
Generating Families of Practical Fast Matrix Multiplication Algorithms

FLAME Working Note #82

Jianyu Huang*†, Leslie Rice*†, Devin A. Matthews†, Robert A. van de Geijn*†

*Department of Computer Science
†Institute for Computational Engineering and Sciences
The University of Texas at Austin, Austin, TX 78712

{jianyu@cs., leslierice, dmatthews, rvdg@cs.}utexas.edu

November 3, 2016

Abstract

Matrix multiplication (GEMM) is a core operation to numerous scientific applications. Traditional
implementations of Strassen-like fast matrix multiplication (FMM) algorithms often do not perform well
except for very large matrix sizes, due to the increased cost of memory movement, which is particu-
larly noticeable for non-square matrices. Such implementations also require considerable workspace and
modifications to the standard BLAS interface. We propose a code generator framework to automatically
implement a large family of FMM algorithms suitable for multiplications of arbitrary matrix sizes and
shapes. By representing FMM with a triple of matrices JU, V,W K that capture the linear combinations
of submatrices that are formed, we can use the Kronecker product to define a multi-level representation
of Strassen-like algorithms. Incorporating the matrix additions that must be performed for Strassen-like
algorithms into the inherent packing and micro-kernel operations inside GEMM avoids extra workspace
and reduces the cost of memory movement. Adopting the same loop structures as high-performance
GEMM implementations allows parallelization of all FMM algorithms with simple but efficient data par-
allelism without the overhead of task parallelism. We present a simple performance model for general
FMM algorithms and compare actual performance of 20+ FMM algorithms to modeled predictions. Our
implementations demonstrate a performance benefit over conventional GEMM on single core and multi-
core systems. This study shows that Strassen-like fast matrix multiplication can be incorporated into
libraries for practical use.

1 Introduction

Three recent advances have revived interest in the practical implementation of Strassen’s algorithm (Strassen)
and similar Fast Matrix Multiplication (FMM) algorithms. The first [1] is a systematic way in which new
FMM algorithms can be identified, building upon conventional calls to the BLAS matrix-matrix multipli-
cation gemm routine. That work incorporated a code generator, due to the number of algorithms that are
identified and the complexity of exploiting subexpressions encountered in the linear combinations of subma-
trices. Parallelism was achieved through a combination of task parallelism and parallelism within the BLAS.
The second [2] was the insight that the BLAS-like Library Instantiation Software (BLIS) framework exposes
basic building blocks that allow the linear combinations of submatrices in Strassen to be incorporated
into the packing and/or computational micro-kernels already existing in the BLIS gemm implementation.
Parallelism in that work mirrored the highly effective data parallelism that is part of BLIS. Finally, the
present work also extends insights on how to express multiple levels of Strassen in terms of Kronecker
products [3] to multi-level FMM algorithms, facilitating a code generator for all methods from [1] (including
Strassen), in terms of the building blocks created for [2], but allowing different FMM algorithms to be

1

ar
X

iv
:1

61
1.

01
12

0v
1

 [
cs

.M
S]

 3
 N

ov
 2

01
6

1

+=# 1

L3#cache#
L2#cache#
L1#cache#
registers#

main#memory#
micro5kernel#

Update Cij

mR

+=#

nR

kC

1st#loop#around#micro5kernel#

mR

+=#
kC

nR

Pack Ai→ Ai
~

nR Ai
~ Bp

~
2nd#loop#around#micro5kernel#

Ci

3rd#loop#around#micro5kernel#

+=#

Pack Bp → Bp
~

Bp
~ mC

Ci Ai mC

4th#loop#around#micro5kernel#

+=#
kC Ap Bp Cj

kC

+=#
nC nC

5th#loop#around#micro5kernel#

A B Cj

nC nC

+=#
nC nC

5th#loop#around#micro5kernel#

Y W Dj
X Vj Cj

4th#loop#around#micro5kernel#

+=#
kC Yp Wp Dj

kC

Xp Vp Cj

3rd#loop#around#micro5kernel#

+=#

Pack Vp + Wp → Bp
~

Bp
~ mC

Di Yi
mC

Ci Xi

mR

+=#
kC

nR

Pack Xi + Yi→ Ai
~

nR Ai
~ Bp

~
2nd#loop#around#micro5kernel#

Ci

Di

mR

+=#

nR

kC

1st#loop#around#micro5kernel#

1

+=# 1

L3#cache#
L2#cache#
L1#cache#
registers#

main#memory#
micro5kernel#

Update Cij , Dij

nC nC

Figure 1: Figure from [2] (used with permission from authors). Left: Illustration of the BLIS implementation
of the GotoBLAS gemm algorithm. All computation is cast in terms of a micro-kernel that is highly
optimized. Right: modification that implements the representative computation M = (X+Y)(V +W);C+=
M ;D+= M of each row of computations in (2). X, Y are submatrices of A; V , W are submatrices of B; C,
D are submatrices of the original matrix C; M is the intermediate matrix product. Note that the packing
buffers Ãi and B̃p stay in cache.

used for each level. Importantly and unique to this work, the code generator also yields performance models
that are accurate enough to guide the choice of a FMM implementation as a function of problem size and
shape, facilitating the creation of poly-algorithms [4]. Performance results from single core and multi-core
shared memory system support the theoretical insights.

We focus on the special case of gemm given by C := C + AB. Extending the ideas to the more general
case of gemm is straightforward.

2 Background

We briefly summarize how the BLIS [5] framework implements gemm before reviewing recent results [2] on
how Strassen can exploit insights that underlie this framework.

2

2.1 High-performance implementation of standard gemm

Key to high performance implementations of gemm is the partitioning of operands in order to (near-
)optimally reuse data in the various levels of memory. Figure 1(left) illustrates how BLIS implements
the GotoBLAS [6] approach. Block sizes {mC , nC , kC} are chosen so that submatrices fit in the various
caches while {mR, nR} relate to submatrices in registers that contribute to C. These parameters can be
analytically determined [7]. To improve data locality, row panels Bp that fit in the L3 cache are “packed”

into contiguous memory, yielding B̃p. For similar reasons, blocks Ai that fit in the L2 cache are packed into

buffer Ãi.

