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Abstract—A popular technique for tolerating malicious faults
in open distributed systems is to establish small groups of
participants, each of which has a non-faulty majority. These
groups are used as building blocks to design attack-resistant
algorithms.

Despite over a decade of active research, current constructions
require group sizes of O(logn), where n is the number of
participants in the system. This group size is important since
communication and state costs scale polynomially with this
parameter. Given the stubbornness of this logarithmic barrier, a
natural question is whether better bounds are possible.

Here, we consider an attacker that controls a constant frac-
tion of the total computational resources in the system. By
leveraging proof-of-work (PoW), we demonstrate how to reduce
the group size exponentially to O(log logn) while maintaining
strong security guarantees. This reduction in group size yields a
significant improvement in communication and state costs.

I. INTRODUCTION

Byzantine fault tolerance addresses the challenge of per-
forming useful work when participants in the system are
malicious. Participants, or identifiers (IDs) in the system,
may be malicious; these malicious IDs can discard or corrupt
information that is routed through them or stored on them.

A popular technique for overcoming these challenges is to
arrange IDs into sets called groups,1 where each has a non-
faulty majority. We can then ensure the following:

• Secure routing is possible. For groups G1 and G2 along
a route, all members of G1 transmit messages to all
members of G2. This all-to-all exchange, followed by
majority filtering by each non-faulty ID in G2, guarantees
correctness of communication between groups despite
malicious IDs.

• Computation is performed by all members of a group via
protocols for Byzantine agreement (BA) [28], or more
general secure multiparty computation [49], to guarantee
that tasks execute correctly. In this way, each group sim-
ulates a reliable processor upon which jobs can be run.

The use of groups provides a scalable approach to designing
an attack-resistant distributed system, by avoiding the need to
have all n IDs perform BA in concert.2

1Such sets have appeared under different names in the literature, such as
“swarms” [18], “clusters” [21], and “quorums” [51]. Our choice of “groups”
aligns with pioneering work in this area [7].

2Groups also improve robustness in other ways. Members may agree to
ignore an ID if it misbehaves too often, hence reducing spamming. Data may
also be redundantly stored at multiple group members.

Designing attack-resistant systems using groups has been
an active topic of research for over a decade, with many
results [8]–[10], [12], [18], [21], [23], [26], [27], [37], [39],
[45], [51]. Yet, despite this progress, an enduring requirement
is that each group contains O(log n) members; that is, the
group size grows logarithmically in n.

Why does this logarithmic size matter? At first glance, it
is an unlikely bottleneck. However, since groups are building
blocks for the system, their size, |G|, impacts costs:

(i) Cost of Group Communication. Group members must of-
ten act in concert; for example, executing distributed key
generation [51], or generating random numbers [8], [18].
Such protocols require messages be exchanged between
all members. We label this as group communication and
it has Θ(|G|2) message cost.

(ii) Cost of Secure Routing. Routing via all-to-all exchange
between two groups incurs Ω(|G|2) message complexity.
Given a route of length D, communication between any
two groups requires O(D|G|2) messages.3

(iii) Cost of State Maintenance. Each ID w must maintain
state on its neighbors; this includes both the members of
all groups to which w belongs and the members of neigh-
boring groups. This requires storing link information, as
well as periodically testing links for liveness.4

In each case above, reducing |G| would directly reduce cost.
Unfortunately, in prior results, |G| ≈ log n is key to ensuring
that all groups have a non-faulty majority with high probability
(w.h.p.).5 Without this property, all previous group construc-
tions succumb to adversarial attack. A natural question is:
Are there new ideas that allow us to decrease |G| while
maintaining strong security guarantees?

In response, we consider an attacker that controls a constant
fraction of the total computational resources in the system.
By employing proof-of-work (PoW), we obtain our main
result: Group size can be reduced exponentially while still
allowing routing in all but a vanishingly small portion (an
o(1)-fraction) of the network.

3Improvements are possible, but they come with caveats. Results in [18],
[45] lower the cost to O(D|G|) in expectation but require a non-trivial
(expander-like) construction, and [51] further reduces this to O(D) in
expectation but with a poly(|G|) message cost each time routing tables are
updated which is expensive even with moderate churn.

4Constructions in [18], [39] have each ID belonging to η > 1 groups for a
state overhead of Ω(|G|η). Also, if each group links to ∆ neighboring groups,
then O(|G|∆) links must be maintained; typically, ∆ = O(logn).

5With probability at least 1− 1/nc
′

for a tunable constant c′ ≥ 1.

1

ar
X

iv
:1

70
5.

10
38

7v
5 

 [
cs

.D
S]

  9
 J

an
 2

01
8



A. Defining ε-Robustness

Consider a system of n IDs and n groups, where a β-
fraction of IDs are malicious; such IDs may deviate arbitrarily
from any prescribed protocol to derail operations in the
network. The following defines our notion of ε-robustness:
For a small ε > 0, at least (1− ε)n groups have a non-faulty
majority and can securely route messages to each other.
The parameter β is a sufficiently small positive constant less
than 1/2, and ε = o(1). We consider the following questions:
Is this a useful concept? Consider decentralized storage
and retrieval of data. This definition guarantees all but an ε-
fraction of data is reachable and maintained reliably. Example
applications include distributed databases, name services, and
content-sharing networks. Alternatively, consider n jobs in an
open computing platform that are run on individual machines.
This definition guarantees that all but an ε-fraction of those
jobs can be correctly computed.6

Is satisfying this definition trivial? Given Θ(n) non-faulty
IDs, this definition characterizes simulating (1 − ε)n reliable
processors and the ability to route information between them.
If we ignore the use of groups or, equivalently, consider groups
each consisting of a single ID, then we trivially have (1−β)n
reliable processors, but routing between them is challenging.
For example, establishing links between all pairs of IDs will
give secure routing, but this is hardly scalable.
Do previous solutions solve this problem? Prior results using
groups are subsumed by this definition and they address ε =
1/poly(n). In this case, routing is possible – albeit, costly –
because w.h.p. all groups have a non-faulty majority.

To reduce cost, we consider ε = 1/poly(logn). We show
how this allows us to reduce the group size exponentially, but
at the price of having a small fraction of the groups with a
majority of malicious IDs.

B. Related Work

Tolerating Byzantine Faults via Groups. The use of groups
for building attack-resistant distributed systems has received
significant attention, and all address the case of ε = 1/poly(n).

Early results obtain a poly(log n) factor increase in costs,
assuming constraints on the amount of system dynamism [7],
[17], [18], [23], [38].

Full dynamism was achieved by Awerbuch and Scheideler
in a series of breakthrough results [8]–[10]; they propose a
cuckoo rule that w.h.p. preserves a non-faulty majority in
all groups over nΘ(1) joins/departures when the system size
remains Θ(n). More recently, Guerraoui et al. [21] give similar
guarantees when the system size can vary polynomially.

Simulations of the cuckoo rule are conducted in [47]. The
trade-off between group size and security is examined, and
findings suggest that |G| must be fairly large. For n = 8, 192
(the largest size examined) and β ≈ 0.002, |G| = 64 preserves
a non-faulty majority in each group for 105 joins/departures;
β ≈ 0.07 is possible with suggested improvements in [47].

6While this may not be sufficient for general computation, it is valuable for
tasks where an o(1) error rate or bias can be tolerated; for example, obtaining
statistics on a group of machines to measure network performance.

Several results have focused on reducing communication
costs when the good majority of all groups is guaranteed via an
algorithm like the cuckoo rule [45], [51]. Here too, group size
impacts performance and |G| = 30 incurs significant latency
in PlanetLab experiments [51]. Groups have also been used in
conjunction with quarantining malicious IDs [27], [43] with
limited churn.

Finally, we observe that none of these results explicitly uses
PoW, with the possible exception of [7], where computational
challenges or Turing tests are briefly discussed as a means for
throttling the join rate of Byzantine IDs. These prior results
assume a model where the fraction of Byzantine IDs is always
limited to strictly less than 1/2. In contrast, the use of PoW
provides a plausible mechanism by which to enforce this limit
(see below for more discussion).
Attack-Resistance Without Groups. Other distributed con-
structions exist that do not explicitly use groups [13], [17],
[44]. However, the associated techniques retain some form of
O(log n) redundancy with regards to data placement or route
selection and, therefore, incur the typical poly(log n) cost.

In [12], [26], [37], malicious faults are tolerated by routing
along multiple diverse routes. However, it is unclear that these
systems can provide theoretical guarantees on robustness.

Byzantine resistance when O(
√
n/poly(log n)) IDs may

depart and join per time step is examined in [2], [3].7 In
this challenging model, (roughly) O(

√
n) Byzantine IDs can

be tolerated. Our result addresses more moderate churn while
tolerating Θ(n) Byzantine IDs.

