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Abstract—We propose a model for scheduling jobs in a
parallel machine setting that takes into account the cost of
migrations by assuming that the processing time of a job
may depend on the specific set of machines among which
the job is migrated. For the makespan minimization objective,
the model generalizes classical scheduling problems such as
unrelated parallel machine scheduling, as well as novel ones
such as semi-partitioned and clustered scheduling. In the case
of a hierarchical family of machines, we derive a compact
integer linear programming formulation of the problem and
leverage its fractional relaxation to obtain a polynomial-time 2-
approximation algorithm. Extensions that incorporate memory
capacity constraints are also discussed.

Keywords-processor affinities; makespan minimization; un-
related machines; laminar family; wrap-around rule; clustered
scheduling

I. INTRODUCTION

Multicore architectures have become the standard com-
puting platform in many domains: multicore processors that
speed up application performance by dividing the workload
among multiple processing cores instead of using one “super
fast” single processor. A hierarchical organization of chips
of clusters of symmetric multiprocessing (SMP) nodes with
multicore chip-multiprocessors (CMP), also known as SMP-
CMP clusters, is common today. For example, consider the
architecture of Intel’s Dual-Core Xeon. In this architecture
there are three levels of communication: the communication
between two processors on the same chip (intra-CMP com-
munication); the communication across chips but within a
node (inter-CMP communication), and the communication
between two processors on different nodes (inter-node com-
munication). Intra-CMP communication has higher perfor-
mance than inter-CMP, which in turn has higher performance
than inter-node communication: communications between
cores within a chip can usually achieve lower latency and
higher bandwidth than communications between cores in
different chips.

The objective of how to efficiently exploit the available
hardware parallelism for scheduling jobs is crucial. Experi-
mental work (see for example [24] and references therein)
has shown that a dynamic scheduler that tries to balance
the processes among the available resources to ensure fair
distribution of CPU time and to minimize idle cores is not
sufficient. The fundamental flaw with this approach is that

a core is not an independent processor, but is part of a
larger on-chip system that shares resources (such as caches
and buses) with other cores. For example, in the multicore
system of the dual-core Xeon, cores on the same chip share
the same L2 cache and memory controller, and all the cores
access the main memory through a shared bus.

Since the communication cost is not uniform, the cost
of preempting a job and resuming its execution should take
into account the involved cores: resuming execution of a job
on the same core is lower than the cost of resuming on a
different core; moreover, the cost of migration is not uniform
and depends on the communication cost between the two
involved cores. For all these reasons, scheduling policies
are needed that not only limit the number of migrations, but
that are aware of the costs involved in migrations.

Finally, we note that there is a trend in the design of mul-
ticore architectures towards heterogenous architectures, pro-
viding more flexibility to meet specific performance/energy
consumption goals. In fact, heterogeneous multicore ar-
chitectures have been shown to require significantly less
energy without a significant degradation of performance.
This results in higher overall efficiency with respect to
conventional homogeneous architectures, but implies that the
processing time of a job cannot be regarded as a constant.

In this paper, we propose a theoretical model for schedul-
ing jobs in a multicore architecture that can capture the cost
of migrations by assuming that the processing time of a job
depends on the specific set of machines on which the job
is scheduled. Namely, we are given a family of admissible
sets of machines A, and, for each job j and for each set
α ∈ A, a value Pj(α) denoting the processing time required
by j if its execution is limited to the machines in α. We
assume that jobs that are assigned to a set α can be executed
on any machine in the set; they can be preempted and
possibly migrated to another machine in α, but simultaneous
processing of the same job by two machines is not allowed
(see Section II for details).

This setting opens up a whole new class of scheduling
models with their own particular challenges and subsumes
well-known problems. For example, if there are m machines
and the admissible family A consists of singletons (i.e., A =
{{1}, {2}, . . . , {m}}), then we obtain the unrelated machine
scheduling problem [13]; if A consists of one set containing



all machines (i.e., A = {{1, 2, . . . ,m}} then we have the
(preemptive) parallel machine scheduling problem.

While the model presented here does not account exactly
for the number of migrations incurred, this number can
be bounded (see, for example, Proposition III.2), allowing
migration costs to be accounted for in the processing times,
if desired. Differently from other approaches, this allows
for a flexible input representation and easily accommodates
heterogeneous processors.
Related work. Much of the prior work on multiprocessor
scheduling theory has focused on either the partitioned
or the global approach. Under partitioning, each job is
statically assigned to a machine; if the cost of processing
a job depends on the specific machine on which the job
is executed, we have the unrelated machine scheduling
problem; if, for each job j, the processing cost is either
pj or ∞, then we have the restricted assignment problem.
Under global scheduling, on the other hand, task migration
is allowed with no restrictions and with no additional costs.

It is well-known that partitioning incurs lower runtime
overheads (as there are no migrations), but produces sched-
ules that may be unnecessarily constrained; global schedul-
ing, vice versa, entails higher runtime costs that should
be properly taken into account (see for example [23]).
We now review other approaches that have been proposed
and experimentally tested to overcome the above tradeoff
between better scheduling policies and higher costs.

Semi-partitioned scheduling was proposed as a compro-
mise between pure partitioned and global scheduling [3].
Semi-partitioning relaxes partitioned scheduling by allowing
a small number of jobs to migrate, thereby improving
schedulability. Such tasks are called migratory, in contrast
to fixed tasks that do not migrate. The common goal in this
line of work is to circumvent the algorithmic limitations
and resulting capacity loss of partitioning, while avoiding
the overhead of global scheduling by limiting migrations.

Clustered scheduling is another proposal that aims to
alleviate limitations of partitioned and global algorithms; it
exploits the grouping of cores into clusters of symmetric
multiprocessing nodes with multicore chip multiprocessors:
tasks are statically assigned to clusters (like in partitioning),
but are globally scheduled within each cluster [2], [20].