2.2 High-performance implementations of Strassen

If one partitions the three operands into quadrants,

X =

(
X0 X1

X2 X3

)
for X ∈ {A,B,C} (1)

then it can be shown that the operations

M0=(A0 +A3)(B0 +B3); C0+ = M0; C3+ = M0;
M1=(A2 +A3)B0; C2+ = M1; C3− = M1;
M2=A0(B1 −B3); C1+ = M2; C3+ = M2;
M3=A3(B2 −B0); C0+ = M3; C2+ = M3;
M4=(A0 +A1)B3; C1+ = M4; C0− = M4;
M5=(A2 −A0)(B0 +B1); C3+ = M5;
M6=(A1 −A3)(B2 +B3); C0+ = M6;

(2)

compute C := AB + C, but with seven (sub)matrix multiplications, reducing the cost by a factor of 7/8
(ignoring a lower order number of extra additions). If all matrices are square and of size n × n, classical
Strassen exploits this recursively, reducing the cost for gemm to O(n2.807).

Only a few levels of the recursion are exploited in practice because the cost of extra additions and extra
memory movements quickly offsets the reduction in floating point operations. Also, Strassen is known to
become more numerically unstable particularly when more than two levels of recursion are employed [8, 9, 10].

In [2], captured in Figure 1(right), it was noted that the additions of the submatrices of A and B can be

incorporated into the packing into buffers Ãi and B̃p, avoiding extra memory movements. In addition, once
a submatrix that contributes to C is computed in the registers, it can be directly added to the appropriate
parts of multiple submatrices of C, thus avoiding the need for temporary matrices Mr, again avoiding extra
memory movements. As demonstrated in [2], this makes the method practical for smaller matrices and
matrices of special shape (especially rank-k updates, where k is relatively small).

3 Fast Matrix Multiplication Algorithms

We now present the basic idea that underlies families of FMM algorithms and how to generalize one-level
formula for multi-level FMM utilizing Kronecker products and recursive block storage indexing.

3.1 One-level fast matrix multiplication algorithms

In [1], the theory of tensor contractions is used to find a large number of FMM algorithms. In this subsection,
we use the output (the resulting algorithms) of their approach.

Generalizing the partitioning for Strassen, consider C := C+AB, where C, A, and B are m×n, m×k,
and k × n matrices, respectively. [1] defines a 〈m̃, k̃, ñ〉 algorithm by partitioning

C =

 C0 · · · Cñ−1
...

...
C(m̃−1)ñ · · · Cm̃ñ−1

 , A =

 A0 · · · Ak̃−1
...

...
A(m̃−1)k̃ · · · Am̃k̃−1

 , and B =

 B0 · · · Bñ−1
...

...
B(k̃−1)ñ · · · Bk̃ñ−1

3

Note that Ai, Bj , and Cp are the submatrices of A, B and C, with a single index in the row major order.
Then, C := C +AB is computed by,

for r = 0, ..., R− 1,

Mr :=

(
m̃k̃−1∑
i=0

uirAi

)
×
(

k̃ñ−1∑
j=0

vjrBj

)
;

Cp+ = wprMr (p = 0, ..., m̃ñ− 1)

(3)

where (×) is a matrix multiplication that can be done recursively, uir, vjr, and wpr are entries of a (m̃k̃)×R
matrix U , a (k̃ñ)×R matrix V , and a (m̃ñ)×R matrix W , respectively. Therefore, the classical matrix mul-

tiplication which needs m̃k̃ñ submatrix multiplications can be completed with R submatrix multiplications.
The set of coefficients that determine the 〈m̃, k̃, ñ〉 algorithm is denoted as JU, V,W K.

For example, assuming that m, n, and k are all even, one-level Strassen has 〈2, 2, 2〉 partition dimensions
and, given the partitioning in (1) and computations in (2),

J

1 0 1 0 1 −1 0
0 0 0 0 1 0 1
0 1 0 0 0 1 0
1 1 0 1 0 0 −1

 ,

1 1 0 −1 0 1 0
0 0 1 0 0 1 0
0 0 0 1 0 0 1
1 0 −1 0 1 0 1

 ,

1 0 0 1 −1 0 1
0 0 1 0 1 0 0
0 1 0 1 0 0 0
1 −1 1 0 0 1 0

K (4)

specifies JU, V,W K for one-level Strassen.
Figure 2 summarizes a number of such algorithms that can be found in the literature that we eventually

test in Section 5. We only consider 2 ≤ m̃, k̃, ñ ≤ 6 and don’t include arbitrary precision approximate (APA)
algorithms [13], due to their questionable numerical stability.

3.2 Kronecker Product

If X and Y are m× n and p× q matrices with (i, j) entries denoted by xi,j and yi,j , respectively, then the
Kronecker product [14] X ⊗ Y is the mp× nq matrix given by

X ⊗ Y =

 x0,0Y · · · x0,n−1Y
...

. . .
...

xm−1,0Y · · · xm−1,n−1Y

Thus, entry (X ⊗ Y)p(r−1)+v,q(s−1)+w = xr,syv,w.

3.3 Recursive Block Indexing (Morton-like Ordering)

An example of recursive block storage indexing (Morton-like ordering) [15] is given in Figure 3. In this
example, A undergoes three levels of recursive splitting, and each submatrix of A is indexed in row major
form. By indexing A, B, and C in this manner, data locality is maintained when operations are performed
on their respective submatrices.

3.4 Representing two-level FMM with the Kronecker Product

In [3], it is shown that multi-level 〈2, 2, 2〉 Strassen can be represented as Kronecker product. In this paper,

we extend this insight to multi-level FMM, where each level can use a different choice of 〈m̃, k̃, ñ〉.
Assume each submatrix of A, B, and C is partitioned with another level of 〈m̃′, k̃′, ñ′〉 FMM algorithm

with the coefficients JU ′, V ′,W ′K, and Ai, Bj , Cp are the submatrices of A, B and C, with a single index in
two-level recursive block storage indexing. Then it can be verified that C := C +AB is computed by,

for r = 0, ..., R ·R′ − 1,

Mr :=

(
m̃k̃·m̃′k̃′−1∑

i=0

(U ⊗ U ′)i,rAi

)
×
(

k̃ñ·k̃′ñ′−1∑
j=0

(V ⊗ V ′)j,rBj

)
;

Cp+ = (W ⊗W ′)p,rMr(p = 0, ..., m̃ñ · m̃′ñ′ − 1)

4

〈m̃, k̃, ñ〉 Ref. m̃k̃ñ R
Speedup (%)

Theory
Practical #1 Practical #2
Ours [1] Ours [1]

