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Abstract
In this paper we present two major results: First, we introduce the first self-stabilizing version of a
supervised overlay network (as introduced in [14]) by presenting a self-stabilizing supervised skip
ring. Secondly, we show how to use the self-stabilizing supervised skip ring to construct an efficient
self-stabilizing publish-subscribe system. That is, in addition to stabilizing the overlay network,
every subscriber of a topic will eventually know all of the publications that have been issued so far
for that topic. The communication work needed to processes a subscribe or unsubscribe operation
is just a constant in a legitimate state, and the communication work of checking whether the
system is still in a legitimate state is just a constant on expectation for the supervisor as well as
any process in the system.

1998 ACM Subject Classification C.2.4 Distributed Systems

Keywords and phrases Topological Self-stabilization, Publish-Subscribe, Supervised Overlay

1 Introduction

The publish subscribe paradigm ([7, 8]) is a very popular paradigm for the targeted dissemin-
ation of information. It allows clients to subscribe to certain topics or contents so that they
will only receive information that matches their interests. In the traditional client-server
approach the dissemination of information is handled by a server (also called broker), which
has the benefit that the publishers are decoupled from the subscribers: the publisher does
not have to know the relevant subscribers, and the publisher and subscribers do not have to
be online at the same time. However, in this case the availability of the publish subscribe
system critically depends on the availability of the server, and the server has to be powerful
enough to handle the dissemination of the publish requests. An alternative approach is
to use a peer-to-peer system. However, if no commonly known gateway is available, the
peer-to-peer system cannot recover from overlay network partitions. In practice, peer-to-peer
systems usually have a commonly known gateway since otherwise new peers may not be
able to get in contact with a peer that is currently in the system (and can therefore process
the join request). In our supervised overlay network approach we assume that there is a
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commonly known gateway, called supervisor, that just handles subscribe and unsubscribe
requests but does not handle the dissemination of publish requests, which will be handled
by the subscribers in a peer-to-peer manner. We are interested in realizing a topic-based
supervised publish subscribe system, which means that peers can subscribe to certain topics
(that are usually relatively broad and predefined by the supervisor).

Topic-based publish subscribe systems have many important applications. Apart from
providing a targeted news service, they can be used, for example, to realize a group com-
munication service [9], which is considered an important building block for many other
applications ranging from chat groups and collaborative working groups to online market
places (where clients publish service requests), distributed file systems or transaction systems.
To ensure the reliable dissemination of publish requests in a topic-based publish subscribe
system, we present a self-stabilizing supervised publish subscribe system, which ensures that
for any initial state (including overlay network partitions) eventually a legitimate state will
be reached in which all subscribers of a topic know about all publish requests that have been
issued for that topic. We also show that the overhead for the supervisor in our system is
very low. In fact, the message overhead of the supervisor is just a constant for subscribe and
unsubscribe operations, and the supervisor has a low maintenance overhead in a legitimate
state.

1.1 Model
We model the overlay network of a distributed system as a directed graph G = (V,E), where
n = |V |. Each peer is represented by a node v ∈ V . Each node v ∈ V is identified by its
unique reference or identifier v.id ∈ N (called ID). Additionally, each node v maintains
local protocol-based variables and has a channel v.Ch, which is a system-based variable that
contains incoming messages. We assume a channel to be able to store any finite number
of messages, and messages are never duplicated or get lost in the channel. If a node u has
the reference of some other node v, u can send a message m to v by putting m into v.Ch.
There is a directed edge (u, v) ∈ E whenever u stores a reference of v in its local memory or
there is a message in u.Ch carrying the reference of v. In the former case, we call that edge
explicit and in the latter case we call that edge implicit. Note that every node is assumed to
know the supervisor, and this information is read-only, so G always contains a directed star
graph from all peers to the supervisor.

Nodes may execute actions: An action is just a standard procedure and has the form
〈label〉(〈parameters〉) : 〈command〉, where label is the name of that action, parameters
defines the set of parameters and command defines the statements that are executed when
calling that action. It may be called locally or remotely, i.e., every message that is sent to a
node has the form 〈label〉(〈parameters〉). When a node u processes a message m, then m is
removed from u.Ch. Additionally, there is an action that is not triggered by messages but is
executed periodically by each node. We call this action Timeout.

