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Abstract—Redundant computations appear during the exe-
cution of real programs. Multiple factors contribute to these
unnecessary computations, such as repetitive inputs and pat-
terns, calling functions with the same parameters or bad
programming habits. Compilers minimize non useful code
with static analysis. However, redundant execution might be
dynamic and there are no current approaches to reduce these
inefficiencies. Additionally, many algorithms can be computed
with different levels of accuracy. Approximate computing
exploits this fact to reduce execution time at the cost of slightly
less accurate results. In this case, expert developers determine
the desired tradeoff between performance and accuracy for
each application.

In this paper, we present Approximate Task Memoization
(ATM), a novel approach in the runtime system that transpar-
ently exploits both dynamic redundancy and approximation
at the task granularity of a parallel application. Memoization
of previous task executions allows predicting the results of
future tasks without having to execute them and without losing
accuracy. To further increase performance improvements, the
runtime system can memoize similar tasks, which leads to
task approximate computing. By defining how to measure task
similarity and correctness, we present an adaptive algorithm
in the runtime system that automatically decides if task
approximation is beneficial or not. When evaluated on a real
8-core processor with applications from different domains
(financial analysis, stencil-computation, machine-learning and
linear-algebra), ATM achieves a 1.4x average speedup when
only applying memoization techniques. When adding task
approximation, ATM achieves a 2.5x average speedup with an
average 0.7% accuracy loss (maximum of 3.2%).

I. INTRODUCTION

During the execution of an application, redundant com-
putations appear at several levels of granularity, from fine-
grained instructions to coarse-grained library or program
calls. Value Prediction (VP) [13] is a technique that detects
patterns in the results produced by a static instruction and
bypasses this instruction when it is very likely to produce a
redundant output. VP has been very effective in eliminating
redundancy at the instruction-level, especially in the case of
memory operations. If the result was actually not redundant
the technique incurs recovery overheads. Memoization takes
into account the inputs of the instructions and eliminates
the need of recovery [21], but releases lesser amounts of
parallelism as it is done in a later stage of the pipeline.

Approximate computing brings improvements in terms
of performance, energy consumption, fault tolerance and
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efficient parallel execution by allowing some accuracy
losses [11], [15], [19]. In the last decade for instance,
approximate versions of VP and memoization at instruction
level have been suggested, returning promising performance
results [3], [15].

With multi-core processors, the performance of applica-
tions can be increased by exploiting thread level parallelism.
To ease the complexity of programming multicore proces-
sors, a runtime system layer between the program and the
architecture has become common [7] [22]. A runtime system
decouples the concept of thread from the task which is
the computational working unit. Task-based dataflow pro-
gramming models exploit irregular parallelism by requiring
annotations about task input and output data [1], [10].

In this paper, we propose Approximate Task Memoiza-
tion (ATM) in order to further increase the performance
of programs by allowing the runtime system to eliminate
redundant computations. ATM leverages task data infor-
mation available in the runtime system to identify tasks
that can be memoized. We find out that tasks with coarse
inputs and outputs (up to 4MB) produce redundant results
because of repetitive patterns in the application input sets
and because the algorithms converge faster on some pieces
of their data structures. Our ATM implementation deployed
on a real multi-core processor automatically detects these
redundant computations, bringing substantial performance
improvements as a result.

To further boost its potential, we allow ATM to mem-
oize similar tasks by studying the relationship between
the task inputs and outputs. Task approximation delivers
more chances of increased performance while reducing the
overhead in the runtime system. Moreover, we show how the
runtime system can automatically control the degree of task
approximation, by bounding correctness loss and achieving
high performance.

The main contributions of the paper are:

« Static ATM. We implement task memoization at coarse
granularities (up to 4MB of task input data) in the
runtime system. A hashing mechanism distinguishes
tasks and allows checking for redundancy only against
tasks likely to produce similar results.

« Dynamic ATM. Some programs have low task reuse
when considering the whole task inputs. We implement
task approximation at the runtime system level that sup-
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ports multiple degrees of similarity. Using simplified
task input selection mechanisms, ATM increases reuse
and diminishes hashing overheads. We show how the
runtime system automatically decides the percentage of
task inputs in a training phase, where we just emulate
memoization and check whether the task outputs are
still within acceptable ranges of correctness by using a
sensible distance metric in high output dimensionalities.

« An extensive evaluation on a real 8-cores system. We
show that Static ATM achieves a 1.4x average speedup
and 0% accuracy loss and Dynamic ATM a 2.5x aver-
age speedup and accuracy losses below 3.2% (0.7% on
average) in the overall execution of the application. A
careful lock design to avoid synchronization overheads
in the runtime system allows ATM to scale well as we
increase the number of cores in the system.

This paper is organized as follows. Section II describes
the related work. Section III presents our approaches for
task memoization and approximation in the runtime system.
The experimental setup and evaluation results are detailed
in Sections IV and V respectively. Finally, Section VI draws
the main conclusions of this work.

II. RELATED WORK

Redundancy elimination has been investigated in the
computer architecture community from the point of view
of value locality and prediction [13], [18]. In the compilers
community, it has also been studied from the point of view
of instruction reuse and memoization [9], [20]. According
to previous classifications [21], ATM falls into the category
of memoization because it makes use of the task inputs for
identifying reuse opportunities rather than trying to detect
patterns in the outputs and then predict. The advantage
of memoization is that no recovery is needed when the
memoized instruction does not have side effects. We are
not aware of any approach proposing memoization schemes
at the task granularity in the runtime system.