Semi-partitioned and clustered scheduling are not the only
two proposals; we briefly mention other proposals. Feder-
ated scheduling was introduced in [14] to deal with parallel
real-time tasks, where each task is a DAG whose nodes
represent jobs and edges represent precedence constraints
among jobs. Forcing the execution of a single task on a
single processor restricts all jobs of a task to execute on the
same processor, and forbids to deal with tasks with a (paral-
lelizable) computational demand exceeding the capacity of
a single processor. The federated scheduling approach [1],
[14] is advocated as a reasonable extension of partitioned
scheduling to parallel real-time task sets: there are tasks

that are permitted to execute upon more than one processor
and are granted exclusive access to the processors upon
which they execute, while the remaining tasks are partitioned
amongst a pool of shared processors.

We finally observe that contemporary commodity oper-
ating systems (such as Linux and Windows) implement
more complex migration strategies by defining processor
affinity masks, which specify on a per-process basis on
which processors a job may be scheduled. Namely, processor
affinities allow binding a process to an arbitrary subset of
processors in the system and a process can only be scheduled
on the processors that it is bound to. It is known that
processor affinity is useful for increasing the performance
of a parallel system in several contexts, such as application
performance, fault-tolerance, security and real-time systems
[17], [21], [5].

Processor affinities yield a general framework that can be
used to realize global, partitioned, or clustered scheduling.
For example, in partitioned scheduling, each task’s processor
affinity includes exactly one processor, while in global
scheduling, each task’s processor affinity is set to all pro-
cessors. The new feature is that arbitrary processor affinities
can be assigned on a job-by-job basis, which permits the
specification of migration strategies that are more flexible
than those usually studied in the literature.

To the best of our knowledge, the model we propose
has not been considered theoretically. We already observed
that the problem of scheduling unrelated machines is a
special case of our model; more recently, in [7], [19] a
nonpreemptive scheduling problem is considered that is a
special case of scheduling unrelated machines (and, thus,
of our model). Namely, the problem of non-preemptively
scheduling to minimize makespan when for each job j a
unique set of machines M(j) is given to process the job
(i.e., the processing time of job j on machine i is pj if
i ∈ M(j) or ∞ otherwise); such machine sets have a
laminar structure. Glass and Kellerer [7] give a (2− 1/m)-
approximation algorithm; Muratore et al. [19] improve this
to a polynomial-time approximation scheme.

In [6] (see also references therein) the nonpreemptive
scheduling of jobs on a clustered architecture is considered.
The authors assume that each cluster is formed by m pro-
cessors and that the execution of job j requires qj processors
belonging to the same cluster for pj time units; [6] shows a
7/3 approximation algorithm for minimizing the makespan.
In our model we allow preemption and we consider the
more challenging case when for each job there are many sets
of machines that could execute it, with different processing
times; indeed, one of the main difficulties lies in selecting
the best processor affinity mask for each job.

Hwang et al. [9] study a model of parallel nonpreemptive
scheduling on identical machines, where interprocessor mi-
gration costs are explicitly given as part of the input. While
potentially more accurate with respect to the migration costs,



we observe that in order to be applied to a preemptive
setting, such a model would require to break down each
job into a possibly exponential number of unit-size jobs;
additionally, the model of Hwang et al. would require a
significant extension in the heterogeneous case.

Finally, we remark that in this work we focus on the
load balancing and runtime scheduling aspects rather than
memory accesses and cache complexity. The reader is re-
ferred to [4] and references therein for models that focus on
hierarchical cache performance.
Our results. We focus on preemptively scheduling jobs to
minimize the makespan assuming a hierarchical architecture,
and we first show how this problem generalizes several
classical and new problems (Section II).

In Section III we consider, as a warm-up, the case of
semi-partitioned scheduling, and we identify necessary and
sufficient conditions for schedulability. Namely, we provide
an ILP formulation of the assignment problem that, for each
job, will specify whether the job is assigned to a specific
machine or executed globally. We also provide an efficient
scheduler that, given a feasible solution to the ILP, constructs
a schedule with the same makespan, thus setting the times
for executing and possibly migrating jobs.

In Section IV we consider the more general case of
hierarchical scheduling. We provide an ILP formulation of
the assignment problem that, for each job, will specify the
affinity mask that will be used for scheduling the job, and a
scheduler that, given a feasible solution to the ILP, constructs
a schedule with the same makespan, again setting the times
for executing and possibly migrating jobs. We remark that
our proposed scheduler is combinatorial and that the sched-
ule cannot be trivially constructed by using standard network
flow formulations for scheduling on identical machines.

In Section V we prove an upper bound on the approxi-
mation ratio of the problem for the hierarchical setting. We
show how a fractional relaxation of the ILP can be leveraged
to obtain a polynomial-time 2-approximation algorithm by
building on existing algorithms for the unrelated machine
scheduling problem; the key lemma of the proof shows how
to redistribute the variables’ values in a feasible fractional
solution across the levels of the machine hierarchy.

Finally, in Section VI we consider extensions of the
model to handle additional memory constraints: each job
is characterized by a memory requirement in addition to its
processing times, and there is a constraint on the available
memory at each machine, or at each level of the hierarchy.

Due to space constraints, most of the proofs are given in
the full paper.

II. NOTATION AND PROBLEM FORMULATION

We are given a set of n jobs J := {1, . . . , n} and a
set of m machines M := {1, . . . ,m}. Each job needs to be
assigned to a set of machines on which the job is allowed to
schedule, and the job can be preempted and migrated among

any such machines. However, its processing time depends on
the set of machines on which it is assigned. In detail, we are
given a family of admissible sets A ⊆ 2M , and for each job
j ∈ J , a processing time function Pj : A → Z+ with the
constraint that the function must be monotone on A, i.e., if
α, β ∈ A and α ⊆ β, then Pj(α) ≤ Pj(β), modeling the
fact that processing overheads (caused, e.g., by migration)
increase if the job is executed using a larger set of machines.
We often use the shorthand pαj := Pj(α). Moreover, to
avoid cumbersome notation, when α is a singleton, such as
α = {i}, we write pij instead of p{i}j .

