
Lightweight MPI Communicators with Applications
to Perfectly Balanced Quicksort

Michael Axtmann
Karlsruhe Institute of Technology

Karlsruhe, Germany
michael.axtmann@kit.edu

Armin Wiebigke
Karlsruhe Institute of Technology

Karlsruhe, Germany
arminwiebigke@gmail.com

Peter Sanders
Karlsruhe Institute of Technology

Karlsruhe, Germany
sanders@kit.edu

Abstract—MPI uses the concept of communicators to connect
groups of processes. It provides nonblocking collective operations
on communicators to overlap communication and computation.
Flexible algorithms demand flexible communicators. E.g., a pro-
cess can work on different subproblems within different process
groups simultaneously, new process groups can be created, or the
members of a process group can change. Depending on the number
of communicators, the time for communicator creation can dras-
tically increase the running time of the algorithm. Furthermore,
a new communicator synchronizes all processes as communicator
creation routines are blocking collective operations.

We present RBC, a communication library based on MPI, that
creates range-based communicators in constant time without com-
munication. These RBC communicators support (non)blocking
point-to-point communication as well as (non)blocking collective
operations. Our experiments show that the library reduces the
time to create a new communicator by a factor of more than
400 whereas the running time of collective operations remains
about the same. We propose Janus Quicksort, a distributed sorting
algorithm that avoids any load imbalances. We improved the
performance of this algorithm by a factor of 15 for moderate
inputs by using RBC communicators. Finally, we discuss different
approaches to bring nonblocking (local) communicator creation of
lightweight (range-based) communicators into MPI.

I . I N T R O D U C T I O N

The size of supercomputers rapidly increased to petascale
machines with millions of cores. The de facto standard for
communication in High Performance Computing (HPC) is the
Message Passing Interface (MPI). Many applications need a
flexible management of process groups, e.g., to adjust the scope
of parallelism for load balancing, to achieve parallelism on
multiple levels, or to divide tasks into fine-grained subprob-
lems [1] [2]. MPI uses the concept of communicators to enable
multiple levels of parallelism by connecting groups of processes.
MPI provides (collective) communication operations between
processes of a communicator to ensure scalability, portability,
and comfortable programming with a high-level interface [3], [4].
The group context of a communicator guarantees that collective
communication and point-to-point communication within one
communicator as well as over different communicators does not
interfere. Since the introduction of MPI standard version 3.0
(MPI-3.0), communicators support both, nonblocking collec-
tive operations, and nonblocking point-to-point communication.
However, creating a new communicator still remains a blocking
collective operation over the processes in the new group.

Collective communicator creation has multiple disadvantages.
First, as a blocking collective operation, it synchronizes all
processes of the new process group. This can cause immense
idle time if a process starts the communicator creation behind
schedule. Moreover, as each process must create one communi-
cator after another, worst case construction sequences can delay
communicator creation or cause deadlocks if communicators
overlap. Thus, the processes must agree on a schedule to
create new communicators. Second, the most recent open-
source implementations Open MPI 3.0 and MPICH-3.2 create
an array of process IDs when the user creates a communicator.
In this case, the construction time of a communicator is linear
to the number of group members. Mohamad Chaarawi and
Edgar Gabriel [5] integrated sparse data storages into Open
MPI. Their implementation reduces the footprint of an existing
communicator. But the process group is stored explicitly
during the communicator construction. Finally, MPI does not
provide a method to invoke nonblocking collective operations
on a subset of processes without creating a new communicator.
Before performing the collective operation, the user must create
a communicator of the subset of processes with a blocking
communicator creation routine.

The main contribution of this paper is the lightweight li-
brary RangeBasedComm (RBC) based on MPI. RBC creates
new communicators, containing a process range of a parent
communicator, in constant time without communication. Our
range-based communicators provide (non)blocking collective
operations and point-to-point communication. As RBC can
not access the context ID of a message, the library does not
fully support the nonblocking model of the MPI-standard. Even
though we restricted the semantics of communication, the library
is already applicable to many algorithms. Furthermore, we
discuss possible extensions of MPI implementations to provide
nonblocking communicator creation without those restrictions.
We performed a large number of experiments on thousands of
processes which show the advantage of lightweight communi-
cators. Our experiments show that our library reduces the time
to create a new communicator by multiple orders of magnitude
whereas the running time of collective operations remains about
the same.

We furthermore propose, implement, and evaluate a new load
balancing approach for recursive algorithms. A straightforward
approach of multi-level algorithms is to assign subtasks to disjoint

subsets of processes. As a result, the algorithms may apply
expensive mechanisms in advance to reduce load imbalances
between process groups. We propose the approach of janus
processes for multi-level algorithms. These janus processes work
on two subtasks to minimize load imbalances. Both subtasks are
processed simultaneously to avoid that progress in one subtask
delays progress in another subtask. Our new sorting algorithm,
Janus Quicksort (JQuick), applies this approach to distributed
sorting algorithms. In comparison to hypercube quicksort [6],
JQuick runs on any number of cores, rather than being restricted
to a power of two and avoids any data imbalances. Our
experiments show that lightweight local communicator creation
with RBC, instead of blocking communicator creation with native
MPI, speeds up JQuick by multiple orders of magnitude for
moderate input sizes.

Paper Overview. We give preliminary definitions in Section II.
Then, we discuss MPI communicators and collective operations
(Section III) as well as load balancing problems of massively
parallel sorting algorithms (Section IV). Section V describes our
RBC library in detail. We propose a nonblocking communicator
creation function for the MPI standard in Section VI. We also
give an implementation recommendation that even runs local in
constant time if the new process group is a range of processes of
the parent communicator. Our new perfectly balanced quicksort
algorithm is described and analyzed in Section VII. Section VIII
gives an extensive experimental evaluation.

I I . P R E L I M I N A R I E S

The input of sorting algorithms are n elements on p processes
with O(n/p) elements each. The output must be globally sorted,
i.e., each process has elements with consecutive ranks. We also
want O(n/p) output elements on each process.

A common abstraction of communication in supercomputers
is the (symmetric) single-ported message passing model. It takes
time α + lβ to send a message of size l machine words. The
parameter α defines the startup overhead of the communication.
The parameter β defines the time to communicate a machine
word. For simplicity, we assume that the size of a machine
word is equivalent to the size of a data element. For example,
broadcast, reduction, and prefix sums can be implemented to
run in time O(βl + α log p) [4], [7] for vectors of size l. We
have α � β � 1 where our unit is the time for executing a
simple machine instruction. Most of the time, we treat α and β
as variables in our asymptotic analysis in order to expose effects
of latency and bandwidth limitations.

For simplicity, we will assume that all elements have unique
keys. This is without loss of generality in the sense that we can
enforce this assumption by an appropriate tie-breaking scheme.
For example, replace a key x with a tuple (x, y) where y is the
global position in the input array. With some care, this can be
implemented with negligible overhead in such a way that y does
not have to be stored or communicated explicitly [8].