A. Data Reuse and Memoization

Sastry et al. [17] bypass redundant chains of dynamic
instructions that are large enough for improving performance
via memoization, and evaluate the potential benefits using
a model. In contrast, we provide an online implementation
on a real multi-core that can memoize all the independent
chains of instructions contained in a task.

Earlier proposals link instructions at hardware level to
increase the benefits of memoization and reduce their over-
heads [20], achieving instruction reuses of up to 50%. Other
compiler techniques achieve instruction reuse at granularities
coarser than a basic block [9], allowing the compiler to
identify regions that are good candidates for reuse. This in-
formation is communicated to the micro-architecture during
execution, which bypasses the execution of those regions
that have executed in the history with the same inputs.

B. Approximate Computing

Many algorithms essentially produce approximate solu-
tions for some complex problems [5], while many applica-
tions can tolerate reduced accuracy losses [19]. Application
experts are using specific techniques to relax the correctness
requirements of the applications and get performance and
even power gains. Approximate computing avoids code
deterioration incurred by those specific techniques by using
cross-domain approaches.

1) Tolerating Accuracy Loss: Miguel et al. [15] tolerate
some accuracy loss when VP misspredicts, while the ap-
proximation mechanism becomes more conservative. This
micro-architectural enhancement does not require any off-
line profiling, but relies on the programmer to identify
the loads that can be approximated. Similarly, but at the
runtime level, ATM does not need profiling and relies
on the programmer to specify the task types appropriate
for approximation. This guidance from the programmer is
feasible as has been previously acknowledged [11].

Proposals such as loop perforation [19] and HELIX-
UP [6] are compiler-based approximation techniques that
require nearly no programmer intervention. However, these
techniques require a significant amount of profiling time
for calibration on representative inputs. In loop perforation
there is no runtime metric to check whether the program is
still within acceptable accuracy limits, and only relies on
profiling. The authors acknowledge that approximate tech-
niques produce errors that can be magnified or diminished
at runtime when the approximated results are consumed by
other parts of the program. In contrast, HELIX-UP benefits
from giving flexibility to a runtime that relaxes the semantics
of an automatic loop parallelizer.

2) Accelerators and Low Power Computing: Redundant
values do not have to be exactly equal to lead to the same
or similar program result. This aspect has been exploited in
the accelerators community, where a reduced degradation
in accuracy is traded off for performance in some parts
of the pipeline [14], [16]. This is common for example in
signal processing and machine learning architectures. Fuzzy
memoization [3] uses the same output for instructions that
have the same most significant bits in the mantissa. However
ATM approximates at the coarse granularity of a task.

A different approach consists of optimizing any
programmer-selected function with an accelerator that be-
haves as a neural network with weights assigned with offline
profiling [11]. ATM shares with this work the need of a
programmer choosing a hot region of code suitable for
approximation. However the approach in [11] only approxi-
mates regions with statically defined inputs sizes while ATM
accepts inputs sizes that vary at execution time.

C. Task-based Dataflow Programming Models

Task-based dataflow programming models such as
OpenMP 4.0 [1] conceive the execution of a parallel program
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as a set of tasks with dependences among them. Typically,
the programmer adds code annotations to split the serial code
into tasks that can potentially run in parallel. Each annotation
defines a different rask type. Also, the programmer specifies
what data is used by each task (called data inputs) and what
data is produced (called data outputs). The runtime system
is in charge of managing the execution of the tasks, based on
the data dependences, by building a task dependence graph
(TDG), a directed acyclic graph where nodes represent tasks
and edges dependences among them. The runtime system
schedules a task on a core when all its dependences are ready
and, when the execution of the task finishes, the dependent
tasks become ready for execution.

Task-based dataflow programming models are specially
well suited for task memoization and approximation. The
complete specification of the data inputs and outputs allows
the runtime system to identify redundant task executions.
Also, the distance between the outputs of a particular task
type can be computed to measure precision. Based on this
information, in the next section we introduce an adaptive
mechanism able to automatically trigger task memoization
and approximation without compromising the accuracy of
the program.

III. APPROXIMATE TASK MEMOIZATION FRAMEWORK
A. Task Memoization in the Runtime System

Next, we describe how task memoization can be im-
plemented in the runtime system. To minimize redundant
execution of tasks, task memoization should store the history
of all task executions including their inputs and outputs.
When a new task is ready for execution, we would check
in the whole history if the same task type with the same
data inputs has been executed. If this was the case, then
we would provide the outputs of the current task using
the outputs of the previously executed task. However, the
overheads of maintaining, accessing and updating this data
structure would become prohibitive.

Instead, we decide to make use of a Task History Table
(THT) with a limited amount of tasks. When the table is full,
we can replace old entries with new ones. Also, we decide
to exploit hashing functions to store a compressed version
of the data inputs. Data outputs have to be fully stored in
the THT to allow task memoization.

Figure 1 shows the data structures added to the runtime
system to enable task memoization and how they interact
with the components already in the runtime. As mentioned
in Section II-C, once dependences are satisfied, tasks (in the
TDG) become ready for execution and are moved to the
Ready Queue. When an idle thread pulls a task A from the
RQ for execution, it first checks if this particular task can be
memoized. This is done before actually executing the task
itself, which adds some overhead in case of finally having
to execute it. In order to minimize this overhead we do not
compare the entire data inputs to identify task redundant
executions, but only a hash key representing the inputs.

To check if task A can be memoized, the runtime accesses
the THT. To index the table, we make use of a very precise
hash key K, using a subset of the inputs of task A.
Section III-B explains in detail the mechanism to select the
bits to generate the hash key. With the lower N bits of K 4,
we index a THT with 2% buckets, each containing M hash
keys of the inputs of previously executed tasks, as well as
their corresponding outputs. Each bucket is protected by a
lock to support exclusive writes and allows parallel reads.