Central authorities (CAs) have been used in prior results
[12], [42] to achieve robustness. While our results can be used
in conjunction with a CA, it is not always plausible to assume
such an authority is available and immune to attack. For this
reason, our work does not depend on a CA.
Computational Puzzles. Proof-of-work (PoW) via computa-
tional puzzles has been used to mitigate the Sybil attack [14],
whereby an adversary overwhelms a system with a large
number of malicious IDs. We note that such PoW schemes
have been proposed in decentralized settings; for examples,
see [22], [30]. However, such PoW schemes only limit the
number of Sybil IDs — typically commensurate with the
amount of computational power available to the adversary —
and the problem of tolerating these adversarial IDs must still
be addressed by other means; for examples, see [46], [52].

A prominent example of using PoW to provide security
is Bitcoin [36]. However, note that analyses of Bitcoin and
related systems typically assume a communication primitive
that allows an ID to disseminate a value to all other IDs
within a known bounded constant amount of time despite
an adversary [20], [31], [33]. In contrast, our results do not
assume the existence of such a primitive.

We note that PoW imposes a computational overhead
on the system participants. Nonetheless, examples such as
Bitcoin and emerging blockchain technologies (for example,
Ethereum [16]) illustrate the success of PoW in practice, and
exemplify that computational overhead from PoW may be
tolerable given the security guarantees received in exchange.

7High churn without Byzantine fault tolerance is considered in [1], [4], [5].
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C. Our Model and Preliminaries
We consider a system of n IDs. An ID is good if it obeys the
protocol; otherwise, the ID is Byzantine or bad.

The Adversary. We assume that our adversary controls a β-
fraction of the computational power in the network, where
β is a sufficiently small positive constant less than 1/2.8

This is a common assumption when using PoW to design
attack-resistant, open systems [22], [30], [41]. For simplicity,
throughout Sections II and III, we assume there is always at
most a β fraction of bad IDs. In Section IV, this assumption
is justified by proving that the adversary is constrained, via
proof-of-work assumptions, to generating (roughly) at most a
β-fraction of IDs at any time.

We assume that a single adversary controls all the bad IDs.
This is a challenging model since a single adversary allows the
bad IDs to perfectly collude and coordinate their attacks. The
adversary also knows the network topology and all message
contents; however, the adversary does not know the random
bits generated locally by any good ID.
Groups. In our system, each group has size Θ(log log n). Each
ID w has its own group Gw and w is referred to as the leader.
A group G is good if (i) d1 ln lnn ≤ |G| ≤ d2 ln lnn for
appropriate constants d1 < d2, and (ii) the number of bad IDs
in G is at most (1 + δ)β|G| for some tunably small constant
δ > 0 depending only on sufficiently large n; otherwise, the
group is bad. Note that groups are not necessarily disjoint; in
addition to being the leader of Gw, ID w may belong to other
groups. Group construction is described in Section III-A.
Input Graph. Our result builds off an input graph H on
N vertices, where each vertex corresponds to an ID.9 Each
ID is a virtual participant, and each ID is represented as a
value in the interval [0, 1) known as the ID space; this is
viewed as a unit ring where moving clockwise along the ring
corresponds to moving from away from 0 towards 1. The
successor of a point x in [0, 1) is the first ID encountered
by moving clockwise from x on the unit ring; this is denoted
by suc(x). Assuming there is no adversary and that IDs are
distributed independently and uniformly at random (u.a.r.) in
[0, 1), the following properties hold for H with probability at
least 1−N−c′ for a tunable constant c′ ≥ 1.

P1 – Search Functionality. There exists a search (or routing)
algorithm that, for any key value in [0, 1), returns contact
information for the ID responsible for the corresponding
resource (i.e., data item, computational job, network printer,
etc.). A search requires traversing D = O(logN) IDs.10

P2 – Load Balancing. A randomly chosen ID is responsible
for at most a (1 + δ′′)/N -fraction of the key values (and
the corresponding resources) for an arbitrarily small δ′′ > 0
depending on sufficiently large N .

8For simplicity in our proofs, we let β be small since we do not try to
optimize this quantity. However, larger values of β are likely possible.

9For clarity, we use N to denote the number of IDs in H, and we use n
for the number of IDs in our attack-resistant construction.

10An ID is “traversed” if the ID lies on the path of search between the
initiator of the search and the ID responsible for the resource being sought.
For more discussion, please see our online version [24], Appendix VI.

P3 – Linking Rules. Each ID w links to IDs in a set of
neighbors Sw; |Sw| = O(logγ n) for some constant γ > 0.
Any ID may determine the elements in Sw by performing
searches.11

There are also O(poly(log n)) IDs each of which has w
in its respective set of neighbors. Again, any ID may verify
this by performing searches. The number of links on which
ID w is incident is the degree of w, and every ID has the
same degree asymptotically.
P4 – Congestion Bound. The congestion is C = O(logc n/n)
for a constant c ≥ 0, where congestion is the maximum
probability (over all IDs) that a ID is traversed in a search
initiated at a randomly chosen ID for a randomly chosen
point in [0, 1).

We emphasize that H is not assumed to provide any security
or performance guarantees if there are bad IDs present.
Rather, any such H provides a viable topology that, using
our result, can be made to tolerate bad IDs. Note that
many constructions for H exist such as Chord [48], the
distance-halving construction [39], Viceroy [32], Chord++ [6],
D2B [19], FISSIONE [29], and Tapestry [53].

IDs and PoW in Our Construction. An ID is a virtual
participant in the network, and each ID is represented as a
value in [0, 1) in our construction. Note that adequate precision
is obtained using O(log n) bits. Important properties that our
system guarantees are:
• IDs expire after a period of time that can be set by the

system designers.
• A claim to own an ID can be verified by any good ID.
• The adversary possesses (roughly) at most βn IDs, and

these IDs are u.a.r. from the ID space [0, 1).
We emphasize that our construction does not take these
properties for granted; rather they are enforced via a PoW
scheme. However, given space constraints and that the bulk
of our results are proved without the need to reference these
details, we will assume these properties in Sections II and III.
We remove these assumptions in Section IV.

We make the random oracle assumption [11]: there exist
hash functions, h, such that h(x) is uniformly distributed over
h’s range, when any x in the domain of h is input to h
for the first time. We assume that both the input and output
domains are the real numbers [0, 1). In practice, h may be a
cryptographic hash function, such as SHA-2 [40], with inputs
and outputs of sufficiently large bit lengths.

Joins and Departures. Our work addresses a dynamic system
where IDs may join and depart. We delay our description of
this aspect until Section III.

We use the following concentration results.

Theorem 1. (Chernoff Bounds [35]) Let X1, . . . ,XN be
independent indicator random variables such that Pr(Xi) = p

11For example, in Chord [48], w’s neighbors are (1) the ID counter-
clockwise and the ID clockwise to w on the unit ring, and (2) the respective
successors of points w + ∆(i), where ∆(i) is an exponentially increasing
distance in the ID space for i = 1, ...,O(lgN). Any ID may verify that u is
a neighbor of w via a search on w+ ∆(i) and checking that the result is u.
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and let X =
∑N
i=1Xi. For any δ, where 0 < δ < 1, the

following holds:

Pr(X > (1 + δ)E[X]) ≤ e−δ
2 E[X]/3

Pr(X < (1− δ)E[X]) ≤ e−δ
2 E[X]/2

Theorem 2. (Method of Bounded Differences, Corollary 5.2
in [15]) Let f be a function of the variables X1, ...,XN such
that for any b, b′ it holds that |f(X1, ...,Xi = b, ...,XN ) −
f(X1, ...,Xi = b′, ...,XN )| ≤ ci for i = 1, ...,N . Then, the
following holds:

Pr(f > E[f ] + t) ≤ e−2t2/(
∑

i c
2
i )

Pr(f < E[f ]− t) ≤ e−2t2/(
∑

i c
2
i )

Finally, all of our results hold given that n is sufficiently large;
we assume this throughout.
D. Overview and Our Main Result

As discussed above, reducing group size is desirable, but
gives rise to the possibility of bad groups. In Section II,
we demonstrate how to achieve 1/poly(log n)-robustness with
groups of size Θ(log log n) when there is no churn. This
argument leverages the bound on congestion given by the input
graph, along with a careful tallying of the fraction of ID space
that cannot be securely searched.

This result is applied in Section III where we show that
O(1/poly(log n))-robustness can be maintained with churn.
A key component of our construction is the use of two graphs
(composed of groups) that, when used in tandem, limit the
number of bad groups that can be formed.

Finally, in Section IV, we describe how PoW is used to
provide the guarantees on IDs discussed in Subsection I-C. The
main challenge is defending against an adversary that wishes
to store a large number of IDs for use in a massive future
attack (i.e., a pre-computation attack).