I I I . C O M M U N I C AT O R S A N D C O L L E C T I V E
O P E R AT I O N S

Collective operations and point-to-point communication are
executed in the context of a specific communicator. A commu-
nicator stores an unique context ID and a group of p processes
with ranks 1..p.1 The context ID guarantees that communication
over one communicator as well as over different communicators
does not interfere. When a process sends a message over a
communicator c, MPI stores the context ID of that communicator
in the message header. The receiver then matches the context
ID of incoming messages with the context ID of c to distinguish
the expected message from messages send in a different context.
The context ID is managed by MPI and not visible to the user.

The user can create a new communicator based on a process
subset of a parent communicator. When a new communicator
is created, the processes must agree on a new context ID that
is not used by any process of that subset. There exist different
methods to create a new context ID [4], [9]. Open MPI and
MPICH-3 use the concept of context ID masks. A context ID
mask is a bit vector which is used to track used context IDs.
Each process holds an own mask and the masks vary between
processes depending on their communicators. To find an unused
context ID, the processes of the new group invoke a collective
all-reduce operation on their context ID masks with MPI_BAND.
Then the processes select the process ID which is represented
by the least significant non-zero bit of the reduced bit vector.
According to the MPI standard [10] it is theoretically possible to
agree on a new context ID without communication for the case
that each process of the parent communicator participates in the
communicator creation. This approach would require a larger
context name space. Furthermore, it is unknown whether this
statement holds if just the processes of the new communicator
invoke the communicator creation routine.

MPI provides two methods to create a communica-
tor based on a process subset of a parent communica-
tor. In the first method, the user invokes the opera-
tions MPI_Comm_create or MPI_Comm_create_group.
The operation MPI_Comm_create is a blocking col-
lective operation on the parent communicator whereas
MPI_Comm_create_group is a blocking collective oper-
ation on the processes of the new communicator [1]. As a
parameter, those operations expect an MPI group that stores
the new group of processes. The user has two possibilities to
create an MPI group – either by enumerating the ranks explicitly
(MPI_Group_incl) or by providing a sparse representation
of rank ranges (MPI_Group_range_incl).

The second method is to invoke the operation
MPI_Comm_split. This operation must be called by
all processes of the parent communicator. Each process passes
its communicator affiliation (color) and its new rank (key). MPI
groups the processes by color and creates one communicator
each. When MPI_Comm_split is invoked, the processes
create the process group collectively. Open MPI and MPICH
perform an all-gather operation to route all colors and keys

1We use the notation a..b as a shorthand for {a, . . . , b}.

to each process. Then each process uses this information
to calculate its group locally. The all-gather operation takes
Ω(α log p + βp) time which does not scale for small process
subgroups. Thus, the user should only use the operation
MPI_Comm_split if the processes do not have all information
to generate an MPI group just locally. Gropp and Sack [11]
propose communicator construction by parallel sorting in Θ(

√
p)

time with the result that a single message exchange of n elements
takes Ω(α log p+ βn) time in worst case. Siebert and Wolf [12]
reduced the time to construct a communicator to O(log2 p).

MPI groups store the mapping from rank to process ID. E.g.,
MPICH-3 stores the mapping for each process explicitly in an
array. Mohamad Chaarawi and Edgar Gabriel [5] implemented
different storage formats into Open MPI to reduce the memory
footprint of a communicator. E.g., the Range Format derives from
the syntax of MPI_Group_range_incl and has constant
access time and space (see also [13]). They always choose the
format which minimizes memory consumption. Unfortunately,
their implementation still creates an explicit mapping with O(n)
space during construction time. In result, implementations
of algorithms with polylogarithmic running time which split
communicators are generally not possible using these libraries.

MPI-3.0 extends MPI by nonblocking collective opera-
tions [14]. Torsten Hoefler and Andrew Lumsdaine [3] proposed
a scheme to implement nonblocking collective operations with
point-to-point communication. They create a round-based
schedule in which a round executes the collective operation until
a data dependency prevents further computation. The next round
starts as soon as the data dependency is solved. An additional
communicator avoids tag conflicts between nonblocking collec-
tive operations and point-to-point communication that the user
invoked. A tag counter avoids tag conflicts between nonblocking
collective operations. The tag counter must be synchronous on
all processes – nonblocking collective operations on a subset of
the processes would unsynchronize the tag counter.

I V. M A S S I V E LY PA R A L L E L S O R T I N G

For sorting large inputs, there are algorithms which move the
data only once. Parallel sample sort [15] is a generalization of
quicksort to p−1 pivots which are chosen from a sufficiently large
sample of the input. Each process partitions its local data into p
pieces using the pivots and sends piece i to process i. After the
all-to-all exchange, each process sorts its received pieces locally.
Since every process receives p− 1 pivots, sample sort can only
be efficient for n = Ω(p2/ log p) (see [16]). Indeed, the involved
constant factors can be fairly large since the all-to-all exchange
implies p− 1 message startups if data exchange is done directly.

Algorithms with polylogarithmic running time are practical
for small n/p. Hypercube quicksort [6] is a recursive algorithm
on 2k processes which performs k levels of recursion. On each
level, the processes agree on a pivot and partition their data
into two pieces according to the pivot. Then, the pieces with
small elements are routed to processes 1..p/2 and pieces with
large elements are routed to processes p/2..p. Finally, hypercube
quicksort is executed on the left and the right group of processes.

TABLE I: Operation names and class names of RBC.

Blocking Ops Nonblocking Ops Classes
rbc::Bcast rbc::Ibcast rbc::Request
rbc::Reduce rbc::Ireduce rbc::Comm
rbc::Scan rbc::Iscan
rbc::Gather rbc::Igather
rbc::Gatherv rbc::Igatherv
rbc::Barrier rbc::Ibarrier
rbc::Send rbc::Isend
rbc::Recv rbc::Irecv
rbc::Probe rbc::Iprobe
rbc::Wait rbc::Test
rbc::Waitall

rbc::Create_RBC_Comm
rbc::Split_RBC_Comm
rbc::Comm_rank
rbc::Comm_size

Compromises between these two extremes – high asymptotic
scalability but a logarithmic number of data exchanges versus
low scalability but only a single communication – have been
considered. E.g., multi-level variants of sample sort [17] agree
on k − 1 pivots, partition local data into k pieces, route piece i
to process group i and recursively invoke sample sort on each
process group.

The algorithms described above have several disadvantages.
First, they partition data into buckets and assign those buckets to
process groups of fixed size. In result, the workload between the
process groups is not balanced or the workload is balanced but
comes at the price of expensive pivot selection. Second, the user
can not execute the algorithms on arbitrary numbers of processes
as the algorithms partition the processes into subgroups of equal
size. Finally, recursive implementations [18], [19], [20] create
new communicators on each level for the sake of simplicity. This
usually prohibits polylogarithmic running time.

V. N O N B L O C K I N G C O M M U N I C AT I O N O N P R O C E S S
R A N G E S

We present the library RangeBasedComm (RBC) based on
MPI. The key feature of the library is that RBC communicators
are created in constant time without communication. A RBC
communicator R is derived from an MPI communicator M
and includes processes with ranks f..l in M . RBC provides
(non)blocking point-to-point communication operations and
(non)blocking collective operations in the context of an RBC
communicator. Table I gives a list of supported operations,
methods to create RBC communicators, and classes of the RBC
library. We show example code how to use our library in Figure 1.
Because the interface is identical to MPI for most operations,
our library can easily be integrated to replace existing MPI
code. Unless stated otherwise, the interface of our operations is
identical to the interface of its equivalent in MPI. The library is
implemented in the namespace rbc.