〈2, 2, 2〉 [11] 8 7 14.3 11.9 -3.0 13.1 13.1
〈2, 3, 2〉 [1] 12 11 9.1 5.5 -13.1 7.7 7.7
〈2, 3, 4〉 [1] 24 20 20.0 11.9 -8.0 16.3 17.0
〈2, 4, 3〉 [10] 24 20 20.0 4.8 -15.3 14.9 16.6
〈2, 5, 2〉 [10] 20 18 11.1 1.5 -23.1 8.6 8.3
〈3, 2, 2〉 [10] 12 11 9.1 7.1 -6.6 7.2 7.5
〈3, 2, 3〉 [10] 18 15 20.0 14.1 -0.7 17.2 16.8
〈3, 2, 4〉 [10] 24 20 20.0 11.9 -1.8 16.1 17.0
〈3, 3, 2〉 [10] 18 15 20.0 11.4 -8.1 17.3 16.5
〈3, 3, 3〉 [12] 27 23 17.4 8.6 -9.3 14.4 14.7
〈3, 3, 6〉 [12] 54 40 35.0 -34.0 -41.6 24.2 20.1
〈3, 4, 2〉 [1] 24 20 20.0 4.9 -15.7 16.0 16.8
〈3, 4, 3〉 [12] 36 29 24.1 8.4 -12.6 18.1 20.1
〈3, 5, 3〉 [12] 45 36 25.0 5.2 -20.6 19.1 18.9
〈3, 6, 3〉 [12] 54 40 35.0 -21.6 -64.5 19.5 17.8
〈4, 2, 2〉 [10] 16 14 14.3 9.4 -4.7 11.9 12.2
〈4, 2, 3〉 [1] 24 20 20.0 12.1 -2.3 15.9 17.3
〈4, 2, 4〉 [10] 32 26 23.1 10.4 -2.7 18.4 19.1
〈4, 3, 2〉 [10] 24 20 20.0 11.3 -7.8 16.8 15.7
〈4, 3, 3〉 [10] 36 29 24.1 8.1 -8.4 19.8 20.0
〈4, 4, 2〉 [10] 32 26 23.1 -4.2 -18.4 17.1 18.5
〈5, 2, 2〉 [10] 20 18 11.1 7.0 -6.7 8.2 8.5
〈6, 3, 3〉 [12] 54 40 35.0 -33.4 -42.2 24.0 20.2

Figure 2: Theoretical and practical speedup for various FMM algorithms. m̃k̃ñ is the number of mul-
tiplication for classical matrix multiplication algorithm. R is the number of multiplication for fast matrix
multiplication algorithm. Theoretical speedup is the speedup per recursive step. Practical #1 speedup is the
speedup for one-level FMM comparing with gemm when m = n = 14400, k = 480 (rank-k updates). Practi-
cal #2 speedup is the speedup for one-level FMM comparing with gemm when m = n = 14400, k = 12000
(approximately square). We report the practical speedup of the best implementation of our generated code
(generated gemm) and the implementations in [1] (linked with Intel MKL) on single core. More details
about the experiment setup is described in Section 5.

0 1
2 3

4 5
6 7

8 9
10 11

12 13
14 15

16 17
18 19

20 21
22 23

24 25
26 27

28 29
30 31

32 33
34 35

36 37
38 39

40 41
42 43

44 45
46 47

48 49
50 51

52 53
54 55

56 57
58 59

60 61
62 63

Figure 3: Illustration of recursive block storage indexing (Morton-like ordering) [15] on m × k matrix A

where the partition dimensions m̃ = k̃ = 2 for three-level recursions.

where ⊗ represents Kronecker Product. Note that U ⊗U ′, V ⊗ V ′, and W ⊗W ′ are (m̃k̃ · m̃′k̃′)× (R ·R′),
(k̃ñ · k̃′ñ′)× (R ·R′), (m̃ñ · m̃′ñ′)× (R ·R′) matrices, respectively.

5

The set of coefficients of a two-level 〈m̃, k̃, ñ〉 and 〈m̃′, k̃′, ñ′〉 FMM algorithm can be denoted as JU ⊗
U ′, V ⊗ V ′,W ⊗W ′K.

For example, the two-level Strassen is represented by the coefficients JU ⊗ U, V ⊗ V,W ⊗W K where
JU, V,W K are the one-level Strassen coefficients given in (4).

3.5 Additional levels of FMM

Comparing one-level and two-level FMM, the same skeleton pattern emerges. The formula for defining
L-level FMM is given by,

for r = 0, ...,
∏L−1

l=0 Rl − 1,

Mr :=

L−1∏
l=0

m̃lk̃l−1∑
i=0

(
L−1⊗
l=0

Ul)i,rAi

×

L−1∏
l=0

k̃lñl−1∑
j=0

(
L−1⊗
l=0

Vl)j,rBj

 ;

Cp+ = (
L−1⊗
l=0

Wl)p,rMr(p = 0, ...,
∏L−1

l=0 m̃lñl − 1)

(5)

The set of coefficients of an L-level 〈m̃l, k̃l, ñl〉 (l = 0, 1, ..., L − 1) FMM algorithm can be denoted as

J
⊗L−1

l=0 Ul,
⊗L−1

l=0 Vl,
⊗L−1

l=0 WlK.

4 Implementation and Analysis

The last section shows that families of one-level FMM algorithms can be specified by 〈m̃, k̃, ñ〉 and JU, V,W K.
It also shows how the Kronecker product can be used to generate multi-level FMM algorithms that are
iterative rather than recursive. In this section, we discuss a code generator that takes as input 〈m̃, k̃, ñ〉
and JU, V,W K and as output generates implementations that build upon the primitives that combine taking
linear combinations of matrices with the packing routines and/or micro-kernels that underlie BLIS. The code
generator also provides a model of cost for each implementation that can then be used to choose the best
FMM for a matrix of given size and shape. This code generator can thus generate code for arbitrary levels
of FMM that can use different FMM choices at each level. In this way, we have generated and compared
more than 200 FMM algorithms.

4.1 Code generation

Our code generator generates various implementations of FMM, based on the coefficient representation
JU, V,W K, levels of recursion, and packing routine/micro-kernel incorporation specifications.

There are two stages for our code generator: generating the skeleton framework, and generating the
typical operations given in (3).

Generating the skeleton framework

During this stage, the code generator

• Computes the Kronecker Product of the coefficient matrices JUl, Vl,WlK in each level l to get the new

coefficients J
⊗L−1

l=0 Ul,
⊗L−1

l=0 Vl,
⊗L−1

l=0 WlK.

• Generates the matrix partition code by conceptual recursive block storage indexing with 〈m̃l, k̃l, ñl〉
partition dimensions for each level.

• For the general cases where one or more dimensions are not multiples of corresponding
∏L−1

l=0 m̃l,∏L−1
l=0 k̃l,

∏L−1
l=0 ñl, it generates dynamic peeling [16] code to handle the remaining “fringes” after

invoking FMM, which requires no additional memory.