Next we check if one of these hash keys coincides with
K 4. This is depicted in Figure 1 with the multiplexer that
selects the hash keys in the bucket and compares them with
K 4. If there is a task B with exactly the same hash key, then
there is no need to execute task A. We just need to copy the
outputs (depicted in the figure with the call to copyOuts())
from the matching task B and then release the bucket’s lock.

The compiler translates to SIMD instructions both the
copies of the outputs of B from the THT to the outputs
of A and the copies of the outputs of a non memoized
task to the THT. Those instructions are normally faster than
all the individual writes to each output element performed
otherwise if the task A was executed. The compiler might
use SIMD instructions for the task itself (we have enabled
vectorization for all the benchmarks presented in the paper),
but the copies from and to the THT still are 10.75x and
10.31x faster, respectively, than actually executing the task
(in our Experimental Setup; see Section IV for more details).

If none of the tasks has the same precise key, we check
an additional smaller table, denoted In-flight Keys Table
(IKT). This table simply stores at most as many hash keys
as the number of threads exposed in the parallel execution.
The IKT structure is needed only when the executions are
performed with multiple threads because it maps the precise
hash keys of the tasks that are currently being executed, i.e.,
in-flight. If a task B with the same hash key is found, the out-
puts cannot be immediately provided because task B is still
executing. Instead the needed information is saved in task
B’s runtime-system data structures (postponeCopyQuts() in
Figure 1), so that when it finishes, it copies its outputs to
the outputs of task A. In our approach we allow multiple
A-like tasks to store their petition for output copy in B-like
in-flight task. We have found the IKT data structure to be
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a critical feature for some benchmarks that have very short
reuse distances. Accesses to this structure are very fast when
compared to the THT as they don’t involve output copies.
For this reason we protect the IKT with a single lock.
Finally, if a task A misses in the IKT, it has to be executed
(after storing K 4 in the IKT). When task A finishes, it
retires K 4 from the IKT and updates the THT by storing
K 4 together with the output in the corresponding bucket. If
the bucket is full, the oldest task is evicted (first-in-first-out).
This is depicted in Figure 1 as a call to updateTHT&IKT().

B. Hash Key Generation

The generation of a precise hash key is an important
component in the design of ATM. Depending on the quality
of the generated key, we will have more or less potential
for task memoization and approximation. The hash key
computation time depends linearly on the size of the data
inputs. To reduce this overhead, we decide to select a
percentage 0 < p < 100% of bytes in these data inputs.

To generate the hash key, we represent tasks’ data inputs
as a single vector of N bytes. Then we create a vector of NV
indexes that point to the vector with the concatenated inputs.
Next, we randomly shuffle these indexes in a second vector
and select the given percentage p of them. In particular,
we select the first N x p indexes of the vector. In our
implementation, we shuffle the vector of indexes the first
time a task type is executed and store it in the runtime
system. Consequently, in the following executions of the
same task type, we will not need to recompute the shuffled
vector of indexes, reducing its overhead. Other authors have
followed a similar approach to select a subset of the bits of
floating point operands [3].

The input bytes pointed by the selected indexes are passed
to a hash key generator [12], which is known to give a
collision once in 232. This number is larger than the number
of tasks generated in any of our benchmarks. Finally, the
generated hash key only requires 8 bytes of storage in the
THT.

Figure 2 shows an example of the implemented mecha-
nism to generate the hash key using the task data inputs. In
this case, we assume a task with three data inputs, input0,
inputl and input2, each with NO, N1 and N2 bytes,
respectively, and a total of N = N0+ N1+ N2 bytes. After
applying a random shuffle to the IV bytes of the concatenated
data inputs, we select the first IV xp bytes to sample the input
vector of bytes (marked with a red interval in the figure).

The selected indexes are served to the hash key generator
which will use them to compute the hash key.

Selecting an appropriate value of p is important for
ATM as it controls the potential of task approximation.
Smaller values of p increase the chances of approximating
a task while reducing the overhead of generating the hash
key. However, the approximated task could generate wrong
outputs. In terms of precision, p = 100% provides the safest
results and we denote it Static ATM in the rest of the paper.
Section III-D describes an automatic approach to select an
appropriate value of p, which we denote Dynamic ATM.

C. Type-aware Input Selection

When selecting a subset of the bytes of the data inputs,
not all of them are equally representative. Upper bits of all
data types tend to be more significant than the lower bits,
and we can actually take this into account when we select
input bytes. For example, in a double-precision floating point
value, the most significant byte (MSB) contains the sign bit
and 7 bits of the exponent, while the least significant byte
contains the last 8 bits of the mantissa. This characteristic
is commonly exploited by accelerator technology and low-
power computing [3], [14], [16].

In order to select more representative bytes for the hash
key generation, we extend our approach to consider the type
of the data stored in a data input. With this goal, we have
modified the shuffling function so that it first shuffles the
indexes pointing to the MSBs of the data inputs. Then, the
next MSBs are shuffled until we have shuffled the least
significant bytes of the data inputs.

As a consequence, when selecting the window of N X p
bytes in the data inputs, we will always choose first the
MSB of each data type. In the example shown in Figure 2,
if input0 and input2 contain integers (4-byte type) and
inputl floats (4-byte type), for p = 50%, 2 bytes out of 4
would be selected from each data type. This allows protect-
ing the sign of the integer types and the most significant bits,
while for floating point types, we first protect the sign and
exponent and then the most significant bits of the mantissa.

