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Tensors are multi-dimensional arrays

X
≈ + ･･･+ +

• CANDECOMP/Parafac (CP) decomposition creates a set of factor 
matrices
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The take-away from this presentation

• There is lack of clear understanding about performance bottlenecks 
in sparse tensor decomposition

• Using various blocking techniques mitigate these bottlenecks

• Our optimizations demonstrate significant speedup on synthetic and 
real-world data for both shared-memory and distributed 
implementations



Fix every other factor matrix and solve for the remaining one

procedure CP-ALS (X, R)
repeat

C = X(3)(B  A)(BTB * ATA)✗

normalize columns of C to length 1
B = X(2)(C  A)(CTC * ATA)✗

normalize columns of B to length 1
A = X(1)(C  B)(CTC * BTB)✗

store column norms of A in λ and normalize to 1

until max iteration reached or error less than ε

end procedure
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Calculating MTTKRP is the primary bottleneck

procedure CP-ALS (X, R)
repeat

C = X(3)(B  A)(BTB * ATA)✗

normalize columns of C to length 1
B = X(2)(C  A)(CTC * ATA)✗

normalize columns of B to length 1
A = X(1)(C  B)(CTC * BTB)✗

store column norms of A in λ and normalize to 1

until max iteration reached or error less than ε

end procedure
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Calculating MTTKRP is the primary bottleneck

procedure CP-ALS (X, R)
repeat

C = X(3)(B  A)(BTB * ATA)✗

normalize columns of C to length 1
B = X(2)(C  A)(CTC * ATA)✗

normalize columns of B to length 1
A = X(1)(C  B)(CTC * BTB)✗

store column norms of A in λ and normalize to 1

until max iteration reached or error less than ε

end procedure
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Calculating MTTKRP is the primary bottleneck

procedure CP-ALS (X, R)
repeat

C = X(3)(B  A)(BTB * ATA)✗

normalize columns of C to length 1
B = X(2)(C  A)(CTC * ATA)✗

normalize columns of B to length 1
A = X(1)(C  B)(CTC * BTB)✗

store column norms of A in λ and normalize to 1

until max iteration reached or error less than ε

end procedure
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Calculating MTTKRP is the primary bottleneck

procedure CP-ALS (X, R)
repeat

C = X(3)(B  A)(BTB * ATA)✗

normalize columns of C to length 1
B = X(2)(C  A)(CTC * ATA)✗

normalize columns of B to length 1
A = X(1)(C  B)(CTC * BTB)✗

store column norms of A in λ and normalize to 1

until max iteration reached or error less than ε

end procedure
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Matricized Tensor Times Khatri-Rao Product



Calculating MTTKRP is the primary bottleneck

procedure CP-ALS (X, R)
repeat

C = X(3)(B  A)(BTB * ATA)✗

normalize columns of C to length 1
B = X(2)(C  A)(CTC * ATA)✗

normalize columns of B to length 1
A = X(1)(C  B)(CTC * BTB)✗

store column norms of A in λ and normalize to 1

until max iteration reached or error less than ε

end procedure

> 90% total execution time
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Problem is formulated as matrix operations

procedure CP-ALS (X, R)
repeat

C = X(3)(B  A)(BTB * ATA)✗

normalize columns of C to length 1
B = X(2)(C  A)(CTC * ATA)✗

normalize columns of B to length 1
A = X(1)(C  B)(CTC * BTB)✗

store column norms of A in λ and normalize to 1

until max iteration reached or error less than ε

end procedure
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Directly computing MTTKRP is very expensive

• For a 1000×1000×1000 tensor with rank 100…
• X(3) is a 1,000 × 1,000,000 matrix, and

• (B A) is a 1,000,000 × 100 matrix

• Direct computation is expensive
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• For a 1000×1000×1000 tensor with rank 100…
• X(3) is a 1,000 × 1,000,000 matrix, and

• (B A) is a 1,000,000 × 100 matrix

• Direct computation is expensive

• Not necessary for sparse tensors.
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But not necessary



MTTKRP expressed as matrix operations 
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MTTKRP simplified
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MTTKRP simplified
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MTTKRP simplified
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MTTKRP simplified
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MTTKRP simplified
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Can it be done more efficiently?
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In 3D space…

Shaden Smith, et al., SPLATT: Efficient and Parallel Sparse Tensor-Matrix Multiplication,IPDPS 2015
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Reduce computing by processing at fiber granularity
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Reduce computing by processing at fiber granularity
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Reduce computing by processing at fiber granularity
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First load rows from B (mode-2 matrix)
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Scale the rows by non-zero values
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Accumulate them to a temporary buffer

1,000

1,000,000

X

100

B1,000,000

A’

○ ○

C10,20,30

row 20

10,40,30

Load 2 rows of B

Accum to
buffer

row 40

26

○

Scale

Scale



Load the “common” row from C (mode-3 matrix)
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Hadamard product with buffer
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Accumulate to destination matrix (A’) 
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This is called compressed sparse fiber (CSF)
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Shaden Smith, et al., 
SPLATT: Efficient and Parallel Sparse 
Tensor-Matrix Multiplication,
IPDPS 2015



Claimed Savings by others

• Naïve COO kernel
• Regular: 3 * m * R flops (2mR for initial product + scale, mR for accumulation) 

• CSF
• 2R(m + P) flops, P is # of non-empty fibers
• typically p <<< m

• DFacTo 
• Formulates MTTKRP as SpMV
• Each column is computed independently via 2 SpMV
• 2R(m + P) flops

• GigaTensor
• MapReduce
• Increased parallelism vs. more flops
• 5mR flops

31

m = # of non-zeros
P = # of non-empty fibers
R = rank



Does this make sense?