Our main result is the following:

Theorem 3. Assume an input graph H that satisfies P1 -
P4, and that the adversary has at most a β-fraction of the
computational power, for some sufficiently small but positive
constant β. Then our construction using |G| = O(log log n)
provides the following guarantees w.h.p. over a polynomial
number of join and departure events.
• All but an O(1/poly(log n))-fraction of groups are good.
• All but an O(1/poly(log n))-fraction of IDs can success-

fully search for all but an O(1/poly(log n))-fraction of the
resources.

That is, we achieve O(1/poly(log n))-robustness.

To illustrate our cost improvements, we also establish:

Corollary 1. Using any of the constructions in [19], [32],
or [39] as an input graph H, our result gives the following
bounds on cost.
• Group communication incurs O(poly(log log n)) messages.
• Secure routing incurs O(D poly(log log n)) messages.
• State maintenance is expected O(poly(log log n)) per ID.

Note that these are substantial improvements over the costs
described in Section I.

Can we do better? We offer some intuition for why
significantly improving on our result seems unlikely. With
|G| = Θ(log log n), the probability of a bad group is roughly
1/poly(log n). All constructions with o(log n) degree requires
D = ω(log n/ log log n) IDs to be traversed in a search. Thus,
the probability of encountering a bad group along the path
of search is (roughly) at most

∑D
1 1/poly(log n) by a union

bound, and this can be less than 1.
Now, consider a smaller group size of

o(log log n/ log log log n). Then, the probability of a
bad group is ω(log log n/ log n), and over D IDs traversed,
a union bound no longer bounds the probability of a failed
search by less than 1.

In this sense, our choice of |G| appears to be pushing the
limits of what is possible when using groups to design attack-
resistant systems.

II. THE STATIC CASE

We first prove a result for searches without dealing with ID
joins and departures.

A. The Group Graph

Given an input graph H, our ε-robust construction is a
group graph G where each ID w in H corresponds to
group Gw.

We refer to each group in G as blue or red. A blue group
corresponds to a good group with its neighbors correctly
established, while a red group corresponds to a bad group or
a group that has an incorrect neighbor set. When addressing
the group graph, we use the notation Gw to denote a vertex
in G; however, Gw may also refer to the group with leader w,
and this will be made clear from the context.

In G, each blue group Gw has a neighbor set, Lw, where for
each u that is a neighbor of w in H , the group Gu exists in Lw;
each red group has an arbitrary neighbor set determined by the
adversary. A search in G proceeds over edges in G as it would
in H with the corresponding group members participating in
the search; this is illustrated in Figure 1. For an edge (Gw, Gv)
between two blue groups in G, there are all-to-all links between
(at least) the good members in Gw and Gv .

The following properties of G are useful for our analysis:

• S1. For each ID v in H , there is a group Gv in G where
the leader v of G has the same ID in both graphs.

• S2. Each group in G is red independently with probability
pf ≤ 1/ logk n for a tunably large constant k > 0
depending only on d1; and blue otherwise.

• S3. Edges incident to blue groups are set according to the
topology of H . All other edges are set by the adversary.

The value of pf in S2 corresponds to the probability that
a group is bad or does not have the correct neighbor set. To
provide intuition for our bound on pf , note that if we select
Θ(log log n) IDs u.a.r., then the probability that a majority
are bad is O(1/poly(log n)) by a Chernoff bound. A similar
bound can be derived on the probability of incorrectly setting
up neighbors; there is a subtlety with respect to bounding this

4



Fig. 1: Left: An input graph H with IDs w,u, v, and y. Illustrated is a
search initiated at w and terminating at y; this search also traverses u
and v. Right: A group graph with corresponding groups Gw,Gu,Gv,
and Gy . Red groups are marked with a “B”. Large dashed arrows
represent all-to-all links between (at least) good members of the
corresponding groups.

probability, and this is discussed in our online version [24],
Appendix X. Keeping pf upper bounded by 1/ logk n when
IDs can join and depart is non-trivial. We show how to do this
in Section III-B.

Since the adversary controls all red groups, it is free to
insert or delete edges between red groups (cf. S3). However,
edges involving at least one blue group are not modified.
This is because the adversary cannot modify a good group’s
knowledge of who its neighbors are, since that knowledge is
kept consistent by the good majority, although the neighboring
bad group may certainly ignore or corrupt incoming messages
from that good group.

Overview of Analysis. A search in group graph G = (V ,E)
is said to fail if it traverses any red group. Otherwise, the
search will succeed.

In G, consider the path of a search that begins at the initial
group and halts either upon succeeding or encountering the
first red group (in which case the search fails); we call this a
search path.

For any group Gv , we define the responsibility of Gv to
be the probability that a search path in G from a random
group to a random point in [0, 1) traverses Gv . We denote
the responsibility of group Gv by ρ(Gv).

Why is responsibility defined in terms of search paths? The
issue is that responsibility is not well-defined after a search
encounters the first red group since the adversary may redirect
a search to any red group after this point. For example, the
adversary may have the same red group traversed by multiple
different searches, thus arbitrarily inflating the number of
searches that traverse this red group. This motivates the notion
of a search path.

B. Analysis

Lemma 1. The following holds, w.h.p, for any group Gv:
ρ(Gv) = O(logc n/n).

Proof. By property P4, for any vertex v in H, w.h.p. any search
initiated at a random vertex for a random point traverses v with
probability C = O(logc n/n). The corresponding search path
in G terminates either when it is successful or when the first
red group is encountered; therefore, the search path is always

a subpath of the corresponding path of a search in H. Also,
note that any extra edges added between red groups in the
G (due to S3) do not affect how the search path proceeds
given that the search path terminates at the first red group.
Consequently, w.h.p., the corresponding group Gv is traversed
with probability O(logc n/n).

LetX be a random variable that is the probability that a search
that begins at a randomly-chosen group for a random point in
[0, 1) fails. The randomness of X depends on which groups
are red.

Lemma 2. With high probability, E(X) = O(pf logc n).

Proof. For any group Gv , let the random variable Xv = ρ(Gv)
if Gv is red, and 0 otherwise. By the definition of X , it
is the case that X ≤

∑
vXv . By linearity of expectation,

E(
∑
vXv) =

∑
v E(Xv). Then, by Lemma 1, and the

fact that each group is red with probability at most pf ,∑
v E(Xv) = O(pf logc n).

Lemma 3. With high probability, X = O(pf logc n).

Proof. For any group Gv , let Xv = ρ(Gv) if Gv is red, and
0 otherwise. We will bound

∑
vXv , which we again note is

always at least as large as X . Let f(X1, ...,Xn) =
∑
vXv ,

where we index the groups by 1 to n. By Lemma 1, for any
Xi, |f(...,Xi = x, ...) − f(...,Xi = x′, ...)| = O(logc n/n).
Thus, we can apply Theorem 2 with c2i = O(log2c n/n2) for
all 1 ≤ i ≤ n. We have that:

Pr(|X − E(X)| ≥ λ) ≤ e−2λ2n/(d log2c n)

for some constant d > 0. Let ε > 0 be an arbitrarily small
constant, and set λ = εpf logc n, which is at least ε/ logk−c n,
by S2. Then, we have:

Pr(|X − E(X)| ≥ λ) ≤ e−2ε2n/(log2k n)

By Lemma 2, w.h.p, E(X) ≤ d′pf logc n for some constant
d′ > 0, which gives the result.

Lemma 4. With high probability, any search from a random
group to a random point in [0, 1) succeeds with probability
1−O(1/ logk−c n).

Proof. By Lemma 3, for n sufficiently large, w.h.p. X =
O(pf logc n) = O(1/ logk−c n), given that pf ≤ 1/ logk n
by S2.

III. THE DYNAMIC CASE

We now consider the case where IDs can join and depart. We
still make the assumptions about IDs described in Section I-C.
Time is divided into disjoint consecutive windows of T steps
called epochs indexed by j ≥ 1.
Model of Joins and Departures. We assume that n IDs
are always present even under churn; that is, when an ID
departs, another is assumed to join; this is a popular model
considered in much of the previous literature on tolerating
Θ(n) Byzantine faults; for example, [7]–[10], [13], [17], [18],
[23], [38]. Additionally, our results hold when the system size
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is Θ(n) – that is, the size changes by a constant factor – but
we omit these details in this extended abstract.

Recall that a good group G contains at most a (1 + δ)β-
fraction of bad IDs where β > 0 is a sufficiently small
constant, and δ > 0 is a tunably small constant depending
only on sufficiently large n. We assume the following: in
any epoch, at most an (ε′/2)-fraction of good IDs depart any
group, where ε′ = 1 − 2(1 + δ)β. This value of ε′ ensures
that a good group retains a good majority over its lifetime.
For ease of exposition in our analysis of the dynamic case,
we revise our definition of a good group to be: a group G
that begins with size d1 ln lnn ≤ |G| ≤ d2 ln lnn and with
at most a (1 + δ)β-fraction of bad IDs, and retains a good
majority. In practice, the length of an epoch, T , may be set
appropriately by the system designers based on the expected
rate of departures, and the value of ε′ can be increased by
increasing d1.
Algorithmic Overview. In any epoch j, there are:
• two old group graphs Gj−1

1 and Gj−1
2 , each with n IDs.