A. RBC Communicator

A RBC communicator R stores an MPI communicator M , the
rank f of its first process in M , and the rank l of its last process
in M . The size of R is defined by (l − f) + 1, the number of
processes contained in R. The RBC rank of a process in R with

int root = 0, e = 0, f, l, r, s;
rbc::Comm world, range;
rbc::Create_RBC_Comm(MPI_COMM_WORLD, &world);
rbc::Comm_rank(world, &r);
rbc::Comm_size(world, &s);
if (r < s / 2) {f = 0; l = s / 2 - 1;}
else {f = s / 2; l = s - 1;}
// Local op. No synchronization.
rbc::Split_RBC_Comm(world, f, l, &range);
rbc::Request req; int flag;
rbc::Ibcast(&e, 1, MPI_INT, r, range, &req);
while (!flag) {
// Do something else.
rbc::Test(&req, &flag, MPI_STATUS_IGNORE);

}

Fig. 1: Nonblocking broadcast from rank 0 to ranks 0..s/2− 1
and from rank s/2 to ranks s/2..s−1. Both RBC communicators
are created locally without process synchronization.

MPI rank m in M is defined by m− f and vice versa. Note that
more complicated projections from MPI rank to RBC rank are
possible, e.g., a strided range2 with a stride factor of s would
contain MPI ranks f, f+s..f+sb(l−f)/sc. The local operation

rbc::Create_RBC_Comm(MPI_Comm&, rbc::Comm&)

creates an RBC communicator that contains all processes of an
MPI communicator. The local operation

rbc::Split_RBC_Comm(rbc::Comm&, rbc::Comm&,
int f, int l)

creates a new RBC communicator that contains processes with
ranks f..l of an existing RBC communicator.

As RBC can not access the context ID of an MPI message,
the library weakens the semantics of RBC communicators. We
restrict the usage of tags if two RBC communicators overlap
on more than one process, meaning multiple processes are part
of both communicators. All simultaneously executed commu-
nication operations have to use unique tags. This is required to
distinguish between operations in different RBC communicators
which base on the same MPI communicator. If at most one
process is part of both communicators, the communication on
both communicators does not interfere. In this case we do not
restrict the usage of tags.

B. Nonblocking Communication Requests

Each nonblocking communication call returns a request of
type rbc::Request. rbc::Request is a smart pointer to
a request that implements the specific nonblocking operation.
When we talk about an object of type rbc::Request in the
following, we mean the request object of the specific nonblocking
operation. When we invoke a nonblocking communication
operation, we do not guarantee that the communication is
completed once the operation returns. Instead, the user has to
invoke the method rbc::Test on the request to check if the
operation is completed or not. Our library also provides three
additional methods to test nonblocking operations for completion.

2We implemented strided ranges but explain continuous ranges here.

rbc::Send(const void *sendbuf, int count,
MPI_Datatype, int r, int t, rbc::Comm)

int rbc::Isend(const void *sendbuf, int count,
MPI_Datatype, int r, int t, rbc::Comm,
rbc::Request *);

rbc::Recv(void *buffer, int count,
MPI_Datatype, int r, int t, rbc::Comm);

int rbc::Irecv(void *buffer, int count,
MPI_Datatype, int r, int t,rbc::Comm,
rbc::Request *);

rbc::Probe(int r, int t, rbc::Comm,
MPI_Status *);

int int rbc::Iprobe(int r, int t, rbc::Comm,
int *flag, MPI_Status *);

int rbc::Test(rbc::Request *request,
int *flag, MPI_Status *status);

Fig. 2: Interface of RBC for the operations used in point-to-point
communication with rank r and tag t.

The operation rbc::Wait takes a request and repeatedly calls
rbc::Test until the operation is completed. The operation
rbc::Testall takes an array of requests, calls rbc::Test
on all requests, and returns true if all operations are completed.
The operation rbc::Waitall takes an array of requests
and repeatedly calls rbc::Testall until all operations are
completed.

C. Point-to-point Communication

RBC provides (non)blocking send and receive operations.
Figure 2 gives the interface of these operations. RBC point-
to-point communication routines call MPI routines internally.
When the user invokes RBC with a specific tag and an RBC
target rank, we call MPI with the corresponding MPI rank and
the tag passed by the user.

Probing: The operation rbc::Iprobe is a nonblocking
operation that tests whether a message from a source process is
ready to be received. If the user invokes rbc::Iprobe with a
specific rank, we invoke the operation MPI_Iprobe with the
parameters provided by the user and return when MPI_Iprobe
returns. If the wildcard MPI_ANY_SOURCE is used instead of
a specific rank, we also invoke the operation MPI_Iprobe.
However, if MPI_Iprobe returns true, we only know that any
message is ready to be received. In this case, we test if the source
process of that message is part of the RBC communicator. We
return true if the source process is in the RBC communicator,
otherwise we return false.

The operation rbc::Probe waits until a message is ready
to be received. If the user calls this operation with a specific
rank, we invoke the operation MPI_Probe. If the wildcard
MPI_ANY_SOURCE is used instead of a specific rank, we
repeatedly call the operation rbc::Iprobe with our own input
parameters until the operation returns true. In both cases, we
return the status that was returned by the operation MPI_Probe
(specific rank) or rbc::Iprobe (wildcard).

Our implementation of rbc::Probe and rbc::Iprobe
on wildcards is not straightforward. In return, our library

guarantees that communication over two different RBC com-
municators of the same MPI communicator does not interfere if
the communicators overlap on at most one process.

Sending: The operation rbc::Send is a blocking operation
that sends a message to a destination process. RBC forwards the
input arguments of the operation rbc::Send to the operation
MPI_Send. The operation rbc::Isend is a nonblocking
send operation. RBC internally calls the operation MPI_Isend
with the input arguments of rbc::Isend but replaces the RBC
request, passed by the user, with an MPI request. After the
MPI operation returned, RBC stores the MPI request in the
RBC request. When the user invokes rbc::Test with the
RBC request, we internally calls MPI_Test on the stored MPI
request.

Receiving: The operation rbc::Recv is a blocking op-
eration that receives a message from a source process. The
user can either call rbc::Recv with a specific source rank or
with MPI_ANY_SOURCE. If the wildcard is used, we firstly
need to wait for an incoming message sent over the same
RBC communicator and determine its source rank. For this,
we invoke the operation rbc::Probe which returns a status
containing the source rank. In both cases, we invoke the operation
MPI_Recv with the source rank.

