposed to trackuhemt value of a (one-dimensional) function that is
defined over a set of functions observed at the distributed nodes. Among othiegshthey propose an algorithm for
the case of a tree-topology in which the distributed nodestsr leaves of a tree connecting them to the server. They
show that on any instandetheir algorithm incurs communication cost that is by a fadbO (... log d), where
hmas represents the maximimum length of a path in the tree, lafgar those of the best solution obtained by an
online algorithm on/.

Following the idea of studying competitive algorithms foomitoring streams and the notion of filters, Lam et
al. [5] present an algorithm for online dominance trackifglistributed streams. In this problem a server always
has to be informed about the dominance relationship betwesstributed nodes each observing an online stream of
d-dimensional values. Their algorithm is based on the idddtefs and they show that a mid-point strategy, which
sets filters to be the mid-point between neighboring noda8{ i log U)-competitive with respect to the number of
messages sent in comparison to an offline algorithm thafitets optimally.

While we loosely motivated our search for approximate sofhg by noise in the introduction, in other problems
noise is a major concern and explicitly addressed. For el@mpnsider streaming algorithms for estimating statasti
parameters like frequency moments|[13]. In such probleersain elements from the universe may appear in different
forms due to noise and thus, should actually be treated asathe element.

2 Preliminaries

In our setting there are distributed node$1, ..., n}. Each nodé receives a continuous data stre@m, v, v3 . . .),
which can be exclusively observed by nadét time ¢, v/ € N is observed and g, #' > ¢, is known. We omit the
indext if it is clear from the context.

Following the model in[[B], we allow that between any two cecigtive time steps, aommunication protocol
exchanging messages between the server and the nodes majetadc The communication protocol is allowed to use
an amount of rounds which is polylogarithmicirandmax; <;<, (v!). The nodes can communicate to the server while
the server can communicate to single nodes or utilize a lsesadhannel to communicate a message that is received
by all nodes at the same time. These communication methodsumit communication cost per message, we assume
instant delivery, and a message at titig allowed to have a size at most logarithmigimndmax; <;<,, (v}).

Problem Description Consider the Tog-Position Monitoring problemni 6], in which the server is agko keep
track of the set of nodes currently holding thdargest values. We relax this definition and study an appnaie
variant of the problem in which this set is exact except fodemin a small neighborhood around th¢h largest
value. We denote by (k,t) the node which observes tlieth largest value at time and denote by top-:= {i €
{1,...,k} : (i, t)} the nodes observing thelargest values. Given an error< ¢ < 1, for a timet¢ we denote
by E(t) = (ﬁ”;(k,t)’ oo] the range of values that are clearly larger than ikl largest value and by (¢) =

[(1- E)vi(k,t)’ ﬁ”;(k,t)] thee-neighborhoodiround thek-th largest value. Furthermore, we denotekby) == {i :

vt € A(t)} the nodes in the-neighborhood around theth largest value. Then, at any timethe server is supposed
to know the node& (t) = Fr(t) U Fa(t) = {i1,...,ir} according to the following properties:

1. Fr(t)={i:v! € E(t)} and
2. Fa(t) CK(t) = {i: vl € A(t)}, such thatFa(t)| = k — | Fr(t)| holds.

Denote byA the maximal value observed by some node (which may not be kibeforehand). We usg; = F(t) if
t is clear from the context, = {1,...,n} \ F(¢), and call7* theoutputof an optimal offline algorithm. If thé-th
and the(k + 1)-st largest value differ by more than;fr(k_’t), F(t) coincides with the set in the (exact) TépPosition
Monitoring problem and hencé(t) is unique. We denote hy(¢) := |K(t)| the number of nodes at timtevhich are
in thee-neighborhood of thé-th largest value and := max; o(t). Note thai/C(¢)| = 1 implies thatF(¢) is unique.
Furthermore for solving the exact TdpPosition Monitoring problem we assume that the values etendt (at least
by using the nodes’ identifiers to break ties in case the saue s observed by several nodes).

2.1 Filter-Based Algorithms & Competitive Analysis

A set of filters is a collection of intervals, one assigneddotenode, such that as long as the observed values at each
node are within its respective interval, the out@i(t) need not change. For the problem at hand, this general idea of
filters translates to the following definition.

Definition 2.1. [6] For a fixed timet, a set of filtersis defined as an-tuple of intervalg F}, ..., F!), F; C NU{oco}
andv; € F;, such that as long as the value of nadenly changes within its interval (i.e; € F;), the value of the
outputF need not change.

Observe that each pair of filte(g;, F;) of nodesi € F(¢) andj ¢ F(t) must be disjoint except for a small
overlapping. This observation can be stated formally devid.

Observation 2.2. For a fixed timef, ann-tuple of intervals is a set of filters if and only if for all paii € F(¢) and
j ¢ F(t) the following holdsw; € F; = [{;,u;], v; € F; = [{;,u;] and; > (1 — €)u,.

In our model, we assume that nodes are assigned such filténg Isgrver. If a node observes a value that is larger
than the upper bound of its filter, we say the neidldates its filter from below A violation from aboveis defined
analogously. If such a violation occurs, the node may reipartd its current value to the server. In contrastio [6], we
allow the server to assign “invalid” filters, i.e., there affected nodes that directly observe a filter-violationwduer,
for such an algorithm to be correct, we demand that the iatemssigned to the nodes at the end of the protocol at time
t and thus, before observations at time 1, constitute a (valid) set of filters. We call such an alganitfiter-based
Note that the fact that we allow invalid filters (in contrastf€]) simplifies the presentation of the algorithms in the
following. However, using a constant overhead the protcah be changed such that only (valid) filters are sent to
the nodes.

Competitiveness To analyze the quality of our online algorithms, we use asialpased on competitiveness and
compare the communication induced by the algorithms todhah adversary’s offline algorithm.

Similar to [5] and [6], we consider adversaries that areriest to use filter-based offline algorithms and hence,
OPT is lower bounded by the number of filter updates. Howevercompare our algorithms against several adver-
saries which differ in terms of whether their offline algbrit solves the exact Top-Position Monitoring Problem or
e-Top-k-Position Monitoring. The adversaries are assumed to bgtiadai.e., values observed by a node are given by
an adversary who knows the algorithm’s code, the currete sticeach node and the server and the results of random
experiments.

An online algorithm is said to have a competitiveness dfthe number of messages is at most by a factor of
larger than that of the adversary’s offline algorithm.

2.2 Observations and Lemmas

Define for some fixed sef C {1,...,n} the minimum of the values observed by nodesSiduring a time period
[t,t'] as MiNs(¢,t') and the maximum of the values observed during the same pasitdhx s (¢,t").