We therefore stipulate that, when a job j ∈ J is run on a
set of machines α ∈ A, the total processing time it receives
must be Pj(α). In general, if a job is run on machine set
M ′ (which may or may not be in A), its processing time
must be pαj , where α is the inclusion-wise minimal set in
A that contains M ′ (if there is no such α, then j cannot be
run on M ′).

Given J and A, an assignment of jobs in J to sets in
A is a function that assigns each job in J to a set in
A. If a job j is assigned to a set α, then its processing
time is Pj(α). The set α to which a job j is assigned is
also called the affinity mask of j. Given an assignment of
jobs in J to sets in A, a schedule is valid with respect to
the assignment if each job is scheduled on time slots of
machines in its affinity mask, no job is processed in parallel
on more than one machine in the same time interval (though
it may be preempted or migrated), each job receives the
required amount of processing time (i.e. pαj , if job j is
assigned to set α), and no machine processes more than one
job in a time slot. We assume that schedules start at time
0 and allow preemptions and migrations to occur only at
integer time points. If, in a given schedule, a job j completes
at time Cj , then T := maxj∈J Cj is called the makespan of
the schedule.

In this paper, we consider the problem of finding an
assignment of jobs in J to sets in A and a corresponding
valid schedule that minimizes the makespan. We divide the
problem into two subproblems: given J and A, find an
assignment of jobs in J to sets in A that admits a valid
schedule in the interval [0, T ] and minimizes T ; and given an
assignment of jobs in J to sets in A that admits some valid
schedule in the interval [0, T ], construct a valid schedule in
the same interval.

In this paper, we restrict the discussion to laminar (or
hierarchical) instances of the problem, where, for each
α, α′ ∈ A, either α ⊆ α′ or α′ ⊆ α or α ∩ α′ = ∅. Without
loss of generality, we assume that all sets in the family A
are distinct. In a laminar instance, the level of a set β is
the number of sets α ∈ A such that β ⊆ α and the level
of the instance is the maximum level among the sets in A.
We call the problem with laminar instances the hierarchical
scheduling problem. The hierarchical scheduling problem
generalizes some well-known and new scheduling problems.



• Identical parallel machines scheduling with preemption
(P |pmtn|Cmax) [18]: take A = {M}. Then each job j
can be migrated freely among the machines in M , as
long as it receives the processing time pMj .

• Unrelated parallel machines scheduling (R||Cmax) [13]:
take A to be a family of m singletons, i.e., A =
{{1}, {2}, . . . , {m}}. Then each job must be assigned
to a single machine (no migration) and its processing
time is a function of the machine.

• Semi-partitioned scheduling [3]: take A =
{M, {1}, {2}, . . . , {m}}. Then each job can either
be run globally (i.e., freely migrated) on M with
processing time pMj , or assigned locally to a specific
machine i ∈M , with processing time pij ≤ pMj .

• Clustered scheduling [2]: let m = kq. Take
A = {M, {1}, . . . , {m}, {1, . . . , q}, {q + 1, . . . , 2q},
. . . , {(k − 1)q, . . . , kq}}. Then each job can be run
globally, or locally to a single machine, or locally to a
cluster of q machines.

Semi-partitioned scheduling generalizes scheduling on un-
related parallel machines (by taking sufficiently large values
of pMj); hence, the following proposition is implied by
existing results for the R||Cmax problem [13].

Proposition II.1. Hierarchical and semi-partitioned
scheduling are NP-hard to approximate within any constant
factor less than 3/2.

In the case of general (non-hierarchical) affinity masks,
one can obtain a simple 8-approximation algorithm as fol-
lows. Given an instance of the general problem, construct an
instance of the unrelated machine problem by assigning for
each job j and for each machine i the minimum processing
time of job j on machine i among all sets in A that include
i. The optimal preemptive makespan of such an instance is
a lower bound on the optimum of the original instance with
affinity masks, while the optimal non-preemptive makespan
can be approximated within a factor 2. Considering that there
is a factor not greater than 4 between optimal preemptive
and non-preemptive schedules [15], we obtain that the 2-
approximate solution to the non-preemptive problem is an
8-approximation to the original problem.

The following example shows that, not surprisingly, hi-
erarchical scheduling instances may admit shorter schedules
than the corresponding unrelated parallel machine instances.

Example II.1. Consider a semi-partitioned instance with
three jobs and two machines: job 1 has pM1 =∞, p11 = 1,
p21 = ∞; job 2 has pM2 = ∞, p12 = ∞, p22 = 1; job 3
has pM3 = p13 = p23 = 2 (∞ represents a sufficiently large
constant). It is easy to see that the semi-partitioned instance
has a schedule with makespan 2, while the corresponding
unrelated machine instance has an optimal makespan of 3.

In the sequel, to more easily illustrate the ideas behind
our approach, we first discuss the two-level case in Section

III. Section IV is devoted to the more general hierarchical
setting. We describe the details of the rounding procedure
in Section V, which leads to our main result (Theorem V.2).
Finally, in Section VI, we discuss how the model can be
extended to incorporate memory capacity constraints.

