
This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Crea>ve
Commons license, for uses protected by Copyright Law, contact the copyright holder or the
author.

Access to this work was provided by the University of Maryland, Bal>more County (UMBC)
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR)
plaMorm.

Please provide feedback

Please support the ScholarWorks@UMBC repository by emailing scholarworks-
group@umbc.edu and telling us what having access to this work means to you and why it’s
important to you. Thank you.

mailto:scholarworks-group@umbc.edu
mailto:scholarworks-group@umbc.edu

Blocking Optimization Strategies
for Sparse Tensor Computation

Jee Choi1, Xing Liu1, Shaden Smith2, and Tyler Simon3

1IBM T. J. Watson Research, 2University of Minnesota, 3University of Maryland
Baltimore County

SIAM Annual Meeting

July 12th, 2017

1

Tensors are multi-dimensional arrays

X
≈ + ･･･+ +

• CANDECOMP/Parafac (CP) decomposition creates a set of factor
matrices

2

3

The take-away from this presentation

• There is lack of clear understanding about performance bottlenecks
in sparse tensor decomposition

• Using various blocking techniques mitigate these bottlenecks

• Our optimizations demonstrate significant speedup on synthetic and
real-world data for both shared-memory and distributed
implementations

Fix every other factor matrix and solve for the remaining one

procedure CP-ALS (X, R)
repeat

C = X(3)(B A)(BTB * ATA)✗

normalize columns of C to length 1
B = X(2)(C A)(CTC * ATA)✗

normalize columns of B to length 1
A = X(1)(C B)(CTC * BTB)✗

store column norms of A in λ and normalize to 1

until max iteration reached or error less than ε

end procedure

4

Calculating MTTKRP is the primary bottleneck

procedure CP-ALS (X, R)
repeat

C = X(3)(B A)(BTB * ATA)✗

normalize columns of C to length 1
B = X(2)(C A)(CTC * ATA)✗

normalize columns of B to length 1
A = X(1)(C B)(CTC * BTB)✗

store column norms of A in λ and normalize to 1

until max iteration reached or error less than ε

end procedure

5

MTTKRP

Calculating MTTKRP is the primary bottleneck

procedure CP-ALS (X, R)
repeat

C = X(3)(B A)(BTB * ATA)✗

normalize columns of C to length 1
B = X(2)(C A)(CTC * ATA)✗

normalize columns of B to length 1
A = X(1)(C B)(CTC * BTB)✗

store column norms of A in λ and normalize to 1

until max iteration reached or error less than ε

end procedure

6

Matricized Tensor TKRP

Calculating MTTKRP is the primary bottleneck

procedure CP-ALS (X, R)
repeat

C = X(3)(B A)(BTB * ATA)✗

normalize columns of C to length 1
B = X(2)(C A)(CTC * ATA)✗

normalize columns of B to length 1
A = X(1)(C B)(CTC * BTB)✗

store column norms of A in λ and normalize to 1

until max iteration reached or error less than ε

end procedure

7

Matricized Tensor Times KRP

Calculating MTTKRP is the primary bottleneck

procedure CP-ALS (X, R)
repeat

C = X(3)(B A)(BTB * ATA)✗

normalize columns of C to length 1
B = X(2)(C A)(CTC * ATA)✗

normalize columns of B to length 1
A = X(1)(C B)(CTC * BTB)✗

store column norms of A in λ and normalize to 1

until max iteration reached or error less than ε

end procedure

8

Matricized Tensor Times Khatri-Rao Product

Calculating MTTKRP is the primary bottleneck

procedure CP-ALS (X, R)
repeat

C = X(3)(B A)(BTB * ATA)✗

normalize columns of C to length 1
B = X(2)(C A)(CTC * ATA)✗

normalize columns of B to length 1
A = X(1)(C B)(CTC * BTB)✗

store column norms of A in λ and normalize to 1

until max iteration reached or error less than ε

end procedure

> 90% total execution time

9

Problem is formulated as matrix operations

procedure CP-ALS (X, R)
repeat

C = X(3)(B A)(BTB * ATA)✗

normalize columns of C to length 1
B = X(2)(C A)(CTC * ATA)✗

normalize columns of B to length 1
A = X(1)(C B)(CTC * BTB)✗

store column norms of A in λ and normalize to 1

until max iteration reached or error less than ε

end procedure

10

Directly computing MTTKRP is very expensive

• For a 1000×1000×1000 tensor with rank 100…
• X(3) is a 1,000 × 1,000,000 matrix, and

