
ar
X

iv
:1

80
2.

07
50

4v
2

 [
cs

.D
C

]
 2

0
A

ug
 2

01
8

SKUEUE: A Scalable and Sequentially Consistent

Distributed Queue*

Michael Feldmann, Christian Scheideler and Alexander Setzer

Department of Computer Science

Paderborn University, Germany

{michael.feldmann, scheideler, alexander.setzer}@upb.de

c©2018 IEEE. This is the full version of a corresponding paper published in the proceedings of IPDPS 2018 (DOI: 10.1109/IPDPS.2018.00113). Personal
use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

Abstract—We propose a distributed protocol for a queue, called
SKUEUE, which spreads its data fairly onto multiple processes,
avoiding bottlenecks in high throughput scenarios. SKUEUE can
be used in highly dynamic environments, through the addition of
JOIN() and LEAVE() requests to the standard queue operations
ENQUEUE() and DEQUEUE(). Furthermore SKUEUE satisfies
sequential consistency in the asynchronous message passing
model. Scalability is achieved by aggregating multiple requests
to a batch, which can then be processed in a distributed fashion
without hurting the queue semantics. Operations in SKUEUE need
a logarithmic number of rounds w.h.p. until they are processed,
even under a high rate of incoming requests.

Index Terms—Distributed Systems; Distributed Data Struc-
tures; Distributed Queue; Queue Semantics

I. INTRODUCTION

Like in the sequential world, efficient distributed data struc-

tures are important in order to realize efficient distributed

applications. The most prominent type of distributed data

structure is the distributed hash table (DHT). Many distributed

data stores employ some form of DHT for lookup. Important

applications include file sharing (e.g., BitTorrent), distributed

file systems (e.g., PAST), publish subscribe systems (e.g.,

SCRIBE), and distributed databases (e.g., Apache Cassandra).

Other distributed forms of well-known data structures, how-

ever, like queues, stacks, and heaps has been given much less

attention though queues, for example, have a number of inter-

esting applications as well. A distributed queue can be used to

come up with a unique ordering of messages, transactions, or

jobs, and it can be used to realize fair work stealing [1] since

tasks available in the system would be fetched in FIFO order.

Other applications are distributed mutual exclusion, distributed

counting, or distributed implementations of synchronization

primitives. Server-based approaches of realizing a queue in

a distributed system already exist, like Apache ActiveMQ,

IBM MQ, or JMS queues. Many other implementations of

message and job queues can be found at http://queues.io/.

However, none of these implementations provides a queue that

allows massively parallel accesses without requiring powerful

servers. The major problem of coming up with a fully dis-

tributed version of a queue is that its semantics are inherently

*This work was partially supported by the German Research Foundation
(DFG) within the Collaborative Research Center “On-The-Fly Computing”
(SFB 901)

sequential. Nevertheless, we are able to come up with a dis-

tributed protocol for a queue ensuring sequential consistency

that fairly distributes the communication and storage load

among all members of the distributed system and that can

efficiently process even massive amounts of ENQUEUE() and

DEQUEUE() requests. Our protocol works in the asynchronous

message passing model and can also handle massive amounts

of join and leave requests efficiently. We are not aware of any

distributed queue with a comparable performance.

A. Basic notation

A Distributed Queue provides four operations: ENQUEUE(),
DEQUEUE(), JOIN() and LEAVE(). ENQUEUE() adds an ele-

ment to the queue and DEQUEUE() removes an element from

the queue so that the FIFO requirement is satisfied. JOIN()
allows a process to enter the system while LEAVE() allows

a process to leave the system. Let E be the universe of all

elements that may possibly be put into the distributed queue.

While in a standard, sequential queue it is very easy to

guarantee the FIFO property, it is much harder to guarantee in

a distributed system, especially when messages have arbitrary

finite delays and the processes do not have access to a local

or global clock, as is usually assumed in the asynchronous

message passing model. In essence, a global serialization of

the requests has to be established without creating bottlenecks

in the system. We will show that it is possible to obtain a

serialization ensuring sequential consistency even under a high

request rate. In order to define sequential consistency, we first

need some notation.

Let ENQv,i refer to the i-th ENQUEUE() request that was

called in process v. Analogously, DEQv,i refers to the i-th
DEQUEUE() request that was called in process v. Furthermore,

OPv,i denotes the i-th (ENQUEUE() or DEQUEUE()) request

that was called in process v. We assume w.l.o.g. that every

e ∈ E is enqueued at most once into the system (an easy

way to achieve this is to make the calling process and the

current count of requests performed a part of e). Let S be the

set of all ENQUEUE() and DEQUEUE() requests issued by the

processes in the system. We say that ENQv,i is matched with

DEQw,j if the DEQw,j request returns the element contained

in the ENQv,i request. Let M be the set of all matchings. Note

that there may be requests that are not matched and thus not

contained in M .

http://arxiv.org/abs/1802.07504v2
http://queues.io/

Definition 1. A Distributed Queue protocol with operations

ENQUEUE() and DEQUEUE() is sequentially consistent if and

only if there is an ordering ≺ on the set S of all ENQUEUE()
and DEQUEUE() requests issued to the system so that the set of

all enqueue-dequeue matchings M established by the protocol

satisfies:

1) for all (ENQv,i, DEQw,j) ∈M : ENQv,i ≺ DEQw,j ,

2) for all (ENQv,i, DEQw,j) ∈ M : during the execution,

there is no DEQu,k not contained in M such that

ENQv,i ≺ DEQu,k ≺ DEQw,j , and there is no ENQu,k

not contained in M such that ENQu,k ≺ ENQv,i ≺
DEQw,j ,

3) for all distinct (ENQu,i, DEQv,j), (ENQw,k, DEQx,l) ∈
M it does not hold: ENQu,i ≺ ENQw,k ≺ DEQx,l ≺
DEQv,j or ENQw,k ≺ ENQu,i ≺ DEQv,j ≺ DEQx,l, and

4) for all v ∈ V and i ∈ N: OPv,i ≺ OPv,i+1

Intuitively, the four properties have the following meaning:

The first property means that an element has to be enqueued

before it can be dequeued. The second property means that

each DEQUEUE() request returns a value if there is one in

the queue and that each element passed as a parameter of

an ENQUEUE() request will be added to the queue. The

third property means elements are dequeued in the order they

have been added to the queue. Finally, the fourth property is

the local consistency property: It means that for each single

process, the requests performed by this process have to come

up in ≺ in the order they were executed by that process.

Note that if there is only a single process in the system, then

the ENQUEUE() and DEQUEUE() operations of the Distributed

Queue have exactly the same semantics as a classical queue.

B. Model

The distributed queue consists of multiple processes that

are interconnected by some overlay network. We model the

overlay network as a directed graph G = (V,E), where V
represents the set of processes and an edge (v, w) indicates

that v knows w and can therefore send messages to w. Each

process v can be identified by a unique identifier v.id ∈ N.

We consider the asynchronous message passing model

where every process v has a set v.Ch for all incoming

messages called its channel. That is, if a process u sends a

message m to process v, then m is put into v.Ch. A channel

can hold an arbitrary finite number of messages and messages

never get duplicated or lost.

Processes may execute actions: An action is just a standard

procedure that consists of a name, a (possibly empty) set of

parameters, and a sequence of statements that are executed

when calling that action. It may be called locally or remotely,

i.e., every message that is sent to a process contains the name

and the parameters of the action to be called. We will only

consider messages that are remote action calls. An action in a

process v is enabled if there is a request for calling it in v.Ch.