Definition 2.3. Lett,t' be given times witl' > ¢. For a subset of nodeS C {1,...,n} the valueMAXs(¢,t') ==
max;< <y Max;es (vl) andMINs(t, ') are defined analogously.

Observe that it is sufficient for an optimal offline algorithononly make use of two different filters, and F.

Proposition 2.4. Without loss of generality, we may assume that an optimaheféligorithm only uses two different
filters at any time.

Proof. Let [t,t'] be an interval during whiclv PT" does not communicate. We fix its outpfif and defineF; =
{1,...,n}\ Fi. If OPT only uses two different filters throughout the interval, we done. Otherwise, using;
as output throughout the intervial ¢'] and filtersFy = [MINz: (¢,t'),00] and F> = [0, MAX 7; (¢,)], which must
be feasible due to the assumption th&aPT" originally assigned filters that lead to no communicati@ads to no
communication within the considered interval. O

The following lemma generalizes a lemmalin [6]¢«dop-k-Position Monitoring. Assuming the optimal offline
algorithm did not change the set of filters during a time pfot’], the minimum value observed by nodesAi can
only be slightly smaller than the maximum value observeddges inF;.

Lemma 2.5.If OPT uses the same set of filters, /> during(t, '], thenitholdMIN 7 (¢, ') > (1—¢) MAX 75 (¢, 1').

Proof. Assume to the contrary th& PT uses the same set of filters throughout the intefival] and outputsFy,
but MINz: (t,t) < (1 — e)MAXz;(t,t') holds. Then there are two nodésc F; andj ¢ F7, and two times
t1,ta € [t,], such thatvf1 = MINFz: (t,1') andvj.2 = MAX z;(t,t’). Due to the definition of a set of filters and the
fact thatO PT has not communicated duririg '], OPT must have set the filter for nodéo [s;, o0], s1 < v}*, and
for nodej to [—oo, sa], s2 > vj?. This is a contradiction to the definition of a set of filterﬁﬂbservatlotﬁlz O

At last a result from[[5] is restated in order to calculate (#veact) topk set for one time step.

Lemma 2.6. [6] There is an algorithm that computes the node holding Hrgést value usin@(log n) messages on
expectation.

3 Auxiliary Problem: Existence

In our competitive algorithms designed and analyzed in ¢ilewing, we will frequently make use of a protocol for
a subproblem which we calDESTENCE Assume all nodes observe only binary valuesMiec {1,...,n} : v; €
{0,1}. The server is asked to decide thgical disjunctionfor one fixed time step.

It is known that forn nodes each holding a bit vector of lengththe communication complexity to decide the
bit-wise disjunction i€2(nm) in the server model [8]. Observe that in our motlehessage is sufficient to decide the
problem assuming the nodes have a unique identifier betivaadrn and the protocol usesrounds.

We prove that it is sufficient to use a constant amount of ngessan expectation and logarithmic number of
rounds. Note that the algorithm in the following lemma is & Magas algorithm, i.e. the algorithm is always correct
and the number of messages needed is based on a random process

Lemma 3.1. There is an algorithmExISTENCEPROTOCOL that usesO(1) messages on expectation to solve the
problemEXISTENCE.

Proof. Initially all nodes are active. All nodesdeactivate themselves,if = 0 holds, that is, these nodes do not
take part in the following process. In each roune- 0,1, ..., logn the active nodes send messages independently
at random with probability,. := 2" /n. Consequently, if the last round= logn is reached, all active nodesvith

= 1 send a message with probability 1. As soon as at least oneagesgs sent or the-th round ends, the
protocol is terminated and the server can decCidesEENCE.

Next, we analyze the above protocol and show that the bountieexpected number of messages is fulfilled.
Let X be the random variable for the number of messages used bydtexpl ands be the number of hodeswith
v; = 1. Note that the expected number of messages sent in moisidp,. and the probability that no node has sent a
message before ;¢ (1 — px)".

Observing that the functioffi(r) = b - p,(1 — p,_1)” has only one extreme point afd< f(r) < 2 for r €
[0,logn], it is easy to verify that the series can be upper boundedplsiintegration:

log(n) r—1 k
b b2" 2
S ()
r=1
log(n) bor or— 1
SEDY (1_)

10%(") b2" 2r—1 b
<1+ / — (1 —) dr + 2
0 n n

logn

<3+

b . 971
(b—i—l)nln(?)(2 —2n)(1— n) L
<3+

=2 nn(2)

((21°g” — 2n) (1 - Zlognnl)b +2n <1 - 20n1>b>
<3+ ﬁ(z) [(n—2n)(1 _ %)b—i—?n(l - %)b]

O

This protocol can be used for a variety of subtasks, e.gdatifig that all nodes are within their filters, identifying
that there is some filter-violation or whether there are sdHat have a higher value than a certain threshold.

Corollary 3.2. Given a timet. There is an algorithm which decides whether there are nadsish observed a
filter-violation usingO(1) messages on expectation.

Proof. For the distributed nodes to report filter-violations we as@pproach based on th& ETENCEPROTOCOLtO
reduce the number of messages sent in case several nodegedbsg-violations at the same time. The nodes apply
the ExisTENCEPROTOCOLas follows: Each node that is still within its filter applié®tprotocol using & as its value
and each node that observes a filter-violation usedNote that by this approach the server definitely gets inéatih
there is some filter-violation and otherwise no communaratakes place. O

The ExXISTENCEPROTOCOL can be used in combination with the relaxed definition ofrfilteo strengthen the
result for Topk-Position Monitoring fromO(k logn + log Alogn) to O(klogn + log A). We first introduce a
generic framework and then show how to achieve this bound.

A generic approach Throughout the paper, several of our algorithms featurdairstructural properties in the
sense that they can be defined within a common framework. éjerenow define a generic approach to describe the
calculation and communication of filters, which we then refater. The general idea is to only use two different filters
that are basically defined by one value separating nodg€$tinfrom the remaining nodes. Whenever a filter-violation
is reported, this value is recalculated and used to setfifteperly.

The approach proceeds in rounds. In the first round we defineitéad interval Ly. In ther-th round, based on
interval L,., we compute a valug: that is broadcasted and is used to set the filtef8,tm] and[m, co]. As soon as
nodei reports a filter-violation observing the valug the coordinator redefines the intenial; := L, N [0, v;] if
the violation is from above and, ;, := L, N [v;, 0o] otherwise. The approach finishes as soon as some (predefined)
condition is satisfied.

Corollary 3.3. There is an algorithm that i©(k log n + log A)-competitive for (exact) Top-Position Monitoring.