• two new group graphs Gj1 and Gj2 , each with ≤ n IDs.
We emphasize that the use of two group graphs per epoch

is critical. A naive approach is to use a single group graph in
the current epoch in order to build a new group graph in the
next epoch. However, this approach will fail because errors
from bad groups will accumulate over time. Below we give
some intuition for why.

Informally, in epoch j, we have a process where (1) bad
groups build new bad groups, and (2) good groups build bad
groups with some failure probability pjf > 0 that depends
on the current number of bad groups. Therefore, in the next
epoch j + 1, the population of bad groups has increased and
so has pj+1

f . Left unchecked, this increasing error probability
will surpass the desired value of 1/ logk n. By using two
group graphs, we can upper bound pjf by this value.

The new group graphs are built using the old group graphs
over the n deletions and additions that occur in the current
epoch j; we describe this in Subsection III-A. By the end of
epoch j, the old group graphs Gj−1

1 and Gj−1
2 are no longer

needed, and the new ones Gj1 and Gj2 are complete.

A. Building New Group Graphs

We describe how the new group graphs Gj1 and Gj2 are
created. We assume the correctness of two initial group graphs
G0

1 and G0
2 with neighbor sets for blue groups correctly estab-

lished. This aligns with prior literature in the area and more
discussion is given in our online version [24] in Appendix X.
Later, in Section III-B, we prove that w.h.p. this construction
preserves ε-robustness.

Preliminaries. Assume the system is in epoch j ≥ 1. Each
good ID v already in the system uses the same ID in both
Gj−1

1 and Gj−1
2 .

Any ID (already participating in the system or a newcomer)
that wishes to participate in the next epoch j + 1 must begin
generating an ID by the halfway point of the current epoch j.
Generating this ID requires an expenditure of computational
power as described in Section IV.

Recall from Section I-C that IDs expire after a tunable
period of time. Upon creation, the new ID will be active
throughout epoch j + 1 allowing v to initiate searches via Gv
and for v to be added to other groups. When v’s ID expires, the
group Gv (this includes v) should remain in both old graphs
for an additional T steps. During these steps, Gv will forward
communications, but v cannot initiate searches using Gv , nor
can v be added to new groups; we say that v’s ID is passive.

For any group Gv , if the leader v departs the system, Gv
remains. That is, the members of Gv still persist as a the group
Gv in their respective active or passive states. We discuss
departures further below in the context of updating links.

IDs are assumed to know when the system came online (i.e.
step 0).12 Since T is set when the system is designed, any ID
that wishes to join knows when the current epoch ends and
the next one begins. Some synchronization between devices is
implicit. In practice, this is rarely a problem given the near-
ubiquitous Internet access (see the Network Time Protocol
[34]) available to users.

A new ID joins the new group graph by a bootstrapping
group denoted by Gboot.13 Throughout, we assume that a
joining ID knows a good bootstrapping group; we discuss this
further in our online version [24] in Appendix IX.

Making a Group-Membership Request. In epoch j,
group graphs Gj1 and Gj2 are built using searches in Gj−1

1 and
Gj−1

2 . An ID w uses the same ID in Gj1 and Gj2 .
Gw is added to Gj1 as follows. The ith member of Gw is

suc(h1(w, i)) (recall the notation in Section I-C) in the old
group graphs for i = 1, ..., d2 ln lnn where h1 is a secure
hash function and d2 is defined with respect to group size
in Section I-C. That is, in both Gj−1

1 and Gj−1
2 , a search

for each successor of h1(w, i) is performed; this is executed
by the bootstrapping group and suc(h1(w, i)) is solicited for
membership in Gw. Note that if different IDs are returned by
the two searches, the successor to h1(w, i) is selected.

How is ln lnn estimated? A standard technique for esti-
mating lnn to within a constant factor is as follows. For
u.a.r. IDs, the distance d(u, v) between any two IDs u and
v satisfies α′′

n2 ≤ d(u, v) ≤ α′ lnn
n w.h.p., depending only on

sufficiently large positive constants α′,α′′ Therefore, w.h.p.
ln ln( 1

d(u,v) ) = ln ln(n) + O(1); this approach works even
when an adversary decides to omit some (or all) of its IDs
(see Chapter 4 in [50]), which is considered in Section III-B.

During epoch j, all IDs in Gj−1
1 and Gj−1

2 are active —
and will remain in a passive state over the next epoch j + 1
— and so can be used as members for new groups in Gj1 .

Finally, a similar process occurs to build Gw in Gj2 , except
that a different secure hash function, h2, is used. That is, a
search for the successors of h2(w, i) occurs in both Gj−1

1 and
Gj−1

2 . Note that the membership of Gw is likely different in
each group graph.

12This is a fixed parameter included as part of the application, along with
T , the hash functions, and various constants.

13As with much of the literature, we do not address concurrency. Since a
join or departure requires updating only poly(logn) links in a group graph,
we assume that there is sufficient time between events to do so.
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Making a Neighbor Request. If w and u are neighbors in
the input graph, then Gw and Gu should be neighbors in the
group graph; recall that this entails all-to-all links between
the good members of both groups. To set up the neighbors
of Gw, Gboot performs a search on behalf of w to locate each
such neighbor u in both old group graphs (again, favoring
the successor if the results differ). In this way, Gboot allows u
(and Gu) to learn about w and agree to set up a link in the
respective group graph.

Verifying Requests. The adversary may attempt to have many
good IDs join as neighbors or members of a bad group.
This attack is problematic since good IDs will have resources
consumed by maintaining too many neighbors or joining too
many groups; this increases the state cost (see Section I). To
prevent this attack, any such request must be verified:
Verifying a Group-Membership Request. When ID u in Gj−1

1

is asked to become a member of group Gw in Gj1 , ID u must
verify that this request aligns with the linking rules; recall that
this is assumed possible by property P3 of the input graph.

To do this verification, u performs a search on h1(w, i) in
both group graphs Gj−1

1 and Gj−1
2 . If either returns u, then the

request is considered verified and u becomes a neighbor of w;
otherwise, the request is rejected. Note that u may erroneously
reject a membership request; the impact on establishing good
groups is addressed in Lemma 7. Conversely, u may erro-
neously accept a membership request, the impact of this on
expected state cost is addressed in Lemma 10.
Verifying a Neighbor Request. An ID u that is asked to become
a neighbor of ID w, and thus establish links between the
members of Gu and Gw, must also verify this request. Similar
to a group-membership request, u will determine via a search
in Gj−1

1 and Gj−1
2 whether u should indeed be a neighbor of

w. If either search returns u, then the request is verified and u
becomes a neighbor of w; otherwise, the request is rejected.

Note that u may erroneously reject a neighbor request; this
is addressed in Lemma 8. Also, u may erroneously accept
a request; the impact on expected state cost is addressed in
Lemma 10.
Performing a Search. Throughout epoch j, each new ID w
performs searches only in the old group graphs Gj−1

1 and
Gj−1

2 . Searches are performed by forwarding the request to
Gboot, and executing the search from that position. Since Gboot

was active when w joined, then Gboot should remain – even if
in a passive state – to facilitate searches for another T steps.

Over the duration of epoch j, a group Gw may not be able to
reliably perform searches in the new group graphs Gj1 and Gj2
since they are still under construction. For example, w might
be the first ID to join Gj1 and Gj2 . Once epoch j + 1 starts,
the new group graphs Gj1 and Gj2 are to be used. At this point,
group Gw will initiate any search using its own links in these
graphs, rather than relying on Gboot which may no longer be
present in the system.
Updating Links. When a new ID (and its corresponding
group) is added to the group graphs Gj1 and Gj2 that are under
construction, a group Gw must update its neighbor links in
Gj1 and Gj2 if this new ID is a better match as a neighbor

under the linking rules. This update is done via searches by a
bootstrapping group in the old group graphs Gj−1

1 and Gj−1
2 .

Conversely, if Gw links to some group Gv whose members
all depart — note that Gv must consist entirely of bad IDs
given our model of churn — then Gw treats that link as null
(until perhaps a join operation requires an update).14

Groups in the old group graphs Gj−1
1 and Gj−1

2 do not
update links. For an old group graph, if all members of Gv
depart, Gw treats that link as null until the group graph expires.

B. Analysis
In this section, we analyze the construction of new

group graphs. Due to space constraints, some of our proofs
are provided in our online version [24] in Appendix VII.