III. SEMI-PARTITIONED SCHEDULING

Let j = 1, . . . , n be a job and i = 1, . . . ,m be a machine;
in this section, the special “machine” index 0 will represent
the set M , i.e., global processing. We use the following
integer linear program (ILP) to determine the minimum
makespan. Binary variable xij encodes the assignment of
job j to machine i (or to the set M , if i = 0).

min T (IP-1)
m∑
i=0

xij = 1 for j ∈ J (1a)

n∑
j=1

m∑
i=0

pijxij ≤ mT (1b)

n∑
j=1

pijxij ≤ T for i ∈M (1c)

pijxij ≤ T for j ∈ J and i ∈ {0} ∪M.
(1d)

It should be clear from the description of the model that the
above constraints are necessary for the existence of a valid
schedule with makespan T ; the fact that they are sufficient is
the nontrivial claim that we prove in this section. We show
algorithmically that a feasible solution to (IP-1) ensures that
a valid schedule with makespan T exists.

Example III.1. Consider the instance of Example II.1. For
any finite value of T , the ILP constraints imply x11 = 1,
x22 = 1; thus, for job 3, we obtain the processing time
constraints 2x03 ≤ T , 2x13 ≤ T − 1, 2x23 ≤ T − 1, 2x13 +
2x23 + 2x03 ≤ 2T − 2. The optimal integral solution has
T = 2 and assigns job 1 to machine 1, job 2 to machine 2,
and job 3 globally to both machines. The following schedule
has a makespan value of 2: job 1 is scheduled on machine 1
during [1, 2); job 2 is scheduled on machine 2 during [0, 1);
finally, job 3 is scheduled on machine 1 during [0, 1), then
migrated to machine 2 where it is scheduled during [1, 2).

The pseudo-code of our scheduler is reported in Algo-
rithm 1. The scheduler takes as input a feasible solution to
(IP-1) and assigns the jobs to time slots of the machines
according to the affinity masks defined in the solution.

Algorithm 1 first schedules the global jobs (i.e. jobs j
such that x0j = 1) so that no job is scheduled simultaneously
on two machines. Namely, it computes the total volume V
of global jobs and initializes a variable t to 0 (lines 1–
2). Then, it iterates on all the machines and assigns to
each of them a suitable amount δ of global volume. While



Algorithm 1: Job scheduling (for a given assignment x)

1 t← 0;
2 V ←

∑n
j=1 p0jx0j ;

3 while V > 0 do
4 i← an empty machine (in 1, . . . ,m);
5 δ ← min(V, T −

∑n
j=1 pijxij);

6 Assign δ units of global work to i, in the interval [t, t+ δ
(mod T )];

/* (The remaining T − δ units on i will be
used by local jobs) */

7 t← t+ δ (mod T );
8 V ← V − δ;
9 foreach machine i ∈M and job j ∈ J such that xij = 1 do

10 Schedule j on machine i in the free time of interval [0, T ];

V > 0, the algorithm looks for an empty machine i > 0
(line 4) and schedules δ global volume in the interval [t, t+δ
(mod T )] on i (line 6). Then it increases the value of t by
δ (mod T ) and decreases the volume V of global jobs still
to be scheduled by δ (lines 7–8).

The value of δ in each iteration is computed as follows.
The total volume of local jobs assigned to machine i is∑n
j=1 pijxij , so we can schedule at most T −

∑n
j=1 pijxij

volume of global jobs on i in the interval [0, T ]. Therefore, if
the volume V of global jobs that still needs to be scheduled
is smaller than T −

∑n
j=1 pijxij , then δ = V , otherwise,

we exploit all the possible empty space on i and then δ =
T −

∑n
j=1 pijxij (line 5).

Having scheduled the global jobs, the algorithm then
schedules the local jobs (i.e. jobs j such that xij = 1, for
i > 0) in the free time of each machine (line 10).

Theorem III.1. Given a feasible solution (x, T ) to (IP-1),
Algorithm 1 produces a valid schedule in the interval [0, T ].

The following proposition bounds the number of migra-
tions and preemptions that occur in the worst case; this value
can be used for a priori bounding the worst-case processing
time of a job that is migrated among multiple machines.

Proposition III.2. The number of job migrations in the
schedule produced by Algorithm 1 is at most m − 1. The
number of job preemptions and migrations is at most 2m−2.

IV. HIERARCHICAL SCHEDULING

The following ILP expresses necessary conditions on the
minimum makespan T and an optimal assignment x in the
hierarchical scheduling problem.

min T (IP-2)∑
α∈A

xαj = 1 for j ∈ J (2a)

n∑
j=1

∑
β⊆α

pβjxβj ≤ |α|T for α ∈ A (2b)

pαjxαj ≤ T for α ∈ A, j ∈ J (2c)
xαj ∈ {0, 1} for α ∈ A, j ∈ J (2d)

Similarly to the previous section, we give an algorithm
that takes as input a feasible solution (x, T ) to (IP-2) and
constructs a valid schedule with makespan T . The algorithm
works in two phases. The first phase (Algorithm 2) proceeds
bottom-up (i.e., from the smallest sets up to the largest set)
and, for each set of machines α ∈ A and for each machine
i ∈ α, it determines the load LOAD[i, α] of machine i due to
jobs assigned to set α by the ILP (i.e., jobs j s.t. xαj = 1).
The load is assigned in such a way that for each affinity
mask the overall load is equal to the sum of the required
processing time, that is

∑
i∈α LOAD[i, α] =

∑n
j=1 pαjxαj .

1

The second phase (Algorithm 3) proceeds top-down (i.e.,
from the largest set down to the smallest ones) and, for
each set α ∈ A, determines the schedule of each job j such
that xαj = 1 on each machine i ∈ α, that is, the time slots
of each machine i ∈ α that are assigned to job j.

The crucial observation is that the first phase computes
LOAD in such a way that the second phase is able identify
only one machine, for each affinity mask, that must be
checked in order to avoid to schedule more than one job
in the same time interval of the same machine. In fact, the
first phase ensures that for each affinity mask β ∈ A there
exists at most one machine i ∈ β that is loaded with some
jobs assigned to a superset of β, that is LOAD[i, β] > 0 and
LOAD[i, α] > 0, for some α ∈ A such that β ⊂ α. Since
the second phase proceeds top-down, when affinity mask β
is analyzed, the schedule of jobs assigned to α in such a
machine i is already determined.