Once the request is processed, it is removed from v.Ch. We

assume fair message receipt, i.e., every request in a channel

is eventually processed. Additionally, there is an action that

is not triggered by messages but is executed periodically by

each process. We call this action TIMEOUT.

We define the system state to be an assignment of a value

to all protocol-specific variables in the processes and a set

of messages to each channel. A computation is a potentially

infinite sequence of system states, where the state si+1 can be

reached from its previous state si by executing an action that

is enabled in si.
We place no bounds on the message propagation delay

or the relative process execution speed, i.e., we allow fully

asynchronous computations and non-FIFO message delivery.

For the runtime analysis, we assume the standard syn-

chronous message passing model, where time proceeds in

rounds and all messages that are sent out in round i will be

processed in round i + 1. Additionally, we assume that each

process executes its TIMEOUT action once in each round.

C. Related Work

The most important type of distributed data structure is

the distributed hash table, for which seminal work has been

done by Plaxton et al. [2] and Karger et al. [3]. Distributed

hash tables have a wide range of practical realizations, such

as Chord [4], Pastry [5], Tapestry [6] or Cassandra [7]. Our

queue protocol makes use of a distributed hash table through

consistent hashing.

Distributed hash tables do not support range queries, so

distributed trees were proposed, e.g. in [8], [9], to overcome

this.

There is a wealth of literature on concurrent data structures.

Consider, for example, [10] for a queue, [11] for a stack, [12]

for a priority queue or [13] for a general survey. These

structures allow multiple processes to send requests to a data

structure that is stored in shared memory. Hendler et al. [14]

present a scalable synchronous concurrent queue, where they

used a parallel flat-combining algorithm similar to the ag-

gregation technique used in this work: A single ’combiner’

thread gets to know requests of other threads and then executes

these requests on the queue. However, they do not provide any

guarantees on the semantics, as their queue is considered to

be unfair, meaning that it does not impose an order on the

servicing of requests. Shavit and Taubenfeld formulated some

(relaxed) semantics for concurrent queues and stacks in [15].

The main difference of concurrent data structures compared

to distributed data structures is that there has to be a single

instance that stores the data, whereas distributed data structures

are fully decentralized.

A scalable distributed heap called SHELL has been pre-

sented by Scheideler and Schmid in [16]. SHELL’s topology

resembles the De Bruijn graph and is shown to be very resilient

against Sybil attacks. Our protocol uses the virtual De Bruijn

graph from Richa et al. [17], which is based on [18], where

Naor and Wieder showed how to construct P2P systems in the

continuous space.

Plenty of work has also been done on distributed queuing,

but this is very different from our approach. Distributed

queuing is all about the participants of the system forming

a queue: Every process introduces itself to its predecessor

and (depending on its position) knows its successor in the

queue. Distributed queuing is not about inserting elements

into a distributed data structure that is maintained by multiple

processes, which can generate requests to the data structure.

See, for example, the Arrow protocol in [19], which was made

self-stabilizing in [20], or a protocol for dynamic networks

in [21].

D. Our Contribution

We propose a protocol for a distributed queue which guar-

antees sequential consistency (Definition 1). Requests can be

handled very effectively due to the aggregation of multiple

requests to a batch. This fact makes our queue highly scalable

for both, a large number of processes and a high load of

queue requests. More precisely, when assuming synchronous

message passing, our ENQUEUE() and DEQUEUE() operations

are processed in O(log n) rounds w.h.p. Furthermore we show

that we can process n JOIN() or n/2 LEAVE() operations

in O(logn) rounds. Through the usage of a distributed hash

table, our distributed queue allocates its elements equally

among all processes, such that no process stores significantly

more elements than the rest.

The paper is structured as follows: In Section II we describe

the linearized De Bruijn network topology, into which we

embed a distributed hash table. The general ideas for our

protocol are presented in Section III along with descriptions

for ENQUEUE() and DEQUEUE() operations. In Section IV we

extend the protocol in order to support JOIN() and LEAVE()
operations. We explain how to modify SKUEUE in order to

work as a distributed stack and present experimental results

for both the queue and the stack (Sections VI and ??). Before

we conclude the paper in Section VIII, we analyze the most

important properties of our protocol in Section V.

II. PRELIMINARIES

A. Linearized De Bruijn Network

We adapt a dynamic version of the De Bruijn graph

from [17], which is based on [18], for our network topology:

Definition 2. The Linearized De Bruijn network (LDB) is a

directed graph G = (V,E), where each process v emulates

3 (virtual) nodes: A left virtual node l(v) ∈ V , a middle

virtual node m(v) ∈ V and a right virtual node r(v) ∈ V .

The middle virtual node m(v) has a real-valued label1 in the

interval [0, 1). The label of l(v) is defined as m(v)/2 and the

label of r(v) is defined as (m(v) + 1)/2. The collection of

all virtual nodes v ∈ V is arranged in a sorted cycle ordered

by node labels, and (v, w) ∈ E if and only if v and w are

consecutive in this ordering (linear edges) or v and w are

emulated by the same process (virtual edges).

We will assume that the label of a middle node m(v) is

determined by applying a publicly known pseudorandom hash

1We may indistinctively use v to denote a node or its label, when clear
from the context.

function on the identifier v.id. We say that a node v is right

(resp. left) of a node w if the label of v is greater (resp. smaller)

than the label of w, i.e., v > w (resp. v < w). If v and w are

consecutive in the linear ordering and v < w (resp. v > w),

we say that w is v’s successor (resp. predecessor) and denote

it by succ(v) (resp. pred(v)). As a special case we define

pred(vmin) = vmax and succ(vmax) = vmin, where vmin

is the node with minimal label value and vmax is the node

with maximal label value. This guarantees that each node has

a well defined predecessor and successor on the sorted cycle.

More precisely, each node v maintains two variables pred(v)
and succ(v) for storing its predecessor and successor nodes.

Whenever a node v gets to know the reference of another

node w, such that w is stored in either pred(v) or succ(v),
we assume that v also gets to know whether w is a left, middle

or right virtual node. This can be done easily by attaching the

information to the message that contains the node reference.

By adopting the result from [17], one can show that routing

in the LDB can be done in O(log n) rounds w.h.p.:

Lemma 3. For any p ∈ [0, 1), routing a message from a

source node v to a node that is the predecessor of p in the

LDB can be done in O(log n) rounds w.h.p.

B. Distributed Hash Table

In order to store the elements of our queue in a distributed

fashion, we use a distributed hash table (DHT) that makes use

of consistent hashing: Elements e ∈ E that should be stored

in the DHT will be assigned a unique position p(e) ∈ N0 by

SKUEUE. This position can then be hashed to a real-valued

key k(p(e)) ∈ [0, 1) via a publicly known pseudorandom

hash function. A node v is responsible for storing all elements

whose keys are within the interval [v, succ(v)). Thus, if we

want to insert (resp. delete) an element e ∈ E , we only have to

search for the node v with v ≤ k(p(e)) < succ(v) and tell v to

store e. The search for v can be performed in O(log n) rounds

according to Lemma 3. We will use the following operations

in SKUEUE:

1) PUT(e, k) Inserts the element e ∈ E with key k into the

DHT.

2) GET(k, v): Removes the element with key k from the

DHT and delivers it to the initiator v of the request.

It is well known for consistent hashing that it is fair,

meaning that each node stores the same amount of elements

for the DHT on expectation.