We define the system state to be an assignment of a value to every node’s variables and
messages to each channel. A computation is an infinite sequence of system states, where the
state si+1 can be reached from its previous state si by executing an action that is enabled in
si. We call the first state of a given computation the initial state. We assume fair message
receipt, meaning that every message of the form 〈label〉(〈parameters〉) that is contained in
some channel, is eventually processed. Furthermore, we assume weakly fair action execution,
meaning that if an action is enabled in all but finitely many states of a computation, then
this action is executed infinitely often. Consider the Timeout action as an example for this.
We place no bounds on message propagation delay or relative node execution speed, i.e., we
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allow fully asynchronous computations and non-FIFO message delivery. Our protocol does
not manipulate node identifiers and thus only operates on them in compare-store-send mode,
i.e., the nodes are only allowed to compare node IDs, store them in a node’s local memory or
send them in a message.

In this paper we assume for simplicity that there are no corrupted IDs (i.e., IDs of
unavailable nodes) in the initial state of the system. However, dealing with them is easy
when having a failure detector that is eventually correct since, due to the supervisor, the
correctness of our protocol cannot be endangered by sending messages to non-available nodes.
Since our protocol just deals with IDs in a compare-store-send manner, this implies that
node IDs will always be non-corrupted for all computations. Nevertheless, the node channels
may initially contain an arbitrary finite number of messages containing false information.
We call these messages corrupted, and we will argue that eventually there will not be any
corrupted messages in the system. We will show that our protocol realizes a self-stabilizing
supervised publish-subscribe system.

I Definition 1 (Self-stabilization). A protocol is self-stabilizing w.r.t. a set of legitimate
states if it satisfies the following two properties:
- Convergence: Starting from an arbitrary system state, the protocol is guaranteed to

arrive at a legitimate state.
- Closure: Starting from a legitimate state, the protocol remains in legitimate states

thereafter.

1.2 Related Work
The concept of self-stabilizing algorithms for distributed systems goes back to the year 1974,
when E. W. Dijkstra introduced the idea of self-stabilization in a token-based ring [4]. Many
self-stabilizing protocols for various types of overlays have been proposed, like sorted lists [18],
de Bruijn graphs [19], Chord graphs [13] and many more. There is even a universal approach,
which is able to derive self-stabilizing protocols for several types of topologies [2].

The cycle topology is particularly important for our work. Our cycle protocol is based on
[12], in which the authors construct a self-stabilizing cycle that acts as a base for additional
long-range links, both together forming a small-world network.

The paper closest to our work is by Kothapalli and Scheideler [14]. The authors provide a
general framework for constructing a supervised peer-to-peer system in which the supervisor
only has to store a constant amount of information about the system at any time and only
has to send out a constant number of messages to integrate or remove a node. However,
their system is not self-stabilizing.

In the literature there are publish-subscribe systems that are self-stabilizing: e.g. in [17]
the authors present different content-based routing algorithms in a self-stabilizing (acyclic)
broker overlay network that clients can publish messages to. Their main idea is a leasing
mechanism for routing tables such that it is guaranteed that once a client subscribes to a
topic there is a point in time such that every publication which is issued thereafter is delivered
to the newly subscribed client (i.e., there are no guarantees for older publications). While
the authors focus on the routing tables and take the overlay network as a given ingredient,
our work focuses on constructing a self-stabilizing supervised overlay network and then using
it to obtain a self-stabilizing publish-subscribe system.

A self-stabilizing publish-subscribe system for wireless ad-hoc networks is proposed in [20],
which builds upon the work of [21]: Similar to our work, the authors arrange nodes in a cycle
with shortcuts and present a routing algorithm that makes use of these shortcuts to deliver
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new publications for topics to subscribers only after O(n) steps. Subscribe and unsubscribe
requests are processed by updating the routing table at nodes. Both systems described above
differ from our approach, as they solely focus on the routing scheme and updates of the
routing tables, while we focus on updating the topology upon subscribe/unsubscribe requests.
Additionally, our system is able to deliver publications in O(logn) steps, if we use flooding,
since we use a network with logarithmic diameter. Furthermore, we are also able to deliver
all publications of a domain to a new subscriber after only a constant number of rounds.

There is a close relationship between group communication services (e.g., [9, 1]) and
publish-subscribe systems. Processes are ordered in groups in both paradigms and group-
messages are only distributed among all members of some group. Self-stabilizing group
communication services are proposed in [6] for ad-hoc networks and in [5] for directed networks.
However, there are some key differences: In group communication services, participants
have to agree on group membership views. This results in a high memory overhead for
each member of a group, as nodes in a group technically form a clique. On the other hand
subscribers of topics in publish-subscribe systems are in general not interested in any other
members of the topic. For our approach, this results in logarithmic worst-case and constant
average case degree for subscribers.