The operation rbc::Irecv is a nonblocking receive op-
eration. The user can either call rbc::Irecv with a source
rank or with MPI_ANY_SOURCE. If rbc::Irecv is invoked
with a specific source rank, we call the operation MPI_Irecv
with the input arguments of rbc::Irecv but replace the RBC
request, passed by the user, with an MPI request. When the
operation returns, we store the MPI request in the RBC request.
When the user invokes rbc::Test with the RBC request, we
internally call MPI_Test on that MPI request. If a wildcard is
used instead of a specific rank, we search for a message which is
sent over the same RBC communicator by invoking the operation
rbc::Iprobe. If rbc::Iprobe returns true, we know that
a message is ready to be received and call rbc::Irecv with
the source rank of that message. Afterwards, we return the
RBC request created by the operation rbc::Irecv. Otherwise,
there is no message that is ready to be received. We return a
request that again searches for incoming messages when the
operation rbc::Test is invoked with that request. Once an
incoming message is detected, we call rbc::Irecv with the
source rank of that message. Afterwards, we return the RBC
request created by the operation rbc::Irecv.

D. Collective Operations

The communication of collective operations involves all
processes of the RBC communicator. This means that all
processes have to call the operation or the collective operation
will not be executed completely. Collective operations are
implemented with point-to-point communication provided by
the RBC library. All processes of the same communicator must
call all (non)blocking collective operations in the same order.
All implementations exploit binomial tree based communication
patterns [21], [22]. The communication patterns are generic,
not optimized for a specific network, but theoretically optimal

for small input sizes [23]. It is easy to extend our library by
additional collective operations, e.g., for large input sizes.

When a process has completed a blocking collective operation
locally, the process can invoke a new blocking collective oper-
ation. Likewise, when a process has completed a nonblocking
collective operation locally (rbc::Test returned true), the
process can invoke a new nonblocking collective operation.
This rule even holds when outgoing messages of the completed
collection are still pending, i.e., a message transfer of the
collective operation has been invoked asynchronously and the
message content is still stored in a send buffer of MPI. The MPI
standard guarantees that two messages, sent from process i to
process j, are received by process j in the send order.

Blocking collectives: We define a distinct exclusive tag for
each blocking collective operation. RBC uses this tag internally
to perform point-to-point operations. As long as the user does
not use these reserved tags, blocking collective operations do not
interfere with other communication.

Nonblocking Collectives: We define a distinct exclusive tag
for each nonblocking collective operation. Alternatively, the user
can specify an own user-defined tag, e.g.,

int rbc::Ibcast(void *buffer, int count,
MPI_Datatype, int root, rbc::Comm,
MPI_Request *, int tag = RBC_IBCAST_TAG);

This avoids interferences between simultaneously executed non-
blocking collective operations on the same RBC communicator
as well as between different RBC communicators. Note that
a preserved tag-space, as used in many MPI implementations,
would not avoid interference of nonblocking operations between
different RBC communicators if they base on the same MPI
communicator and share processes.

We implement our nonblocking collective operations with state
machines, similar to the approach in [3]. Each state begins with
local work, e.g., applying the reduce operator, and ends with
pending send/receive operations if these operations introduce a
data dependency. A send operation causes a data dependency if
the send buffer is required for further computations. A receive
operation causes a data dependency if subsequent operations
rely on data of different processes. When the user invokes a
nonblocking collective operation, RBC creates a request object
which contains a local state machine, executes its first state, and
returns the request. To make further progress on that operation,
the user has to call the operation rbc::Test (or one of the
three other test operations) on the corresponding request. This
operation checks whether outstanding data dependencies remain.
If so, we can not proceed and we return false. Otherwise, we
return true if the collective operation is already finished locally
or we execute the next state and return false afterwards.

V I . N O N B L O C K I N G C R E AT I O N O F (R A N G E - B A S E D)
M P I C O M M U N I C AT O R S

RBC weakens the semantics of RBC communicators as
it can not access the context ID of an MPI message (see
Section V-A). In this section we recommend the function

schizophrenicprocess i process i+ 2 process i+ 3 process i+ 4

pivot selection s3

partitioning

0-s1 0-s1 s1-∞ s1-∞ s1-∞ s1-∞
s2

0-s1 0-s1 s1-∞ s1-∞ s1-∞ s1-∞

0-s2 0-s2s2-s1 s1-s3 s3-∞s2-s1 s3-∞ s3-∞ s3-∞s1-s3 s1-s3 s1-s3

data exchange

0-s2 s2-s1 s1-s3s2-s1 s3-∞ s3-∞s1-s3 s1-s3

schizophrenic schizophrenic schizophrenicprocess i+ 2 process i+ 4

. . .

task j task j + 1

base case task k task k + 1

ex
ec

ut
io

n

Fig. 3: Algorithm scheme of JQuick.

int MPI_Icomm_create_group(
MPI_Comm, MPI_Group, int tag,
MPI_Comm *, MPI_Request *)

as a part of the Message Passing Interface and give an imple-
mentation proposal which does not weaken the semantics of
MPI. Similar to the function MPI_Comm_create_group of
MPI, the new function is collectively invoked by the process
group of the new communicator. But it is a nonblocking function
which can be implemented as a local operation that runs in
constant time if the new process group is a range of processes
of the parent communicator. We recommend that the user
creates an MPI group by invoking MPI_Group_range_incl
if appropriate. If the new MPI group contains only few ranges,
MPI_Group_range_incl shall use the Range Format pro-
posed by Mohamad Chaarawi and Edgar Gabriel [5] to construct
the group in time linear to the number of ranges. Communicators
constructed with our new function do not weaken the semantics
of MPI communication operations. E.g. the communication
of one MPI communicator does not influence communication
of other MPI communicators. MPI_Icomm_create_group
fully supports the nonblocking collective communication model.
This model requires all processes of one communicator to call
nonblocking collective operations in the same order.

Implementations of MPI_Icomm_create_group boil
down to agree on a distinct context ID not used by any process
of the MPI group. Our implementation proposal uses context
IDs consisting of four integers 〈a, b, f, l, c〉 and each process
maintains a counter, initialized to 0. When the user invokes
MPI_Icomm_create_group, a new context ID is calculated.
If the MPI_Group parameter does not represent a continuous
range of processes of its parent communicator, the first process
of MPI_Group calculates a new context ID 〈a, b, 0, l, 0〉 where
a is its process ID, b the value of its counter, and l the
number of processes in MPI_Group. Then the first process
increases its counter and performs a nonblocking broadcast
operation with the user-defined tag to send the new context ID
to the remaining processes. This operation runs in O(α log l)
time. Otherwise, MPI_Group does represent a continuous
range of ranks {f ′, . . . , l′} of its parent communicator with

the context ID 〈a, b, f, l, c〉. In this case, the new context ID
〈a, b, f + f ′, f + l′, c+ 1〉 is calculated locally in constant time
on each process. If f ′ = 0 and l′ = l−f , the new communicator
and its parent communicator contain the same group of processes
and the value c+ 1 is used to distinguish their context IDs.

If the user creates two communicators simultaneously on the
same parent communicator, both operations make progress si-
multaneously as MPI overlaps both broadcast operations. A non-
blocking version of MPI_Comm_create can be implemented
as described above but the nonblocking broadcast operation
is invoked by all processes of the parent communicator and
thus does not need a user-defined tag. Note that context IDs
only require the first two integers of the context ID described
above if the nonblocking communicator creation does not take
advantage of the range-based case. We do not recommend to
calculate a new context ID by performing a nonblocking all-
reduce operation on context ID masks. In this case, a process
can not make progress on multiple nonblocking communicator
creations simultaneously as the all-reduce operations of different
nonblocking communicator creation routines must be executed
one after another.