To track dependences and manage the TDG of the appli-
cation, the runtime system only requires the starting address
of the data inputs and outputs and their size. To overcome
this limitation, we have extended the runtime library API and
modified the compiler to inform the runtime system about
the types of the elements in each data input and output.

D. Automatic Task Approximation in the Runtime System

Next, we describe Dynamic ATM, our approach to auto-
matically select an appropriate value of p to maximize task
approximation without losing accuracy in the final results of
the application.

In Dynamic ATM, we split the execution of the appli-
cation into a training phase and a steady-state phase. The
training phase explores different values of p and selects the



smallest value that preserves accuracy. In the training phase,
the THT and IKT are updated as usual, while tasks are still
executed to measure the accuracy of the task approximation.
Once p has been determined, the steady-state phase starts,
which should be much longer than the training phases to
improve overall performance.

In the training phase, if task A can be approximated by
a previously executed task B, we run task A anyway to
measure the accuracy of the approximated task. Since the
outputs of task B are stored in the THT, denoted z 4757, we
can measure the error when obtaining the outputs of task A,
denoted X orrect- In our experiments, the Euclidean relative
error (Equation 3) produces imprecise per-task error mea-
surements that are not correlated with the overall program
accuracy loss (note that the numerator and the denominator
are accumulating floating point values).

As an alternative, we propose to use the Chebyshev rela-
tive error 7, shown in Equation 1. This metric does not suffer
from precision problems because the reduction variable is
not accumulating values, but selecting their maximum. In
our experiments, this distance provides per-task errors well
correlated with the overall correctness of the program. We
consider that a task has been correctly approximated if 7 is
below a threshold 7,,,4.

o mamgvzl(‘xcorrecti — TATM; )
T= ~ ey
maxizl(‘xcorrecti )
In the training phase, we start with p = 271° - 100% and
every time we approximate a task and 7 > 7,4, We double
the value of p (15 possible configurations until we reach
the maximum of p = 100%). Once we find a number of
tasks correctly approximated, denoted Liyqining, We select
the current value of p for the steady-state phase. Section IV
discusses how we selected the values of Ty42 and Lirqining
for the evaluated applications. To support dynamic ATM,
the structures THT and IKT have to be minimally extended:
they require to store the value of p together with the hash
keys as the value of p affects the hash key generation.
Additionally the adaptive algorithm identifies in the train-
ing phase the outputs of the tasks that exceed the maximum
relative error (which are potentially related to chaotic be-
havior). The pointers of those outputs are stored in a C++
set and we do not memoize tasks whose output pointers are
found in this set during the steady-state phase. This kind of
accuracy control cannot be provided by a profiling technique
if the training inputs are different from the test/production
inputs because the output pointers that do not respond well
to approximation might change when using a different input
set. This feature is useful only for one of the applications
we will present in Section IV-A.

E. Limitations

Since the THT and IKT structures store a hash key of
the task inputs, it might happen that ATM suffers from a

false positive. In our original approach, we implemented
a hierarchy of hash functions with increasing computation
requirements to avoid costly hash key computations for the
tasks that would not benefit from ATM. We also imple-
mented a final check (after all the hash keys have matched),
where we were considering the complete inputs. However,
the obtained results did not justify such a complex approach.
Having a single hash key representing the selected inputs
provides the best results in all the evaluated benchmarks.
We did additional experiments to corroborate that no hash
key collisions occur in the evaluated applications. As a
consequence, no false positives are observed in the case of
static ATM.

The second limitation of ATM has to do with the source
code. The developer has to precisely express all the task
data inputs and outputs. If a variable is modified by a task,
but not specified in the data outputs (some programmers
do that to reduce the overhead of tracking dependences),
then task approximation will provide wrong results. Finally,
task execution has to be deterministic, i.e. for a given input,
the task will always produce the same output !. Tasks that
make use of random values or access shared data via locks
should not use ATM because the task output would depend
on variables not explicitly indicated in the source code
annotations.

To overcome this last limitation, we propose to rely on
the developer of the application to identify the task types
suitable for memoization. This can be achieved by extending
the pragma annotations in OpenMP to let the programmer
specify this feature. Although this approach requires the pro-
grammer to explicitly specify which task types are suitable
for ATM, we believe that it is more reasonable than just
memoizing tasks blindly. As described in Section IV, we
have followed this approach for the evaluated applications.

IV. EXPERIMENTAL SETUP
A. Applications and Platform

For our evaluation we present benchmarks from a wide
set of domains: financial analysis, stencil-computation,
machine-learning and linear-algebra.

Blackscholes calculates the prices for a portofolio of
European options analytically with the Black-Scholes partial
differential equation (PDE). There is a single task type in
the benchmark and it is chosen for ATM.

Gauss-Seidel is a solver using the 2D Gauss Seidel five-
point stencil computation. The matrix of the problem is
divided into 2D blocks, each processed by a task. Neigh-
boring columns and rows are obtained via copy-tasks. The

IThis is the case of most applications with fully specified dependencies.
Deterministic tasks enable transparent execution on accelerators [10], while
the task data is automatically moved to and from a device chosen at runtime
(e.g. GPU, FPGA, SMP). Furthermore, data-aware scheduling is enabled
[4] which places a task on a computing element with fast and/or power
efficient task data access.



Table T
BENCHMARKS DESCRIPTION.