• Sparse computations are memory bandwidth-bound

• SPLATT tries cache blocking through expensive hypergraph 
partitioning (without much success)

32



Compute 

bound

Memory 

(bandwidth)

bound
System 

balance

Roofline model visualized (for an old Intel Nehalem CPU)
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Roofline model applied to MTTKRP

• Sparse computations are memory bandwidth-bound

• Let’s calculate the # of flops and # of bytes and compare
• Flops: W = 2R(m + P)

• Bytes: Q = 2m (value + mode-2 index) + 2P (mode-3 index + mode-3 pointer)

+ (1-ɑ)Rm (mode-2 factor) + (1-ɑ)RP (mode-3 factor)

• Arithmetic Intensity 
• Ratio of work to communication I = W/Q

• I = W / (Q * 8 Bytes) = R / (8 + 4R(1-ɑ))
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cache hit
= 1.0 (perfect)

cache hit 
= 0.5

cache hit
= 0.9



Arithmetic intensity vs. rank for various cache hit rates
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Our initial conclusion from a theoretical point of view

• On recent systems, MTTKRP is likely memory-bound
• Even with a perfect cache hit rate, MTTKRP should be memory-bound on 

lower ranks

• If we fail to get good cache re-use, MTTKRP will most likely be memory 
bound for any rank
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• Pressure point analysis
• Probe potential bottlenecks by creating and eliminating instructions/data 

access

• If we suspect that # of registers is the bottleneck, try increasing/decreasing 
their usage to see if the exec. time changes.

• Inline assembly to prevent dead code elimination (DCE)

40

A pressure point analysis reveals the bottleneck

Kenneth Czechowski, Performance Analysis Using the Pressure Point Analysis, PhD dissertation
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Time Pressure point

2.6 Baseline (2R(m + P) flops)

A pressure point analysis reveals the bottleneck
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Time Pressure point

2.6 Baseline (2R(m + P) flops)

2.64 Move flops to inner loop (3 * m * R  flops)

Using COO instead of CSF only increases exec. time by < 2%

Increasing flops
only changes time
by < 2%
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Time Pressure point

2.6 Baseline (2R(m + P) flops)

2.64 Move flops to inner loop (3 * m * R  flops)

2.43 Access to C removed 

Removing access to C (accessed once per fiber):
exec. time down by 7%

Removing per-fiber
access to matrix C
has a bigger impact
than increasing 
flops
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Time Pressure point

2.6 Baseline (2R(m + P) flops)

2.64 Move flops to inner loop (3 * m * R  flops)

2.43 Access to C removed 

1.81 Access to B limited to L1 cache

Suspicion confirmed: Memory access to B is the bottleneck

Limiting our 
suspect has a huge
impact
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Time Pressure point

2.6 Baseline (2R(m + P) flops)

2.64 Move flops to inner loop (3 * m * R  flops)

2.43 Access to C removed 

1.81 Access to B limited to L1 cache

1.63 Access to B removed completely

Completely removing it give us an extra 6% - why?

Eliminating it
completely gives
us an extra 6%
boost



Conclusions from our empirical analysis

• Flops aren’t the issue

• Bottlenecks

1. Data access to B

2. Load instructions
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Cache/register blocking should help alleviate these bottlenecks

• Flops aren’t the issue

• Bottlenecks

1. Data access to B → cache blocking

2. Load instructions → register blocking
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Our baseline implementation
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procedure mttkrp (X ∈ RI×J×K, R)

1:  for i ⟵ 0 to I do  // for each row
2:    for j ⟵ i_ptr[i] to i_ptr[i+1] do // for each fiber
3:      for k ⟵ p_ptr[j] to p_ptr[j+1] do // for each nz in fiber
4:        for r ⟵ 0 to R do // go through entire rank
5: buffer[r] += vals[k] * B[j_index[k]][r] // buffer
6:      for r ⟵ 0 to R do
7:        A[i][r] += buffer[r] * C[k_index[j]][r] // accumulate
end procedure



Our baseline implementation
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procedure mttkrp (X ∈ RI×J×K, R)