• (B A) is a 1,000,000 × 100 matrix

• Direct computation is expensive

11

• For a 1000×1000×1000 tensor with rank 100…
• X(3) is a 1,000 × 1,000,000 matrix, and

• (B A) is a 1,000,000 × 100 matrix

• Direct computation is expensive

• Not necessary for sparse tensors.

12

But not necessary

MTTKRP expressed as matrix operations

1,000

1,000,000

X

100

1,000,000

A’

○ ○

13

○ Same size as the
factor matrix
you want to calculate

Matricized
tensor

Khatri-Rao
Product

MTTKRP simplified

1,000

1,000,000

X

100

1,000,000

A’

○ ○

14

○

Khatri-Rao
Product

MTTKRP simplified

1,000

1,000,000

X

100

B1,000,000

A’

○ ○

C

15

○

Load 1 row
each

from B and C

MTTKRP simplified

1,000

1,000,000

X

100

B1,000,000

A’

○ ○

C

16

○

Load 1 row
each

from B and CHadamard
product

MTTKRP simplified

1,000

1,000,000

X

100

B1,000,000

A’

○ ○

C

17

○

Load 1 row
each

from B and C

Scale by
non-zero

Hadamard
product

MTTKRP simplified

1,000

1,000,000

X

100

B1,000,000

A’

○ ○

C

18

○

Load 1 row
each

from B and C

Scale by
non-zero

Hadamard
product

Accumulate
to A

Can it be done more efficiently?

1,000

1,000,000

X

100

B1,000,000

A’

○ ○

C

19

○

Load 1 row
each

from B and C

Scale by
non-zero

Hadamard
product

Accumulate
to A

In 3D space…

Shaden Smith, et al., SPLATT: Efficient and Parallel Sparse Tensor-Matrix Multiplication,IPDPS 2015

(10, 20, 30)

row 10

row 20

row 30

Reduce computing by processing at fiber granularity

1,000

1,000,000

X

100

B1,000,000

A’

○

C

21

Fiber – column vectors
with all but one mode

fixed

○ ○

Reduce computing by processing at fiber granularity

1,000

1,000,000

X

100

B1,000,000

A’

○ ○

C10,20,30

10,40,30

3. Buffer

22

Fiber – column vectors
with all but one mode

fixed

○

Reduce computing by processing at fiber granularity

1,000

1,000,000

X

100

B1,000,000

A’

○ ○

C10,20,30

10,40,30

3. Buffer

23

Fiber – column vectors
with all but one mode

fixed

Mode-2 fiber
x = 10, z = 30

○

First load rows from B (mode-2 matrix)

1,000

1,000,000

X

100

B1,000,000

A’

○ ○

C10,20,30

row 20

10,40,30

Load 2 rows of B

row 40

24

○

Scale the rows by non-zero values

1,000

1,000,000

X

100

B1,000,000

A’

○ ○

C10,20,30

row 20

10,40,30

Load 2 rows of B

row 40

25

○

Scale

Scale

Accumulate them to a temporary buffer

1,000

1,000,000

X

100

B1,000,000

A’

○ ○

C10,20,30

row 20

10,40,30

Load 2 rows of B

Accum to
buffer

row 40

26

○

Scale

Scale

Load the “common” row from C (mode-3 matrix)

1,000

1,000,000

100

B1,000,000

A’

○ ○

C10,20,30

row 20

10,40,30

Load 2 rows of B

Accum to
buffer

row 40

27

○

Scale

Scale

row 30

Hadamard product with buffer

1,000

1,000,000

100

B1,000,000

A’