6

τa
Time (in sec.) of one arithmetic (floating point),
operation, reciprocal of theoretical peak GFLOPS.

τb
(Bandwidth) Amortized time (in sec.) of 8 Bytes
contigous data movement from DRAM to cache.

T Total execution time (in sec.).
Ta Time for arithmetic operations (in sec.).
Tm Time for memory operations (in sec.).
T×a Ta for submatrix multiplications.

T
A+
a , T

B+
a , T

C+
a Ta for extra submatrix additions.

T
A×
m , T

B×
m Tm for reading submatrices in packing routines (Fig. 1).

T
Ã×
m ,T

B̃×
m Tm for writing submatrices in packing routines (Fig. 1).

T
C×
m

Tm for reading and writing submatrices in micro-kernel
(Fig. 1).

T
A+
m , T

B+
m , T

C+
m

Tm for reading or writing submatrices, related to the
temporary buffer as part of Naive FMM and AB FMM.

nnz(X) non-zero entry number in matrix or vector X.

Figure 4: Notation table for performance model.

Generating the typical operations

To generate the code for the typical operations in (3), the code generator

• Generates packing routines (written in C), that sum a list of submatrices of A integrated into the

packing routine, yielding Ãi, and similarly sum a list of submatrices of B integrated into the packing
routine, yielding B̃p, extending what is illustrated in Figure 1.

• Assembles a specialized micro-kernel comprised of a hand-coded gemm kernel and automatically gen-
erated updates to multiple submatrices of C.

Further variations

In [2], a number of variations on the theme illustrated in Figure 1 (right) are discussed:

• Naive FMM: A classical implementation with temporary buffers for storing the sum of A, B, and
the intermediate matrix product Mr.

• AB FMM: The packing routines incorporate the summation of submatrices of A, B into the packing
of buffers Ãi and B̃p but explicit temporary buffers for matrices Mr are used.

• ABC FMM: AB FMM, but with a specialized micro-kernel that incorporates addition of Mr to
multiple submatrices of C.

Incorporating the generation of these variations into the code generator yields over 200 FMM implementa-
tions.

4.2 Performance model

In [2], a performance model was given to estimate the execution time T for the one-level/two-level ABC,
AB, and Naive variations of 〈2, 2, 2〉 Strassen. In this subsection, we generalize that performance model
to predict the execution time T for the various FMM implementations generated by our code generator.
Theoretical estimation helps us better understand the computation and memory footprint of different FMM
implementations, and allows us to avoid exhaustive empirical search when searching for the best implementa-
tion for different problem sizes and shapes. Most importantly, our code generator can embed our performance

7

1© Effective GFLOPS = 2 ·m · n · k/T · 10−9

2© T = Ta + Tm

3© Ta = N×a · T×a +N
A+
a · TA+

a +N
B+
a · TB+

a +N
C+
a · TC+

a

4© Tm = N
A×
m · TA×

m +N
B×
m · TB×

m +N
C×
m · TC×

m +N
A+
m · TA+

m +N
B+
m · TB+

m +N
C+
m · TC+

m

type τ gemm L-level

T×a - τa 2mnk 2 m

M̃L

n

ÑL

k

K̃L

T
A+
a - τa - 2 m

M̃L

k

K̃L

T
B+
a - τa - 2 k

K̃L

n

ÑL

T
C+
a - τa - 2 m

M̃L

n

ÑL

T
A×
m r τb mkd n

nc
e m

M̃L

k

K̃L
dn/ÑL

nc
e

T
Ã×
m w τb mkd n

nc
e m

M̃L

k

K̃L
dn/ÑL

nc
e

T
B×
m r τb nk n

ÑL

k

K̃L

T
B̃×
m w τb nk n

ÑL

k

K̃L

T
C×
m r/w τb 2λmnd k

kc
e 2λ m

M̃L

n

ÑL
dk/K̃L

kc
e

T
A+
m r/w τb mk m

M̃L

k

K̃L

T
B+
m r/w τb nk n

ÑL

k

K̃L

T
C+
m r/w τb mn m

M̃L

n

ÑL

gemm
L-level

ABC AB Naive
N×a 1 RL RL RL

N
A+
a - nnz(

⊗
U)-RL nnz(

⊗
U)-RL nnz(

⊗
U)-RL

N
B+
a - nnz(

⊗
V)-RL nnz(

⊗
V)-RL nnz(

⊗
V)-RL

N
C+
a - nnz(

⊗
W) nnz(

⊗
W) nnz(

⊗
W)

N
A×
m 1 nnz(

⊗
U) nnz(

⊗
U) RL

N
Ã×
m - - - -

N
B×
m 1 nnz(

⊗
V) nnz(

⊗
V) RL

N
B̃×
m - - - -

N
C×
m 1 nnz(

⊗
W) RL RL

N
A+
m - - - nnz(

⊗
U)+RL

N
B+
m - - - nnz(

⊗
V)+RL

N
C+
m - - 3nnz(

⊗
W) 3nnz(

⊗
W)

Figure 5: The top table shows the equations for computing the execution time T and Effective GFLOPS
in our performance model. The middle table shows the various components of arithmetic and memory
operations for BLAS gemm and various implementations of FMM. The time shown in the first column for
gemm and L-level FMM can be computed separately by multiplying the parameter in τ column with the
arithmetic/memory operation number in the corresponding entries. The bottom table shows the coefficient

NX
a /NX

m mapping table for computing Ta/Tm in the performance model. Here M̃L =
∏L−1

l=0 m̃l, K̃L =∏L−1
l=0 k̃l, ÑL =

∏L−1
l=0 ñl,

⊗
U =

⊗L−1
l=0 Ul,

⊗
V =

⊗L−1
l=0 Vl,

⊗
W =

⊗L−1
l=0 Wl, RL =

∏L−1
l=0 Rl.