1:  for i ⟵ 0 to I do  // for each row
2:    for j ⟵ i_ptr[i] to i_ptr[i+1] do // for each fiber
3:      for k ⟵ p_ptr[j] to p_ptr[j+1] do // for each nz in fiber
4:        for r ⟵ 0 to R do // go through entire rank
5: buffer[r] += vals[k] * B[j_index[k]][r] // buffer
6:      for r ⟵ 0 to R do
7:        A[i][r] += buffer[r] * C[k_index[j]][r] // accumulate
end procedure

3 LD instructions



Replace buffers with registers

50

procedure mttkrp (X ∈ RI×J×K, R)

1:  for i ⟵ 0 to I do  // for each row
2:    for j ⟵ i_ptr[i] to i_ptr[i+1] do // for each fiber
3:      for r ⟵ 0 to R do in 16 increments
4:        for k ⟵ p_ptr[j] to p_ptr[j+1] do // for each nz in fiber
5: registers += vals[k] * B[j_index[k]][r] // buffer
6:        A[i][r] += registers * C[k_index[j]][r] // accumulate
end procedure



Replace buffers with registers
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procedure mttkrp (X ∈ RI×J×K, R)

1:  for i ⟵ 0 to I do  // for each row
2:    for j ⟵ i_ptr[i] to i_ptr[i+1] do // for each fiber
3: for r ⟵ 0 to R do in 16 increments
4:        for k ⟵ p_ptr[j] to p_ptr[j+1] do // for each nz in fiber
5: registers += vals[k] * B[j_index[k]][r] // buffer
6:        A[i][r] += registers * C[k_index[j]][r] // accumulate
end procedure

2 LD instructions



We use n-D blocking (intuitive) and rank blocking (less intuitive)

• Multi-dimensional blocking

• Rank blocking
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We use n-D blocking (intuitive) and rank blocking (less intuitive)

• Multi-dimensional blocking
• 3D blocking – maximize re-use of both matrix B and C

• Rank blocking
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We use n-D blocking (intuitive) and rank blocking (less intuitive)

• Multi-dimensional blocking
• 3D blocking – maximize re-use of both matrix B and C

• Rank blocking
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Make sure
this fits in the 
LLC

X1A1
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We use n-D blocking (intuitive) and rank blocking (less intuitive)

• Multi-dimensional blocking
• 3D blocking – maximize re-use of both matrix B and C

• Rank blocking
• Agnostic to tensor sparsity

• Very little change to the code required
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Make sure
this fits in the 
LLC

Increase the
chance of
finding rows
in cache



Rank blocking visualized…
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Rank blocking visualized…
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Performance Summary

Data set Dimensions nnz Sparsity # fibers Speedup

Poisson1 256×256×256 1.5M 8.8e-2 54K 3.1x

Poisson2 2K×16K×2K 121M 1.9e-3 2.5M 2.5×

Poisson3 2K×16K×2K 6.4M 1.0e-4 830K 2.0×

Netflix 480K×18K×80 80M 1.2e-4 5M 2.1×

NELL-2 12K×9K×29K 77M 2.4e-5 21M 2.2×
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Register blocking yields large speedups for small data sets
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Poisson 2 – sparsity = 1.9e-3



Poisson 3 – sparsity = 1.0e-4



Netflix – sparsity = 1.2e-4



NELL – sparsity = 2.4e-5
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Distributed rank blocking shows better scalability

Nodes

NELL2

SPLATT 3D grid 3D time 4D grid 4D time

1 1.028 1x1x2 0.718 1x1x1x2 0.826

2 0.54 1x1x4 0.367 1x1x1x4 0.423

4 0.286 2x1x4 0.208 1x1x1x8 0.217

8 0.138 2x2x4 0.107 1x1x1x16 0.124

16 0.087 2x2x8 0.058 1x1x2x16 0.065

32 0.056 4x2x8 0.043 1x1x4x16 0.034

64 0.03 4x4x8 0.028 2x1x4x16 0.022

Netflix

SPLATT 3D grid 3D time 4D grid 4D time

3.025 2x1x1 1.554 1x1x1x2 1.447

1.158 4x1x1 0.727 1x1x1x4 0.720

0.519 8x1x4 0.403 1x1x1x8 0.401

0.256 16x1x1 0.194 1x1x1x16 0.190

0.113 32x1x1 0.103 1x1x2x16 0.100

0.083 31x2x1 0.056 1x1x4x16 0.055

0.048 64x2x1 0.037 2x1x4x16 0.030
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The take-away from the section

• There was a lack of clear understanding about performance 
bottlenecks in tensor decomposition
• We show that the key computation is LD and memory-bound

• Using various blocking techniques mitigate these bottlenecks

• Our optimizations demonstrate significant speedup over synthetic 
and real-world data for both shared-memory and distributed 
implementations
• We use 3D and rank blocking strategies to achieve up to 3.2x speedup on real 

world-data and 2.0x on synthetic



Future Work

• Extending this work to do performance modeling
• Correlate tiling/blocking size to cache hit rate

• Take advantage of block structures

• Fiber/slice/cube/etc.  permutation – new storage formats for tensors (a la 
SpMV)
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