Lemma 4. Consistent Hashing is fair.

III. ENQUEUE & DEQUEUE

Throughout this paper, a queue operation is either an

ENQUEUE() or a DEQUEUE() request.

The main challenge to guarantee the sequential consistency

from Definition 1 lies in the fact that messages may outrun

each other, since we allow fully asynchronous computations

and non-FIFO message delivery. In a synchronous environ-

ment, this would not be a problem. Another problem we have

to solve is that the rate at which nodes issue queue requests

may be very high. As long as we process each single request

one by one, scalability cannot be guaranteed.

The general idea behind SKUEUE is the following: First, we

aggregate batches of queue operations to the leftmost node in

the LDB, called anchor, by forwarding them to the leftmost

neighbor at each hop. By doing so, every involved node

implicitly becomes part of an aggregation tree. The anchor

then assigns a position p ∈ N0 in the DHT for each queue

operation and spreads all positions for the queue operations

over the aggregation tree such that sequential consistency

(Definition 1) is fulfilled. Nodes in the aggregation tree then

generate PUT and GET requests for the respective positions in

the DHT. We describe this approach in more detail now.

A. Operation Batch

Whenever a node initiates a queue operation, it has to buffer

it in its local storage. We are going to represent the sequence

of buffered queue operations by a batch:

Definition 5 (Batch). A batch B (of queue operations) is a

sequence (op1, . . . , opk) ∈ N
k
0 , for which it holds that for all

odd i, 1 ≤ i ≤ k, opi represents the length of the i-th enqueue

sequence. Similarly, for all even i, 1 < i ≤ k, opi represents

the length of the i-th dequeue sequence. Denote the batch (0)
as empty.

We are able to combine two batches (op1, . . . , opk) and

(op′1, . . . , op
′

l) by computing B = (op′′1 , . . . , op
′′

m) with op′′i =
opi+op′i and m = max{k, l} (we define opi = 0 if i > k and

op′i = 0 if i > l). If a batch B is the combination of batches

A1, . . . , Ak, then we denote A1, . . . , Ak as sub-batches. Each

node may store two types of batches locally: One batch that

is currently being processed and another batch that waits for

being processed and acts as the buffer for newly generated

queue operations. For a node v, we call the former batch v.B
and the latter one v.W . We denote v as the owner of the batch

v.B.

Whenever a node v generates a queue operation op, we

update the batch v.W = (op1, . . . , opk) in the following way:

If op is an ENQUEUE() request, then we increment opk if k
is odd, otherwise we add a 1 to the batch by setting v.W =
(op1, . . . , opk, 1). Similarly, if op is a DEQUEUE() request,

we increment opk, if k is even, otherwise we set v.W =
(op1, . . . , opk, 1). By doing so, the batch v.W respects the

local order in which queue operations are generated by v,

which is important for guaranteeing sequential consistency.

B. Aggregation Tree

All (virtual) nodes in the LDB implicitly form an aggrega-

tion tree. In order to do this, a node v needs to know both, its

parent and its child nodes in the tree. Both depend on whether

v is a left, middle or right virtual node (see Figure 1 for an

example).

The parent node p(v) of some node v in the aggregation

tree is always the node that is v’s leftmost neighbor. More

specifically, if v is a middle virtual node, then p(v) = l(v). If

v is a left virtual node then p(v) = pred(v). Finally, if v is a

right virtual node, then p(v) = m(v).
Next, we describe how a node v knows its child nodes

(denoted by the set C(v)) in the aggregation tree, assuming

that the node set is static (we describe how to handle JOIN()
and LEAVE() requests in Section IV). If v is a middle virtual

node, then either C(v) = {r(v), succ(v)} (if succ(v) is a left

virtual node) or C(v) = {r(v)} (otherwise). If v is a left

virtual node, then either C(v) = {m(v), succ(v)} (if succ(v)
is a left virtual node) or C(v) = {m(v)} (otherwise). Last, if

v is a right virtual node, then C(v) = ∅. Intuitively, each node

has its next virtual node as a child and also its successor if

that successor is a left node. A right virtual node cannot have

a left virtual node as a right neighbor (as the id of a right

virtual node is always at least 0.5 and the id of a left virtual

node is always less than 0.5).

l(u) l(v) m(u) m(v) r(u) r(v)

Fig. 1. A LDB consisting of 6 nodes (corresponding to 2 processes u and
v). Bold linear/virtual edges define the corresponding aggregation tree.

Observe that nodes are able to find their connections in the

tree by relying on local information only. Thus, for the rest

of the paper we assume that every node knows its parent and

child nodes in the aggregation tree at any time.

From Lemma 3, we directly obtain an upper bound for the

height of the aggregation tree:

Corollary 6. The aggregation tree based on the LDB has

height O(log n) w.h.p.

We are now ready to describe our approach for queue

operations in detail, dividing it into 4 stages.

C. Stage 1: Aggregating Batches

Every time a node v calls its TIMEOUT (see Algorithm 1)

method, it checks whether its batch v.B is empty and its

batch v.W contains the batches of all of its child nodes in

the aggregation tree. If that is the case, then v transfers the

data of v.W to v.B and sends out a message containing the

contents of v.B to p(v). Additionally, v memorizes the sub-

batches that are combined in v.B such that it can determine the

child node that sent the sub-batch to v. We proceed this way in

a recursive manner, until the root node v0 of the aggregation

tree, denoted as anchor from now on, has received all batches

from its child nodes. Then it combines these batches with its

own batch v0.W into v0.B and switches to the next stage by

locally calling ASSIGN (see Algorithm 2).

D. Stage 2: Assigning Positions

At the anchor v0 we maintain two variables v0.f irst ∈ N0

and v0.last ∈ N0, such that the invariant v0.f irst ≤ v0.last+
1 holds at any time. The interval [v0.f irst, v0.last] represents

Algorithm 1 Stage 1 ⊲ Executed by each node v

1: procedure TIMEOUT

2: if v.B = (0) ∧ v.W contains sub-batches from all

3: c ∈ C(v) then

4: v.B ← v.W
5: v.W ← (0)
6: if v is the anchor node v0 then

7: ASSIGN(v0.B) ⊲ Switch to Stage 2

8: else

9: p(v)← AGGREGATE(v.B)

10: procedure AGGREGATE(B)

11: v.W ← v.W ∪B

the positions that are currently occupied by elements of the

queue, which implies that the current size of the queue is equal

to v0.last− v0.f irst+ 1.

Now we describe how the anchor processes its batch v0.B =
(op1, . . . , opk) at the start of this stage. Based on its variables

v0.f irst, v0.last, v0 computes intervals [x1, y1], . . . , [xk, yk]
by processing each element in the batch (op1, . . . , opk) in

ascending order of their indices i. If i is odd, then v0
sets the interval [xi, yi] to [v0.last + 1, v0.last + opi] and

increases v0.last by opi afterwards. Similarly, if i is even,

then v0 sets the interval [xi, yi] to [v0.f irst,min{v0.f irst+
opi − 1, v0.last}] and updates v0.f irst to min{v0.f irst +
opi, v0.last + 1} afterwards. By doing so, we assigned an

interval to each sequence opi of requests, implying that we

can assign a position to each single queue operation of such a

sequence (which is part of the next stage). Note that in case the

queue is empty or does not hold sufficiently many elements

and the anchor has to assign positions to some sequence of

DEQUEUE() requests of length k, it either holds xi = yi+1 (if

the queue is empty) or xi − yi < k for the computed interval

[xi, yi].