Assume that the jobs assigned to α are scheduled in
interval [t, tiα], where tiα = t + LOAD[i, α] (mod T ); the
algorithm first schedules the jobs assigned to β in machine
i, in the interval [tiα, tiβ ], where tiβ = tiα + LOAD[i, β]
(mod T ). Then, it schedules the remaining load by filling
up machines ` ∈ β\{i} starting from time tiβ . Indeed, if we
assume that the machines in β\{i} are sorted in an arbitrary
way, β \ {i} = (`1, `2, . . . , `|β|−1), then jobs assigned to β

1An alternative approach could be to modify (IP-2) by adding additional
fractional variables of the form yαij and constraints of the form

∑
i yαij =

xαj ; yαij represents the fractional share of job j on machine i if job
j is scheduled using affinity mask α. However, this may not suffice to
guarantee that a valid schedule exists, since a job can only be scheduled
on one machine at a time. Conversely, our approach guarantees that a valid
schedule exists (Theorem IV.3); moreover, the method is combinatorial and
avoids the complication of a larger number of variables.



Algorithm 2: First phase (bottom-up volume allocation)

1 LOAD[i, α] = 0, for each α ∈ A and i ∈ α;
2 TOT-LOAD[i, α] = 0, α ∈ A and i ∈ α;
3 MARK[α] = false for each α ∈ A;
4 while ∃α ∈ A such that ¬MARK[α] do
5 Let α such that ¬MARK[α] and (MARK[β], for each β ⊂ α);
6 V ←

∑n
j=1 pαjxαj ;

7 foreach i ∈ α in ascending order do
8 Let β be the maximal set β ⊂ α such that i ∈ β;
9 (if no such β exists, set β = ∅ and TOT-LOAD[i, ∅] = 0);

10 LOAD[i, α]← min{V, T − TOT-LOAD[i, β]};
11 TOT-LOAD[i, α]← TOT-LOAD[i, β] + LOAD[i, α];
12 V ← V − LOAD[i, α];
13 MARK[α]← true;

are scheduled in interval [t`k−1β , t`kβ ] of machine `k, where
t`0β = tiβ and t`kβ = t`k−1β + LOAD[`k, β] (mod T ). This
guarantees that no jobs is scheduled in parallel with itself
and that no machine has more than one job scheduled in the
same time interval.

The pseudo-code of the first phase is given in Al-
gorithm 2. First, the algorithm initializes variable LOAD
(line 1). Then, for each α ∈ A and i ∈ α, it initializes
variable TOT-LOAD[i, α], which stores the cumulative load of
machine i due to all sets β ⊆ α (line 2). Variable MARK[α] is
used to determine whether set α ∈ A has been visited or not
by the algorithm and it is initialized at line 3. The while loop
at lines 4–13 visits all the sets in A in a bottom-up order: at
each iteration it selects a set α such that all its subsets have
been already visited, i.e such that MARK[α] = false and,
for each β ⊂ α, MARK[β] = true (line 5). At each iteration,
variable V stores the volume of jobs assigned to α (i.e. jobs j
such that xαj = 1) that still needs to be scheduled. Variable
V is initialized to the total volume of jobs assigned to α at
line 6. The loop at lines 7–12 iterates for each machine i ∈ α
in ascending order and, in order to compute LOAD[i, α], first
selects the maximal subset β of α that contains machine
i (if it exists, see line 8–9). The value of LOAD[i, α] is
computed at line 10 as follows. The total volume of jobs
already assigned to machine i is equal to the cumulative load
of machine i due to all sets β ⊂ α, that is TOT-LOAD[i, β].
Then, we can schedule at most T − TOT-LOAD[i, β] volume
of jobs assigned to α on i. Therefore, if the volume V of
global jobs that still needs to be scheduled is smaller than
T − TOT-LOAD[i, β], then we assign the entire volume to i
and set LOAD[i, α] = V , otherwise, we exploit all the possi-
ble empty space and set LOAD[i, α] = T − TOT-LOAD[i, β].
Next, the algorithm computes the value of TOT-LOAD[i, α]
by adding LOAD[i, α] to TOT-LOAD[i, β] (line 11). Note that,
TOT-LOAD[i, α] =

∑
β⊆α:i∈β LOAD[i, β] and, eventually,∑

i∈α TOT-LOAD[i, α] =
∑
β⊆α

∑
i∈β LOAD[i, β]. Finally,

variables V and MARK[α] are updated at lines 12 and 13.
The next lemma shows that the cumulative load on each
machine i is at most T and that the volume of the jobs
assigned to set α is assigned entirely to variables LOAD[i, α],

Algorithm 3: Second phase (top-down job scheduling)

1 MARK[α]← false for each α ∈ A;
2 while ∃β ∈ A such that ¬MARK[β] do
3 Let β such that ¬MARK[β] and (MARK[α], for each α such that

β ⊂ α);
4 if ∃i ∈ β such that LOAD[i, β] > 0 and LOAD[i, α] > 0, for

some set α ∈ A such that β ⊂ α then
5 Let α be the minimal set such that β ⊂ α and

LOAD[i, α] > 0;
6 tβ ← tiα;
7 `← i;
8 else
9 tβ ← 0;

10 `← minβ;
11 foreach k ∈ β in any order starting from ` do
12 Assign LOAD[k, β] units of time of jobs j such that

xβj = 1 to machine k, in the interval
[tβ , tβ + LOAD[k, β] (mod T )];

13 tβ ← tβ + LOAD[k, β] (mod T );
14 tkβ ← tβ ;
15 MARK[β]← true;

for all i ∈ α.