Proof. Our algorithm proceeds in phases that are designed suctvéhedn show that an optimal algorithm needs to
communicate at least once during a phase and additionalgan upper bound the number of messages sent by the
online algorithm according to the bound on the competitgn

We apply the generic approach with parameters describesllaw$. The initial interval is defined &, = [¢, u],
wherel = vl ; ., . u =7l . This can be done by determining the values of the nodesrwttiek + 1 largest

values using)(k log n) messages on expectation. In theh round, based on interval., we compute the midpoint of

L, as the valuen which is broadcasted and used to set the filters. As soon dsraviiblation is reported, the generic
framework is applied. In cask, is empty the phase ends.

Note that the distance betweeand(gets halved every time a node violates its filter leadin@ g (uo — {o)) =
O(log A) messages on expectation per phase. Also, it is not hard thaeeuring a phas€ PT has communicated
at least once and hence, we obtain the claimed bound on theetitiveness. O

4 Competing against an Exact Adversary

In this section, we propose an algorithm based on the strateghoose the nodes holding the k largest values as an
output and use this set as long as it is feasible. It will tunhtbat this algorithm is suitable in two scenarios: First,
it performs well against an adversary who solves the Fdpasition Monitoring problem (cf. Theorem #.5); second,
we can use it in situations in which an adversary who is altbteantroduce some error and cannot exploit this error
because the observed data leads to a unique output (cf5pect.

In particular, we develop an algorithm started #tat computes the output s&t := F(¢) using the protocol from
Lemmd 2.6 and for all consecutive times witnesses wheFhas correct or not. Recall that while computing the set
F(t) from scratch (cf. Lemmia2.6) is expensive in terms of comaiion, witnessing its correctness in consecutive
rounds is cheap since it suffices to observe filter-violati@f. Definitio 2.1 and Corollafy 3.2).

The algorithm tries to find a value which partitions#; from F; according to the generic framework, such that
for all nodes € F; it holdsv; > m and for all nodes € F; it holdsv; < m. We call such a value: certificate

Guessing OPT'’s Filters In the following we consider a time peridd ¢”’] during which the outpuf (¢) need not
change. Consider a timé € [t,t”]. The online strategy to choose a certificate at this timeiogahts on the size of
some interval

L* from which an offline algorithm must have chosen
the lower bound* of the upper filter at time

such that the filters are valid throughdttt’]. The algorithm Dp-K-ProTOCOL keeps track of (an approximation
of) L* at time¢’ denoted byL = [¢,u] for which L* C L holds. The online algorithm tries to improve the guess
where OPT must have set filters by gradually reducing thedfizgerval L. (while maintaining the invariant* C L)

at times it observes filter-violations.

Initially « and¢ are defined as followsy = v ; , = MINF, (t,t) andl = vl ., , = MAXgz,(t,t) and are
redefined over time. Although defining the certificate as thgpmint of L = [¢, u] intuitively seems to be the best
way to choosen, the algorithm is based on four consecutive phases, eacfirdgéi different strategy.

In detail, the first phase is executed as long as the property

loglogu > loglog ¢ + 1 (P1)
holds. In this phasen is defined ag + 22" after filter-violations observed. If the property
loglogu < loglogl+1Au > 4¢ (P2)

holds, the valuen is chosen to be™i¢ wheremid is the midpoint of/log ¢, log u]. Observe tha2™? € L = [¢, u]
holds.
The third phase is executed if property

1
w<4lhu> 1 (P3)

— &
holds and employs the intuitive approach of choosings the midpoint of.. The last phase contains the remaining
case of
u < 1
“1—¢

and is simply executed until the next filter-violation is ebged using the filters} = [¢, oo] andF; = [0, u].

In the following we propose three algorithnds , As, and.A; which are executed if the respective property hold
and analyze the correctness and the amount of messagesineede

¢ (P4)

Lemma 4.1. Given timef, an outputF(¢), and an intervall = [¢, u] for which (P1) holds, there is an algorithp,
that witnesses the correctness/ft) until a timet’ at which it outputd.’ = [¢', v/] for which (P1) does not hold. The
algorithm uses)(log log A) messages on expectation.

Proof. The algorithm.A; applies the generic framework and defines the valyahe server broadcasts, as =
lo + 22", wherel, is the initial value of?. If loglogu’ — loglog? < 1 holds, the algorithm terminates and outputs
L' = [¢,«/] with ¢ andu’ defined as the redefinition éfandu respectively.

To analyze the amount of messages needed and express isdéA, observe that in the worst case the server
only observes filter-violations from nodésc F,. In case there is a filter-violation from above, i.e. a node F;
reports a filter-violation, the conditidng log u’ — loglog ¢’ < 1 holds. At least in round = loglog(u — £), which is
by definition upper bounded Hyg log A, the algorithm terminates.

If F(¢)is not valid at time’, there are nodes € Fi, i2 € F2 and time pointsy, t2 (¢; = t' V to = t’) for which
vf]l < vfj holds. Thus,4; observed a filter-violation by eithéy or i, followed by a sequence alternating between
filter-violations and filter-updates. At some point (bull st timet’) log log v’ —loglog ¢’ < 1 holds and the algorithm
outputs(¢’, u’), proving.A;’s correctness for timé. O

Lemma 4.2. For a givenF(t) and a given intervall = [¢, u] for which (P2) holds, there is an algorithd, that
witnesses the correctnessBf{¢) until a timet’ at which it outputsL’ = [¢’, /] for which (P2) does not hold. The
algorithm uses?(1) messages on expectation.

Proof. We apply the generic approach and choose the valtebe broadcasted B¢, wheremid is the midpoint
of [log ¢, log u].

To analyze the amount of messages needed, bdusrd[/, u] in terms of values that are double exponential in
2. To this end, letz € N be the largest number such thfat 22 holds. Now observe since (P2) holds< 22"
follows. Since the algorithm chooses the midpoint of therval[log ¢, log u] in order to getn and halves this interval
after every filter-violation, one can upper bound the nunobeounds by analyzing how often the interyilg ¢, log u|
gets halved. This ifog ¢,logu] C [1og(22a),log (22”3)] = [29, 8 x 2¢] can be halved at most a constant number

of times, until it contains only one value, which impliesttda ¢ > « holds. O

Lemma 4.3. For a givenF(t) and a given intervall = [¢, u] for which (P3) holds, there is an algorithd; that
witnesses the correctnessBf{¢) until a timet’ at which it outputsL’ = [¢’, /] for which (P3) does not hold. The
algorithm uses)(log 1/<) messages on expectation.