Properties P1-P4 of input graph H play an important role
in the design of the corresponding group graph. However, a
prerequisite to these properties is that all IDs are selected
uniformly at random (see Section I-C), which is untrue if
the adversary chooses to add only some of its bad IDs; for
example, maybe only bad IDs in [0, 1

2 ) are added by the
adversary. Intuitively, this should not interfere with any of the
properties; we now formalize this intuition.

In the following, we consider H′ to be a modified input
graph which uses the same construction as H, but is subject
to an adversary that only includes a subset of its IDs, from a
larger set of u.a.r. IDs. We note that H′ is not necessarily a
subgraph of H; the omission of bad IDs can result in a different
topology.

Lemma 5. Consider a graph H′, where the IDs are formed
from two sets:
• N1 consists of at least (1 − β)n IDs selected u.a.r. from

[0, 1).
• N2 is an arbitrary subset of at most βn IDs selected u.a.r.

from [0, 1).
W.h.p., under the same construction as the input graph H,
graph H′ has properties P1 - P4.

Throughout, the above result is assumed — that properties
P1-P4 continue to hold if the adversary includes only a subset
of its IDs — even if we do not always make it explicit. For ex-
ample, P1 is important throughout our arguments/construction,
P2 is used in Lemma 6, P4 in Lemma 9, and P3 in Lemma 10.

As described above, for an ID u, there are searches on
random key values, via hashing under the random oracle
assumption, in order to find members for group Gu. But if a
key value maps to a bad ID, then this results in a bad member
added to the group. We can bound the probability of this event
as follows.

Lemma 6. W.h.p. a random key value in an old group graph
maps to a bad ID with probability at most (1 + δ′′)β for
an arbitrarily small constant δ′′ > 0 depending only on
sufficiently large n.

Let qf = O(1/ logk−c n) be the probability that a search
for a random key in an old group graph fails; recall Lemma 4.

14In practice, neighbors will periodically ping each other in order to check
that neighbors are still alive.
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Lemma 7. Each group in a new group graph is bad with
probability at most O(q2

fd2 log log n+1/ logd
′
n) for a tunable

constant d′ > 0 depending on d2.

Proof. For a new ID w, there are two ways in which a search
for a member of Gw may result in a bad ID. First, a search
for a group member may fail; that is, the search encounters
a bad group. Given a point h1(w, i), the probability that both
searches in the old group graphs fail is at most q2

f . By a union
bound, the probability of such a dual failure occurring over
d2 ln lnn searches is O(q2

f d2 log log n).
Second, the search succeeds but returns suc(h(w, i)) where

suc(h(w, i)) is a bad ID, even though its group is good. By
the random oracle assumption, h(w, i) is a random point.
Thus, this event occurs with probability at most (1 + δ′′)β
by Lemma 6, for an arbitrarily small constant δ′′ > 0 given
sufficiently large n. Over d2 ln lnn searches, the expected
number of such events is at most (1 + δ′)βd2 ln lnn. The
probability of exceeding this expectation by more than a small
constant factor (and adding too many bad IDs) is O(1/ logd

′
n)

by a Chernoff bound, where the constant d′ > 0 is tunable
depending only on sufficiently large d2.

Finally, the ID being asked to join may reject the request.
This occurs if both searches used to verify the request fail.
By a union bound, this happens with probability at most
O(q2

f d2 log log n).

A blue group Gw should link to all groups in the neighbor
set Lw. Recall that |Lw| = O(logγ n) for some constant γ >
0. If Gw (1) links to any group not in Lw, or (2) fails to
link to any group in Lw, then Gw is said to be confused. We
can bound the probability of a confused group; the proof is
provided in our online version [24] in Appendix VII.

Lemma 8. Each group in a new group graph is confused
independently with probability at most O(q2

f logγ n).

We now prove that w.h.p. each new group graph is ε-robust.

Lemma 9. Assume the old group graphs are ε-robust and that
the adversary has at most βn u.a.r. IDs. Then, for k ≥ 2c+γ,
w.h.p., each new group graph is ε-robust.

Proof. In our analysis, a group that is bad or confused is a red
group; otherwise, the group is good and not confused, and this
a blue group. To show ε-robustness of the new group graph,
we prove that the probability of creating a red group in the new
group graph is at most pf ≤ 1/ logk n for a tunable constant
k > 0. By Lemmas 7 and 8, each group is red independently
with probability at most:

≤ O
(
q2f log

γ n
)
+O

(
q2fd2 log logn+ 1/ logd

′
n
)

≤ O

(
log log n

log2(k−c)−γ n
+

1

logd
′
n

)
≤ 1

logk n

The last line follows by setting d2 to be sufficiently large
such that d′ exceeds k. Note that d2 is fixed at the beginning
and never needs to be changed throughout the lifetime of
the network. Then, setting k > 2c + γ to be a sufficiently
large constant yields the necessary value of pf to establish
the inequality.

This implies that all but an o(1)-fraction of groups are good
and not confused. Furthermore, once we have this bound on
pf , the remaining proof is equivalent to that of Lemma 4.

The next lemma bounds the amount of state a good ID
maintains due to (1) membership in groups, and (2) being a
neighbor of a group. This is done by analyzing the verification
process described in Section III-A; see [24] for the proof.

Lemma 10. In expectation, each good ID w in a group graph
is a member of O(log log n) groups and maintains state on
O(|Lw|) groups that are either neighbors or have w as a
neighbor.

We can now prove Theorem 3.
Proof. Lemma 9 guarantees w.h.p. that in the new
group graphs, all but a 1/poly(log n)-fraction of groups are
good, and all but a 1/poly(log n)-fraction of IDs can search
for all but a 1/poly(log n)-fraction of the resources.

Given that groups have size O(log log n), it follows that
group communication incurs O((log logn)2) messages. Recall
that secure routing proceeds via all-to-all communication
between members of groups and that searches have maximum
length D (P1 in Section I-C). Thus, the message complexity
is O(D(log log n)2).

To bound the expected state cost, we invoke Lemma 10.
Each good ID w belongs to O(log log n) groups in expectation.
This implies O((log log n)2) expected state cost to keep track
of the members of these groups.

In terms of links to and from other groups, w maintains
state on O(|Lw|) groups in expectation. The constructions for
H defined in [39], [19], or [32] provide the properties P1-P4,
but with a bound of O(1) expected degree. Using any of these
constructions, the state cost incurred by these neighboring
groups is O(log log n) in expectation. Thus, the total expected
state cost is O((log log n)2)+O(log log n) = O((log log n)2).
Corollary 1 follows immediately.

IV. COMPUTATIONAL PUZZLES

Up to this point, we have assumed that the adversary can
inject into each new group graph at most βn bad IDs with u.a.r.
values, and that these IDs can be verified and forced to expire
after a period of time; recall our discussion in Section I-C.
We now remove these assumptions. Given space constraints,
we limit our discussion to the main ideas of how to use
computational puzzles to guarantee these properties.

A. Generating an ID
All participants are assumed to know two secure hash

functions, f and g, with range and domain [0, 1) and that
both hash functions satisfy the random oracle assumption.

In the current epoch i, ID w is assumed to possess
a “globally-known” random string ri−1 of ` lnn bits. By
“globally-known”, we mean known to all good IDs except the
1/poly(log n)-fraction from our earlier analysis. We motivate
ri−1 and describe how it is generated in Subsection IV-B.

Starting at step T/2 in the current epoch, each good ID
begins generating a new ID for use in the next epoch, as
described below.
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Description of ID Generation. To generate an ID, a good ID
w selects a value σw of ` lnn random bits (matching the length
of ri−1). Then, w XORs these two strings to get σw ⊕ ri−1,
and checks if g(σw ⊕ ri−1) ≤ τ ; if so, then f(g(σw ⊕ ri−1))
is a valid ID. We assume the value τ is set small enough
such that w.h.p. (1 ± ε)T/2 steps are required to find a σw
that satisfies this inequality, where ε > 0 is a tunable (small)
positive constant and T > 0 is a parameter set when the system
is initialized.

The value of T can be large to amortize the cost of forcing
IDs to depart (and possibly rejoin) over a long period of time;
for example, T > n, since new group graphs are being built
over T steps. Given an application domain, designers may
estimate the rate of churn for their application and set a (loose)
upper bound on n, then they can set T accordingly.

Why Use Two Hash Functions? Consider using a single
secure hash function f to assign IDs; that is, if g(x) < τ ,
then x is a valid ID. Then, for example, the adversary may
restrict itself to small inputs x in order to confine its solutions
to yielding small IDs. In other words, the IDs obtained by the
adversary will not be u.a.r. from [0, 1). This can be solved via
composing two secure hash functions, f and g, as described
above. See [24] for the proof of the following:

Lemma 11. W.h.p., the adversary generates at most (1+ε)βn
IDs over (1± ε)(T/2) steps and these IDs are u.a.r. in [0, 1).