Lemma IV.1. i) For every α ∈ A and i ∈ α,
TOT-LOAD[i, α] ≤ T at the end of Algorithm 2.
ii) Whenever line 13 of Algorithm 2 is executed, V = 0.

Algorithm 2 guarantees that for any set β there exists at
most one machine i ∈ β whose load is due to jobs assigned
to α and to β, where α is some set such that β ⊂ α. This
is proven in the next lemma and will be exploited by the
second phase of the algorithm.

Lemma IV.2. For each set β ∈ A there exists at most one
machine i ∈ β such that, for some set α ∈ A such that
β ⊂ α, it holds that LOAD[i, β] > 0 and LOAD[i, α] > 0.

Theorem IV.3. Given a feasible solution (x, T ) to (IP-2),
Algorithms 2 and 3 produce a valid schedule in the interval
[0, T ].

The pseudo-code of the second phase is given in Al-
gorithm 3. As in Algorithm 2, variable MARK[α] is used
to determine whether a set α has been visited or not. In
this case, the algorithm visits all the sets in A in top-down
order (see the while loop at lines 2–15). Variable tiα stores
the latest time instant in which a job assigned to set α is
scheduled on machine i ∈ α. Let β be a maximal set that has
not been visited yet (line 3). By Lemma IV.2, there exists
at most one machine i ∈ β such that LOAD[i, β] > 0 and
LOAD[i, α] > 0, for some set α ∈ A such that β ⊂ α. If such
a machine exists, then let α be the minimal set satisfying the
previous condition (line 5) and let ` be the unique machine
where both sets have some load (line 7). We first schedule
jobs assigned to β from time tiα on machine ` and then we
proceed by scheduling the remaining volume on the empty
machines in β as done for global jobs in Algorithm 1. In
detail, we initialize tβ to tiα (line 6); for each machine



k ∈ β, starting from `, we assign LOAD[k, β] units of
time of jobs assigned to β to machine k, in the interval
[tβ , tβ + LOAD[k, β] (mod T )] (line 12); and we update tβ
and tkβ by adding LOAD[k, β] (mod T ) (lines 13–14). In
the case that there is no machine in β with some loads due
to two different sets, the only difference is that ` is chosen as
the smallest machine in β and tβ is initialized to 0 (lines 9–
10).

V. ROUNDING THE ILP

To round (IP-2), we first transform it into a decision form
by applying a standard pruning technique [8]. It suffices to
decide, for an arbitrary but fixed value of T , the feasibility
of the following system:∑

α∈A
xαj = 1 for j ∈ J (IP-3)∑

j∈J

∑
β⊆α

pβjxβj ≤ |α|T for α ∈ A (3a)

xαj ∈ {0, 1} for α ∈ A, j ∈ J, (3b)
xαj = 0 for (α, j) /∈ R, (3c)

where R = {(α, j) ∈ A×J : pαj ≤ T}. We have eliminated
constraints (2c) by observing that they are satisfied by a
0-1 solution if and only if pαj ≤ T whenever xαj = 1.
Therefore, one can simply set to zero all variables xαj such
that pαj > T , i.e., the variables with indices not in R. The
binary search process for the minimal T for which (IP-3) is
feasible requires a number of iterations logarithmic in the
range of T , and therefore multiplies the overall running time
by only a polynomial factor.

Without loss of generality, we can assume that the
family A always contains the singleton machine sets
{1}, {2}, . . . , {m}; if not, these sets can be added to A by
setting the processing time of a job j ∈ J on machine i ∈M
as the processing time of j on the (inclusion-wise) minimal
set in A that contains i. Before discussing how to round
the fractional relaxation of (IP-3), we show that a feasible
fractional solution can always be modified so that, for every
α ∈ A, xαj = 0 unless α is a singleton set. This follows
easily by repeated application of the next lemma, which
allows to “push down” the fractional weights towards the
singleton sets of the laminar family.

Lemma V.1. Let η ∈ A be a non-singleton set. If x is a
feasible solution to the LP relaxation of (IP-3), then there
exists another feasible solution x′ to the same LP relaxation
such that x′ηj = 0 and x′αj = xαj whenever α 6⊆ η.

Proof: For any α ∈ A, we define the slack of α in x
to be

slack(α,x) := |α|T −
∑
j∈J

∑
β⊆α

pβjxβj .

Note that the LP relaxation of (IP-3) can be written as∑
α∈A

xαj = 1 for j ∈ J (4a)

slack(α,x) ≥ 0 for α ∈ A (4b)
xαj ≥ 0 for α ∈ A, j ∈ J (4c)
xαj = 0 for (α, j) /∈ R. (4d)

Without loss of generality, assume that η = β1 ∪ . . .∪ βq
with β1, . . . , βq ∈ A, β1, . . . , βq ⊂ η, the sets β1, . . . , βq
being maximal and pairwise disjoint. Because η has non-
negative slack in x, we have∑

j∈J

∑
γ⊆β1

pγjxγj + . . .+
∑
j∈J

∑
γ⊆βq

pγjxγj +
∑
j∈J

pηjxηj

≤ |β1|T + . . .+ |βq|T,

which is equivalent to∑
j∈J

pηjxηj ≤ slack(β1,x) + . . .+ slack(βq,x). (5)

We now define a new solution x′ by setting x′ηj = 0, x′αj =
xαj for α 6= β1, . . . , βq , and

x′βj = xβj +
slack(β,x)

slack(β1,x) + . . .+ slack(βq,x)
· xηj (6)

for β = β1, . . . , βq . We claim that x′ is valid for the LP. To
see that (4a) is satisfied by the new solution, note that∑
α∈A

x′αj =

=
∑
α∈A
α6=η

xαj+

q∑
i=1

slack(βi,x)

slack(β1,x) + . . .+ slack(βq,x)
· xηj

=
∑
α∈A

xαj = 1.