Proof. The algorithm applies the generic framework and uses th@amd strategy starting with the interval, =
[¢,u]. Observe that it takes at maSt{log 1) redefinitions ofL to have the final size, no matter whether the algorithm
observes only filter-violations from nodéss F(t) ori ¢ F(t). This together with the use of thexESTENCEPRO-
TocoL for handling filter-violations yields the needed number a&fssages on expectation. The correctness follows
similarly as shown for Lemnia4.1. O

Now we propose an algorithm started at a titn@hich computes the outpu(¢) and witnesses its correctness
until some (not predefined) timéat which the ©P-K-PrRoOTOCOLterminates using a combination of the algorithms
stated above. Precisely th®®-K-ProTocoLis defined as follows:

Algorithm Top-K-PrRoOTOCOL

1. Compute the nodes holding ttle+ 1) largest values and defife= v} . ,, u == v}, and F(t).

2. If (P1) holds, call4; with the argument$ (t) andL = [¢, u]. At the timet’ at which.4; outputsL’ = [¢/, u/]
setl := ¢ andu = /.

3. If (P2) holds, call4, with the argument$ (t) andL = [¢, u]. At the timet’ at which.A; outputsL’ = [¢/, /]
setl .= ¢ andu = u/'.

4. If (P3) holds, call4; with the arguments(¢) andL = [¢, u]. At the timet’ at which. A3 outputsL’ = [¢/,u/]
setl .= ¢ andu = u/'.

5. Ifu>/andu < ﬁé holds, set the filters td; = [¢, 00|, F» = [0, u]. At the timet’ at which node € F;

reports a filter-violation from below define:= vf/. In case node € F; reports a filter-violation from above,
defineu := vf/.

6. Terminate and outpyt, u).

Lemma 4.4. Consider a time. The algorithmTop-K-PrRoTOCOL computes the tog-set and witnesses its correct-
ness until a time’ at which it outputsl = [¢, u], wherel < MAX £, (t,¢'), MIN £, (¢,¢') < u, and{ > « holds (i.e.L
is empty). The algorithm usé¥(k logn + loglog A + log %) messages on expectation.

Proof. We first argue on the correctness @fFK-PrRoTocoLand afterwards shortly analyze the number of messages
used.

The algorithm computes in step 1. a correct oufpuat timet by using the algorithm from Lemnia 2.6 fbtimes.
In consecutive time step$ > ¢ the correctness of @r-K-PrRoTocoL follows from the correctness of algorithms
Ai, As, and As in steps 2. - 4. For the correctness of step 5. observe thattbigmgthe filters taFy, = [¢, oo] and
Fy = [0, u] and the fact that. < ¢ holds the filters are valid. Thus, as long as all nodes obseives which are
inside their respective filters the output need not change.

At the time step’ the protocol terminates and outpuis= [¢, v] it holdsu < ¢. Thus, there are nodés € F;
andiy € F, and time steps;, ¢ € [t, ¢ with: v{! < uandv}? > ¢, and thusp]! < v{2.

To argue on the number of messages observe that the first atepecexecuted usin@(k logn) number of
messages. At the time the condition of steps 2. - 5. are chdbkse steps can be performed usihg log n) number
of messages, by computing the nodes holdingithe1 largest values. The algorithro, , A-, and. A3 are called at
most once each thus the conditions are also checked at moest After executing step 5. the algorithm terminates
which leads to the result on the number of messages as stated.a O

Theorem 4.5. The algorithmTop-K-ProTocOL has a competitiveness 6f(k log n + loglog A + log 1) allowing
an error ofe compared to an optimal offline algorithm that solves the &Xap+-Position Monitoring problem.

Proof. The correctness of @p-K-PrRoTocoLand the number of messages follow from Lenima 4.4. Now we argue
that OPT had to communicate at least once in the intétyv&] during which Top-K-ProToCOLwas applied. If OPT
communicated, the bound on the competitiveness direcligwis. Now assume that OPT did not communicate in
the intervallt, t']. We claim that the interval. maintained during ©pP-K-PROTOCOL always satisfies the invariant
L* C L. If this claim is true, we directly obtain a contradictionttee fact that OPT did not communicate because
of the following reasons. On the one hand, because OPT hasndonthe exact Topg=Positions, OPT chooses the
same set of nodeB* = F; which was chosen by the online algorithm. On the other harttietimet’ the algorithm
Top-K-PrRoTOcCOLterminatesy’ < ¢ holds. Thus, the intervdl’ is empty and sincé&* C L’ holds, it follows that

L* is empty and hence, OPT must have communicated.

We now prove the claim. Recall thatoP-K-PrRoTocoL is started with an interval that fulfills L* C L by
definition. To show thal* C L holds during the entire intervéd, ¢'], it suffices to argue that each of the previous
algorithms makes sure that when started with an intefvalich thatL* C L, it outputsZ’ with L* C L’. Our
following reasoning is generic and can be applied to theipusvalgorithms. Consider the cases in which filter-
violations are observed and hence the intedvat modified: If a filter-violation from below happened at a ém
t1 > t, there is a node € F, with a valuefuf1 > /" and thus/* > ¢ holds. If a filter-violation from above happened
at a timet’, there is a nodeé € F; with a valuevf < v and thusy* < ' holds. This case-distinction leads to the
result, that.* has to be a subset ff, v/]. O

5 Competing against an Approximate Adversary

In this section, we study the case in which the adversaryas/atl to use an approximate filter-based offline algorithm,
i.e. one that solves-Top-k-Position Monitoring. Not surprisingly, it turns out thati$ much more challenging for
online than for offline algorithms to cope with or exploit thikowed error in the output. This fact is formalized in the
lower bound in Theorem 5.1, which is larger than previousangmmunds for the exact problem. However, we also
propose two online algorithms that are competitive agaifibhe algorithms that are allowed to have the same error
and a smaller errar’ < £, respectively.

5.1 Lower Bound for Competitive Algorithms

We show a lower bound on the competitiveness proving anyerdigorithm has to communicate at le&st— k)

times in contrast to an offline algorithm which only u¢es 1 messages. Recall that the adversary generates the data
streams and can see the filters communicated by the servi.tiNa as long as the online and the offline algorithm
are allowed to make use of an ereoe (0, 1) the lower bound holds, even if the errors are different.

Theorem 5.1. Any filter-based online algorithm which solves th@p+-Position Monitoring problem and is allowed
to make use of an error af€ (0, 1) has a competitiveness 9f¢/x) compared to an optimal offline algorithm which
is allowed to use a (potentially different) error gfe (0,1).