V I I . JA N U S Q U I C K S O R T

We present Janus Quicksort (JQuick), a recursive sorting
algorithm for distributed memory systems which is based on
Quicksort. JQuick guarantees perfect data balance, i.e., after
each level each process stores bn/pc or dn/pe elements. Firstly,
JQuick performs a distributed phase which recursively partitions
tasks into subtasks. Then a second phase sorts base cases. Base
cases are subtasks covering only one or two processes. Figure 3
depicts one distributed level of recursion. We prove that the
distributed phase of JQuick takesO(α log2 p+βn/p log p) time
with probability 1−O(p−6) and that the base cases are executed
in O(α+ βn/p+ n/p log(n/p)) time (Lemma 1). For the sake
of simplicity, we assume that n is a multiple of p.

One level of recursion consists of four steps: pivot selection,
data partitioning, data assignment, and data exchange. In the
first step, a random element is selected and broadcasted to all
processes. In the second step, the processes partition their local

data into a left partition of elements smaller than the pivot (small
elements) and a right partition of elements larger than or equal to
the pivot (large elements). In the third step, the processes assign
elements to target processes. Here, we describe a simple greedy
message assignment algorithm. Firstly, a distributed exclusive
prefix sum is performed over the number of small and large
elements on each process. Let the prefix sum on process i be si,
the number of small elements on processes 0..i− 1. The number
of large elements on processes 0..i − 1 is li = i · n/p − si.
The last process broadcasts sp−1 and lp−1, the total number of
small and large elements. Next, we split the processes into a left
group of processes 0..bnp/sp−1c and a right group of processes
bnp/sp−1 + 1c..p− 1. Finally, we calculate a data assignment
that assigns the small elements to the left group and the large
elements to the right group. Our assignment guarantees that each
process gets exactly n/p elements assigned. The first source
process assigns its small elements to target process 0. Then the
second source process again assigns small elements to target
process 0 as long as this process has residual capacity left. If
the second source process still has small elements, it assigns
the remaining small elements to the next target process. We
continue with the remaining source processes and also assign
large elements in the same way to the right group.

Even though a process sends two messages to each group,
a process may receive Θ(min(p, n/p)) messages in the worst
case. An alternative assignment algorithm, deterministic message
assignment [20], guarantees that each process sends at most eight
messages and receives at most eight messages. Both assignment
algorithms take O(α log p) time.

Once we have calculated the data assignment we start the
data exchange step. Each process invokes a nonblocking send
operation to its target processes and then receives messages until
n/p elements have been received.

After the elements have been redistributed, the left group
recursively sorts the small elements and the right group recur-
sively sorts the large elements. If bn/kc = bn/k + 1c, the
left and the right group are not disjoint. In this case, process
bn/kc receives sp−1 mod n/p small elements and n/p− sp−1
mod n/p large elements. We call this process a janus process.
Our data assignment guarantees that the number of elements on
a janus process in the left and the right group still sum up to n/p.
This janus process must proceed on both groups simultaneously.
Otherwise, progress in one group delays progress in another
group, and so on. Janus processes perform all local operations
on both groups simultaneously before they communicate again.
All communication operations are then executed in nonblocking
mode, again on both groups simultaneously.

After the distributed phase has been executed, the second phase
starts sorting base cases. This guarantees that a janus process
does not delay the execution of a larger subtask while sorting a
base case. A base case on a single process is sorted locally. When
a base case is sorted by two processes, the left (right) process
receives the elements from the right (left) process, performs
the operation quickselect to determine the small (large) elements
according to its workload, and finally sorts those elements locally.

On recursion level i > 0 the first and the last process of

a process group might already be janus processes. For those
processes, the load of n/p elements is distributed over a left
group, a right group and potential base cases in the middle. To
calculate the data assignment correctly, each group of processes
keeps track of the remaining load on the first process of its process
group. Let r be the remaining load of the first process in a
process group with p processes. The remaining load of the first
process in the left subgroup remains r. Each process in the right
subgroup updates the remaining load of their first process to
r′ = n/p− (n/p+ sp−1 − r) mod n/p.

A. Analysis

The main result of the analysis are running time guarantees
for the distributed phase and the base case phase of the algorithm.
We prove in Theorem 1 that the distributed phase of JQuick takes
O(α log2 p+βn/p log p) time with probability 1−O(p−6) and
that the base cases takeO(α+ βn/p+n/p log(n/p)) time. For
our analysis we adapt the analysis from Jaja [24] which shows
that sequential quicksort with random pivot selection runs in
O(n log n) time with probability 1−O(n−6). In a first step we
show that JQuick performs O(log p) levels of recursion until its
data gets sorted locally with probability 1−O(p−6) (Lemma 1-
2).

Lemma 1: A randomly selected input element passes with
probability O(p−7) more than 20 log p levels of recursion until
it is part of a base case.

Proof: We define a recursion step with global load n as a
successful recursion step if both subtasks of JQuick have a load
of at most 7/8n elements. Let e be an arbitrary input element.
Jaja [24] has shown that random split of a sorting task with n
elements creates two subtasks of at most 7/8n elements each with
probability 3/4. From this follows that an arbitrary input element
e is part of a task with at most le ≤ (7/8)kn elements after it
passed k successful levels of recursion. After k = log8/7(p/2)

successful recursion steps we have le ≤ (7/8)kn = 2n/p
elements and execute the base case.

We now show that a randomly selected input element passes
at least log8/7(p/2) successful recursion steps with probability
O(p−7) when 20 log8/7 p recursion steps are executed. This
random experiment is a Bernoulli trail as we have exactly
two possible outcomes, “successful recursion step” and “non-
successful recursion step”, and the probability of success is
the same on each level. Let denote the random variable X as
the number of non-successful recursion steps after 20 log8/7 p
recursions. The probability I

I = P[X > 20 log p− log(p/2)] ≤ P[X > 19 log p]

≤
∑

j>19 log p

(
20 log p

j

)(
1

4

)j (
3

4

)20 log p−j

≤
∑

j>19 log p

(
20e log p

j

)j (
1

4

)j

≤
∑

j>19 log p

(
5e log p

19 log p

)j

=
∑

j>19 log p

(
5e

19

)j

= O
(
p−7
)
(1)

defines an upper bound of the probability that a randomly
selected input element passes 20 log8/7 p recursion steps without
passing log8/7(p/2) successful recursion levels. For the sake of
simplicity, all logarithms of the equation above are to the base of
8/7. The third “≤” uses

(
n
k

)
≤
(
en
k

)k
and the second “=” uses

the geometric series.
Lemma 2: JQuick executes more than O(log p) distributed

levels of recursion with probability O(p−6).
Proof: Let E = e1..en be the input data of JQuick in sorted

order and let L = {ein/p|1i ≤ p ∧ i ∈ N} be every n/pth
element. Lemma 1 and Boole’s inequality imply that at least one
element e ∈ L does not run into the base case after 20 log8/7 p
recursions with a probability of O(p · p−7) = O(p−6).