To see that (4b) is satisfied, it suffices to show that the new
slack of β1, . . . , βq is nonnegative, since the slack of any
other set does not decrease. Consider, say, βi. By summing
(6) across jobs,∑
j∈J

∑
γ⊆βi

pγjx
′
γj =∑

j∈J

∑
γ⊆βi

pγjxγj +

+
slack(βi,x)

slack(β1,x) + . . .+ slack(βq,x)

∑
j∈J

pβijxηj ≤∑
j∈J

∑
γ⊆βi

pγjxγj +

+
slack(βi,x)

slack(β1,x) + . . .+ slack(βq,x)

∑
j∈J

pηjxηj ≤∑
j∈J

∑
γ⊆βi

pγjxγj + slack(βi,x),



where for the first inequality we used the monotonicity of
the processing times, and for the second inequality we used
(5). Therefore,

slack(βi,x
′) =

= slack(βi,x)−
∑
j∈J

∑
γ⊆βi

pγjx
′
γj +

∑
j∈J

∑
γ⊆βi

pγjxγj

≥ slack(βi,x)− slack(βi,x) ≥ 0.

Equipped with the above lemma, we can proceed to prove
an upper bound on the approximability of the hierarchical
scheduling problem.

Theorem V.2. The hierarchical scheduling problem admits
a polynomial-time 2-approximation algorithm.

Proof: Consider an instance I = (J,M,A, p) of the
hierarchical scheduling problem.

Let T ∗ be the minimum value of T for which the LP
relaxation of (IP-3) is feasible. Clearly, T ∗ ≤ opt(I)
where opt(I) is the optimal makespan of the hierarchical
scheduling instance I . By applying repeatedly Lemma V.1,
we can ensure that there exists a feasible fractional solution
x with makespan T ∗ and such that xαj > 0 only for α such
that |α| = 1. Because of this, observe that x can also be seen
as a fractional solution to an unrelated machines scheduling
instance with makespan T ∗: the instance Iu = (J,M, p′)
obtained by defining p′ij := p{i}j .

The idea is now to invoke an existing LP-based algorithm
for the unrelated machine scheduling problem and run it on
Iu. The classic rounding algorithm by Lenstra, Shmoys and
Tardos [13] constructs an integral assignment x̄ for Iu with
makespan Tu ≤ 2T ∗. The assignment x̄, extended with 0
values on all sets with |α| > 1, is also valid for (IP-3) if
we take T = Tu ≤ 2T ∗ ≤ 2 · opt(I). Therefore, such an
extended assignment yields a 2-approximate solution for the
hierarchical scheduling problem.

We note that the reduction used in the above proof, from
fractional hierarchical scheduling to fractional unrelated
machines, is not valid for the original (integral) formulations
of the two problems: indeed, in Example II.1, the original
instance I of the semi-partitioned problem has an optimal
makespan of 2, while the unrelated machine instance Iu has
an optimal makespan of 3. In general, the gap between the
makespan of Iu and the makespan of I can be arbitrarily
close to a factor 2, as the next example shows.

Example V.1. Consider a semi-partitioned instance I with n
jobs and m := n− 1 machines. Recall that we use machine
index 0 to denote global processing. Job j, j = 1, . . . , n−1,
has pij = n− 2 if i = j, and pij =∞ otherwise. Job n has
pij = n−1 for each i = 0, 1, . . . , n−1. An optimal solution
has makespan opt(I) = n−1: assign job j, j = 1, . . . , n−1
to machine j and assign job n globally; schedule each job j,
j = 1, . . . , n−1, on machine j in time intervals [0, j−1) and

[j, n − 1); schedule job n on machine i, i = 1, . . . , n − 1
during [i − 1, i). On the other hand, in the corresponding
unrelated machine instance Iu, jobs cannot be migrated and
therefore the minimum value of the makespan is 2n− 3.

VI. MEMORY CONSTRAINTS

The basic model as described in the previous sections
focuses on makespan minimization, without additional con-
straints. However, machines often also have limited memory
capacity. In this section we show how, in the hierarchical
case, our model can be extended to incorporate memory ca-
pacities and discuss how to obtain efficient algorithms with
a guaranteed bicriteria approximation ratio. We consider two
distinct extensions, which we call Model 1 and Model 2.

Model 1: We assume that each machine i ∈ M has
some memory budget Bi ∈ Z+ and that each job j ∈ J
requires memory space sij ∈ Z+ when run on machine i.
We require the jobs assigned to sets that include machine i
to fit the memory bound Bi; i.e., if j is assigned to a set of
machines α, then its space requirement is counted towards
each machine in α. Thus, we revise ILP (IP-3) by adding
the capacity constraints∑
j∈J

(
sij ·

∑
α∈A : i∈α

xαj

)
≤ Bi for each i ∈M. (7)

To round the revised ILP, we apply the iterative rounding
approach [10], [12], [16], allowing us to prove the following
theorem.

Theorem VI.1. Whenever ILP (IP-3) has a solution satisfy-
ing constraints (7), it is possible to construct, in polynomial
time, a valid schedule with makespan at most 3T such that∑
j∈J

(
sij ·

∑
α∈A : i∈α

xαj

)
≤ 3 ·Bi for each i ∈M.

(8)
where x represents the schedule’s assignment.