E. Stage 3: Decomposing Position Intervals

Once v0 has computed all required position intervals

[x1, y1], . . . , [xk, yk] for a batch, it starts broadcasting these in-

tervals over the aggregation tree, by calling SERVE on its child

nodes, see Algorithm 2. When a node v in the tree receives

a collection [x1, y1], . . . , [xk′ , yk′] of intervals, it decomposes

the intervals with respect to each sub-batch B1, . . . , Bl of v.B
(recall that v has memorized this combination). Consider a

sub-batch Bi = (op1, . . . , opm) of v.B. We describe how v is

able to assign a (sub-)interval to each opi. Assume i is odd for

opi (corresponding to opi many ENQUEUE() requests). Then v
assigns the (sub-)interval [xi, xi + opi− 1] to opi. Afterwards

we update [xi, yi] by setting [xi, yi] = [xi + opi, yi]. This

implies that every ENQUEUE() request is assigned a unique

position.

Now assume i is even for opi (corresponding to opi
many DEQUEUE() requests). Then v assigns the (sub-)interval

[xi,min{xi+opi−1, yi}] to opi. Afterwards we set [xi, yi] =
[min{xi + opi, yi + 1}, yi]. This implies that DEQUEUE()
requests are either assigned a position or immediately return

⊥ in case the interval is not large enough to assign a position

to all DEQUEUE() requests.

Once each sub-batch of v.B has been assigned to a

collection of (sub-)intervals, we send out these intervals to

the respective child nodes in C(v). Applying this procedure

in a recursive manner down the aggregation tree yields an

assignment of a position to all ENQUEUE() and DEQUEUE()
requests.

F. Stage 4: Updating the DHT

Now that a node v knows the exact position p ∈ N0 for

each of its queue operations, it starts generating PUT and GET

requests. For an request ENQUEUE(e) that got assigned to

position p, v issues a PUT(e, k(p)) request to insert e into

the DHT (recall that the key k(p) ∈ [0, 1) is just the real-

valued hash of p). This finishes the ENQUEUE(e) request. For

a DEQUEUE() request that got assigned to position p, v issues

a GET(k(p), v) request. Since in the asynchronous message

passing model, it may happen that a GET request arrives at

the correct node in the DHT before the corresponding PUT

request, each GET request waits at the node responsible for

the position k until the corresponding PUT request has arrived.

This is guaranteed to happen, as we do not consider message

loss.

Once a node has sent out all its DHT requests, it switches

again to Stage 1, in order to process the next queue operations.

Algorithm 2 Stages 2-4

1: procedure ASSIGN(B) ⊲ Executed by the anchor

2: Compute intervals I = [x1, y1], . . . , [xk, yk] from B
3: SERVE(I) ⊲ Switch to Stage 3

4: procedure SERVE(I) ⊲ Executed by each node v
5: Decompose I depending on C(v) and v.B
6: for all c ∈ C(v) do

7: Forward sub-intervals Ic ⊂ I to c via SERVE(Ic)

8: Forward PUT/GET requests to the DHT

9: v.B ← (0) ⊲ Return to Stage 1

We defer the analysis of the ENQUEUE() and DEQUEUE()
requests to Section V.

IV. JOIN & LEAVE

When a process enters or leaves the system, this entails

several changes to the system in order to get into the state

assumed in Section III: The DHT has to be updated, which

includes movement of data to joining or from leaving nodes,

the LDB has to be updated and meanwhile the aggregation

tree changes. To prevent chaos caused by the latter, we handle

joins and leaves lazily. This means that a node v joining or

leaving the network will be assigned a node u responsible

for v. u then acts as a representative for v meaning that u
takes over v’s DHT data and emulates v in the case of v
being a leaving node, or relays v’s ENQUEUE() or DEQUEUE()
requests in the case of v being a joining node. Only after a

sufficiently large number of nodes has requested to join or

leave the system (which is counted at the anchor), the system

enters a special state in which no further batches are sent out.

During this state, joining nodes are fully integrated into the

system (meaning they do no longer need a node responsible

for them) and nodes that left can end being emulated. In the

following, we will specify the details of this. Keep in mind

that a node that requested to join the system and that is not

yet fully integrated into the system is called a joining node

and a node that requested to leave the system and that has not

yet left is called a leaving node.

Note that if a process v wants to join or leave the net-

work, we have to integrate or disconnect the three nodes

l(v),m(v), r(v) ∈ V into or from the system. Therefore, we

generate a JOIN() or LEAVE() request for each of these three

nodes separately. In the following we describe how one of

these requests is handled.

A. Join

Assume a node v wants to join the system and further

assume v > v0 for now (we will consider the other case

separately below). Then it sends a JOIN(v) request to a node

w. We assume that if node v wants to join the system via

JOIN(v) at node w, we route v from w to the node u such

that u < v < succ(u) or succ(u) < u < v (in case the

edge (u, succ(u)) closes the cycle) holds. We define u to be

responsible for JOIN(v). u has the following tasks: First, it

introduces itself to v. Second, it hands over to v all DHT data

whose key is in v’s interval. Any PUT or GET requests for

data with keys in this interval u will forward to v from then

on. Third, u considers v to be a child in its aggregation tree,

meaning that v is able to send ENQUEUE() or DEQUEUE()
requests via u. Fourth, u notifies the anchor that there is

an additional node that has joined the system. For this, we

extend the notion of a batch B from Definition 5, such that

it stores an additional number B.j ∈ N0 representing the

number of JOIN() requests that u is responsible for. Node

u proceeds in the same manner as for the queue operations

in Section III: It buffers the request in u.W by adding 1 to

u.W.j and once u.B is empty and u has received batches

from every child, u transfers all ENQUEUE(), DEQUEUE() and

JOIN() requests stored in u.W to u.B forwards the batch up in

the aggregation tree. Any intermediate node, when combining

batches B1, . . . Bk, calculates the sum of the Bi.j values for

the combined batch. This way the anchor learns a lower bound

on the total number of joining nodes (note that additional

nodes may have requested to join but knowledge of this has

not yet reached the anchor).

Note that a node u may become responsible for several

joining nodes v1, . . . vk. In this case, everything written before

still holds with one exception: Assume u is responsible for

nodes v1, . . . , vk and becomes responsible for an additional

node v′ such that a node vi is the closest predecessor of v′.
Then u does not transfer the DHT from itself to v′ but issues

vi to transfer the DHT data to v′ and sends a reference of v′

to vi. Using this reference, vi can forward any PUT or GET

requests that fall within the remit of v′.

If the anchor can observe that the number of joining nodes

exceeds the number of successfully integrated nodes when

processing a batch, it sends the computed intervals down the

aggregation tree as usual (c.f. Section III), but attaches a flag to

the message indicating that the update phase should be entered

(thus informing all nodes of this). In this phase, no node will

send out a new batch until it has been informed that the update

phase is over. Instead, nodes responsible for other nodes will

fully integrate these nodes into the system. This works in

the following way: When a node u 6= v0 in the aggregation

tree receives the intervals from its parent node, it proceeds as

described in Section III, i.e., it splits the intervals, forwards

intervals to its children and possibly sends out PUT and

GET requests. Additionally, u stores the parent pold(u) in the

aggregation tree it received the intervals from and all children

Cold(u) it forwards the intervals to. This is required because

in the update phase the aggregation trees may change, but the

acknowledgments that the joining nodes have been integrated

successfully need to be aggregated via the old aggregation

tree. That means that as soon as u has integrated all nodes it

is responsible for (if any) and received acknowledgments from

all nodes in Cold(u) (if any), it sends an acknowledgment to

pold(u) and forgets Cold(u) and pold(u). v0 behaves similar to

any other node u, i.e., it also stores its old children, processes

PUT and GET requests and also starts integrating nodes it

is responsible for. However, when it has finished in doing so,

and received all acknowledgments from the nodes in Cold(v0),
it propagates down in the new aggregation tree a message

indicating that the update phase is over (note that we consider

the case of a joining node to the left of the anchor below). This

is safe because it can be shown by induction that when v0 has

received acknowledgments from all its children, every node

in the tree has finished integrating at least all joining nodes

that were joining when the anchor entered the update phase.