○ ○

C10,20,30

row 20

10,40,30

Load 2 rows of B

Accum to
buffer

row 40

28

○

Scale

Scale

row 30

Hadamard
product

Accumulate to destination matrix (A’)

1,000

1,000,000

100

B1,000,000

A’

row 10○ ○

C10,20,30

row 20

10,40,30

Load 2 rows of B

Accum to
buffer

row 40

Accumulate

29

○

Scale

Scale

row 30

Hadamard
product

This is called compressed sparse fiber (CSF)

1,000

1,000,000

100

B1,000,000

A’

row 10○ ○

C10,20,30

row 20

10,40,30

Load 2 rows of B

Accum to
buffer

row 40

Accumulate

30

○

Scale

Scale

row 30

Hadamard
product

Shaden Smith, et al.,
SPLATT: Efficient and Parallel Sparse
Tensor-Matrix Multiplication,
IPDPS 2015

Claimed Savings by others

• Naïve COO kernel
• Regular: 3 * m * R flops (2mR for initial product + scale, mR for accumulation)

• CSF
• 2R(m + P) flops, P is # of non-empty fibers
• typically p <<< m

• DFacTo
• Formulates MTTKRP as SpMV
• Each column is computed independently via 2 SpMV
• 2R(m + P) flops

• GigaTensor
• MapReduce
• Increased parallelism vs. more flops
• 5mR flops

31

m = # of non-zeros
P = # of non-empty fibers
R = rank

Does this make sense?

• Sparse computations are memory bandwidth-bound

• SPLATT tries cache blocking through expensive hypergraph
partitioning (without much success)

32

Compute

bound

Memory

(bandwidth)

bound
System

balance

Roofline model visualized (for an old Intel Nehalem CPU)

Compute

bound

Memory

(bandwidth)

bound

System

balance

Commonly used scientific kernels

DGEMMSpMV

FFT

Roofline model applied to MTTKRP

• Sparse computations are memory bandwidth-bound

• Let’s calculate the # of flops and # of bytes and compare
• Flops: W = 2R(m + P)

• Bytes: Q = 2m (value + mode-2 index) + 2P (mode-3 index + mode-3 pointer)

+ (1-ɑ)Rm (mode-2 factor) + (1-ɑ)RP (mode-3 factor)

• Arithmetic Intensity
• Ratio of work to communication I = W/Q

• I = W / (Q * 8 Bytes) = R / (8 + 4R(1-ɑ))

35

Compute

bound

Memory

(bandwidth)

bound

Arithmetic intensity of MTTKRP with rank = 32

cache hit
= 1.0 (perfect)

cache hit
= 0.5

cache hit
= 0.9

Arithmetic intensity vs. rank for various cache hit rates

37

0.1

1

10

100

1000

16 32 64 128 256 512 1024 2048

Rank

Perfect cache hit

Cache hit = 0.99

Cache hit = 0.95

Cache hit = 0.5

Cache hit = 0.8

Arithmetic
Intensity

38

0.1

1

10

100

1000

16 32 64 128 256 512 1024 2048

Rank

Perfect cache hit

Cache hit = 0.99

Cache hit = 0.95

System balance –
22-core CPU

Arithmetic intensity vs. system balance (on the latest CPU)
Arithmetic
Intensity

Our initial conclusion from a theoretical point of view

• On recent systems, MTTKRP is likely memory-bound
• Even with a perfect cache hit rate, MTTKRP should be memory-bound on

lower ranks

• If we fail to get good cache re-use, MTTKRP will most likely be memory
bound for any rank

39

• Pressure point analysis
• Probe potential bottlenecks by creating and eliminating instructions/data

access

• If we suspect that # of registers is the bottleneck, try increasing/decreasing
their usage to see if the exec. time changes.