We note that Lemma 11 implies that the adversary might be
able to generate up to 3(1 + ε)βn IDs for use in the next
epoch: computing over the T/2 steps in the last half of the
previous epoch and the T steps prior to the end of the current
epoch. However, we can revise the adversary’s power from β
to β/3, and results in Sections II and III hold. Note that all
such IDs will be invalidated when the next random string is
created.

ID Verification. Upon receiving a message from some ID w,
a good ID u verifies w’s ID. This could be done naively by
having w send σw to u who checks that g(σw ⊕ ri−1) ≤ τ
and that f(g(σw ⊕ ri−1)) evaluates correctly to the claimed
ID (note that u already has ri since it is globally-known).
Unfortunately, this allows u to steal σw if u is bad.

To avoid this issue, we can use a zero-knowledge scheme
for revealing the pre-image of the hashing; such a scheme is
provided for the SHA family [25]. This allows w to prove the
validity of σw without revealing it.

If w’s ID fails verification, then u simply ignores w going
forward. Note that w’s current ID will not be valid in the next
epoch since it is signed by the older string ri−1 (rather than
the next globally-known random string ri); that is, w’s ID will
have expired. IDs that are not verified are effectively removed
from the system; they may consort with bad IDs, but they have
no interactions with good IDs.

B. Generating Global Random Strings
Imagine if no random string was used in the creation of

IDs described above in Subsection IV-A. The adversary would
know the format of the ID-generation puzzles, and so could
spend time computing a large number of IDs, and then use

these IDs all at once to overwhelm the system at some future
point. This is a pre-computation attack.

Signing IDs with a random string prevents such an attack as
it is impossible for the adversary to know far in advance how
to generate IDs. We provide a protocol where random strings
are generated and propagated in the system to be used in ID
generation. Due to space constraints, this content is provided
in our online version [24] in Appendix VIII. We show the
following:

Lemma 12. W.h.p., the protocol for propagating strings (i)
guarantees that, for each good ID w, its string used for
generating an ID is known to each good ID, (ii) the number
of strings stored by each ID is O(lnn), and (iii) has message
complexity Õ(n lnT ).

Note that, averaged over a sufficiently large epoch, this mes-
sage cost is low.

V. CONCLUSION AND FUTURE WORK

We showed that groups of size O(log log n) can be used
to tolerate a powerful Byzantine adversary. Our result utilizes
PoW to limit the number of IDs the adversary controls; how-
ever, this imposes a computational overhead on participants.
An open question is whether the computational costs can be
reduced. Might there be a way to avoid the continual solving
of puzzles? Is there an approach that would only utilize puzzle
solving when malicious IDs are present?

Another problem that deserves attention is providing a
detailed mechanism for bootstrapping in the presence of a
Byzantine adversary. Such a result would likely benefit prior
work as well as our own; we discuss this in our online
version [24] in Appendix IX.

Finally, is it possible to show a lower bound on group size
of Ω(log log n)? We provided intuition for why this may be
the smallest group size that admits strong security guarantees,
but proving this appears challenging.
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APPENDIX

VI. BACKGROUND MATERIAL

In this section, we provide background material that may
provide useful context for our results.

The Search Algorithm. We treat the search algorithm ab-
stractly; it takes as input a value in [0, 1) and returns a ID.
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In practice, returning a ID implies returning the information
necessary for contacting that corresponding owner of the ID
(i.e., the machine) over the Internet (for example, learning the
port number and IP address).

A search initiated by ID w is a request that will typically
require contacting other IDs on its way to the final recipient
y, who holds the resource being sought by w. Typically,
searches are recursive, so w’s request is forwarded through
multiple IDs before reaching y. Alternatively, a search can
be iterative, so w contacts a sequence of IDs each of which
informs w how to make partial progress towards reaching y.
This is not terminology particular to this area, the reader will
likely have been exposed to these ideas in a networks course,
perhaps in the context of name resolution queries under the
Domain Name System. Both w and y, along with any IDs that
participate in the search (by forwarding or resolving part of
the search) are said to be IDs that are traversed by the search.

Resources. To flesh out the notions of a resource and a
nearest-clockwise ID, we consider the popular Chord over-
lay [48]. Each ID maintains links to O(log n) neighbors,
and these neighbors are used to perform recursive searches.
Assume that ID w wants to search for, say, a song file; that
is, the song file is the resource.

To find this resource, w applies a globally-known hash
function to the title of the song to obtain a key value K. Note
that there are no tricks here; the hash function is globally
known because it comes with the software downloaded onto a
user’s computer that allows it to participate in the overlay, and
it is not changed over the lifetime of the system. Additionally,
one could generate key values for resources in other ways, but
using the title is a typical example.

For simplicity, keys are assumed to be from a normalized
range [0, 1), and this is viewed as a unit ring where moving
from 0 to 1 corresponds to moving clockwise around this ring.

This key value K is placed in the message sent from w to
one of its neighbors, say ID u. If ID u holds the song file
corresponding to K, ID u can return the song file directly to
w. But, otherwise, u forwards the request onto one of its own
neighbors. And so on, until a ID y is located that holds the file
corresponding to K. At each forwarding step, the selection of
which neighbor to forward the request to is a function of K;
this is dependent on the system used (Chord, Viceroy, etc.).

ID y — in our example, the ID who holds the song file on
its hard drive — is responsible for that resource. A simple
and often-used rule is that the ID which is closest-clockwise
to K is responsible for the resource; this is also referred
to as the successor of K in the literature. That is, K is a
point in the ID space [0, 1) viewed as a unit ring, and if
we slide clockwise from K on this unit ring, then the first
ID encountered is responsible for the corresponding resource.
With modifications, a similar framework applies to situations
where the resource is a shared printer or some other service.

IDs and Neighbors. An ID is a value in [0, 1); that is, a
point somewhere on the unit ring. We describe how an ID
is generated for our particular construction using PoW in
Section IV-A.

Note that a participant (i.e., a machine) has a physical
location in the real world, while an ID is a virtual location
in the overlay. Therefore, a good machine can hold more than
1 ID. Indeed, our construction requires; a good machine u can
hold an ID for two old group graphs, and an ID for two new
group graphs.

What does this mean? Consider u’s ID in an old group
graph. This ID is linked to neighboring groups as specified
by the input graph topology, and also holds links to members
of groups to which it belongs. Similarly, u’s ID in a new
group graph is also linked to neighboring groups according to
the appropriate topology, and to members of group to which it
belongs. In other words, each ID is treated as a separate entity
in the respective graph/network.

From the perspective of the machine u that generates these
IDs, u must must commit resources to maintaining links for
each ID it holds. Say u’s ID links to w’s ID, then in practice
this means that u maintains state on, say, a TCP connection
between u and w. Therefore, each ID held by u incurs a cost
in terms of state maintenance and bandwidth.

In contrast to good machines, the adversary may attempt
to create many, many IDs within a single group graph. One
danger of this is that the number of bad IDs may now be
larger than the number of good IDs; see mention of the
Sybil attack under related work. In this case, we cannot
hope to create groups with a good majority. Given this, a
common assumption is that the adversary holds a minority of
the computational power, and therefore computational puzzles
allow us to mitigate this attack. The security of Bitcoin,
Ethereum, and many blockchain constructions are based on
this same assumption.

This is the convention we adopt too, and we prove in
Section IV-A that the adversary holds (roughly) at most βn
IDs in the system at any given time. This follows from our
model section, where we describe the adversary as possessing
at most a β-fraction of the computational power.

VII. PROOFS FOR SECTION III-B

Lemma 5. Consider a graph H′ where the IDs are formed
from two sets:
• N1 consists of at least (1− β)n IDs selected u.a.r. from

[0, 1).
• N2 is an arbitrary subset of at most βn IDs selected u.a.r.

from [0, 1).
W.h.p., under the same construction as the input graph H,
graph H′ has properties P1 - P4.

Proof. View the ID space as a unit ring, and place on it the
IDs from N1 and N2. Let the total number of IDs be m where
m ≥ (1− β)n.

Moving clockwise from any ID, consider a contiguous
interval of length (λ lnm)/m where λ > 0 is any constant.
Since IDs in N2 are selected from a larger set of IDs u.a.r
in [0, 1), intuitively the adversary’s choice of N2 cannot
significantly change the density/sparseness of IDs on the ring.
By Chernoff bounds, regardless of how N2 is selected, and
for any λ > 0, the following holds:
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• with probability at least 1 − (m)−λ/12, every interval
contains at least (λ/2) lnm IDs, and

• with probability at least 1 − m−λ/12, every interval
contains at most (3λ/2) lnm IDs.

A set of m IDs with locations on the ring that satisfy
these two properties is a λ-well-spread placement. Observe
that no matter how the adversary chooses N2, w.h.p. the
adversary’s influence on the distribution of IDs is characterized
by some λ-well-spread placement. In other words, we can
ignore the adversary since the issue now reduces to: what is
the probability of a λ-well-spread placement that degrades a
property in H′?