Once a node has received an indication that the update phase

is over, it starts aggregating and sending out batches again.

We now describe how integrating a joining node works.

Consider a node u that is responsible for v1, . . . , vk.

W.l.o.g., we assume u < v1 < . . . < vk < succ(u). u
introduces vi to vi+1 and vice versa for all i ∈ {1, . . . , k− 1}
and introduces succ(u) to vk and vice versa. Finally, u drops

its connections to v2, . . . , vk and succ(u).
Note that the nodes vi already stored their corresponding

DHT data from the point when u became responsible for them.

Due to changes in the De Bruijn graph it may happen that

PUT or GET requests do not need to be routed to the same

target as before. However, if a PUT request is at a node v that

is not responsible for storing the corresponding element e, v
must have a neighbor that is closer to the node responsible

for storing e. This is because whenever v removes an edge to

a neighbor during join, it has learned to know a closer one

in the same direction before. Thus v can forward it into the

right direction. Similarly, if a GET request is at a node v that

does not store the desired element e, v can wait until it either

stores e or until it has learned to know a node that is closer to

the target than itself. Since eventually our procedure forms the

correct De Bruijn topology, these requests will be answered.

a) Updating the Anchor: We now consider the special

case, where at least one new node v’s label is smaller than the

label of the current anchor v0. Then the node responsible for

v is the node u with maximum label, i.e., u = pred(v0). u
behaves as described before. However, when v0 has received

all acknowledgments from it children and integrated the nodes

it is responsible for, it does not send out the message indicating

that the update phase is over (note that v0 can determine that

a node v < v0 has joined because its neighborhood to the

left has changed). Instead, v0 searches for the leftmost node

v′0 and and then transfers its interval [v0.f irst, v0.last] to v′0.

From that point on, v′0 will behave as the new anchor and send

the message indicating that the update phase is over down in

the new aggregation tree.

B. Leave

The general strategy for leaves is the following: For each

leaving node v, the process emulating the left neighbor u of

v creates a virtual node v′ that acts as a replacement for

v, i.e., v′ will store v’s DHT data, be responsible for the

nodes v was responsible for and have the same connections

as v had. As soon as this replacement has been created, the

corresponding edges have been established, the edges to v
have been removed, and all messages on their way to v have

been delivered and successfully forwarded from v, v is safe

to leave the system and does so. The challenge is to deal with

neighboring leaving nodes: If v has a neighbor that is also

leaving, then this neighbor does not want to establish a new

edge, which might result in a deadlock situation. Thus, we

have to prioritize leaves: Whenever two neighboring nodes u
and v determine that they both want to leave, the one with

the higher identifier postpones its attempt to leave until the

other one has left the system. Since in any case there is a

unique leftmost leaving node, there will always be a node that

can leave the system, which inductively yields that all nodes

eventually leave. To enable this, each node that calls LEAVE()
first asks all its left neighbors if it is allowed to do so. Only

if all of them acknowledge, it starts the actual procedure to

leave. Note that a node u that acknowledged a right neighbor

v that it may leave and becomes leaving afterwards has to wait

with actually executing LEAVE() until that node has left (i.e.,

was replaced by a replacement).

One may ask how a leaving node v can determine that it has

received and successfully forwarded all messages sent to it to

v′. Therefore, we additionally assume that for each message

sent via an edge in the system, an acknowledgment is sent back

to the sending node (except for acknowledgments, for obvious

reasons). Each node then stores, for each edge, the number of

acknowledgments it is still waiting for. We assume also that

a node knows all other nodes with incoming connections to it

(this can, e.g., be achieved in that each node that establishes a

new edge first introduces itself and waits for an acknowledg-

ment before it uses the edge for any other messages). Then, v
can ask all nodes with incoming connections to inform v once

they have received all acknowledgments for messages sent to

v. Once v has received all responses, it knows that it does

not receive any more messages. After forwarding the received

messages to v′ and receiving all acknowledgments for those,

it knows it is safe to leave.

A left, middle, or right virtual node u that created a replace-

ment v′ for its right neighbor v is called the node responsible

for v′. Note that v′ may receive an additional LEAVE() request

from a node w. In this case, the process emulating u would

spawn an additional node w′ and everything is carried out

as though v′ were a normal node. However, we say that u
is also responsible for w′. This way a left, middle, or right

virtual node may become responsible for a number of nodes.

Similar to the joining of nodes, a node u responsible for at

least another node sends an additional number B.l ∈ N0 in the

batch B it sends out next, representing the number of LEAVE()
requests that u has become responsible for since it last sent

out a batch.

The rest is analogous to the join case: As soon as the number

of leave requests falls below half of the number of nodes

emulated, the anchor initiates the update phase during which

each node u responsible for a set of nodes v1, . . . , vk deletes

these nodes and updates the De Bruijn Graph accordingly.

Once all acknowledgments for this have been propagated up

in the tree, the update phase is left again. Note that both joins

and leaves may be handled in the same update phase.

On a sidenote, one may ask what happens if a joining node v
joins at some node w that is currently in the process of leaving.

While w is alive and has edges to some non-leaving nodes, w
can forward v such that v stays in the system. However, once

w has left the system and is not alive anymore, v cannot join

the system through w. Still, v can detect if w is not active

anymore and then try joining the system from another node.

a) Updating the Anchor: When v0 wants to leave, we

proceed similar as for the join case: pred(v0) will become the

node responsible for v0 and perform the duties of the anchor

and at the very end of the update phase, the anchor information

is transferred to the node that then has the minimum identifier.

V. ANALYSIS

To prove that SKUEUE implements a distributed queue

according to Definition 1, we define a total order on the

ENQUEUE() and DEQUEUE() requests. To do so we specify

an algorithm that assigns each request a unique value from

N: First, initialize a virtual counter c at the anchor with 1
as its initial value (this value is transferred if the anchor is

changed due to a join or a leave). We assign a virtual counter to

each ENQUEUE() or DEQUEUE() request op in the following

way: Recall that when op is initiated, it causes the increase of

an opi value of one batch B. Virtually assign to value(op)
the new value of opi. We also say that op belongs to B
at index i. When B is combined with another batch on its

way up in the aggregation tree, choose one of the batches as

the first one and one as the second one. If B is the second

one, let op′i be the i-th entry of the other batch and add

op′i to value(op). In any case, op belongs to the combined

batch afterwards. Proceed in this way for every combination

of batches up to the anchor. When the anchor processes the

batch (op′′1 , . . . , op
′′

k′′) which op belongs to, add c+
∑i−1

j=1
opj

to value(op). Afterwards, the anchor updates c by
∑k′′

j=1
opj .