We analyze the length of the critical path in the recursion tree
of JQuick. Let g be the process group on the last level of recursion
(before the base case) of that path. Process group g contains
at least 2n/p elements. Those elements build a subsequence
of E and thus contain at least one element e ∈ L. Element
e participates on more than 20 log8/7 p recursion steps with
probabilityO(p−6). Thus JQuick executes more than 20 log8/7 p
levels of recursion with probability O(p−6).

Theorem 1: For arbitrary inputs, the distributed phase of
JQuick takes O(α log2 p + βn/p log p) time with probability
1−O(p−6) and the base cases takeO(α+βn/p+n/p log(n/p))
time.

Proof: We firstly analyze a single distributed recursion
level on p processes. The pivot selection step takes O(α log p)
time, the data partitioning step takes O(n/p) time, and the data
assignment step takes O(α log p) time. The data exchange
step takes O(α + βn/p) time if the deterministic message
assignment algorithm is used. In this step each process sends
(receives) a constant number of messages and sends (receives)
exactly n/p elements in total. Note that janus processes do
not affect the asymptotic running time as communication of
janus processes is always done simultaneously on both tasks
with nonblocking operations. In total, a distributed recursion
level takes O(α log p + βn/p) time. Lemma 2 implies that all
distributed levels of recursion take O(α log2 p + βn/p log p)
time with probability 1−O(p−6). All base cases are sorted in
O(α + βn/p + n/p log(n/p)) time. The base cases include a
O(α+ βn/p) term as base cases are usually processed by two
processes.

V I I I . E X P E R I M E N TA L R E S U LT S

We now present the results of our experiments. We ran all
experiments with our RBC library and with MPI implementations
from Intel and IBM. Our benchmarks have been executed on
32 768 cores. We divide our experiments into two sections. In
Section VIII-B we present microbenchmarks of RBC operations
and the corresponding MPI operations. Firstly, we present results
for nonblocking collective operations executed with RBC and
with its counterparts in MPI. Then we compare the running time
of creating communicators on non-overlapping and overlapping
sub-ranges of processes with RBC and with native MPI. Finally,
we give results of collective operations executed on a sub-range
of processes. Section VIII-C gives running times of JQuick

20 22 24 26 28 210 212 214 216 218

10−1

100

101

102

103

n/p

R
u
n
n
in
g
T
im

e
[m

s]

IBM MPI Iscan
Intel MPI Iscan
RBC::Iscan (IBM p2p)

Fig. 4: Running times of MPI_Iscan and rbc::Iscan
on 215 cores with different number of input elements of type
double on each process.

executed with our RBC library and with native MPI. We execute
each microbenchmark five times. We perform each experiment of
JQuick seven times for n/p ≤ 216 and three times for n/p > 216.
We report the average over all runs and use 64-bit floating point
elements.

We ran our experiments at the thin node cluster of the
SuperMUC (www.lrz.de/supermuc), an island-based distributed
system consisting of 18 islands, each with 512 computation
nodes. Each computation node has two Sandy Bridge-EP Intel
Xeon E5-2680 8-core processors with a standard frequency of
2.3 GHz and 32 GByte of memory. A non-blocking topology tree
connects the nodes within an island using the InfiniBand FDR10
network technology. A pruned tree connects the islands among
each other with a bidirectional bisection bandwidth ratio of 4 : 1.

A. Implementation Details

Our implementation of JQuick uses the greedy message assign-
ment algorithm described above. As a pivot we select the median
of max(k1 log p, k2n/p, k3) samples determined by the random
sampling approach by Sanders et. al. [25]. We handle duplicates
by carefully switching between the compare functions “<” and
“≤” as described in [8]. Janus Quicksort and the RBC library are
written in C++ and compiled with version 16.0 of the Intel icpc
compiler using the optimization flags -O3 -ipo -xHost.
For inter-process communication, we use either version 1.4 of the
IBM MPI library or version 5.1.3 of the Intel MPI library. Our
initial experiments with IBM MPI have shown that the bulk trans-
fer protocol increases fluctuations in running time. We disable
bulk transfer in the IBM MPI library by setting the environment
variable MP_USE_BULK_XFER=no. Our implementation can
be found at https://github.com/MichaelAxtmann/RBC.

B. Microbenchmarks

Collective operations. Figure 4 depicts the running times of
the nonblocking operation MPI_Iscan provided by native Intel
MPI and native IBM MPI and its counterpart in the RBC library
executed on 215 cores. For the sake of simplicity, we give the
running times of the RBC library only on top of the IBM MPI
as the running times on top of Intel MPI are almost the same.

https://github.com/MichaelAxtmann/RBC

210 211 212 213 214 215

0

5

10

15

20

p

R
u
n
n
in
g
T
im

e
[m

s]
IBM – MPI Comm create group
IBM – MPI Comm split
Intel – MPI Comm create group
Intel – MPI Comm split
RBC – Comm create group

Fig. 5: Running times of splitting a communicator of p processes
into one communicator containing processes 0..p/2− 1 and one
communicator containing processes p/2..p− 1.

We see that all implementations need about the same amount of
time for moderate inputs, n/p ≤ 29, where the running time is
dominated by the message startup overhead. For larger inputs,
our library outperforms both MPI implementations by a factor
of up to 16. We give running times of the collective operations
broadcast, reduce, scan, and gather in Figure 9 in the Appendix.
The experiments show that these operations executed with RBC
perform similar to their counterparts in IBM MPI and Intel MPI.
In conclusion our range-based communicator creation does not
come with hidden overheads in communication operations of
RBC.

Communicator splitting. Figure 5 presents running times
of splitting a parent communicator of p processes into a
communicator containing processes 0..p/2 − 1 and a com-
municator containing processes p/2..p − 1. We perform
this experiment with RBC communicators, MPI communica-
tors created with MPI_Comm_split, and MPI communica-
tors created with MPI_Comm_create_group. We invoke
MPI_Comm_create_group with an MPI group created with
MPI_Group_range_incl. Note that the construction of an
MPI communicator is a blocking collective function. Further-
more, the function MPI_Comm_split must be invoked by all
processes of the parent communicator. In contrast to that we can
split an RBC communicator in constant time without commu-
nication by calling the operation rbc::Split_RBC_Comm
only using the processes of the new communicator. Our
experiments show that the time to construct an RBC com-
municator is negligible. If MPI used a sparse representation
of the process group, we could expect that the running time
of MPI_Comm_create_group increases logarithmically to
the number of processes. However, the running time of this
operation executed with Intel MPI increases linearly with the
number of processes. This supports our hypothesis that Intel
MPI represents MPI groups explicitly. The running time
of MPI_Comm_create_group executed with IBM MPI is
disproportionately slow and outperformed by the remaining
operations by multiple orders of magnitude. The implementation
of MPI_Comm_split in Intel MPI and IBM MPI is slower
than MPI_Comm_create_group (Intel MPI) by a factor of

29 210 211 212 213

0

200

400

600

800

1,000

1,200

p

R
u
n
n
in
g
T
im

e
[m

s]

RBC – Cascade
RBC – Alternating
Intel – Alternating MPI Comm create group
Intel – Cascade MPI Comm create group

Fig. 6: Running times of splitting a communicator of p processes
into overlapping communicators of size 4 with a cascaded
schedule and an alternating schedule.

two for large p. We expected this slowdown as a process
invokes MPI_Comm_split only with its own group affiliation.
Thus, this operation must construct an MPI group internally by
gathering group information from each process.