We argue by contradiction as follows. Recall the guarantee
that the input graph H has some property P with probability at
least 1−1/mc′ for a constant c′ > 0 (Section II). Now assume
there one or more λ-well-spread placements that violate this
property P for H′, and that these occur with aggregate
probability 1/md > 1/mc′ for some positive constant d.
But this yields a contradiction since, with probability at least
1/md > 1/mc′ , placing m IDs u.a.r. on the ring would yield
one of these placements for the input graph H and, therefore,
violate the guarantee of property P for H.

Lemma 6. W.h.p. a random key value in an old group graph
maps to a bad ID with probability at most (1 + δ′′)β for
an arbitrarily small constant δ′′ > 0 depending only on
sufficiently large n.

Proof. By property P2 of the input graph H, w.h.p. a randomly
chosen ID in H is responsible for at most a (1+δ′′)/n-fraction
of the key values for an arbitrarily small δ′′ > 0 depending
on sufficiently large n (and, by Lemma 5, this holds even if
the adversary does not add all of its bad IDs). Since the IDs
of the adversary are u.a.r., the βn bad IDs are responsible for
at most a (1 + δ′′)β-fraction of the key values.

Lemma 8. Each group in a new group graph is confused
independently with probability at most O(q2

f logγ n)

Proof. Since the bootstrapping group is good, the only way
in which a group Gw is confused about a member of Lw is
if (1) the two searches for a neighbor in the old group graphs
both fail or (2) the corresponding group that is asked to be a
neighbor erroneously rejects the request.

We analyze these two cases below, but first we elaborate on
a subtle point. As described earlier, updates to links occur as
the new group graphs are being constructed. For instance, if
Gv is the first group to be added to a new group graph, then
Gv will need to do searches to update its neighbors correctly.
Updates may occur more than once over time as the new group
graph is being constructed.

Throughout this construction, there may be times where Gv
does not link to the correct neighbors due to a search failing in
the old group graphs. Importantly, the probability of failure in
the old group graphs is bounded, and is not impacted by any
confused groups in the new group graphs being built. So, it is
possible for Gv to be temporarily confused in the new group
graph. But, importantly, we only care about the final selection

of Gv’s neighbors. Thus, when the final group is added to
the new group graph, Gv’s subsequent update will lead to this
final selection, and the probability of confusion at that point
is what must be bounded.

We now bound the probability of cases (1) and (2). Applying
Lemma 4, case (1) occurs with probability at most q2

f per
element of Lw. Over O(logγ n) potential neighbors, a union
bound limits the probability of this occurring over all elements
of Lw by O(q2

f logγ n). For case (2), the group asked to be
a neighbor will perform two searches per request and only
reject if both fail; therefore, we get the same bound as in case
(1).

Lemma 10. In expectation, each good ID w in a group graph
is a member of O(log log n) groups and maintains state on
O(|Lw|) groups that are either neighbors or have w as a
neighbor.

Proof. We perform our analysis with respect to a good ID
w. First, we analyze the state cost incurred by w due to its
membership in various groups. Second, we analyze the state
cost incurred by w due to (i) w’s links to its neighbors, and
(ii) those IDs that link to w as a neighbor.

State Cost of Group-Membership. The expected number of
groups to which w belongs is at least d′′ log log n, for some
constant d′′ > 0, given that such requests are distributed
among all IDs u.a.r. (via the random oracle assumption) and
each group requires O(log log n) members.

For some ID u, consider a membership request for Gu using
the point h1(u, i). If this returns w (as the successor of this
point h1(u, i)), then w accepts the membership request. Given
the ε-robustness guarantee in old group graphs, with proba-
bility at least 1 − O(1/ logk−c n), this acceptance is correct
(recall Lemma 4). In other words, the probability of accepting
an erroneous member request is at most 1/poly(log n) where
we can tune this polynomial.

How many member requests does w receive? We reiterate a
well-known argument: since IDs are u.a.r., the probability that
two IDs are separated by more than a (c′′ lnn)/n distance
is at most (1 − (c′′ lnn)/n)n ≤ 1/nΘ(c′′), for some constant
c′′ > 0. Therefore, if h1(u, i) lies outside of the interval I =
[w − (c′′ lnn)/n,w), then w.h.p. w is not the successor of
h1(u, i) and cannot be a valid contender for membership.

Given that h1(u, i) is u.a.r. (given the random oracle as-
sumption) the probability that h1(u, i) maps to this interval is
(c′′ lnn)/n. By property P3, i = O(logγ n) for some constant
γ > 0, and so over at most n IDs that might own valid IDs
in I, there are O(logγ n) such requests received by w; this
holds w.h.p. by a standard Chernoff bound. It follows that w
erroneously accepts O(logγ n)/poly(log n) = O(1) malicious
requests in expectation so long as k is sufficiently large with
respect to c.

State Cost of w’s Neighbors. In each group graph, w links to
O(|Lw|) groups as neighbors.

State Cost of Other Groups Linking to w as a Neighbor.
Via Lemma 5, properties P1 and P3 guarantees that w can
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determine via searches whether it should indeed be a neigh-
bor of some ID u, and there are at most poly(log n) such
IDs u. Using the old group graphs, wherein ε-robustness is
guaranteed w.h.p., w initiates a search to check that it should
indeed be a neighbor; note that the adversary cannot lie about
its IDs since they are verifiable. With a tunable probability
at least 1 − O(1/ logk−c n) ID w can detect if the request is
erroneous. Therefore, in expectation, the number of erroneous
acceptances is at most o(|Lw|) so long as our constant k is
sufficiently large (recall Lemma 4).

VIII. GENERATING AND DISSEMINATING GLOBAL
RANDOM STRINGS

Lemma 11. W.h.p., the adversary generates at most (1+ε)βn
IDs over (1± ε)(T/2) steps and these IDs are u.a.r. in [0, 1).

Proof. Since the adversary has βn computational power to
expend over this epoch, w.h.p. it can generate at most (1+ε)βn
solutions σv such that g(σv ⊕ ri−1) ≤ τ within (1± ε)(T/2)
steps where the constant ε > 0 can be made arbitrarily small
depending only on sufficiently large n. By the random oracle
assumption, w.h.p. applying f to these solutions yields at most
(1 + ε)βn IDs u.a.r. from [0, 1).

Generating Random Strings. Over epoch i, all good IDs
generate random strings and those corresponding to the small-
est output under h (a secure hash function) are collected
independently by each ID w to create a solution set Rwi .
To generate a string in epoch i, a ID w uses a string ri−1

— the globally-known string from the previous epoch — and
an individually generated random string, sw, to compute the
output tw = h(sw ⊕ ri−1), where ⊕ indicates XOR.

Bins and Counters. To facilitate our discussion of how to
propagate strings and ease our subsequent analysis, we de-
scribe a system of bins and counters maintained by each good
ID w. The bins Bj correspond to intervals in the ID space
where Bj = [1/2j , 1/2j−1) for j = 1, 2, ..., b ln(nT ) where
b ≥ 1 is a sufficiently large constant. Since T is known and
there are standard techniques for obtaining a constant-factor
approximation to lnn, calculating ln(nT ) = ln(n) + ln(T ) to
within a constant factor is possible.15

Each bin Bj has an associated counter Cj . Consider that
w receives a string su with corresponding output tu that falls
within the interval defined by Bj ; we say that Bj contains
tu. If tu is smaller than the other values w has seen so far
contained in Bj , and Cj ≤ c0 lnn for some sufficiently large
constant c0 ≥ 1, then w increments Cj and forwards the
corresponding string su onto its neighbors. After Cj = c0 lnn,
no value landing within Bj is ever forwarded.

The intuition is that, if c lnn strings are found with “record-
breaking” outputs in Bj , then w.h.p. smaller strings exist

15A standard technique for estimating lnn to within a constant factor is
as follows. For u.a.r. IDs, the distance d(u, v) between any two IDs u and
v satisfies α′′

n2 ≤ d(u, v) ≤ α′ lnn
n

w.h.p., depending only on sufficiently
large positive constants α′,α′′ Therefore, w.h.p. ln( 1

d(u,v)
) = Θ(lnn) and

this holds even when an adversary decides to omit some (or all) of its IDs
(see Chapter 4 in [50]).

with outputs belonging to Bj+1. In other words, those strings
corresponding to Bj will not be candidates for a globally-
known string, and so they can be ignored.

Protocol for Propagating Strings. The propagation of strings
is broken into phases which make up the first half of an epoch.
We describe the protocol for good IDs (although bad IDs can
deviate arbitrarily).

Phase 1 executes over steps 1 to T/2−2d′ lnn for a constant
d′ > 1 of the current epoch i. Over this time, each ID w
generates random strings with associated outputs. After Phase
1 ends, IDs no longer generate new random strings.