Intuitively, imagine the anchor would process every request

individually: Then it would first consider all op′′1 ENQUEUE()
requests, then all op′′2 DEQUEUE() requests, and so on. The

final value of op would then be the number of requests that

the anchor has served up to (and including) op.

Observe that the values are unique. In the following, let≺ be

the order defined by the values given this way. The following

lemmas follow from the protocol description (check the way

we assigned values to the requests and how the intervals are

assigned to the requests):

Lemma 7. If, for two DEQUEUE() requests DEQu,i, DEQv,j

that get assigned positions, posa, posb, respectively, DEQu,i ≺
DEQv,j , then posa < posb.

Lemma 8. If, for two ENQUEUE() requests ENQu,i, ENQv,j

that get assigned positions, posa, posb, respectively, ENQu,i ≺
ENQv,j , then posa < posb.

Lemma 9. If a DEQUEUE() request DEQu,i gets assigned a

position posa, then for every ENQUEUE() request ENQv,j with

value(DEQu,i) < value(ENQv,j) the position posb assigned

to it satisfies posb > posa. Likewise, if an ENQUEUE()
request ENQu,i gets assigned a position posa, then for

every DEQUEUE() request DEQv,j with value(DEQv,j) <
value(ENQu,i) the position posb assigned to it satisfies posb <
posa.

Lemma 10. Assume there is a sequence of DEQUEUE()
requests deq1, . . . , deqk that belong to the same batch B and

the same index l such that value(deq1) < · · · < value(deqk).
If deqi returns ⊥ for some i ∈ {1, . . . , k}, then all deqj with

i < j ≤ k also return ⊥ and [v0.f irst, v0.last] is empty after

index l of batch B has been processed in v0 in Stage 2.

This lemma directly implies:

Corollary 11. If a DEQUEUE() request DEQu,i returns ⊥ then

every DEQv,j request with value(DEQu,i) < value(DEQv,j)
does not return an element e added by an ENQUEUE() request

ENQw,k with value(ENQw,k) < value(DEQu,i).

Lemma 12. If a DEQUEUE() request DEQu,i gets assigned a

position pos, then for every ENQUEUE(e) request that received

a position pos′ < pos there exists a DEQv,j request with

value(DEQv,j) < value(DEQu,i) that returns e.

The reason is that the dequeue intervals always start with

the lowest possible value.

Lemma 13. Every GET operation issued by any of the nodes

is answered in finite time.

a) Proof sketch: Note that the way SKUEUE deals with

leave requests makes sure that no messages get lost during

leave as was argued in Section IV. Furthermore, check in the

protocol description that whenever a GET message is at a node

u that is not responsible for storing the position corresponding

with the GET message, u knows a node that is closer to the

node responsible for storing the position. Thus, each GET

message will eventually reach the node that is responsible for

storing it (note that even if the node responsible for storing it

changes meanwhile, then the old node responsible for storing it

knows the new one and can forward the message accordingly).

If that node already stores the element required by the GET

message, it can be answered directly. Otherwise, check that

the same we said about the GET message analogously applies

to the corresponding PUT message. Thus, the element will

eventually arrive at that node and the GET message can be

answered.

We are now ready to prove the following theorem:

Theorem 14. SKUEUE implements a data structure that is

sequentially consistent.

Proof. First of all note that due to the protocol description

and Lemma 13, every DEQUEUE() request returns a value

(i.e., either ⊥ or some element e ∈ E). We will consider all

four requirements of Definition 1 individually.

First, consider an arbitrary DEQUEUE() request DEQw,j that

returns a value e ∈ E that was added due to an ENQUEUE()
request ENQv,i. Since the position in the DHT is the same for

both these requests, Lemma 9 implies that value(ENQv,i) <
value(DEQw,j).

Second, again consider an arbitrary DEQUEUE() request

DEQw,j that returns a value e ∈ E that was added due to

an ENQUEUE() request ENQv,i. For the first part, assume

for contradiction that there is a DEQu,k that returns ⊥ with

value(ENQv,i) < value(DEQu,k) < value(DEQw,j). Then,

Corollary 11 implies that DEQw,j cannot return e, which is

a contradiction. For the second part, assume for contradiction

that there is an ENQu,k whose element e′ ∈ E is never returned

with value(ENQu,k) < value(ENQv,i) < value(DEQw,j).
Combining Lemma 8 with Lemma 12 yields the desired

contradiction also here.

For the third requirement, consider an arbitrary DE-

QUEUE() request DEQv,j that returns a value e ∈ E that

was added due to an ENQUEUE() request ENQu,i and an

arbitrary DEQUEUE() request DEQx,l that returns a value

e′ ∈ E that was added due to an ENQUEUE() request

ENQw,k. For the first part, assume for contradiction that

value(ENQu,i) < value(ENQw,k) < value(DEQx,l) <
value(DEQv,j). Lemma 8 yields that for the positions posa
and posb assigned to ENQu,i and ENQw,k, respectively,

posa < posb holds. Note that posa is assigned to DEQv,j

and posb is assigned to DEQx,l. However, Lemma 7 would

imply posb < posa, which yields a contradiction. The second

part of the third requirement is analogous.

The fourth requirement is directly satisfied by the way we

defined ≺. This completes the proof of the theorem.

In the following, we want to analyze the runtime of the

operations ENQUEUE(), DEQUEUE(), JOIN() and LEAVE().
We start with ENQUEUE() and DEQUEUE() requests.

Theorem 15. Each request ENQUEUE() or DEQUEUE() needs

O(log n) rounds w.h.p. until it is processed correctly on the

distributed queue.

Proof. Consider an arbitrary request op ∈
{ENQUEUE(), DEQUEUE()}. Assume an op is generated

by some node v ∈ V . By Corollary 6 we need logn rounds

w.h.p. to transfer op to the anchor node v0 (Stage 1) as part of

a batch. Thus it takes logn rounds w.h.p. to assign a position

to each request (Stages 2 and 3). Finding the corresponding

node u for the position in the DHT and transferring the

PUT/GET operation for op takes again logn rounds w.h.p. by

Lemma 3. Note that if op = DEQUEUE(), then we only have

a constant message overhead for GET, as u is able to send

the result of GET to v in one round. Summing it all up, we

need O(log n) number of rounds w.h.p.

We obtain the following corollary, which shows that our

approach is indeed scalable for a large number of incoming

requests.

Corollary 16. Assume a node v ∈ V has stored an arbitrary

amount of queue requests in v.W . The number of rounds,

needed to process all requests successfully is O(log n) w.h.p.

Proof. Follows from Theorem 15 and the fact that we process

requests in batches.

Corollary 16 emphasizes the advantages of processing mul-

tiple requests at once via batches: Imagine a node v that

generates one queue request in each round. If a single queue

request op takes O(log n) rounds to finish and v is prohibited

to process any further request before op is finished, v’s local

storage would eventually overflow. For SKUEUE however, v
is able to flush all requests contained in v.B after O(log n)
rounds w.h.p.

Theorem 17. Assume that at the beginning of the update

phase there are n joining nodes (n/2 node replacements).

Then the update phase finishes after O(log n) rounds w.h.p.,

if no node wants to join/leave the system in the meantime.