Overlapping communicators. When multiple processes create
multiple communicators at the same time, they must decide which
communicator will be created first. A wrong schedule results
in cascaded communicator creation or even deadlocks. In this
case processes will delay communicator construction until other
communicators have been created. In our experiment we split a
communicator of p processes into communicators containing pro-
cesses 0..3, 3..6, 6..9, and so on. Note that processes 3, 6, 9 and
so on create two communicators – one communicator contains
processes to the left, one communicator contains processes to
the right. In the cascaded schedule, processes which will be part
of two communicators always create the left communicator first
and the right communicator second. In the alternating schedule,
every other process which will be part of two communicators
creates the left communicator first, the other processes which will
be part of two communicators create the right communicator first.
The alternating schedule avoids cascades but can be expensive
as processes which create two communicators need global view.
Figure 6 gives running times of cascaded and alternating splitting
with Intel MPI and the RBC library. The running time for
communicator creation with our library is negligible. There
is almost no difference in the running time between cascaded
and alternating scheduling as both operations are executed just
locally. However, the running time of cascaded communicator
creation with Intel MPI becomes extremely slow for a large
number of processes as the communicator construction of one
group prohibits the communicator construction of other groups.
We do not give running times with IBM MPI as the function
MPI_Comm_create_group of IBM MPI is slower than its
counterpart in Intel MPI by multiple orders of magnitude (see
Figure 5).

Range-based collective. The next benchmark performs the
operation broadcast on a process range of a parent communicator.
We performed two experiments. In the first experiment we
split the parent communicator of size p into a communicator

20 22 24 26 28 210 212 214 216 218

1

10

100

1000

elements

R
u
n
n
in
g
T
im

e
/
R
u
n
n
in
g
T
im

e
w
it
h
R
B
C

IBM – MPI Comm split + 1x MPI Ibcast
IBM – MPI Comm split + 50x MPI Ibcast
Intel – MPI Comm create group + 1x MPI Ibcast
Intel – MPI Comm create group + 50x MPI Ibcast

Fig. 7: Running time ratios of MPI to RBC for broadcast opera-
tions on a sub-range of 214 processes of an initial communicator
of 215 processes.

of size p/2 and invoke the operation broadcast on the new
communicator. In the second experiment we also split the
communicator once but invoke the operation broadcast 50 times.
To split the parent communicator into an MPI communicator, we
used the MPI function which performed best in the previous mi-
crobenchmark. For Intel MPI (IBM MPI) we used the operation
MPI_Comm_create_group (MPI_Comm_split) to split
the parent communicator. If the RBC library is used, the com-
municators are split by invoking rbc::Split_RBC_Comm.
Figure 7 gives running time ratios of MPI to RBC for both
experiments on 215 processes. For a moderate number n of
elements on the root process, n ≤ 210, our library performs a
single range-based broadcast faster than the Intel MPI (IBM MPI)
library by a factor of 42.5 to 81.8 (69.4 to 202). For the same
input sizes, our library performs 50 range-based broadcasts faster
than the Intel MPI (IBM MPI) library by a factor of 3.2 to 7 (6 to
14.7). For large inputs, the running times of IBM MPI converge
to the running times of the RBC library. The running times of
Intel MPI fluctuate for large n. In conclusion RBC performs
nonblocking broadcast operations on a sub-range of processes
whereas MPI must split the communicator with a blocking
operation before a (non)blocking broadcast operation can be
invoked. In addition our library outperforms its competitors for
almost all inputs as the time to create the MPI sub-communicators
dominates for moderate input sizes.

C. Sorting Benchmark

In Figure 8 we present running times of JQuick implemented
with RBC, native Intel MPI, and native IBM MPI. We executed
the experiments with our RBC library on top of IBM MPI as well
as on top of Intel MPI. All implementations exploit an alternating
splitting schedule to avoid cascaded communicator construction.
In our alternating schedule every other janus process splits
the left group first and the remaining janus processes split the
right group first. For n/p = 1 no janus processes occur but
JQuick with RBC already outperforms JQuick with native MPI
by a factor of 3.5 (Intel) to 16.9 (IBM). For moderate inputs,
i.e., 1 < n/p ≤ 210, JQuick with RBC on top of IBM MPI
outperforms JQuick with native IBM MPI by a factor of more

20 22 24 26 28 210 212 214 216 218 220
100

101

102

103

104

n/p

R
u
n
n
in
g
T
im

e
[m

s]

RBC (Intel p2p)
RBC (IBM p2p)
Intel MPI
IBM MPI

Fig. 8: Running times of JQuick on 215 cores with IBM MPI,
Intel MPI, and RBC on top of IBM MPI and Intel MPI.

than 1282, even though no cascades occur. For larger inputs, the
running time of both implementations converge as the time of
communicator construction becomes dominated by the actual
algorithm. JQuick with RBC on top of Intel MPI and JQuick
with native Intel MPI are significantly slower for any input size.
This is caused by immense fluctuations. We were able to avoid
these fluctuations for p ≤ 4096 by disabling dynamic connec-
tions (I_MPI_DYNAMIC_CONNECTION=no). However, this
option did not work for large p. Still, we see that the version with
RBC is up to a factor of 3.8 faster than the version with native
Intel MPI for moderate inputs. Experiments with a cascaded
schedule showed that the running time of JQuick with RBC
remains the same. However, the versions with native MPI become
even slower by multiple orders of magnitude for moderate inputs.

I X . C O N C L U S I O N A N D F U T U R E W O R K

We have shown how practical algorithms benefit from
lightweight communicators. We proposed RBC, a library which
creates range-based communicators without communication in
constant time. The construction of our communicators come with
almost no cost while providing nonblocking collective operations
as well as point-to-point communication on a sub-range of
processes. This offers completely new ways to implement
flexible algorithms efficiently. We validated the performance
of our communication routines in microbenchmarks as well as
their applicability to sorting algorithms. It would be interesting
to apply RBC to other divide-and-conquer algorithms such as
QuickHull [26] and delaunay triangulation [27]. RBC is even
interesting from a theoretical side as recursive algorithms with
polylogarithmic running time can now be implemented without
communicator construction which takes time linear to the number
of processes.

We propose and discuss a practical interface and implemen-
tation to integrate nonblocking (range-based) communicator
creation into MPI. We see this interface as an interesting
candidate for the MPI standard. Future work should include
implementations of this interface into open-source MPI libraries
to show their feasibility.

A C K N O W L E D G M E N T

The authors gratefully acknowledge the Gauss Centre for
Supercomputing e.V. (www.gauss-centre.eu) for funding this
project by providing computing time on the GCS Supercom-
puter SuperMUC at Leibniz Supercomputing Centre (LRZ,
www.lrz.de). This research was partially supported by the DFG
project SA 933/11-1. Additionally, we would like to thank Tobias
Heuer for a first prototypical implementation of JQuick.