Model 2: Assume for simplicity that the forest associ-
ated to the laminar family A is a tree such that every leaf has
the same level; it can be shown that this assumption is not
a limitation to the model, but we defer the details to the full
version of the paper. For a node α of the tree, define h(α)
(the height of α) to be the shortest distance in the tree from
α to a leaf. Thus h(α) = 0 iff α is a leaf of the tree, and the
height of the root is k− 1 in a k-level instance. We assume
that job j requires space sj ≤ 1 (with sj ∈ Q+), that each
node of height h except the root has memory capacity µh

(where µ > 1 is a parameter that captures how the memory
hierarchy scales) and that the root has unbounded capacity.
We require the jobs assigned to a set (node of the tree) to fit
the memory capacity of that set. Thus, we revise ILP (IP-3)
by adding the capacity constraints∑

j∈J
sjxαj ≤ µh(α) for each α ∈ A \ {M}. (9)



Call (IP-4) the revised ILP obtained in this way.
The additional constraints affect the applicability of The-

orem V.2, since one cannot use Lemma V.1 to “push down”
the values of the fractional variables towards the leaves of
the laminar family. Moreover, known rounding techniques
such as [11], [16] are not suitable in this case. Indeed,
one cannot apply the result of Karp et al. [11] because it
does not ensure that the resulting integral vector satisfies the
assignment constraints exactly; while the technique of [16]
would yield a possibly large approximation factor, equal to
1 + k, where k is the number of levels of the hierarchy.

Instead, we introduce a modified iterative rounding
scheme (Lemma VI.2 below), which satisfies exactly the
assignment constraints and yields a bound in terms of the
sum of the column’s entries of the (normalized) coefficient
matrix; when applied to (IP-4), this guarantees O(log k)
approximation of the packing constraints. Such a rounding
scheme applies to general assignment and packing con-
straints, and thus may find applications beyond the hierar-
chical scheduling problem.

Lemma VI.2. Let I , J be nonempty finite sets, and R ⊆
I × J . Consider a linear program of the form:

min
∑

(i,j)∈R

cijzij (LP)

∑
i:(i,j)∈R

zij = 1 ∀j ∈ J (10a)

∑
q=(i,j)∈R

alqzij ≤ bl l = 1, . . . , θ (10b)

0 ≤ zij ≤ 1 ∀(i, j) ∈ R, (10c)

where zij are variables, θ ∈ N, and alq ≥ 0, bl > 0, cij ≥ 0
for all l = 1, . . . , θ, q = (i, j) ∈ R. Assume that the LP has
a feasible solution z0 and that the bound

∑θ
l=1 alq/bl ≤ ρ

holds for each q ∈ R. Then there are values z̄ij such that∑
(i,j)∈R

cij z̄ij ≤
∑

(i,j)∈R

cijz
0
ij (11a)

∑
i:(i,j)∈R

z̄ij = 1 ∀j ∈ J (11b)

∑
q=(i,j)∈R

alq z̄ij ≤ (1 + ρ)bl l = 1, . . . , θ (11c)

z̄ij ∈ {0, 1} ∀(i, j) ∈ R. (11d)

Equipped with the rounding lemma, we can proceed to
prove our result for Model 2.

Theorem VI.3. Let k be the number of levels of the laminar
family A and let Hk be the kth harmonic number. Whenever
ILP (IP-4) has a solution, it is possible to construct, in
polynomial time, a valid schedule with makespan at most

σ · T such that∑
j∈J

sjxαj ≤ σ · µh(α) for each α ∈ A \ {M}, (12)

where x represents the schedule’s assignment and σ = 2 +
Hk. When k = 2, the same holds with σ = 3 + 1/m.

Proof: We observe that (IP-4) is in a form suitable for
applying Lemma VI.2. In particular, we take I in Lemma
VI.2 to be the admissible sets family A, and we use the
generic packing constraints (11c) to encode constraints (3a)
and (9). Indeed, constraints (3a) can be encoded as |A|
constraints with coefficients of the form

aα,(β,j) :=

{
pβj if β ⊆ α,
0 otherwise,

, bα := |α|T, (α ∈ A),

while constraints (9) can be encoded as |A| − 1 constraints
with coefficients of the form

aα,(β,j) :=

{
sj if β = α,

0 otherwise,
, bα := µh(α), (α ∈ A\{M}).

The cost coefficients cij in (LP) can be set to zero and (LP)
becomes the linear relaxation of (IP-4). By our hypothesis,
such LP relaxation must be feasible, and the hypothesis of
Lemma VI.2 is satisfied. In particular, we can take z0 to be
an optimal solution of the LP relaxation. Note that the LP
relaxation can be solved in polynomial time; in particular,
since A is laminar, |A| ≤ 2m (see, e.g., [22, Theorem 3.5])
and the number of constraints in (IP-4) is polynomial in n
and m.

To choose an appropriate value of ρ in Lemma VI.2, note
that (β, j) ∈ R only when pβj ≤ T by construction, so if
q = (β, j),

θ∑
l=1

alq
bl

=
∑

α∈A:β⊆α

pβj
|α|T

+
sj

µh(β)
≤

∑
α∈A:β⊆α

1

|α|
+ 1

≤ 1 +
∑

1≤i≤k

1

i
= 1 +Hk,

where for the first inequality we also used sj ≤ 1 < µ, and
for the second the fact that the laminar family A has k levels
and the fact that all sets in A are distinct and nonempty.
Thus, we can apply Lemma VI.2 with ρ = 1 +Hk.

In the semi-partitioned case (i.e., when A has k = 2
levels), the summation

∑θ
l=1 alq/bl involves at most three

nonzero terms. The first term is due to the local scheduling
constraints and has the form pij/T , which is at most 1. The
second term is due to the global scheduling constraint and
has the form pij/mT , which is at most 1/m. The third term
is due to the memory constraints and has the form sj/µ

h(β),
which is at most 1. Therefore, ρ = 2 + 1/m is sufficient.

Finally, the integer solution x to (11), which can be
found by applying Lemma VI.2, can be used to construct
a schedule with makespan at most (1 + ρ)T and satisfying



(12) by feeding x to the algorithms presented in Sections
III and IV.
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