Proof. By Corollary 6, we need O(log n) rounds w.h.p. to

propagate the start of the update phase to all nodes in the

aggregation tree. It is easy to see that a node v responsible

for multiple JOIN() or LEAVE() requests can process these

requests in a constant amount of rounds once it got the

permission from p(v) in the update phase. The only case

that may exceed the claimed upper bound is the case where

the (old) anchor transfers its data to the new anchor, i.e., to

the node with minimal label. However, with n nodes joining,

each old node is only responsible for at most O(logn) joining

nodes w.h.p. This implies that there are only O(logn) joining

nodes w.h.p. with smaller label than the anchor. The same

argumentation holds for leaving nodes.

Now we want to analyze the size of messages that are sent

over communication channels in the network. Obviously, the

messages containing the most data are the ones containing a

batch. Thus, we want to get an upper bound on the maximum

batch size.

Theorem 18. Batches representing ENQUEUE(), DEQUEUE(),
JOIN() and LEAVE() requests have size O(logn) w.h.p. if each

node generates one such request per round.

Proof. Note that JOIN() and LEAVE() requests a node v is

responsible for are represented in a batch by a single constant.

By Theorem 15, each batch v.W containing ENQUEUE(),
DEQUEUE(), JOIN() and LEAVE() requests needs O(log n)
rounds w.h.p. until it is processed. Therefore a batch v.W
of some node v can only have a size up to O(log n) w.h.p.

until it is sent out via v.B assuming each node generates one

request per round: The size of the batch increases only if the

type (ENQUEUE() or DEQUEUE()) of the request generated

in round si differs from the type of the request generated in

round si−1.

Finally we note that SKUEUE is fair regarding the number

of elements that each node has to store. This immediately

follows from the fairness property of the DHT (Lemma 4)

and the fact that each joining or leaving node gets or transfers

its DHT data.

Corollary 19. SKUEUE is fair.

VI. DISTRIBUTED STACK

In this section we propose some simple modifications to

SKUEUE in order to realize a scalable distributed stack that

fulfills sequential consistency. Instead of ENQUEUE() and

DEQUEUE() requests, the stack provides requests PUSH() and

POP() such that for a single process it resembles a LIFO data

structure. Definition 1 can then be adjusted easily.

A natural approach would be to just change the way in

which the anchor computes the position intervals for DE-

QUEUE() requests (see Stage 2 in Section III). Recall that

the anchor computes the interval [v0.f irst,min{v0.f irst +
opi − 1, v0.last}] in case there are opi consecutive DE-

QUEUE() requests. For opi consecutive POP() requests, we

want the anchor to return the interval [max{1, v0.last −
opi+1}, v0.last] and update v0.last to max{0, v0.last−opi}
afterwards. Observe that we do not need the variable v0.f irst
anymore. Processes decomposing their position intervals in

stage 3 now have to take out the maximum position in

the interval first. Unfortunately, this modification does not

suffice on its own, because the assigned positions for in-

serted elements are not unique: For the operation sequence

(PUSH(x), POP(), PUSH(y)) both PUSH() requests are as-

signed to the same position by the anchor, leading to elements

being replaced in the DHT. Therefore we have to make sure

that the key under which elements are inserted into the DHT

is unique: We introduce a variable v0.ticket ∈ N at the

anchor, which is increased by i every time v0.last is increased

by i, but is never decreased, i.e., v0.ticket is monotonically

increasing. Intuitively, v0.ticket represents the number of

PUSH() requests ever processed at the anchor, whereas v0.last
represents the current size of the stack. A request is now

assigned a pair (position, ticket) ∈ N × N instead of just

a single position. For such a pair (p, t) that got assigned to

a PUSH(x) request, we store (p, t) and x at the node that is

responsible for position p in the DHT. A POP() request that

got assigned to the pair (p′, t′) searches the DHT for the node

v that is responsible for position p′. After arrival at v, we

remove the element with ticket t ≤ t′ from v and return it to

the initiator of the POP() request.

Nodes are able to locally combine generated requests in

order to answer them immediately: For instance, if node v
generates k PUSH() requests p1, . . . , pk followed by k POP()
requests po1, . . . , pok, then v can process all of these requests

immediately by assigning the k − i + 1-th PUSH() request

to the i-th POP() request for all i ∈ {1, . . . , k}. This is

particularly advantageous in scenarios where the rate at which

nodes generate requests is very high. It is easy to see that we

do not violate sequential consistency with this modification.

Furthermore it follows that all batches which are sent upwards

the aggregation tree have the form B = (op1, op2) with

op1 ∈ N representing POP() operations and op2 representing

PUSH() operations. This immediately yields the following

theorem on the size of a batch:

Theorem 20. Batches representing PUSH() and POP(), re-

quests have constant size.

In contrast to Theorem 18, Theorem 20 holds for any rate

in which nodes generate stack requests.

Since we consider the asynchronous message passing

model, all that is left is to prevent the following scenario from

happening: Consider the operation sequence (a, b, c, d) with

a = PUSH(x), b = POP(), c = PUSH(y) and d = POP(). Then

the anchor assigns the pair (p, t) to a, (p, t) to b, (p, t + 1)
to c and (p, t+ 1) to d. Due to asynchronicity in our system,

the DHT requests representing a, b, c and d may arrive in the

order (a, d, c, b) at the node responsible for position p. This

leads to d returning the element x, as the ticket value for a is

smaller than the ticket value for d. Request b does not find an

element with ticket value smaller or equal than its own and

consequently fails, violating sequential consistency. In order

to fix this, we force all nodes v to wait in stage 4 before

switching to stage 1 again, until all DHT-operations that v
has generated in stage 4 have been finished (we just have to

add this constraint to the clause in lines 2-3 of Algorithm 1).

Reconsidering the above example, it follows that the order

of arrival of the DHT operations will be either (a, b, c, d) or

(a, c, b, d), because a and d are guaranteed to be in different

batches than b and c when combining requests as described

above. It is easy to see that both cases prevail sequential

consistency. We obtain the main result of this section:

Theorem 21. The modified SKUEUE protocol implements a

stack that is sequentially consistent.

JOIN() and LEAVE() requests are processed in the exact

same manner on the stack as described in Section IV.

VII. EVALUATION

We implemented and evaluated SKUEUE as well as its stack

adaptation (see Section VI) on different instances. In this

section we present and interpret the most important results

of these experiments.

A. Setup

We implemented the protocols for the synchronous message

passing model and performed the following experiment for

instances up to 100000 nodes: At the beginning of each

(synchronous) round, we generate 10 queue requests and

assign them to random nodes in the system. After 1000 rounds

we stop the generation of requests and wait until all requests

that are still being processed have finished successfully. For

each finished request we measure the number of rounds it

took the requests to finish. For the results presented in this

section we always consider the average amount of rounds

per requests. We tested instances with different ratios of EN-

QUEUE()/DEQUEUE() requests, respectively, PUSH()/POP()
requests.

B. Distributed Queue

Consider Figure 2 for results on the distributed queue.

10,000 50,000 1 · 105
0

50

100

150

n

(a
v

g
.)

#
ro

u
n

d
s

p
er

re
q

u
es

t

1.0
0.75
0.5
0.25
0.0

Fig. 2. Average number of (synchronous) rounds per request on the distributed
queue. The graphs represent the different probabilities p that a generated
request is an ENQUEUE() operation, meaning that 1 − p is the probability
that a generated request is a DEQUEUE() operation.