R E F E R E N C E S

[1] J. Dinan, S. Krishnamoorthy, P. Balaji, J. R. Hammond, M. Krishnan,
V. Tipparaju, and A. Vishnu, “Noncollective Communicator Creation in
MPI,” in EuroMPI, 2011, pp. 282–291.

[2] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, S. Kumar, E. L. Lusk,
R. Thakur, and J. L. Träff, “Mpi on a million processors.” in PVM/MPI.
Springer, 2009, pp. 20–30.

[3] T. Hoefler, A. Lumsdaine, and W. Rehm, “Implementation and performance
analysis of non-blocking collective operations for mpi,” in SC. IEEE,
2007, pp. 1–10.

[4] V. Bala, J. Bruck, R. Cypher, P. Elustondo, A. Ho, C.-T. Ho, S. Kipnis, and
M. Snir, “Ccl: A portable and tunable collective communication library for
scalable parallel computers,” TPDS, vol. 6, no. 2, pp. 154–164, 1995.

[5] M. Chaarawi and E. Gabriel, “Evaluating sparse data storage techniques
for mpi groups and communicators,” ICCS, pp. 297–306, 2008.

[6] B. Wagar, “Hyperquicksort: A fast sorting algorithm for hypercubes,”
Hypercube Multiprocessors, pp. 292–299, 1987.

[7] P. Sanders, J. Speck, and J. L. Träff, “Two-tree algorithms for full
bandwidth broadcast, reduction and scan,” Parallel Computing, vol. 35,
no. 12, pp. 581–594, 2009.

[8] A. Wiebigke, “Massively parallel schizophrenic quicksort,” Thesis, 2017.
[9] “Mpich design documents,” https://wiki.mpich.org/mpich/index.php/

Category:Design Documents. Accessed: 2017-10-04, mpi-forum.org.
[10] M. P. I. Forum, “Mpi: A message-passing interface standard version 3.0,”

mpi-forum.org, pp. 1–852, 2012.

[11] P. Sack and W. Gropp, “A scalable mpi comm split algorithm for exascale
computing,” in EuroMPI. Springer, 2010, pp. 1–10.

[12] C. Siebert and F. Wolf, “Parallel sorting with minimal data,” in EuroMPI.
Springer, 2011, pp. 170–177.

[13] H. Kamal, S. M. Mirtaheri, and A. Wagner, “Scalability of communicators
and groups in mpi,” in HPDC. ACM, 2010, pp. 264–275.

[14] T. Hoefler, J. Squyres, G. Bosilca, G. Fagg, A. Lumsdaine, and W. Rehm,
“Non-blocking collective operations for mpi-2,” Open Systems Lab, Indiana
University, Tech. Rep, vol. 8, 2006.

[15] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith,
and M. Zagha, “A comparison of sorting algorithms for the connection
machine cm-2,” in SPAA. ACM, 1991, pp. 3–16.

[16] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to parallel
computing: design and analysis of algorithms, 1994.

[17] A. V. Gerbessiotis and L. G. Valiant, “Direct bulk-synchronous parallel
algorithms,” JPDC, vol. 22, no. 2, pp. 251–267, 1994.

[18] H. Sundar, D. Malhotra, and G. Biros, “Hyksort: a new variant of hypercube
quicksort on distributed memory architectures,” in ICS. ACM, 2013, pp.
293–302.

[19] M. Axtmann, T. Bingmann, P. Sanders, and C. Schulz, “Practical massively
parallel sorting,” in SPAA. ACM, 2015, pp. 13–23.

[20] M. Axtmann and P. Sanders, “Robust massively parallel sorting,” in
ALENEX. SIAM, 2017, pp. 83–97.

[21] S. S. Vadhiyar, G. E. Fagg, and J. Dongarra, “Automatically tuned
collective communications,” in SC, 2000, p. 3.

[22] G. E. Blelloch, “Prefix sums and their applications,” 1990.
[23] E. Chan, M. Heimlich, A. Purkayastha, and R. Van De Geijn, “Collective

communication: theory, practice, and experience,” CCPE, vol. 19, no. 13,
pp. 1749–1783, 2007.

[24] J. JaJa, “A perspective on quicksort,” CS&E, vol. 2, no. 1, pp. 43–49, 2000.
[25] P. Sanders, S. Lamm, L. Hübschle-Schneider, E. Schrade, and C. Dachs-

bacher, “Efficient parallel random sampling – vectorized, cache-efficient,
and online,” ACM TOMS, vol. 44, no. 3, pp. 29:1–29:14, 2018.

[26] W. F. Eddy, “A new convex hull algorithm for planar sets,” TOMS, vol. 3,
no. 4, pp. 398–403, 1977.

[27] D. Funke and P. Sanders, “Parallel d-d delaunay triangulations in shared
and distributed memory,” in ALENEX. SIAM, 2017, pp. 207–217.

www.gauss-centre.eu
www.lrz.de
https://wiki.mpich.org/mpich/index.php/Category:Design_Documents
https://wiki.mpich.org/mpich/index.php/Category:Design_Documents

X . A P P E N D I X

20 22 24 26 28 210 212 214 216 218

10−1

100

101

102

n/p

R
u
n
n
in
g
T
im

e
[m

s]

MPI
RBC

(a) Broadcast with IBM MPI.

20 22 24 26 28 210 212 214 216 218

10−1

101

103

105

n/p

R
u
n
n
in
g
T
im

e
[m

s]

MPI
RBC

(b) Broadcast with Intel MPI.

20 22 24 26 28 210 212 214 216 218

10−1

100

101

n/p

R
u
n
n
in
g
T
im

e
[m

s]

MPI
RBC

(c) Reduce with IBM MPI.

20 22 24 26 28 210 212 214 216 218

10−1

100

101

102

103

104

105

n/p

R
u
n
n
in
g
T
im

e
[m

s]

MPI
RBC

(d) Reduce with Intel MPI.

20 22 24 26 28 210 212 214 216 218
10−1

100

101

102

103

n/p

R
u
n
n
in
g
T
im

e
[m

s]

MPI
RBC

(e) Scan with IBM MPI.

20 22 24 26 28 210 212 214 216 218
10−1

100

101

102

n/p

R
u
n
n
in
g
T
im

e
[m

s]

MPI
RBC

(f) Scan with Intel MPI.

20 22 24 26 28 210
10−1

100

101

102

n/p

R
u
n
n
in
g
T
im

e
[m

s]

MPI
RBC

(g) Gather with IBM MPI.

20 22 24 26 28 210

100

101

102

103

n/p

R
u
n
n
in
g
T
im

e
[m

s]

MPI
RBC

(h) Gather with Intel MPI.

Fig. 9: Running times of nonblocking collective operations on 215 cores.

	Introduction
	Preliminaries
	Communicators and Collective Operations
	Massively Parallel Sorting
	Nonblocking Communication on Process Ranges
	RBC Communicator
	Nonblocking Communication Requests
	Point-to-point Communication
	Collective Operations

	Nonblocking Creation of (Range-Based) MPI Communicators
	Janus Quicksort
	Analysis

	Experimental Results
	Implementation Details
	Microbenchmarks
	Sorting Benchmark

	Conclusion and Future Work
	References
	Appendix