Proof. Consider an instance in which the observed values ef [k + 1,n] nodes are equal to some valyg(the
remainingn—o nodes observe smaller values) at titre 0 and the following adversary: Intime step=0,1,...,n—

k, the adversary decides to change the value of one nadh v = y, to bev; t' = y; < (1 —¢) - yo such that a
filter-violation occurs. Observe that such a valyexists ife < 1 holds and a nodéalways exists since otherwise
the filters assigned by the online algorithm cannot be féasiblence, the number of messages sent by the online
algorithm until time stepr — k is at leasth — k. In contrast, the offline algorithm knows the— k& nodes whose
values change over time and hence, can set the filters suchaliiger-violation happens. The offline algorithm sets
two different filters: One filtetF; = [yo, oo] for thosek nodes which have a value gf at time stepn — k using

k messages and one filték = [0, yo] for the remaining: — k& nodes using one broadcast message. By essentially
repeating these ideas, the input stream can be extendeatbitnary length, obtaining the lower bound as stated.

5.2 Upper Bounds for Competitive Algorithms

Now we propose an algorithmeENsePrRoTocOLand analyze the competitiveness against an optimal offlgogithm
in the setting that both algorithms are allowed to use arr efro.

The algorithm ENSEPROTOCOL is started a timeé. For sake of simplicity we assume that theh and the
(k + 1)-st node observe the same valuehat isz := ”fr(k,t) = v;(Hl,t). However, if this does not hold we can
define the filters to bé = [v}, ,, ,y,00] andFy = [0,v,] until a filter-violation is observed at some tinte
using O(k log n) messages on expectation. If the filter-violation occurrednfbelow definez := vfr(,m and if a
filter-violation from above is observed define= v;(k+17t).

The high-level idea of BNSEPROTOCOLIS similar to the OP-K-PROTOCOLto compute a guess on the lower
endpoint of the filter of the outpuF* of OPT (assuming OPT did not communicate durjhg’]) for which the
invariant¢* € L* C L, holds. The goal of BNSEPROTOCOLIS to halve the interval. while maintainingl* € L
until L = () and thus show that no value exists which could be used by OPT.

To this end, the algorithm partitions the nodes into thres. datuitively speaking, the first set which we céll
contains those nodes which have to be part of the optimalbutp those nodes that cannot be part of any optimal
output andV, the remaining nodes. The sets change over time as followtiallyy V¥ contains those nodes that
observes a value! > 1—;,2 Since the algorithm may discover at a time> ¢ that some nodé has to be moved to

Vf/“ which also contains all nodes from previous roundsVie.C Vf/“. On the other hand initially contains
the nodes which observed a valie< (1 — €)z. Here also the algorithm may discover at a tithe> ¢ that some
node: has to be moved W;/“ which (similar toV;) contains nodes from previous rounds. At the tinike setV}
simply contains the remaining nodgk, ..., n} \ (Vi U V{) and its cardinality will only decrease over time.

In the following we make use of sef§ andS; to indicate that nodes il may be moved td; or V3 depending
on the values observed by the remaining nodésirNodes inS; observed a value larger tharbut still not that large
to decide to move it td’; and similarly nodes it$; observed smaller values tharut not that small to move it tbs.

Next we propose the algorithmeEdsePrRoTocoLin which we make use of an algorithnuSPrRoTOCOL for the
scenario in which some nodeexists that is inS; and inS,. At a time at which the 8BPROTOCOL terminates it
outputs that* has to be in the lower half df or in the upper half of. thus, the intervall gets halved (which initiates
the next round) or moves one node frédmto V; or V. Intuitively speaking 8BPRoTOCOLISs designed such that, if
OPT did not communicate durirg t'], wheret is the time the ENSEPROTOCOLIS started and' is the current time
step, the movement of one node V; to V; or Vs implies thati has necessarily to be part 8t or not. For now we
assume the algorithmu®PRroToCoOLto work correctly as a black box usitj/ B(n, | L|) number of messages.

Note that in casd.,. contains one value and gets halved, the intefyal; is defined to be empty. In case the
algorithm observes multiple nodes reporting a filter-violathe server processes one violation at a time in an arlitr

10

order. Since the server may define new filters after procgssinolation one of the multiple filter-violations may be
not relevant any longer, thus the server simply ignores it.

Algorithm: DENSEPROTOCOL

1. Definez := v}, = v} ., and the following sets:
Vi={ie{l,....,n} |0 > =z},
Vs={ie{l,...,n}| vl <(1—¢)z},
Vo :={1,...,n}\ (V1 UV3).
Define an interval, = [(1 — €)z, z] and define set§}, S2 of nodes which are initially empty and useto
denoteS; U S,. Setr := 0 indicating the round.

2. The followingrules are applied for (some) round
Let /, be the midpoint of.,. andu, = —-¢

1—e™7

For a node the filter is defined as follows:
If i e V1, F; == [0, o0];
IficVon Sy, F; = [{,, =z].

it i€ Vy\ S, F = [l 1]

If i € Vo Sy, F; == [(1—¢)z,u,].

if i € V5, F; = [0, u,].

The outputF(t) is defined ad/; U (Sy \ S2) andk — |V4 U (S1 \ S2)| many nodes frony; \ Ss.

3. Wait until timet’, at which some nodereports a filter-violation:

a. If i € V4, thensetL,, 1 to be the lower half of.,. and defineSy = ().
b. If i € (V2'\ S) violates its filter from belowhen

b.1. If the server observed strictly more thamodes with larger values than then setl,.,; to be the
upper half ofL,. and defineS; := 0.

b.2. elseaddi to S; and updaté’s filter.
c. If i € 51\ S2 violates its filterthen

c.1. If 4 violates its filter from belowhen move: from S; andV; to V; and update’s filter.
c.2. elseaddi to S, and call SBPrROTOCOL

d. If the server observed nodes with values; > u, andn — k nodes with values; < /¢, then call
Top-K-PrRoOTOCOL

e. If L.y, was setif is empty, end the protocol, otherwise incrementpdateu,., ¢,., all filters using the
rulesin 2., and goto step 3.

— And their symmetric cases —
a'. If i € V3thensetL,,; to be the upper half of,. and defineS; := (.
b'. If i € (Vo \ S) violates its filter from abovéhen

b'.1. If the server observed strictly more thar- £ nodes with smaller values thénthen setL, , to the
lower half of L,. and defineS, := 0.

b'.2. elseaddi to S,.
c. If i € S5\ S violates its filterthen

c'.1. If ¢ violates its filter from above
then deletei from S», deletei from V5, and add to V3.

c'.2. elseadd: to S; and call Y BPROTOCOL

We analyze the correctness of the protocol in the followamgrha and the number of messages used in Ledmrha 5.3.
We prove that OPT communicated at least once in Lefnma 5.7.

Lemma 5.2. The protocolDENSEPROTOCOL computes a correct outpu(t’) at any timet'.