8

1 2 3 4 5 6 7 8 9 10 11 12

·103
20

25

28.36

30

34

k

E
ff

ec
ti

ve
G
F
L
O
P
S
(2

·m
·n

·k
/t
im

e)
m = n = 14400, 1 level, ABC, 1 core, actual

1 2 3 4 5 6 7 8 9 10 11 12

·103
20

25

28.36

30

34

k

E
ff

ec
ti

ve
G
F
L
O
P
S
(2

·m
·n

·k
/t
im

e)

m = n = 14400, 1 level, ABC, 1 core, modeled

1 2 3 4 5 6 7 8 9 10 11 12

·103
20

25

28.36

30

34

k

E
ff

ec
ti

ve
G
F
L
O
P
S
(2

·m
·n

·k
/t
im

e)

m = n = 14400, 1 level, AB, 1 core, actual

〈2, 2, 2〉 〈2, 3, 2〉 〈2, 3, 4〉 〈2, 4, 3〉
〈2, 5, 2〉 〈3, 2, 2〉 〈3, 2, 3〉 〈3, 2, 4〉
〈3, 3, 2〉 〈3, 3, 3〉 〈3, 3, 6〉 〈3, 4, 2〉
〈3, 4, 3〉 〈3, 5, 3〉 〈3, 6, 3〉 〈4, 2, 2〉
〈4, 2, 3〉 〈4, 2, 4〉 〈4, 3, 2〉 〈4, 3, 3〉
〈4, 4, 2〉 〈5, 2, 2〉 〈6, 3, 3〉 BLIS

MKL

1 2 3 4 5 6 7 8 9 10 11 12

·103
20

25

28.36

30

34

k

E
ff

ec
ti

ve
G
F
L
O
P
S
(2

·m
·n

·k
/t
im

e)

m = n = 14400, 1 level, AB, 1 core, modeled

〈2, 2, 2〉 〈2, 3, 2〉 〈2, 3, 4〉 〈2, 4, 3〉
〈2, 5, 2〉 〈3, 2, 2〉 〈3, 2, 3〉 〈3, 2, 4〉
〈3, 3, 2〉 〈3, 3, 3〉 〈3, 3, 6〉 〈3, 4, 2〉
〈3, 4, 3〉 〈3, 5, 3〉 〈3, 6, 3〉 〈4, 2, 2〉
〈4, 2, 3〉 〈4, 2, 4〉 〈4, 3, 2〉 〈4, 3, 3〉
〈4, 4, 2〉 〈5, 2, 2〉 〈6, 3, 3〉 GEMM

1 2 3 4 5 6 7 8 9 10 11 12

·103
20

25

28.36

30

34

k

E
ff

ec
ti

ve
G
F
L
O
P
S
(2

·m
·n

·k
/t
im

e)

m = n = 14400, 1 level, Naive, 1 core, actual

1 2 3 4 5 6 7 8 9 10 11 12

·103
20

25

28.36

30

34

k

E
ff

ec
ti

ve
G
F
L
O
P
S
(2

·m
·n

·k
/t
im

e)

m = n = 14400, 1 level, Naive, 1 core, modeled

Figure 6: Performance of generated one-level ABC, AB, Naive FMM implementations on single core when
m=n=14400, k varies. Top row: actual performance; Bottom row: modeled performance. Left column:
one-level, ABC; Middle column: one-level, AB; Right column: one-level, Naive.

9

1 2 3 4 5 6 7 8 9 10 11 12

·103
20

25

28.36

30

34

m = k = n

E
ff

ec
ti

ve
G
F
L
O
P
S
(2

·m
·n

·k
/t
im

e)
m = k = n, 2 level, ABC, 1 core, actual

1 2 3 4 5 6 7 8 9 10 11 12

·103
20

25

28.36

30

34

m = k = n

E
ff

ec
ti

ve
G
F
L
O
P
S
(2

·m
·n

·k
/t
im

e)

m = k = n, 2 level, ABC, 1 core, modeled

1 2 3 4 5 6 7 8 9 10 11 12

·103
20

25

28.36

30

34

k

E
ff

ec
ti

ve
G
F
L
O
P
S
(2

·m
·n

·k
/t
im

e)

m = n = 14400, 2 level, ABC, 1 core, actual

1 2 3 4 5 6 7 8 9 10 11 12

·103
20

25

28.36

30

34

k

E
ff

ec
ti

ve
G
F
L
O
P
S
(2

·m
·n

·k
/t
im

e)

m = n = 14400, 2 level, ABC, 1 core, modeled

1 2 3 4 5 6 7 8 9 10 11 12

·103
20

25

28.36

30

34

m = n

E
ff

ec
ti

ve
G
F
L
O
P
S
(2

·m
·n

·k
/t
im

e)

k = 1024, 2 level, ABC, 1 core, actual

1 2 3 4 5 6 7 8 9 10 11 12

·103
20

25

28.36

30

34

m = n

E
ff

ec
ti

ve
G
F
L
O
P
S
(2

·m
·n

·k
/t
im

e)

k = 1024, 2 level, ABC, 1 core, modeled

Figure 7: Performance of generated two-level ABC FMM implementations on single core when m=k=n;
m=n=14400, k varies; k=1024, m=n vary. Top row: actual performance; Bottom row: modeled performance.
Left column: m=k=n; Middle column: m=n=14400, k varies; Right column: k=1024, m=n vary.

10

model to guide the selection of a FMM implementation as a function of problem size and shape, with the
input 〈m̃l, k̃l, ñl〉 and JUl, Vl,WlK specifications on each level l. These performance models are themselves
automatically generated.

Assumption

We have similar architecture assumptions as in [2]. Basically we assume that the architecture has two layers
of modern memory hierarchy: fast caches and relatively slow main memory (DRAM). For read operations,
the latency for accessing cache can be ignored, while the latency for accessing the main memory is counted;
For write operations, we assume a lazy write-back policy such that the time for writing into fast caches can
be hidden. Based on these assumptions, the memory operations for gemm and various implementations of
FMM are decomposed into three parts:

• memory packing shown in Figure 1.

• reading/writing the submatrices of C in Figure 1.

• reading/writing of the temporary buffer that are parts of Naive FMM/AB FMM.

Notation

Notation is summarized in Figure 4.
The total execution time, T , is dominated by arithmetic time Ta and memory time Tm (2© in Figure 5).

Arithmetic operations

Ta is decomposed into submatrix multiplications (T×a) and submatrix additions (T
A+
a , T

B+
a , T

C+
a) (3© in

Figure 5). T
X+
a has a coefficient 2 because under the hood the matrix additions are cast into FMA operations.

The corresponding coefficients NX
a are tabulated in Figure 5. For instance, N

A+
a = nnz(

⊗
U) − RL for L-

level FMM, because computing
∑

((
⊗
U)i,rAi) in (5) involves

∑RL−1
r=0 (nnz((

⊗
U):,r)−1) = nnz(

⊗
U)−RL

submatrix additions. Note that X:,r denotes the rth column of X.