Benchmark Program Inputs Task Inputs Task Inputs Memoized Task Type Number Correctness
Size (bytes) Types of tasks Measured on
Blackscholes Native input with 10 million options 393,216 float bs_thread 6,109 Prices Vector
Gauss-Seidel 32 x 32 blocks of 1024 x 1024 elements 4,210,688 float stencilComputation 20,480 Stencil Matrix
Jacobi 32 x 32 blocks of 1024 x 1024 elements 4,210,688 float stencilComputation 20,480 Stencil Matrix
Kmeans 2 % 106 points, 16 centers, 100 dimensions 219,716 float, int kmeans_calculate(distances) 39,063 Centers Vector
LU 20 x 20 blocks of 256 x 256 elements 786,432 float bmod 670 LxU—-A
Swaptions Native with 512 swaptions 376 double HIM_Swaption_Blocking 512 Prices Vector
Table 11 Table III
DYNAMIC ATM PARAMETERS. ATM MEMORY OVERHEAD WITH RESPECT TO THE APPLICATION.
Benchmark || Black. GS Jacobi || Kmeans LU Swaptions Blackscholes GS Jacobi Kmeans LU Swaptions
Liraining 15 100 150 15 30 15 4.9% 9.8% || 9.26% || 21.21% 7.7% 3.7%
Tmax 1% 1% 1% 20% 1% 20%

kernel contains a random initialization of the blocks and the
boundaries of the matrix emit heat at the same temperature.
We choose the task type that computes the heat-diffusion for
ATM, not the copy tasks.

Jacobi is a solver using the 2D Jacobi five-point stencil
computation. The algorithm synchronizes at the end of each
iteration, but there are no dependences between tasks in the
same iteration. This application receives the same inputs as
Gauss-Seidel. We choose the task type that computes the
heat-diffusion for ATM as in Gauss-Seidel. Just calibrating
the p in the training phase does not suffice to bound the
accuracy losses of this application. A reduced set of task
output pointers is responsible for this instability, which is
identified by dynamic ATM in the training phase. As a result,
a negligible number of tasks that make use of these pointers
are not memoized.

Kmeans implements an unsupervised machine learning
algorithm to cluster N d-dimensional points into k groups.
The algorithm randomly distributes the points and selects k
random initial centers. Then iteratively a task type (chosen
for ATM) assigns a block of points to their closest centers.
The centers are re-computed by a second task type.

LU decomposes a sparse N x N matrix A into a lower
triangular matrix L and an upper triangular matrix U, such
that A = L-U. ATM is applied to the most frequently called
routine, bmod, which subtracts the result of a row-column
dot product from the elements of a vector.

Swaptions is an Intel RMS workload which uses the
Heath-Jarrow-Morton framework to price a portfolio of
swaptions using Montecarlo Simulation instead of solving
an analytical PDE. There is only one task type which is
chosen for ATM.

Table I summarizes the main properties of the presented
benchmarks. For an early discussion about the source of
redundancy in those programs the reader may refer to Sec-
tion V-D. Blackscholes and Swaptions are the only programs
in the current version of the PARSECSs benchmark suite [8]
with well defined task data inputs (all input and output data
of the tasks is specified in the pragmas). We use a version
of the LU [2] with configurable block size. Except LU and
Swaptions, all benchmarks have thousands of tasks to train

dynamic ATM. In the case of Swaptions, in order to have
enough tasks for training dynamic ATM, we increase the
size of the input from 128 to 512 swaptions. Finally, the
presented benchmarks have very different size of task data
inputs, ranging from hundreds of bytes (Swaptions) to over
4MB (Gauss-Seidel).

The pragma annotations also specify the amount of
training tasks Lirqining and the threshold 7,,4., the per-
task permitted inaccuracy with the Chebyshev error (see
Equation 1). Table II summarizes those parameters. At least
15 training tasks should be used to allow Dynamic ATM
to reach p = 100% and we observe that training ATM
with 5% of the total amount of tasks is an appropriate
empirical upper bound (average of 1.48%). The per-task
inaccuracy may result in slightly different overall inaccuracy
because of a known effect described by Sidiroglou et al. [19].
Applications may either magnify or diminish the impact
of an approximated instance, a skipped loop iteration in
their case, an approximated task in our case. In general,
Tmaz = 1% provides good results, although relaxing this
value (i.e., Tmaz > 1%) provides further options to approx-
imate tasks in Kmeans and Swaptions. Other benchmarks
do not tolerate that well increasing the value of 7,,44-
Simple offline profiling techniques can help the application
developer in finding both parameters.

All benchmarks are evaluated on an Intel ES-2670 Sandy
Bridge-EP processor with 8 cores running at 2.6GHz and a
shared last-level cache of 20MB. There are four 4GB DDR3
DIMMSs running at 1.6GHz (a total memory of 16GB).
All benchmarks are written in the OmpSs programming
model [10], with task annotations equivalent to the ones
supported by the OpenMP 4.0 specification [1]. We use the
Nanos++ 0.9a runtime system and the Mercurium 1.99.9
source-to-source compiler, with gcc 4.8.2 as back-end com-
piler with autovectorization enabled.

B. ATM Sizing

ATM introduces overhead to the execution time, as well
as on the memory footprint of the application depending
on the dimensioning of the N and M parameters (defined
in Section III-A) associated with the THT table. On the
one hand parameter N must be large enough to avoid lock



contention in the THT. N=8 provides a 46% performance
improvement with respect to N=0 (one hash bucket). Larger
values of N do not significantly improve performance.
On the other hand, most applications reach the maximum
amount of approximated tasks at M=16, but kmeans needs
a larger value of M=128 (this is the value used for all the
experiments). Finally, ATM requires an average of 9.4%
additional memory. For a more detailed, per benchmark
breakdown of the memory costs see Table III.