1.3 Our Contribution
To the best of our knowledge, we present the first self-stabilizing protocol for a supervised
overlay network. We focus on a topology that is a ring with shortcuts which we call skip
ring. The corresponding protocol BuildSR is split up into two subprotocols: One protocol
is executed at the supervisor (see Section 3.1), the other one is executed by each subscriber
(Section 3.2). Our basic protocol assumes that all references actually belong to existing nodes.
However, we also present an extension (see Section 3.3) to handle references to non-existing
nodes and unannounced failures of nodes. In contrast to the supervised overlay network
proposed in [14], our new protocol lets the supervisor handle multiple insertions/deletions in
parallel without having to rely on confirmations from other nodes, however, at the cost of
storing much more references than the solution in [14].

The skip ring shares some similarities with other shortcut-based peer-to-peer systems
like Chord networks [13] or skip graphs [10]. However, our network has a better congestion
than these networks, as the supervised approach allows a much more balanced distribution
of these nodes.

We show how to use the supervised skip ring to obtain a self-stabilizing publish-subscribe
system (see Section 4) in which each skip ring corresponds to a topic. Every subscriber
of a topic eventually gets all publications that have been issued so far for that topic. The
shortcuts in the skip ring are helpful when using flooding to distribute new publications
among all subscribers, since a skip ring of n nodes has diameter logn.

In our self-stabilizing publish-subscribe system the message overhead of the supervisor
is linear in the number of topics (but not in the number of subscribers), if we use a simple
generalization strategy in which each topic corresponds to one skip ring. This, of course,
decreases the applicability of our system in large-scale scenarios. However, better scalability
can be achieved by organizing topics in a hierarchical manner, or by having different
supervisors for each topic. For the latter scenario, one could make use of a self-stabilizing
distributed hash table (with consistent hashing) for all supervisors, in which a sub-interval
of [0, 1) is assigned to each supervisor. By hashing IDs of topics in the same manner, each
supervisor is then only responsible for the topics in its sub-interval. Since solutions for
self-stabilizing distributed hash tables already exist in the literature (see e.g. [11]), we do not
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elaborate on them further in this paper.

2 Preliminaries

In this section we formally introduce the topology for a skip ring (Section 2.1). As a base
for our self-stabilizing protocol we introduce the BuildRing protocol from [12] to arrange
nodes in a sorted ring (Section 2.2).

2.1 Skip Ring
Let l : N0 → {0, 1}∗ be a mapping with the property that l(x) := (xd−1 . . . x0xd) for every
x ∈ N0 with binary representation (xd . . . x0)2 (where d is minimum possible). Intuitively,
l takes the leading bit of the binary string representing the input value and moves it to
the units place. In our setting the supervisor will use l to assign a (unique) label to each
subscriber. Labels are generated in the order: 0, 1, 01, 11, 001, 011, 101, 111, 0001....
Note that l is invertible. We call the value l(x) ∈ {0, 1}∗ of l a label. Denote by |label| the
minimum number of bits used to encode label. A label y = (y1 . . . yd) ∈ {0, 1}d may either be
represented as a bit string or as a real-valued number within [0, 1) by evaluating the function
r : {0, 1}∗ → [0, 1) with r(y) :=

∑d
i=1 yi/2i. The function r induces an ordering of all nodes

in a ring, which will be used in the following to define the skip ring:

I Definition 2 (Skip Ring). A skip ring SR(n) is a graph G = (V,ER ∪ES) with n nodes.
G is defined as follows:
- Each node v ∈ V has a unique label denoted by labelv ∈ {0, 1}∗ with l−1(labelv) < n.
- (u, v) ∈ ER ⇔ (u, v) are consecutive in the ordering induced by r. Denote the edges in
ER as ring edges.

- (u, v) ∈ ES ⇔ (u, v) is part of the sorted ring w.r.t. node labels over all nodes in Ki,
i ∈ {1, . . . , dlogne − 1}, where Ki := {w ∈ V | |labelw| ≤ i}. Denote (u, v) ∈ ES as a
shortcut on level i, if i = max{|labelu|, |labelv|}.

The label of a node v ∈ V is independent from its unique ID v.id and will be determined
by the supervisor.

The intuition behind ER and ES is that we want all nodes with label of length at most k
to form a (bidirected) sorted ring for all k ∈ {1, . . . , dlogne}. For k = dlogne these edges
are stored in ER, for k < dlogne they are stored in ES . Due to the way we defined the
function l it holds that for all x ∈ {2d, . . . , 2d+1 − 1} the values r(l(x)) are uniformly spread
in between old values r(l(y)) with y ∈ {0, . . . , 2d − 1}. This implies that the longer a node is
a participant of the system, the more shortcuts it has. This makes sense from a practical
point of view, since older and thus more reliable nodes hold more connectivity responsibility
in form of more shortcuts.