• Inline assembly to prevent dead code elimination (DCE)

40

A pressure point analysis reveals the bottleneck

Kenneth Czechowski, Performance Analysis Using the Pressure Point Analysis, PhD dissertation

41

Time Pressure point

2.6 Baseline (2R(m + P) flops)

A pressure point analysis reveals the bottleneck

42

Time Pressure point

2.6 Baseline (2R(m + P) flops)

2.64 Move flops to inner loop (3 * m * R flops)

Using COO instead of CSF only increases exec. time by < 2%

Increasing flops
only changes time
by < 2%

43

Time Pressure point

2.6 Baseline (2R(m + P) flops)

2.64 Move flops to inner loop (3 * m * R flops)

2.43 Access to C removed

Removing access to C (accessed once per fiber):
exec. time down by 7%

Removing per-fiber
access to matrix C
has a bigger impact
than increasing
flops

44

Time Pressure point

2.6 Baseline (2R(m + P) flops)

2.64 Move flops to inner loop (3 * m * R flops)

2.43 Access to C removed

1.81 Access to B limited to L1 cache

Suspicion confirmed: Memory access to B is the bottleneck

Limiting our
suspect has a huge
impact

45

Time Pressure point

2.6 Baseline (2R(m + P) flops)

2.64 Move flops to inner loop (3 * m * R flops)

2.43 Access to C removed

1.81 Access to B limited to L1 cache

1.63 Access to B removed completely

Completely removing it give us an extra 6% - why?

Eliminating it
completely gives
us an extra 6%
boost

Conclusions from our empirical analysis

• Flops aren’t the issue

• Bottlenecks

1. Data access to B

2. Load instructions

46

Cache/register blocking should help alleviate these bottlenecks

• Flops aren’t the issue

• Bottlenecks

1. Data access to B → cache blocking

2. Load instructions → register blocking

47

Our baseline implementation

48

procedure mttkrp (X ∈ RI×J×K, R)

1: for i ⟵ 0 to I do // for each row
2: for j ⟵ i_ptr[i] to i_ptr[i+1] do // for each fiber
3: for k ⟵ p_ptr[j] to p_ptr[j+1] do // for each nz in fiber
4: for r ⟵ 0 to R do // go through entire rank
5: buffer[r] += vals[k] * B[j_index[k]][r] // buffer
6: for r ⟵ 0 to R do
7: A[i][r] += buffer[r] * C[k_index[j]][r] // accumulate
end procedure

Our baseline implementation

49

procedure mttkrp (X ∈ RI×J×K, R)

1: for i ⟵ 0 to I do // for each row
2: for j ⟵ i_ptr[i] to i_ptr[i+1] do // for each fiber
3: for k ⟵ p_ptr[j] to p_ptr[j+1] do // for each nz in fiber
4: for r ⟵ 0 to R do // go through entire rank
5: buffer[r] += vals[k] * B[j_index[k]][r] // buffer
6: for r ⟵ 0 to R do
7: A[i][r] += buffer[r] * C[k_index[j]][r] // accumulate
end procedure

3 LD instructions

Replace buffers with registers

50

procedure mttkrp (X ∈ RI×J×K, R)

1: for i ⟵ 0 to I do // for each row
2: for j ⟵ i_ptr[i] to i_ptr[i+1] do // for each fiber
3: for r ⟵ 0 to R do in 16 increments
4: for k ⟵ p_ptr[j] to p_ptr[j+1] do // for each nz in fiber
5: registers += vals[k] * B[j_index[k]][r] // buffer
6: A[i][r] += registers * C[k_index[j]][r] // accumulate
end procedure

Replace buffers with registers

51

procedure mttkrp (X ∈ RI×J×K, R)

1: for i ⟵ 0 to I do // for each row
2: for j ⟵ i_ptr[i] to i_ptr[i+1] do // for each fiber
3: for r ⟵ 0 to R do in 16 increments
4: for k ⟵ p_ptr[j] to p_ptr[j+1] do // for each nz in fiber
5: registers += vals[k] * B[j_index[k]][r] // buffer
6: A[i][r] += registers * C[k_index[j]][r] // accumulate
end procedure

2 LD instructions

We use n-D blocking (intuitive) and rank blocking (less intuitive)

• Multi-dimensional blocking

• Rank blocking

52

We use n-D blocking (intuitive) and rank blocking (less intuitive)