C. Metrics

Speedup is computed from two executions with the same
number of cores, one using ATM and the other not using it:

EzxecutionTimeno aTm

speedup = 2)

FEzxecutionTimear s

Correctness. Given that the outcome of our programs is
either a matrix or a vector, we can compute the relative
error F),. between the output vectors or matrices with the
Euclidean distance, as shown in Equation 3. The LU de-
composition has an application-specific way of computing
E,., as shown in Equation 4.

N
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Reuse. To measure task reuse, we make use of the
percentage of memoized tasks thanks to ATM. ATM seeks
to maximize reuse while maintaining the desired level of
correctness.

V. EVALUATION
A. Accuracy vs Performance Improvement

Figure 3 shows the performance speedup achieved by
static ATM, dynamic ATM and two oracle configurations
that execute with the best (smallest) p that guarantees a
correctness above or equal to 95% and 100%. Static ATM
uses all the input bytes for hash computation, while dynamic
ATM automatically picks an appropriate percentage p of
inputs. With Oracle (100%) if the p is small enough, the
hash key computation overhead can be significantly reduced.
Furthermore, with Oracle (95%), if the benchmark toler-
ates approximation, this configuration improves performance
with respect to Oracle (100%) due to task approximation.
This figure also shows the additional speedup that the IKT
data structure provides with respect to just using the THT.

Figure 3 reveals the following observations:

Static ATM. Four out of six benchmarks benefit from
exact task memoization. The speedups range between 1.07 x
(Swaptions) and 5x (Blackscholes). In contrast, Kmeans
and Jacobi are not able to exploit task redundancy with
this configuration. In the case of kmeans the centers change
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Figure 3. Speedup at a logarithmic scale with static and dynamic
Approximate Task Memoization (ATM). Both approaches can make use
of the Task History Table (THT) and the In-flight Key Table (IKT). The
Oracle results are obtained with offline profiling and ensuring a 95% and
100% correctness in the final results of the application.
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Figure 4. Correctness with static and dynamic Approximate Task Mem-
oization (ATM). The Oracle results are obtained with offline profiling and
ensuring a 95% correctness in the final results of the application.

in all the iterations, preventing exact memoization. In both
cases hash computations and bookkeeping overheads lead
to slowdowns. On average, static ATM achieves a 1.4%
speedup over the baseline.

Task approximation to reduce memoization overheads.
In Figure 3, we see that Blackscholes, Gauss-Seidel, and
Jacobi have a remarkable hash key computation overhead as
shown by the significant difference between the static ATM
and Oracle (100%). Those benchmarks raise their benefits
from 5.5x to 15.1x, from 1.68x to 6.3x, and from 0.65x
to 1.73x, respectively. This suggests that task approximation
can increase the memoization performance benefits with no
added degradation in correctness. Also, it might be possible
for the programmer to statically set a value of p < 100% but
this would require more knowledge about the application (as
the Oracle configurations). However, in this paper we rely
on Dynamic ATM to choose the value of p, based on the
specified error constraint 7,4 .

Dynamic ATM. Automatically selecting a small percent-
age of the inputs to approximate tasks provides significant
performance improvements. Dynamic ATM reaches an av-
erage 2.5x speedup which is close to the average speedup
of Oracle (95%). Moreover, all benchmarks benefit from
dynamic ATM, with speedups betweeen 1.23x (Swaptions)
and 8.8x (Blackscholes). However, the runtime system
overhead of updating the THT prevents dynamic ATM to
reach the potentially higher speedups of Blackscholes and
Kmeans. The hash key computations are not responsible
for the performance difference between Dynamic ATM and
Oracle (95%) as they only represent 0.5% of the task
duration in Dynamic ATM.

IKT. Adding an IKT to the runtime system makes Jacobi
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Figure 5. Correctness achieved with ATM depending on the percentage of
selected inputs. The right-most point in the graph corresponds with the static
ATM. The star symbol with the benchmark initial denotes the percentage
selected in dynamic ATM. The curves of Jacobi and Gauss-Seidel overlap.

and LU increase their performance by 1.8% and 15% in
static ATM, and by 13% and 12% in dynamic ATM. The
IKT brings the speedup closer to the maximum achievable
with the Oracle (95%) configuration.

Figure 4 summarizes the results obtained in terms of
correctness. The Oracle (100%) results are not shown as
they are always 100% correct, while the addition of IKT
has a negligible effect in the final correctness. The first
important conclusion from this figure is that static ATM
always achieves a 100% correctness. This result shows that
the design of the THT and the hashing function represent
a robust way of performing memoization. Dynamic ATM
is also able to achieve the 100% correctness for four
benchmarks out of six. A small reduction in correctnes
of 1.2% and 3.2% is obtained in the case of Kmeans
and Swaptions, respectively. On average, dynamic ATM
degrades correctness by only 0.7%, which is even a bit better
than the correctness of Oracle (95%).

B. Sensitivity to the Percentage of Selected Inputs

Figure 5 shows the program overall correctness when
running with a constant percentage p of selected inputs.
We report the correctness of ATM with constant p between
2715.100% and 100%. Note that the x-axis is in logarithmic
scale. When decreasing the value of p, some benchmarks
quickly degrade correctness. Swaptions already degrades
correctness with p = 12.5%. The other benchmarks tolerate
values of p below 0.1% without degrading correctness.