Phase 2 begins at step T/2−2d′ lnn+1 and runs for d′ lnn
steps. Each ID w (using its group Gw) selects the string smin

w

with the smallest output tmin
w that was generated in Phase 1, and

then sends smin
w its neighbors. ID w updates the corresponding

bin and counter, as described earlier.
Each neighbor u verifies smin

w . Using tmin
w , ID u decides

whether to forward smin
w to its own neighbors (except for

w) and, if so, updates the corresponding bin and counter;
otherwise, u ignores this value. At the end of Phase 2, each
ID w selects the string with the smallest corresponding output
it has seen so far; this is denoted by si∗w .

Phase 3 starts at step T/2 − d′ lnn + 1 and runs for the
final d′ lnn steps. Over these steps, IDs no longer generate
new strings, although they will still propagate them according
to the above rules.

At the end of the phase, each ID w creates its solution
set Rwi in the following way. ID w finds the largest j for
which Bj contains at least one element. Then, w collects the
corresponding string, and all the corresponding strings that
have outputs contained in subsequent bins for decreasing j,
until there are d0 lnn elements; the collection of these strings
form Rwi .

This concludes the propagation protocol. We note that
immediately (at step T/2 + 1) ID w will start generating a
new ID signed with the string si∗w chosen in Phase 2.

Discussion. The adversary may prevent good IDs from agree-
ing on the same solution set. As mentioned in Subsection IV-A,
a 1/poly(log n)-fraction may be unable to partake in the
propagation process even with our secure routing, and their
loss is already incorporated into our analysis in Subsec-
tion III-B. Therefore, we address the giant component of
(1−1/poly(log n))n good IDs that can reach each other; going
forward, we mean this set of IDs when referring to the “good
IDs”.

The critical source of disagreement between these good
IDs is that the adversary may delay releasing a string s′ (or
multiple strings) with a small output. For example, if this
occurs right before the end of Phase 2, then only a subset
of good IDs receive s′ and their respective solution sets differ
from the other good IDs.

We sketch how this disagreement is handled, but first
we address the simpler case where there is no adversarial
interference.

With No Adversary: Note that the propagation of a string in
the giant component requires at most d′ lnn steps. Therefore,
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since all IDs send their string at the beginning of Phase 1, then
by the end of Phase 2, all IDs accept the same set of strings
and agree on the minimum string.

Furthermore, in Phase 3, nothing will occur (since no strings
are released late) and so any IDs w and u are guaranteed w.h.p.
to have Rwi = Rui . What are the outputs corresponding to these
solution sets? There are Θ(n) IDs computing for Θ(T ) steps,
so the smallest output in a set Rwi is Θ( 1

nT ) and w.h.p. no
larger than O( lnn

nT ).
With an Adversary: The adversary can propagate a string s′

with a small output late in Phase 2.16 If w receives s′ while
u does not, then Rwi 6= Rui . We argue that w.h.p. for good
IDs in the giant component that (1) the size of each solution
set remains bounded by Θ(lnn), and (2) that the string si∗w
used by each good ID w belongs to every other good IDs’
solution set; these two properties enable efficient and correct
verification (described below).

How many solutions s′ could w receive and add to Rwi ?
As noted above, this solution set will hold outputs of value
O( lnn

nT ). Since the adversary has bounded computational
power of βn, w.h.p. there cannot be more than d′′ lnn so-
lutions with output value Θ( 1

nT ) for some constant d′′ > 0.
This is true even if the adversary computes over the entire
epoch. We set the constant c0 used in the bin counters such
that c0 ≥ d′′ in order to make sure that no smallest values are
omitted.

Now, consider two good IDs w and u in the giant com-
ponent. Assume that w selects si∗w (recall that this occurs at
the end of Phase 2), but that si∗w is not present in good ID
u’s solution set Rui by the end of Phase 3; we will derive
a contradiction. If si∗w originated from a good ID, then u
received si∗w by the end of Phase 3 since 2d′ lnn steps is
more then sufficient for the propagation of a string in the giant
component (since this is the portion of the network to which
we can search). Else, si∗w originated from the adversary or a
ID outside the giant component. Since si∗w was held by w by
the end of Phase 2 (this inclusion could have been delayed
by the adversary until the final step of Phase 2), the addition
d′ lnn steps in Phase 3 would have allowed si∗w to reach u and
be added to Rui . In either case, this yields the contradiction.

Finally, what is the message complexity of the propagation
protocol? Recall that for each bin, the associated counter
restricts to O(lnn) the number of times a ID forwards a string
to its neighbors. Given that there are O(ln(nT )) bins, the total
number of times a ID can forward a string is O(ln(n) ln(nT )).
The number of messages sent between any pair of neighboring
groups is O(|G|2) = O((log log n)2) and the degree in the
group graph is O(poly(log n)). Therefore, the total message
complexity over O(n) IDs is Õ(n lnT ) where Õ accounts for
poly(log n) terms.

The above discussion supports the following:

Lemma 12. With high probability, the protocol for propa-
gating strings (i) guarantees that, for each good ID w in the

16The adversary may also delay a string from a good ID outside the giant
component, which amounts to the same problem since the adversary controls
when this string is released into the giant component.

component, si∗w is contained within the solution set of every
good ID in the component, (ii) |Rwi | = O(lnn), and (iii) has
message complexity Õ(n lnT ).

Verifying IDs. For simplicity, our discussion of ID verification
in Subsection IV-A assumed that a single ri−1 was agreed
upon. However, not much changes when using solution sets.

To generate an ID for use in epoch i+ 1, ID w uses si∗w to
sign its ID. By the above discussion, we are guaranteed w.h.p.
that si∗w belongs to the solution set of each good ID. Therefore,
a good ID u that wishes to verify w’s new ID checks whether
this ID was signed by any of the strings in Rui ; this requires
checking only O(lnn) elements by the above discussion.

IX. BOOTSTRAPPING GROUPS

In prior work, an ID v joins the network by contacting
O(log n) members of a group which, by virtue of its size,
has a good majority with high probability. In our construc-
tion, we make a similar assumption, except that v contacts
O(log n/ log log n) groups selected uniformly at random, each
of size O(log log n). With high probability, the collection of
the O(log n) IDs belonging to these groups will contain a good
majority. Therefore, assuming that v’s ID is verified, these IDs
can fulfill the role of a bootstrapping group Gboot, as described
in Section III.

During this bootstrapping process, we note that for input
graphs with O(1) expected degree, this approach will increase
the expected state-maintenance cost to be O(log n). In the case
of input graphs that have O(log n) degree, our expected state-
maintenance cost remains unchanged.

X. SYSTEM INITIALIZATION

How are the group graphs G0
1 and G0

2 created? Almost all of
the literature treats the problem of building secure overlays in
the following manner: (1) prove that an overlay construction
yields security guarantees, and then (2) prove these security
guarantees can be maintained for each departure/join event.
This is typically challenging in its own right, and the issue of
how the system is initially placed into a state that satisfies (1)
is often not dealt with explicitly.

As motivation, one might consider a system whose de-
velopment is shepherded by some central authority, or some
small group of trustworthy participants, that handles admission
control and the assignment of group membership. Once the
system reaches some threshold size (sufficient for the w.h.p.
arguments), the system becomes fully decentralized.

A notable exception is [21], which gives an explicit solution.
The authors specify a protocol that allows all good IDs
to learn about the existence of all good IDs; this incurs a
communication cost of O(n · |E|) where |E| is the number
of edges in the overlay being created. Then, since all good
IDs are now aware of each other, a subset of the IDs —
called a “representative cluster” — is elected via running a
Byzantine Agreement (BA) protocol; this has a communication
complexity of soft-O(n3/2). The representative cluster, which
is shown to have an honest majority, is then responsible for
establishing cluster membership, informing each ID about its
fellow cluster members, and setting up links between the
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clusters. Therefore, the system initialization can be achieved
w.h.p by this one-time “heavy-weight” procedure, after which
the security guarantees can be maintained.

We believe that a similar approach would work in our setting
and allow for the creation of G0

1 and G0
2 . Since the problem of

initialization pertains to much of the literature in this area, a
pertinent question is whether one can improve upon the above
scheme. We believe this is a problem in its own right and an
interesting avenue for future work.
Setting k. We end this section by addressing a subtlety in
setting the value of k sufficiently large; this was referred to in
Section II.

As described in the main text, we assume that the neighbor
sets in G0

1 and G0
2 are set up correctly for blue groups. Thus,

pf corresponds to the probability of group being bad, and we
can set k to be as large a constant as desired by setting d1

sufficiently large. By Lemma 9, k ≥ 2c+ γ is sufficient.
Now, consider the next epoch. The construction of the two

new group graphs are proven to preserve pf ≤ 1/ logk n,
where a red group corresponds to either a group that is bad
or that has its neighbor set incorrectly established. There-
fore, w.h.p., for subsequent epochs, groups graphs will be ε-
robustness.
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