11

Proof. By definition the output consists of nodes frdm S; and (arbitrary) nodes frofi; \ S, (cf. step 2.). Observe
that by definition of the filters of the nodes in these subghtesminimum of all lower endpoints of the filters 4s
following the rules in step 2. Also observe that the maximunalbupper endpoints of the filters of the remaining
nodes isu,.. Since by definitionu, = l—isz holds, the values observed by nodes F; are (lower) bounded by,
and nodes € F; are (upper) bounded hy;., thus the overlap of the filters is valid.

Now we argue that there are at leastodes in the sét; U S; UV, \ S2. To this end, assume to the contrary that
t' is the first time step at which strictly less thamodes are in the union of these sets. Now observe that the tase
the DENSEPROTOCOLIn which nodes are deleted from onelaf, S; or V2 \ S» are 3.c.1.,3.c.2.,and 3.b’.2..

Observe that in step 3.c.1. the algorithm mové®m S; andV; to V4 and thus is again part of the output and
does not change the cardinality. In step 3.c.2. the nasl@dded taS; and SUBPROTOCOL s called afterwards. At
this timet’ nodei is (again) part of the output of@PRoOTOCOL and thus there are sufficiently many nodes to choose
as an output which is a contradiction to the assumption.dnéimaining case 3.b’.2. ENSEPROTOCOL addsi to Ss.
However, since at tim€ strictly less thark nodes are i; U Sy U (V, \ Sq), there are strictly more than— & nodes
in Sy U V3 and thus, the algorithm would execute step 3.b’.1. inst&hds leads to a contradiction to the assumption.
By these arguments the correctness follows. O

Lemma 5.3. The protocoDeENSEPROTOCOLUSeS at mosD (k logn + o log(evy) + (o + log(evy)) - SUB(o, |L]))
messages on expectation.

Proof. Initially the algorithm computes the topset and probes all nodes which are inhaeighborhood of the node
observing the:-th largest value, usin@ (k log n + o) messages on expectation.

During each round each node can only violate its filter at most constant timebowit starting the next round
r+ 1 or leading to a call of BBPROTOCOLbased on the following simple arguments: All nodésV; or V3 directly
start the next round+ 1 after a filter-violation. Now fix a nodée V5 and observe that if it is not contained$h and
Sy it is added toS; if a filter-violation from below or taS, if a filter-violation from above is observed. At the time
this node: observes a filter-violation in the same direction (i.e. frioefow if it is in .S; and from above if it is inSy) it
is added td/; or V3. In these cases the next filter-violation will start the nexind. The last case that remains is that
it is added to both set$; andS,. Observe that the @ProToCOL s called and starts the next round or decides on
one node (which may be different from the fixed najiso be moved td/; or V5.

Observe that at most+ 1 nodes can perform filter-violations without starting thetreund since each node from
V1 or V3 directly starts the next round and the number of nodés iis bounded by. Furthermore observe that after
each round the intervdl is halved thus, after at moktg |Lo| + 1 rounds the sek,. is empty.

Now focus on the 88ProTOCOL which also halved. after termination or decides on one nade V3 to be

moved ton‘f/+1 or V3t/+1. Thus, it can be called at mastt- log(evy,) times, leading to the result as stated above.

The SuBPRoTOCOL We propose an algorithm which is dedicated for the case iexkeution of TENSEPROTO-
colL that one node was added t®; and toSs.

€ V,\ S reported a filter-violation from below and from above andstigets added t§; and toSs (in an arbitrary
order). In detail, it has observed a value which is largenthaand a value which is smaller than. As a short
remark, ifi € F* would hold, ther?* < ¢, follows and on the other handif¢ 7* holds, ther* > ¢,. follows, but
in DENSEPROTOCOL cannot decideé € F* in steps 3.c.2. or 3.¢c".2.

Algorithm: SuBPRrRoTOCOL

1. Define anintervaly, := L, N [(1 — €)z,¢,], S} := S1, andS} := . Setr’ := 0 indicating the round.

2. The followingrules are applied for (some) round:
Let ¢, be the midpointof.,, andu., == -¢,,.
For a node the filter is defined as follows:
If i € Vi, F} .= F};
IfieVan (Sl\Sz) 7= (L,
IfzeVQrTSJWSQ,F’- 0, 1
if i € Vo \S", F] = [{,ull].
if i € Van (S} \S') F/=[1-¢)z,ul.l;
if i € Vs, E = [0,ul];

s Yl]

_Ez]

12

The outputF(t) is defined ad; U (51 \ S5) U (S7 N S%) and sufficiently many nodes froi \ .S5.
3. Wait until timet’, at which node reports a filter-violation:

a. If ¢ € V1, thenterminate 8PROTOCOL and setl.,.;; to be the lower half of_...
b. If i € (V5 \ &) violates its filter from below

b.1. If the server observed strictly more thianodes with larger values thasn then

- setL;,, to be the upper half of;, and redefines; := S;.

- If L}, is defined to the empty s¢en terminate BPROTOCOL and define the last node
which was inS; N S5 and observed a filter-violation from above to be movedio If such a

node does not exist the node S; N S, moves tols.
b.2. Elseadd: to Sj.

c. If i € 57\ 9% violates its filter

c.1. If i violates its filter from belowhen movei from V; and Sy to V.
c.2. Elseadd: to S} and update’th filter.

d. If i € §1 N S} violates its filter

d.1. If ¢ violates from belowthen move: to V; terminate the 8BPROTOCOL
d.2. else
— defineL;, ., to be the lower half of;., and redefines := ().
- If L, is defined to be the empty sitien terminate $BPrRoTOCOL and movei to Vs.
e. If the server observed nodes with value®; > u, andn — k nodes with values; < ¢, then call
Top-K-PROTOCOL

f. If L, , was setincrement, updateu.,, £,,, all filters using the rules in 2., and goto step 3.

— And their symmetric cases —
a'. If i € V3, then

— setL;,, to be the upper half of;, and redefines’] := Si.

- If L;,_, is defined to the empty séten terminate 8PROTOCOL and define the last nodavhich
was inS] N S5 and observed a filter-violation from above to be movetffolf such a node does not
exist the nodé € S; NS, moves toVs.

b. If i € (Vo \ 9’) violates its filter from above

b'.1. If the server observed strictly more than- k£ nodes with a value less thdp, then terminate $B-
ProTOCOLand setl,.,; to be the lower half of_...

b’.2. elseaddi to S5.

c. If i e S5\ St
c.1. If i violates its filter from abovéhen movei from V4 and.S) to V.
c'.2. elseaddi to S} and update’th filter.

Lemma 5.4. The protocolSUBPROTOCOLcomputes a correct outplfi(t') at any time’ at which a node € S; NS5
exists.