One can see that the average number of rounds for a

request to finish scales logarithmically in the number of nodes

n. As soon as the ENQUEUE() rate drops below 0.5 the

queue performs better, because the queue is empty most of

the times. This implies that DEQUEUE() operations do not

have to search for a position in the DHT, as they can be

processed immediately as soon as the requesting node receives

the position intervals from the anchor. Interestingly, the curves

for ENQUEUE() rates of 0.5 or higher are almost the same,

which means that DEQUEUE() operations waiting for the

corresponding ENQUEUE() operations in the DHT do not have

a significant impact on the performance.

Roughly, these curves correspond to 3 times the height

of the aggregation tree (denoted as ATH ≈ logn) plus

the average number of rounds it takes for a DHT operation

to finish: A queue request first has to wait after generation

until the next aggregation phase begins (on average ATH
rounds), then it is aggregated to the root (ATH rounds) and

assigned a position (ATH rounds). Afterwards we process the

corresponding DHT operation in approximately logn rounds.

C. Distributed Stack

Consider Figure 3 for results on the distributed stack.

10,000 50,000 1 · 105
0

50

100

150

200

n

(a
v

g
.)

#
ro

u
n

d
s

p
er

re
q

u
es

t

1.0
0.75
0.5
0.25
0.0

Fig. 3. Average number of (synchronous) rounds per request on the distributed
stack. The graphs represent the different probabilities p that a generated
request is a PUSH() operation, meaning that 1 − p is the probability that
a generated request is a POP() operation.

Same as for the queue, the average number of rounds for

a request scales logarithmically in the number of nodes n.

However, the stack performs a bit slower than the queue,

because we wait at the end of stage 4 until all DHT operations

have finished. This delays the start of the next aggregation

phase and leads to all curves representing PUSH() ratios

greater than 0 being roughly the same. Obviously the stack

performs better if we only generate POP() operations. In

fact, the curve for a PUSH() ratio of 0 is the same as the

corresponding curve for the queue, which makes sense, since

both data structures do not have to issue any DHT operations.

Unfortunately, we cannot see the impact of the local com-

bination of operations in this setting, because the probability

that more than one operation is generated at a node v in the

same aggregation phase is very low. Therefore we perform an

additional experiment: We consider an instance of n = 10000
nodes and generate requests at nodes with constant probability

p ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.5, 1} at each round. For

instance, if p = 1, we generate one request at each node in

each round leading to 1000n = 107 generated requests after

1000 rounds. The probability that a generated request is an

ENQUEUE()/PUSH() operation is 0.5. Again we looked at the

average number of rounds it takes a request to be processed

successfully for both, the queue and the stack. The results

can be seen in Figure 4 (note that the horizontal axis now

represents the different probabilities p mentioned above).

0 0.25 0.5 0.75 1
0

25

50

75

100

Request Ratio

(a
v

g
.)

#
ro

u
n

d
s

p
er

re
q

u
es

t

Queue Stack

Fig. 4. Average number of (synchronous) rounds per request on the
queue/stack with different request ratios and n = 10000.

Here we can see that the stack’s performance gets even

better if the rate at which requests are generated increases.

This is due to nodes issuing multiple requests in the same

aggregation phase, which leads to the stack being able to

combine operations locally, such that they can be processed

immediately.

VIII. CONCLUSION

We presented the protocol SKUEUE for a distributed queue

that guarantees sequential consistency and is able to process

requests fast even for a high rate of incoming requests.

A challenging task would be to make SKUEUE self-

stabilizing, such that the network can recover itself from faulty

states. However, due to the various amount of variables that

have to be stored at each node and the fact that we are in an

asynchronous environment, one will quickly have to weaken

the queue semantics.

REFERENCES

[1] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded compu-
tations by work stealing,” J. ACM, vol. 46, no. 5, pp. 720–748, 1999.

[2] C. G. Plaxton, R. Rajaraman, and A. W. Richa, “Accessing nearby copies
of replicated objects in a distributed environment,” in ACM SPAA, 1997,
pp. 311–320.

[3] D. R. Karger, E. Lehman, F. T. Leighton, R. Panigrahy, M. S. Levine, and
D. Lewin, “Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web,” in STOC,
1997, pp. 654–663.

[4] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in SIGCOMM, 2001, pp. 149–160.

[5] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems,” in
Middleware, 2001, pp. 329–350.

[6] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. Kubiatowicz, “Tapestry: a resilient global-scale overlay for service
deployment,” IEEE Journal on Selected Areas in Communications,
vol. 22, no. 1, pp. 41–53, 2004.

[7] A. Lakshman and P. Malik, “Cassandra: structured storage system on a
P2P network,” in PODC, 2009, p. 5.

[8] S. Alaei, M. Toossi, and M. Ghodsi, “Skiptree: A scalable range-
queryable distributed data structure for multidimensional data,” in
ISAAC, 2005, pp. 298–307.

[9] B. Kröll and P. Widmayer, “Distributing a search tree among a growing
number of processors,” in SIGMOD, 1994, pp. 265–276.

[10] M. M. Michael and M. L. Scott, “Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms,” in PODC, 1996,
pp. 267–275.

[11] D. Hendler, N. Shavit, and L. Yerushalmi, “A scalable lock-free stack
algorithm,” J. Parallel Distrib. Comput., vol. 70, no. 1, pp. 1–12, 2010.

[12] N. Shavit and I. Lotan, “Skiplist-based concurrent priority queues,” in
IPDPS, 2000, pp. 263–268.

[13] M. Moir and N. Shavit, “Concurrent data structures,” in Handbook of
Data Structures and Applications., 2004.

[14] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir, “Scalable flat-combining
based synchronous queues,” in DISC, 2010, pp. 79–93.

[15] N. Shavit and G. Taubenfeld, “The computability of relaxed data
structures: queues and stacks as examples,” Distributed Computing,
vol. 29, no. 5, pp. 395–407, 2016.

[16] C. Scheideler and S. Schmid, “A distributed and oblivious heap,” in
ICALP, 2009, pp. 571–582.

[17] A. W. Richa, C. Scheideler, and P. Stevens, “Self-stabilizing de bruijn
networks,” in SSS, ser. Lecture Notes in Computer Science, vol. 6976.
Springer, 2011, pp. 416–430.

[18] M. Naor and U. Wieder, “Novel architectures for P2P applications: The
continuous-discrete approach,” ACM Trans. Algorithms, vol. 3, no. 3,
p. 34, 2007.

[19] M. Herlihy, S. Tirthapura, and R. Wattenhofer, “Competitive concurrent
distributed queuing,” in PODC, 2001, pp. 127–133.

[20] S. Tirthapura and M. Herlihy, “Self-stabilizing distributed queuing,”
IEEE Trans. Parallel Distrib. Syst., vol. 17, no. 7, pp. 646–655, 2006.

[21] G. Sharma and C. Busch, “Distributed queuing in dynamic networks,”
Parallel Processing Letters, vol. 25, no. 2, 2015.

	I Introduction
	I-A Basic notation
	I-B Model
	I-C Related Work
	I-D Our Contribution

	II Preliminaries
	II-A Linearized De Bruijn Network
	II-B Distributed Hash Table

	III Enqueue & Dequeue
	III-A Operation Batch
	III-B Aggregation Tree
	III-C Stage 1: Aggregating Batches
	III-D Stage 2: Assigning Positions
	III-E Stage 3: Decomposing Position Intervals
	III-F Stage 4: Updating the DHT

	IV Join & Leave
	IV-A Join
	IV-B Leave

	V Analysis
	VI Distributed Stack
	VII Evaluation
	VII-A Setup
	VII-B Distributed Queue
	VII-C Distributed Stack

	VIII Conclusion
	References