Memory operations

Tm is a function of the submatrix sizes {m/M̃L, k/K̃L, n/ÑL}, and the block sizes {mC , kC , nC} in
Figure 1(right), because the memory operation can repeat multiple times according to which loop they
reside in. Tm is broken down into several components, as shown in 4© in Figure 5. Each memory operation
term is characterized in Figure 5 by its read/write type and the amount of memory in units of 64-bit double

precision elements. Note that T
Ã×
m ,T

B̃×
m are omitted in 4© because of the assumption of lazy write-back

policy with fast caches. Due to the software prefetching effects, T
C×
m =2λ m

M̃L

n

ÑL
dk/K̃L

kc
eτb has an additional

parameter λ ∈ [0.5, 1], which denotes the prefetching efficiency. λ is adapted to match gemm performance.
Note that this is a ceiling function proportional to k, because rank-k updates for accumulating submatrices of

C recur dk/K̃L

kc
e times in 4th loop in Figure 1. The corresponding coefficients NX

m are tabulated in Figure 5.
For example, for Naive FMM and AB FMM, computing Cp+= (

⊗
W)p,rMr(p = 0, ...) in (5) involves 2

read and 1 write related to temporary buffer in slow memory. Therefore, N
C×
m = 3nnz(

⊗
W).

4.3 Discussion

We can make estimations about the run time performance of the various FMM implementations generated
by our code generator, based on the analysis shown in Figure 5. We use Effective GFLOPS (defined in 1©
in Figure 5) as the metric to compare the performance of these various FMM implementations, similar to
[1, 17, 18]. The architecture-dependent parameters for the model are given in Section 5. We demonstrate
the performance of two representative groups of experiments in Figures 6 and 7.

11

1 2 3 4 5 6 7 8 9 10 11 12

·103
20

25

28.36

30

35

x

E
ff

ec
ti

ve
G
F
L
O
P
S
(2

·m
·n

·k
/t
im

e)

BLIS(m = k = n = x) MKL(m = k = n = x)

Best FMM(m = k = n = x) Selected FMM(m = k = n = x)

BLIS(m = n = 14400, k = x) MKL(m = n = 14400, k = x)

Best FMM(m = n = 14400, k = x) Selected FMM(m = n = 14400, k = x)

BLIS(k = 1024, m = n = x) MKL(k = 1024, m = n = x)

Best FMM(k = 1024, m = n = x) Selected FMM(k = 1024, m = n = x)

Figure 8: Selecting FMM implementation with performance model.

• Contrary to what was observed in [2], Naive FMM may perform better than ABC FMM and
AB FMM for relatively large problem size. For example, in Figure 6, 〈3, 6, 3〉 (with the maximum
theoretical speedup among all FMMs we test, Figure 2) has better Naive FMM performance than
ABC FMM and AB FMM. This is because the total number of times for packing in 〈3, 6, 3〉 is

very large (N
A×
m = nnz(

⊗
U), N

B×
m = nnz(

⊗
V)). This magnifies the overhead for packing with AB

FMM/ABC FMM.

• Contrary to what was observed in [1], for rank-k updates (middle column, right column, Figure 7),
〈2, 2, 2〉 still performs the best with ABC FMM implementations ([1] observe some other shapes, e.g.
〈4, 2, 4〉, tend to have higher performance). This is because their implementations are similar to Naive
FMM, with the overhead for forming the Mr matrices explicitly.

• Figure 6 shows that for small problem size, when k is small, ABC FMM performs best; when k is
large, AB FMM/Naive FMM perform better. That can be quantitatively explained by comparing
the coefficients of NX

m in the bottom table in Figure 5.

• The graph for m = n = 14400, k varies, ABC, 1core (left column, Figure 6; middle column, Figure 7)

shows that for k equal to the appropriate multiple of kC (k =
∏L−1

l=0 k̃l × kC), ABC FMM achieves
the best performance.

4.4 Apply performance model to code generator

For actual performance, even the best implementation has some unexpected drops, due to the “fringes” which
are caused by the problem sizes not being divisible by partition dimesions m̃, k̃, ñ. This is not captured
by our performance model. Therefore, given the specific problem size and shape, we choose the best two
implementations predicted by our performance model as the top two candidate implementations, and then
measure the performance in practice to pick the best one.

In Figure 8 we show the performance results on single core by selecting the generated FMM implemen-
tation with the guide of performance model, when m=k=n; m=n=14400, k varies; and k=1024, m=n
vary.

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

·103
20

25

28.36

30

34

m = n

E
ff

ec
ti

ve
G
F
L
O
P
S
(2

·m
·n

·k
/t
im

e)
k = 1200, ABC, 1 core

BLIS MKL

〈2, 2, 2〉, 1 level 〈2, 3, 2〉, 1 level

〈3, 3, 3〉, 1 level 〈2, 2, 2〉, 2 level

〈2, 3, 2〉, 2 level 〈3, 3, 3〉, 2 level

〈2, 2, 2〉+〈2, 3, 2〉 〈2, 2, 2〉+〈3, 3, 3〉

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

·103
50

100

150

200

248

m = n

E
ff

ec
ti

ve
G
F
L
O
P
S
(2

·m
·n

·k
/t
im

e)

k = 1200, ABC, 10 core

BLIS MKL

〈2, 2, 2〉, 1 level 〈2, 3, 2〉, 1 level

〈3, 3, 3〉, 1 level 〈2, 2, 2〉, 2 level

〈2, 3, 2〉, 2 level 〈3, 3, 3〉, 2 level

〈2, 2, 2〉+〈2, 3, 2〉 〈2, 2, 2〉+〈3, 3, 3〉

Figure 9: Benefit of hybrid partitions over other partitions.

Overall this experiment shows that the performance model is accurate enough in terms of relative per-
formance between various FMM implementations to guide the choice of a FMM implementation, with the
problem sizes and shapes as the inputs. That will reduce the potential overhead of exhaustive empirical
search.

5 Performance Experiments

We present performance evaluations for various generated FMM implementations.

5.1 Implementation and architecture information

The FMM implementations generated by our code generator are written in C, utilizing SSE2 and AVX assembly,
compiled with the Intel C compiler version 15.0.3 with optimization flag -O3 -mavx.

We compare against our generated dgemm (based on the packing routines and micro-kernel borrowed
from BLIS, marked as BLIS in the performance figures) as well as Intel MKL’s dgemm [19] (marked as
MKL in the performance figures).

We measure performance on a dual-socket (10 cores/socket) Intel Xeon E5-2680 v2 (Ivy Bridge) processor
with 12.8 GB/core of memory (Peak Bandwidth: 59.7 GB/s with four channels) and a three-level cache: 32
KB L1 data cache, 256 KB L2 cache and 25.6 MB L3 cache. The stable CPU clockrate is 3.54 GHz when a
single core is utilized (28.32 GFLOPS peak, marked in the graphs) and 3.10 GHz when ten cores are in use
(24.8 GLOPS/core peak). To set thread affinity and to ensure the computation and the memory allocation
all reside on the same socket, we use KMP AFFINITY=compact.