Proof. By definition the output consists of nodes fram, S7 \ S5, S1 N S5 and (arbitrary) nodes from; \ S} (cf.
step 2.). Observe that by definition of the filters of the naddhese subsets, the minimum of all lower endpoints of
the filters is¢/., (in case the node is if; and inSs) following the rules in step 2. Also observe that the maxinmfm
all upper endpoints of the filters of the remaining nodes (iosets; \ S’, S5 \ S; or V3) is ul.,. Since by definition
u, = llfeé’r, holds, the values observed by nodes F; are (lower) bounded by, and nodes € F, are (upper)
bounded by, thus, the overlap of the filters is valid.

Now we argue that there are at leastodes in the set®;, S; \ Sa, S1 N Sz, andV; \ S,. To this end, simply

assume to the contrary that at a timie¢here are strictly less thannodes in the union of the sets. It follows that at

13

this time¢’, the algorithm has observed that there are strictly more tha k nodes with a value smaller thaf..
Thus, the algorithm would continue (compare case b’.1.hwitower value of,. or, in case the intervadl, is empty,
terminates (which is a contradiction).

By these arguments the correctness follows. O

Lemma 5.5. The protocolSuBPROTOCOL uses at mosP (o log |L|) messages on expectation.

Proof. During each round’ each node can only violate its filter at most constant timeéisowit starting the next round
r’ 4+ 1 based on the following simple arguments: All nodeés V; or V3 directly start the next round + 1 after
a filter-violation. Now fix a node € V, and observe that if it is not contained §ff and.S, it is added toS] if a
filter-violation from below or toS;, if a filter-violation from above is observed. At the time tmsdei observes a
filter-violation in the same direction (i.e. from below ifigin S and from above if it is inS%) it is added tal; or V5.
In these cases the next filter-violation will start the nerrd. The last case that remains is that it is added to both
sets,S] andS5. Observe that ©p-K-PROTOCOLterminates ifi € S; N S5, violates its filter from below (and moves
itoV1). Otherwisei violates its filter from above @8PRoOTOCOL starts the next round + 1.

Observe that at most+ 1 nodes can perform filter-violations without starting th&trteund since each node from
V1 or V3 directly starts the next rounda ¢+ 1 from the DENSEPROTOCOL Or 7' + 1 this protocol) and the number of
nodes inl; is bounded by.

Furthermore observe that after each round the intefi¥athe guess of OPTs lower endpoint of the upper filter,
is halved. The range at’ is upper bounded by the range bfthus, after at mosiog |L| + 1 rounds the seL’ is
empty. o

Lemma 5.6. Given a time point at whichSUBPROTOCOL s started. At the tim& whichSuBPRoOTOCOLterminates,
there is one nodéthat is moved fron¥; to V; or V3 or the intervalL,. (from DENSEPROTOCOL) is halved correctly.

Proof. Focus on the cases in whiéHl is halved or there is a decision on a nade move toV; or V3 (cf. cases 3.b.1.,
3.d.1.3.d.2,,3.a’.,,and 3.c’.1.).

In step 3.b.1. the server observed at the tife filter-violation from: € V5 \ S’ and there are (strictly) more
thank nodes observed with a larger value thgn. Observe that in this case for all subs&tsiith & elements there
exists one node ¢ S which observed a value;, > v/, thus no matter which set is chosen by OPT, for the upper
boundu* for nodesi ¢ F* it holds: u* > u/,, and sinceu, = ;L-¢/, holds, it follows¢* > ¢/,. Furthermore if
L;,,, was defined as the empty set, and a nodeS’| N S; exists, observe thatgets a value;; < ¢;., and since in
this caseu™ > w!, holds,i ¢ F* follows. If such a node does not exist during the execution ofiiSPROTOCOL,
the node € S; N .S, which initiated the 88BPrROTOCOL can be decided to move ¢ since during the execution of
SuBProTocoLthe intervalL’ is only halved to the upper half, thus S, NS, observed a value; < ¢, = ¢, and
sinceu* > v/, holds, thisi ¢ F* follows.

In step 3.d.1. the nodeobserved a value; which is larger tharxli—sz and thus has to be part &.

In step 3.d.2. the nodeobserved a value;, < ¢.,. If during the execution of 88PROTOCOL the setl’ was
defined as the upper half at least once then there was ajned®; or strictly more thark nodes which observed
a larger value than!,. It follows, that thisi cannot be part of*. In case during the execution ofy8BPRoTOCOL
the setl’ is alway defined to the lower half, théf is the lower end of and since nodéobserved a value strictly
smaller thar?/, it cannot be part of*.

The arguments for case 3.a’. are similar to 3.b.1.

For the remaining case 3.c’.1. simply observe thalbserved a smaller value théh— ¢)z thusi cannot be part
of F* follows.

First, focus on the steps in whidhis halved and observe that steps 3.a. and 3.b’.1. are the sa@ses as in the
DENSEPROTOCOL O

Lemma 5.7. Given a time point at whichDENSEPROTOCOL s started. Let’ be the time point at whicDENSE
ProTOCOLterminates. During the time interv@l, ¢'] OPT communicated at least once.

Proof. We prove that OPT communicated by arguing tfiatthe lower endpoint of the upper filter, i.e. the filter for
the outputF*, is in the guesd., at each round (¢* € L* C L,). Hence we show that although if we halve the
interval L., the invariant* € L* C L, is maintained all the time of the execution oERSEPROTOCOLand possible
calls of SyBPROTOCOL

14

In the following we assume to the contrary that OPT did not enmicate throughout the intervél ¢']. We
first argue for the execution of ENSEPROTOCOL and assume that the invariant by calls afsfrRoTocoL hold by
Lemmd5.6.

First focus on the BNSEPROTOCOL, which halves the intervdl,. in steps 3.a., 3.b.1.,3.a’., and 3.b".1.:

In step 3.a. in which a nodiec V; violates its filter from above and observes a value< 7, it holds: i € F*
thus,/* < ¢, follows.

In step 3.b.1. there are (strictly) more thamodes with a larger value than.. It follows that for all subsets
(with k& elements) there is one nodé€ S observing a value larger than and thus/* > (1 — ¢)u, = ¢, holds.

The case 3.a’. (which is symmetric to 3.a.) is executed ifderice V3 observed a filter-violation > wu,.) which
implies that the upper endpoiat of filter F is larger than; and thus{* > (1 — &)u, = ¢,..