Figure 5 also depicts the chosen configuration of dynamic
ATM with a star symbol. As explained in Section III-D, the
training phase begins with a p = 2715 corresponding to the
left most x coordinate of the figure and jumps one step to
the right (multiplies p by 2) each time a task does not meet
the target error constraint 7,,,,. For all benchmarks, dy-
namic ATM selects a configuration that returns a correctness
higher than 96.8%. LU and the stencil algorithms reach a
correctness of either 100% or smaller than 90%, since errors
can get easily propagated in those programs. Dynamic ATM
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Figure 6. Performance speedups as we increase the number of cores from
1 to 8. Results are shown for Oracle (95%) and Dynamic ATM.

effectively identifies this situation. Most benchmarks do at
most one additional step than necessary to ensure program
correctness, demonstrating the effectiveness of the adaptive
algorithm. Only Kmeans does five extra steps in the training
phase, a conservative runtime decision that does not impact
the final performance of the benchmark (it behaves very
similarly for p between 27 - 100% and 27° - 100%).

C. ATM Scalability

Figure 6 shows the speedup of dynamic ATM over dif-
ferent number of cores for the evaluated applications. The
baseline corresponds to the parallel execution of the applica-
tions without using ATM. The x-axis shows the number of
cores used in each experiment. We also include the speedups
of Oracle (95%), which chooses the best configuration that
guarantees a correctness above 95%.

Dynamic ATM adapts to large multicore scenarios. Fig-
ure 6 shows performance speedups between 3.0x (1 core)
and 2.5x (8 cores), and the curve stabilizes (it is convex).
When executing with more cores, some opportunities for
task approximation may be missed. This is not a conse-
quence of an increasing number of running tasks that hold
reuse potential (as the number of cores grows) and whose
output is not yet committed in the THT, given that we exploit
this potential with the IKT structure.

However when using different number of cores, the order
of task execution might change, affecting the election of
the percentage p of task inputs for hash key computations.
For instance, in Kmeans different results in the training
phase make dynamic ATM choose in average a slightly more
conservative value of p with 8 cores, namely 0.058%, rather
than selecting 0.024% as in the single core configuration.
This results in a slight decrease in the reuse percentage
from 1 core to 8 cores. LU however, is the most affected
benchmark by the reuse reduction. The percentage of reused
tasks diminishes from 90% (1 core) to 49% (8 cores) because
of an increase in p from 0.006% to 0.012%. Fortunately
this different decision does not degrade significantly the
speedup benefits at 8 cores because the tasks that dominate
the execution time are still approximated. The opposite
case happens in Swaptions: dynamic ATM chooses a more
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Figure 7. Gauss-Seidel execution trace with 2 (top) and 8 (bottom) cores
using the Oracle (95%) approach. We zoom-in on a memoization intensive
phase of the benchmark. Both traces have the same time scale. The legend
uses the ATM prefix for the two states of interest related to Approximate
Task Memoization. ”Other states” covers all the other cases.

conservative percentage p = 50% at less than 8 cores and
a p = 25% at 8 cores. This increases the percentage of
approximated tasks from 5% to 17.6%.

Taking into account that task reuse remains stable when
running the applications with the Oracle 95% configuration,
we would expect that the achieved speedups to stay constant
when increasing the number of cores. However Blacksc-
holes, Gauss-Seidel, Jacobi and Kmeans have diminishing
returns with the number of cores. In contrast, dynamic ATM,
which is more conservative than Oracle (95%), has a better
scalability. Next, we present a detailed analysis showing
that the hardware and the runtime system limitations are
responsible for those degradations:

Hardware structure contention. Shared memory re-
sources can be a limiting factor in some benchmarks es-
pecially at a small percentage p of inputs, in the program
phases where lots of task reuse is being performed in
parallel. Figure 7 shows two execution traces of Gauss-
Seidel with 2 and 8 cores. Both traces make use of the same
time scales (represented in the x-axis) and colors represent
different thread states (there is one time line per available
core). We observe that both states ATM:Task memoization,
denoting the copies from the THT to the bypassed task’s
outputs, and ATM:Hash-key computation are on average
60% slower at 8 cores than at 2 cores. Given that the
hash key computations and the copies from/to the THT
are cache and main memory intensive activities, and that
the traces clearly reflect that we are able to run those in
parallel (the problem is not lock contention), we believe that
the limitation comes from the contention in shared memory
components such as the memory bandwidth.

Creation throughput. We observe that Blackscholes and
Kmeans suffer from insufficient task creation throughput
when increasing the number of cores. In Figures 8(a) and
8(c), we compare the execution of Blackscholes with and
without dynamic ATM. We see that the task creation dom-
inates more in the execution with dynamic ATM (Figure
8(a)). In fact, we confirm this limitation using Figures 8(b)
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(a) Blackscholes with Dynamic ATM execution trace. The trace includes
the execution of all the iterations in the program. Before the end of the first
iteration, ATM has gathered enough information to start memoizing.

Ready ‘
tasks m Time

(b) Number of ready tasks with ATM. Same timeline as 8(a).

Core 1 g
Core 2 E
Core 3} g
Core 4} E
Core 5 g
Core 6} E
Core 7} g
Core 8L . " " " " L

(c) Blackscholes without ATM execution trace. The first iteration is being
shown and the start of the second one.
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(d) Number of ready tasks without ATM. Same timeline as 8(c).

Figure 8. The same time scale is used in all the graphs. The execution
with ATM executes all the iterations in less time than one complete iteration
without ATM. "Thread Idle” also includes other states which represent less
than 1% of the time

and 8(d) which show the number of ready tasks in the
runtime system at each point of time. In Figure 8(c), tasks
are created for a short amount of time (after each barrier) and
then all the threads execute tasks. However in Figure 8(a)
the master thread can not create enough tasks at the speed
at which threads compute hash keys and approximate tasks.
For this reason the ready queue is drained and stays empty.
As soon as the master thread inserts a task, it is immediately
retired by a worker thread which is able to memoize it in
most cases. We have observed the same behavior in Kmeans.