• Multi-dimensional blocking
• 3D blocking – maximize re-use of both matrix B and C

• Rank blocking

53

X1A1

B1

C1

We use n-D blocking (intuitive) and rank blocking (less intuitive)

• Multi-dimensional blocking
• 3D blocking – maximize re-use of both matrix B and C

• Rank blocking

54

Make sure
this fits in the
LLC

X1A1

B1

C1

We use n-D blocking (intuitive) and rank blocking (less intuitive)

• Multi-dimensional blocking
• 3D blocking – maximize re-use of both matrix B and C

• Rank blocking
• Agnostic to tensor sparsity

• Very little change to the code required

55

Make sure
this fits in the
LLC

Increase the
chance of
finding rows
in cache

Rank blocking visualized…

1,000

1,000,000

100

B1,000,000

A’

row 10○ ○

C10,20,30

row 20

10,40,30

Load 2 rows of B

Accum to
buffer

row 40

Accumulate

56

○

Scale

Scale

row 30

Hadamard
product

Rank blocking visualized…

1,000

1,000,000

100

B1,000,000

A’

row 10○ ○

C10,20,30

row 20

10,40,30

Load 2 rows of B

Accum to
buffer

row 40

Accumulate

57

○

Scale

Scale

row 30

Hadamard
product

Performance Summary

Data set Dimensions nnz Sparsity # fibers Speedup

Poisson1 256×256×256 1.5M 8.8e-2 54K 3.1x

Poisson2 2K×16K×2K 121M 1.9e-3 2.5M 2.5×

Poisson3 2K×16K×2K 6.4M 1.0e-4 830K 2.0×

Netflix 480K×18K×80 80M 1.2e-4 5M 2.1×

NELL-2 12K×9K×29K 77M 2.4e-5 21M 2.2×

58

Register blocking yields large speedups for small data sets

59

Poisson 2 – sparsity = 1.9e-3

Poisson 3 – sparsity = 1.0e-4

Netflix – sparsity = 1.2e-4

NELL – sparsity = 2.4e-5

64

Distributed rank blocking shows better scalability

Nodes

NELL2

SPLATT 3D grid 3D time 4D grid 4D time

1 1.028 1x1x2 0.718 1x1x1x2 0.826

2 0.54 1x1x4 0.367 1x1x1x4 0.423

4 0.286 2x1x4 0.208 1x1x1x8 0.217

8 0.138 2x2x4 0.107 1x1x1x16 0.124

16 0.087 2x2x8 0.058 1x1x2x16 0.065

32 0.056 4x2x8 0.043 1x1x4x16 0.034

64 0.03 4x4x8 0.028 2x1x4x16 0.022

Netflix

SPLATT 3D grid 3D time 4D grid 4D time

3.025 2x1x1 1.554 1x1x1x2 1.447

1.158 4x1x1 0.727 1x1x1x4 0.720

0.519 8x1x4 0.403 1x1x1x8 0.401

0.256 16x1x1 0.194 1x1x1x16 0.190

0.113 32x1x1 0.103 1x1x2x16 0.100

0.083 31x2x1 0.056 1x1x4x16 0.055

0.048 64x2x1 0.037 2x1x4x16 0.030

65

The take-away from the section

• There was a lack of clear understanding about performance
bottlenecks in tensor decomposition
• We show that the key computation is LD and memory-bound

• Using various blocking techniques mitigate these bottlenecks

• Our optimizations demonstrate significant speedup over synthetic
and real-world data for both shared-memory and distributed
implementations
• We use 3D and rank blocking strategies to achieve up to 3.2x speedup on real

world-data and 2.0x on synthetic

Future Work

• Extending this work to do performance modeling
• Correlate tiling/blocking size to cache hit rate

• Take advantage of block structures

• Fiber/slice/cube/etc. permutation – new storage formats for tensors (a la
SpMV)

66

Q & A

I am currently on the academic job market!
Please email me at jee@gatech.edu or

visit http://jeewhanchoi.com for my
application materials

mailto:jee@gatech.edu
http://jeewhanchoi.com/