The blocking parameters, nR = 4, mR = 8, kC = 256, nC = 4096 and mC = 96, are consistent with
parameters used for the standard BLIS dgemm implementation for this architecture. This makes the size
of the packing buffer Ãi 192 KB and B̃p 8192 KB, which then fit the L2 cache and L3 cache, respectively.

Parallelization is implemented mirroring that described in [20], using OpenMP directives that parallelize
the third loop around the micro-kernel in Figure 1.

5.2 Benefit of hybrid partitions

First, we demonstrate the benefit of using different FMM algorithms for each level.
We report the performance of different combinations of one-level/two-level 〈2, 2, 2〉, 〈2, 3, 2〉, and 〈3, 3, 3〉

in Figure 9, when k is fixed to 1200 and m = n vary. As suggested and illustrated in Section 4.3, ABC

13

FMM performs best for rank-k updates, which is why we only show the ABC FMM performance.
Overall the hybrid partitions 〈2, 2, 2〉 + 〈2, 3, 2〉 and 〈2, 2, 2〉 + 〈3, 3, 3〉 achieve the best performance.

This is because 1200 is close to 2× 3×kC , meaning that the hybrid partitions of 2 and 3 on the k dimension
are more favorable. This is consistent with what the performance model predicts. Performance benefits are
less for 10 cores due to bandwidth limitations, although performance of hybrid partitions still beats two-level
homogeneous partitions.

This experiment shows the benefit of hybrid partitions, facilitated by the Kronecker product representa-
tion.

5.3 Sequential and parallel performance

Results when using a single core are presented in Figures 2, 6, and 7. Our generated ABC FMM im-
plementation outperforms AB FMM/Naive FMM and reference implementations from [1] for rank-k
updates (when k is small). For very large square matrices, our generated AB FMM or Naive FMM can
achieve competitive performance with reference implementations [1] that is linked with Intel MKL. These
experiments support the validity of our model.

Figure 10 reports performance results for ten cores within the same socket. Memory bandwidth con-
tention impacts the performance of various FMM when using many cores. Nonetheless we still observe the
speedup of FMM over gemm. For smaller matrices and special shapes such as rank-k updates, our generated
implementations achieve better performance than reference implementations [1].

6 Conclusion

We have discussed a code generator framework that can automatically implement families of FMM algorithms
for Strassen-like fast matrix multiplication algorithms. This code generator expresses the composition of
multi-level FMM algorithms as Kronecker products. It incorporates the matrix summations that must be
performed for FMM into the inherent packing and micro-kernel operations inside gemm, avoiding extra
workspace requirement and reducing the overhead of memory movement. Importantly, it generates an
accurate performance model to guide the selection of a FMM implementation as a function of problem
size and shape, facilitating the creation of poly-algorithms that select the best algorithm for a problem
size. Comparing with state-of-the-art results, we observe a significant performance improvement for smaller
matrices and special matrix multiplication shapes such as rank-k updates, without the need for exhaustive
empirical search.

There are a number of avenues for future work:

• Task parallelism and various parallel schemes are proposed in the recent literature [21, 1]. We need to
pursue how our techniques compare to these and how to combine these with our advances. It may be
possible to utilize our performance model to help with task scheduling.

• Finding the new FMM algorithms by searching the coefficient matrix JU, V,W K is an NP-hard problem
[22]. It may be possible to prune branches with the performance model as the cost function during the
search process.

• In [2], it is shown that Intel Xeon Phi coprocessor (KNC) can benefit from ABC variation of 〈2, 2, 2〉
Strassen. It may be possible to get performance benefit by porting our code generator to generate
variations of FMM implementations for many-core architecture such as second-generation Intel Xeon
Phi coprocessor (KNL).

Additional information

Additional information regarding BLIS and related projects can be found at

http://shpc.ices.utexas.edu

14

http://shpc.ices.utexas.edu

1 2 3 4 5 6 7 8 9 10 11 12

·103
150

200

248

m = k = n

E
ff

ec
ti

ve
G
F
L
O
P
S
(2

·m
·n

·k
/t
im

e)
m = k = n, 10 core, Ours

1 2 3 4 5 6 7 8 9 10 11 12

·103
150

200

248

m = k = n

E
ff

ec
ti

ve
G
F
L
O
P
S
(2

·m
·n

·k
/t
im

e)

m = k = n, 10 core, Reference

1 2 3 4 5 6 7 8 9 10 11 12

·103
150

200

248

k

E
ff

ec
ti

ve
G
F
L
O
P
S
(2

·m
·n

·k
/t
im

e)

m = n = 14400, 10 core, Ours

1 2 3 4 5 6 7 8 9 10 11 12

·103
150

200

248

k

E
ff

ec
ti

ve
G
F
L
O
P
S
(2

·m
·n

·k
/t
im

e)

m = n = 14400, 10 core, Reference

〈2, 2, 2〉 〈2, 3, 2〉 〈2, 3, 4〉 〈2, 4, 3〉
〈2, 5, 2〉 〈3, 2, 2〉 〈3, 2, 3〉 〈3, 2, 4〉
〈3, 3, 2〉 〈3, 3, 3〉 〈3, 3, 6〉 〈3, 4, 2〉
〈3, 4, 3〉 〈3, 5, 3〉 〈3, 6, 3〉 〈4, 2, 2〉
〈4, 2, 3〉 〈4, 2, 4〉 〈4, 3, 2〉 〈4, 3, 3〉
〈4, 4, 2〉 〈5, 2, 2〉 〈6, 3, 3〉 BLIS

MKL

1 2 3 4 5 6 7 8 9 10 11 12

·103
150

200

248

m = n

E
ff

ec
ti

ve
G
F
L
O
P
S
(2

·m
·n

·k
/t
im

e)

k = 1024, 10 core, Ours

1 2 3 4 5 6 7 8 9 10 11 12

·103
150

200

248

m = n

E
ff

ec
ti

ve
G
F
L
O
P
S
(2

·m
·n

·k
/t
im

e)

k = 1024, 10 core, Reference

Figure 10: Performance of the best implementation of our generated FMM code and reference implementa-
tions [1] on one socket (10 core). Top row: our implementations; Bottom row: reference implementations
from [1] (linked with Intel MKL). Left column: m=k=n; Middle column: m=n=14400, k varies; Right
column: k=1024, m=n vary.