Synchronization overheads of task memoization. Given
the implementation of the per-bucket locks in the THT, the
parallel reads per THT bucket capability and further analysis
via execution traces suggests that the synchronization intro-
duced by ATM does not represent a significant overhead in
the execution time.

D. Source of Task Redundancy

This section identifies the sources of task redundant
executions that allow ATM to improve performance in the
evaluated applications. We find out that repetitive patterns
in the application input sets contribute to this redundancy.
Also, there is redundancy generated by the algorithm itself
at runtime. Figure 9 summarizes this information for the
evaluated applications with dynamic ATM. The x axis plots
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Figure 9. Redundancy generation during the execution of an application.

the normalized id of the executed tasks, whereas the non-
normalized task id is a natural number which represents the
order of task creation, and the y axis plots the cumulative
reuse generated by those tasks. Each marker represents a
task that contributes to increase task reuse. Therefore the
first marker corresponds to the first task that will be reused.

Embarrassingly parallel algorithms such as Blackscholes
and Swaptions have their redundancy in the program’s
inputs as this input is divided into blocks and processed
independently. Most of the redundancy is generated early
in the execution of Blackscholes (as shown in Figure 9),
while in Swaptions it is spread during the whole execution
history. We have detected that Blackscholes repeats the same
algorithm multiple times, the last iterations being redundant,
but even if we reduce the number of iterations to 1, we
still see the same pattern but shifted to the right. The reuse
when executing only one iteration is 50%. Swaptions also
has program inputs redundancy, but it can be exploited at
its full potential only with dynamic ATM, increasing the
reuse to 20% (reuse is 7% for static ATM). Blackscholes
and Swaptions are known to respond well to approximate
techniques [19].

In the case of iterative algorithms, they also provide
redundancy because the algorithm converges faster on some
pieces of the domain. This is the case of Gauss-Seidel,
Jacobi and Kmeans. The two stencil algorithms propagate
heat towards the interior of a matrix representing a room.
The temperature near the walls converges faster than in the
interior, while many iterations are required to start changing
the temperature in the center of the room. As a result, there
are sub-blocks in the matrix performing redundant execu-
tions. We have also found redundancy in the initialization
of the sub-blocks of the matrix due to the saturation of the
random number generator. Figure 9 shows that the stencil
algorithms generate redundancy during the whole execution
and that some tasks produce results with higher reuse than
others. Previous work has also found redundancy in stencil

algorithms at finer granularities [23].

Kmeans iteratively computes the center of the clusters
based on the points currently assigned to them. Some
centers may converge before others because they have very
well defined points belonging to the cluster. However the
algorithm will keep computing the center of that well defined
cluster, which is redundant. Effectively, Figure 9 shows that
the first third of the tasks produce the most reused results.
This redundancy is not in the inputs of the program, but it
is generated during execution and it can only be exploited
if we use task approximation. Other proposals also manage
to perform approximation techniques on Kmeans [11].

Finally, in Figure 9 we can see that some tasks are
more useful for redundancy elimination than others. This
is especially important for LU, where we observe a steep
slope with high distance between two tasks that generate
reuse. In contrast, programs that generate redundancy at
the beginning of the execution have tasks that provide their
result to a very similar number of approximated tasks. LU
is neither embarrassingly parallel nor an iterative algorithm,
but it reuses at short distances and we see that this reuse
spreads over the whole execution. We think this redundancy
is both thanks to the algorithm and to the inputs. Figure 9
also justifies the need for continuously updating the THT,
as redundancy appears spread over the whole execution for
most of the benchmarks.

VI. CONCLUSION

This paper presents Approximate Task Memoization
(ATM), a redundancy elimination technique at coarse gran-
ularities that boosts program performance by memoizing
tasks that have equal or similar inputs to previously executed
tasks. The main highlights of the paper are’:

Static ATM and Coarse Grained Memoization. The paper
presents static ATM, a technique that transparently reuses
task results in the runtime system. Compared to the few
proposals of coarse grained memoization, we employ our
technique at higher granularities (up to 4MB) and we are
not limited to chains of instructions. To avoid costly inputs
comparisons, we only visit once the inputs of the tasks by
implementing an efficient hashing mechanism. Without any
approximation, static ATM provides a 1.4x average speedup
for the evaluated applications.

Dynamic ATM. We present dynamic ATM, an adap-
tive algorithm that automatically determines the appropriate
value of p in order to run with good performance and
bounding the accuracy loss. Dynamic ATM is able to find
out configurations that provide a 2.5x average speedup and
accuracy losses below 3.2% (0.7% on average). No off-line
profiling is required in such approach: the runtime system
gathers all the needed information during execution. To
measure task correctness, we discover that the Chebyshev

2 All reported results are with respect to an 8-core baseline without ATM.



distance provides the best results, avoiding precision errors
and being well correlated with overall program correctness.

ATM in a Real Multi-core. ATM implements a mech-
anism to cope with the artificial loss of redundancy when
executing programs in parallel. In parallel executions, when
a task becomes ready, other in-flight tasks run concurrently.
These tasks may be useful for memoization although they
have not committed their results to the THT. For this reason,
ATM also includes the IKT data structure for in-flight
task memoization. Additionally, implementing ATM in the
runtime system for multi-core processors involves careful
lock design in the memoization mechanism, and taking into
account micro-architectural shared resources. With ATM
we obtain such dramatic performance improvements that
we reach peak memory system utilization and maximum
runtime system task creation throughput. Despite those lim-
itations the dynamic ATM is able to scale well in the ranges
of 1 to 8 cores.
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