In step 3.b’.1. (which is symmetric to 3.b.1.) there arei¢dyr) more thann — k£ nodes with a smaller value than
¢,.. It follows that for all subsets (with & elements) there is one nodes S observing a value smaller thap and
thus,/* < /¢, holds. O

Theorem 5.8. There is an online algorithm far-Top+-Position Monitoring which i) (02 log(svy,) + o log? (evy,) +
loglog A + log %)—competitive against an optimal offline algorithm which noag an error of.

Proof. The algorithm works as follows. At timeat which the algorithm is started, the algorithm probes thées
holding thek + 1 largest values. 18], o < (1- €V} 1.1y holds, the algorithm @p-K-PrRoTOCOL is called.
Otherwise the algorithm ENSEPROTOCOL is executed. After termination of the respective call, thecpdure starts
over again.

Observe that if the condition holds, there is only one uniguiput and thus, thedpr-K-PrRoToCOL monitors the
Top-k-Positions satisfiying the bound on the competitivenessadsdsin Theorerm 415. If the condition does not hold,
there is at least one value in theneighborhood o6 ,) and thus, the BNSEPROTOCOLMoNitors the approximated
Top-k-Positions as analyzed in this section.

The number of messages used is simply obtained by addinguthber of messages used by the respective algo-
rithms as stated above. O

To obtain the upper bounds stated at the beginning, we uppérdy by n and v, by A: O(n?log(cA) +
nlog?(eA)+loglog A+log %). Note that for constantwe obtain a slightly simpler bound 6¥(n? log A+n log® A)
on the competitiveness.

Corollary 5.9. There is an online algorithm far-Top+-Position Monitoring which i9(o + klogn + loglog A +
log %)-competitive against an optimal offline algorithm which no@g an error of” < 5.

Proof. The algorithm works as follows. At the initial time steghe algorithm probes the nodes holding the- 1
largest values. If! ka1, < (1 €)vy i+ holds the algorithm ©p-K-ProTOCOLIs called.

Otherwise the online algorithm S|mulates the first roundhef DENSEPROTOCOL, that is nodes are partitioned
into V7, Va, andV3 and the filters are defined as proposed (cf step 2.m¥€FPROTOCOL). Here all nodes with values
larger than -(1 — 5)z are directly added td; instead of adding t&:, and nodes observing values smaller than
(1-%5)z are added td’3. Furthermore, if a filter-violation from some nodes V5 is observed, it is directly moved
(deleted froml; and added) td; in case it violates from below, and addedifpif violated from above.

Whenever a node frorii; (or from V3) violates its filter the algorithm terminates. Additionail (strictly) more
than k nodes are ifir; the algorithm is terminated or if (strictly) less than k nedee inl; U V5. If exactly k nodes
are inV; andn — k nodes are i the Tor-K-PROTOCOLIs executed.

For the following argumentation on the competitiveness a@u$ on the case thatoP-K-PrRoOTOCOL was not
called since the analysis ofoP-K-ProTOCOLholds here. Observe that OPT (with an errog’dthad to communicate
based on the following observation:

Lett' be the time at which the algorithm terminates. Assume todmérary that OPT did not communicate during
[t,t']. In case nodé € V; observes a filter-violation from abov@i <(1- %)z) ands’ < 5, OPT had to set* < v;
andu* > z, which leads to a contradiction to the definition of filters.chse nodeé € V3 observes a filter-violation

from below, (vi > 1%5(1 - 35)z ande’ < 5, OPT had to set* > v; and{* < z, which leads to a contradiction to

the definition of filters. The fact that OPT had to communidatine remaining cases follows by the same arguments.
Since all cases lead to a contradiction, the bound on the etitwpness as stated above follows. O

15

References

[1] Arackaparambil, C., Brody, J., Chakrabarti, A.: Fupnatl Monitoring without Monotonicity. In: Proceedings
of the 36th International Colloquium on Automata, Langusaged Programming, pp. 95-106. Springer, Berlin
(2009)

[2] Cormode, G.: The Continuous Distributed Monitoring MbdACM SIGMOD Record 42.1, pp. 5-14. (2013)

[3] Cormode, G., Muthukrishnan, S., Ke, Y.: Algorithms foisBibuted Functional Monitoring. ACM Transactions
on Algorithms 7, 21 (2011)

[4] Giannakopoulos Y., Koutsoupias, E.: Competitive Arsidyof Maintaining Frequent Items of a Stream. Theoret-
ical Computer Science 562, pp. 23-32. (2105)

[5] Lam, T.W.,, Liu, C.-M., Ting, H.-F.: Online Tracking of ghDominance Relationship of Distributed Multi-
dimensional Data. In: Proceedings of the 8th InternatisV@kshop on Approximation and Online Algorithms,
pp. 178-189. Springer, (2011)

[6] Macker, A., Malatyali, M., Meyer auf der Heide, F.: Ondéi Top-k-Position Monitoring of Distributed Data
Streams. In: Proceedings of the 29th International Pduadie Distributed Processing Symposium, pp. 357-364.
IEEE, (2015)

[7] Muthukrishnan, S.: Data Streams: Algorithms and Apgtiicns. Now Publishers Inc, (2005)

[8] Phillips, J., Verbin, E., Zhang, Q.: Lower Bounds for Nbet-in-Hand Multiparty Communication Complexity,
Made Easy. In: Proceedings of the 23rd Annual ACM-SIAM Sysipm on Discrete Algorithms, pp. 386-501.
SIAM (2012)

[9] Sanders, P., Schlag, S., Muller, I.: Communicationdifit Algorithms for Fundamental Big Data Problems. In:
Proceedings of the IEEE International Conference on BigaQat. 15-23. IEEE, Silicon Valley (2013)

[10] Tang M., Li F., Tao Y.: Distributed Online Tracking. Iferoceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pp. 2047-2061. ACM, (2015

[11] Vi, K., Zhang, Q.: Multidimensional Online Tracking @M Transactions on Algorithms 8, 12 (2012)

[12] Zhang, Z., Cheng, R., Papadias, D. and Tung, A.K.H.: iMiring the Communication Cost for Continuous
Skyline Maintenance. In: Proceedings of the ACM SIGMOD tn&ional Conference on Management of data,
pp. 495-508. ACM, New York (2009)

[13] Zhang, Q.: Communication-Efficient Computation ontbisited Noisy Datasets. In: Proceedings of the 27th
ACM Symposium on Parallelism in Algorithms and Archite@siypp. 313—-322. ACM, (2015)

16

	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	2.1 Filter-Based Algorithms & Competitive Analysis
	2.2 Observations and Lemmas

	3 Auxiliary Problem: Existence
	4 Competing against an Exact Adversary
	5 Competing against an Approximate Adversary
	5.1 Lower Bound for Competitive Algorithms
	5.2 Upper Bounds for Competitive Algorithms