15

Acknowledgments

This work was sponsored in part by the National Science Foundation under grant number ACI-1550493,
by Intel Corporation through an Intel Parallel Computing Center grant, and by a gift from Qualcomm.
Access to the Maverick supercomputers administered by TACC is gratefully acknowledged. Jianyu Huang
was supported by a summer fellowship from Graduate School of UT Austin. DAM is an Arnold O. Beckman
Postdoctoral Fellow. We thank the rest of the SHPC team (http://shpc.ices.utexas.edu) for their
supports.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation.

References

[1] A. R. Benson and G. Ballard, “A framework for practical parallel fast matrix multiplication,” in Pro-
ceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
ser. PPoPP 2015. New York, NY, USA: ACM, 2015, pp. 42–53.

[2] J. Huang, T. M. Smith, G. M. Henry, and R. A. van de Geijn, “Strassen’s algorithm reloaded,” in
Proceedings of the International Conference for High Performance Computing, Networking, Storage
and Analysis, ser. SC ’16. New York, NY, USA: ACM, 2016.

[3] C.-H. Huang, J. R. Johnson, and R. W. Johnson, “A tensor product formulation of Strassen’s matrix
multiplication algorithm,” Applied Mathematics Letters, vol. 3, no. 3, pp. 67–71, 1990.

[4] J. Li, A. Skjellum, and R. D. Falgout, “A poly-algorithm for parallel dense matrix multiplication on two-
dimensional process grid topologies,” Concurrency: Practice and Experience, vol. 9, no. 5, pp. 345–389,
May 1997.

[5] F. G. Van Zee and R. A. van de Geijn, “BLIS: A framework for rapidly instantiating BLAS
functionality,” ACM Trans. Math. Soft., vol. 41, no. 3, pp. 14:1–14:33, June 2015. [Online]. Available:
http://doi.acm.org/10.1145/2764454

[6] K. Goto and R. A. van de Geijn, “Anatomy of a high-performance matrix multiplication,” ACM Trans.
Math. Soft., vol. 34, no. 3, p. 12, May 2008, article 12, 25 pages.

[7] Tze Meng Low, F. D. Igual, T. M. Smith, and E. S. Quintana-Ort́ı, “Analytical modeling is enough for
high performance blis,” ACM Transactions on Mathematical Software, in review.

[8] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed. Philadelphia, PA, USA: SIAM,
2002.

[9] J. Demmel, I. Dumitriu, O. Holtz, and R. Kleinberg, “Fast matrix multiplication is stable,” Numerische
Mathematik, vol. 106, no. 2, pp. 199–224, 2007.

[10] G. Ballard, A. R. Benson, A. Druinsky, B. Lipshitz, and O. Schwartz, “Improving the numerical stability
of fast matrix multiplication,” SIAM Journal on Matrix Analysis and Applications, vol. 37, no. 4, pp.
1382–1418, 2016.

[11] V. Strassen, “Gaussian elimination is not optimal,” Numer. Math., vol. 13, pp. 354–356, 1969.

[12] A. V. Smirnov, “The bilinear complexity and practical algorithms for matrix multiplication,”
Computational Mathematics and Mathematical Physics, vol. 53, no. 12, pp. 1781–1795, 2013. [Online].
Available: http://dx.doi.org/10.1134/S0965542513120129

[13] D. Bini, M. Capovani, F. Romani, and G. Lotti, “O (n2.7799) complexity for n× n approximate matrix
multiplication,” Information processing letters, vol. 8, no. 5, pp. 234–235, 1979.

16

http://shpc.ices.utexas.edu
http://doi.acm.org/10.1145/2764454
http://dx.doi.org/10.1134/S0965542513120129

[14] A. Graham, “Kronecker products and matrix calculus: With applications.” JOHN WILEY & SONS,
INC., 605 THIRD AVE., NEW YORK, NY 10158, 1982, 130, 1982.

[15] E. Elmroth, F. Gustavson, I. Jonsson, and B. K̊agström, “Recursive blocked algorithms and hybrid data
structures for dense matrix library software,” SIAM review, vol. 46, no. 1, pp. 3–45, 2004.

[16] M. Thottethodi, S. Chatterjee, and A. R. Lebeck, “Tuning Strassen’s matrix multiplication for
memory efficiency,” in Proceedings of the 1998 ACM/IEEE Conference on Supercomputing, ser.
SC ’98. Washington, DC, USA: IEEE Computer Society, 1998, pp. 1–14. [Online]. Available:
http://dl.acm.org/citation.cfm?id=509058.509094

[17] B. Grayson and R. van de Geijn, “A high performance parallel Strassen implementation,” Parallel
Processing Letters, vol. 6, no. 1, pp. 3–12, 1996.

[18] B. Lipshitz, G. Ballard, J. Demmel, and O. Schwartz, “Communication-avoiding parallel Strassen:
Implementation and performance,” in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, ser. SC ’12. Los Alamitos, CA, USA: IEEE Computer
Society Press, 2012, pp. 101:1–101:11.

[19] “Intel Math Kernel Library,” https://software.intel.com/en-us/intel-mkl.

[20] T. M. Smith, R. A. van de Geijn, M. Smelyanskiy, J. R. Hammond, and F. G. Van Zee, “Anatomy
of high-performance many-threaded matrix multiplication,” in 28th IEEE International Parallel and
Distributed Processing Symposium (IPDPS 2014), 2014.

[21] P. D’Alberto, M. Bodrato, and A. Nicolau, “Exploiting parallelism in matrix-computation kernels for
symmetric multiprocessor systems: Matrix-multiplication and matrix-addition algorithm optimizations
by software pipelining and threads allocation,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 2:1–2:30,
December 2011. [Online]. Available: http://doi.acm.org/10.1145/2049662.2049664

[22] D. E. Knuth, The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical Algorithms.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1997.

17

http://dl.acm.org/citation.cfm?id=509058.509094
https://software.intel.com/en-us/intel-mkl
http://doi.acm.org/10.1145/2049662.2049664

	1 Introduction
	2 Background
	2.1 High-performance implementation of standard gemm
	2.2 High-performance implementations of Strassen

	3 Fast Matrix Multiplication Algorithms
	3.1 One-level fast matrix multiplication algorithms
	3.2 Kronecker Product
	3.3 Recursive Block Indexing (Morton-like Ordering)
	3.4 Representing two-level FMM with the Kronecker Product
	3.5 Additional levels of FMM

	4 Implementation and Analysis
	4.1 Code generation
	4.2 Performance model
	4.3 Discussion
	4.4 Apply performance model to code generator

	5 Performance Experiments
	5.1 Implementation and architecture information
	5.2 Benefit of hybrid partitions
	5.3 Sequential and parallel performance

	6 Conclusion