The decision whether two nodes are connected or not only depends on the labels of
the nodes, which means that a arrival/departure of a node only affects its neighbors (see
Section 4.1 for details). Figure 1 illustrates SR(16).

The following Lemma follows from the definition of SR(n):

I Lemma 3 (Node Degree). In a legitimate state, the degree of nodes in a skip ring is
logarithmic in the worst case and constant in the average case.

Proof. For convenience, we define k := |labelv|. Node v has 2 shortcuts to nodes with label
of length k′ for each k′ ≥ k. Having n nodes in the system, we know that k′ is upper bounded
by log(n), which sums up the degree of v to be 2 · (logn− k + 1) = O(logn).
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Figure 1 A skip ring consisting of 16 nodes. The triples are of the form (x, l(x), r(l(x))) where
x ∈ {0, . . . , 15}, l(x) is the corresponding label and r(l(x)) is the real valued version of the label.
Black edges are ring edges (k = 4), green edges are shortcuts for k = 3, red edges for level k = 2 and
the blue edge is the shortcut for k = 1.

Next, we want to compute the average degree of a node. We count the overall number of
edges in a stable system containing n subscribers. Let f(k) denote the number of subscribers
with label of length k. We have

f(k) =
{

2 k = 1
2k−1 k > 1

Recall that the maximum length of a label is equal to log(n) in a stable state. Combining
this fact with the above formula for the node degree, we get the following result for the
number of edges in |ER ∪ ES |:

|ER ∪ ES | =
log(n)∑
k=1

f(k)(2(log(n)− k + 1))

= 4 log(n) +
log(n)∑
k=2

2k−1(2(log(n)− k + 1))

= 2 log(n) +
log(n)∑
k=1

2k(log(n)− k + 1)

= 2n log(n) + 2n− 2−
log(n)∑
k=1

2kk

= 4n− 4

Dividing this value by n yields an upper bound of 4 = Θ(1) for the average node
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degree. J

2.2 Self-Stabilizing Ring
The base of our self-stabilizing protocol is the BuildRing protocol from [12] that organizes
all nodes in a sorted ring according to their labels, using linearization [18]: Each node v ∈ V
stores edges to its closest left and right neighbors (denoted by v.left, v.right ∈ V ) according
to v’s label (denoted by v.label). Any other nodes u are delegated by v to either v.left or
v.right (depending on which node is closer to u). Additionally the node with minimum label
stores an edge to the node with maximum label and vice versa, such that the sorted ring is
closed. Nodes v periodically introduce themselves to their neighbors v.left and v.right in
the sorted ring: This means that v sends a message to v.left/v.right containing a reference
to itself. This way nodes can check, if the sorted ring is in a legitimate state from their point
of view or not.

In our setting nodes may assume corrupted labels for their neighboring nodes in any
nonlegal state: If node v ∈ V has an edge to w ∈ V , then v locally stores the tuple (labelw, w).
While the reference to w is assumed to be correct by definition at any time, w’s variable
w.label may change to a different value at some point in time. Unfortunately, v still has
the old label value associated with w, implying that labelw 6= w.label. As a consequence,
we extend the BuildRing protocol as follows: Whenever a node v ∈ V introduces itself to
another node w ∈ V , then v informs w about the label labelw that v thinks is assigned to
w. Node w then checks the label for correctness by comparing w.label with labelw, and if
labelw 6= w.label, w sends v its correct value of w.label.

Including the modifications mentioned above, the extended BuildRing protocol is still
self-stabilizing:

I Lemma 4. The BuildRing protocol with its extension is self-stabilizing.

Proof. In case that there are no corrupted labels, the extended BuildRing protocol behaves
the same as the standard BuildRing protocol, so we refer the reader to [12] to verify that
the protocol is indeed self-stabilizing.

We are going to show that in case there exist corrupted node labels, these will eventually
vanish. W.l.o.g. consider the variable u.right for a node u. We define the trace of u.right
as the chain of values ((labelv1 , v1), (labelv2 , v2), . . .) that are allocated to u.right while the
system stabilizes. By definition of the standard BuildRing protocol, labels stored in the
trace for u.right are monotonically decreasing. Furthermore, the trace is finite, since the
number of labels (corrupted or correct) is finite. Let (labelvk

, vk) be the last node of this
trace, i.e., eventually it holds u.right = (labelvk

, vk). Then u will introduce itself in its
Timeout method to vk by sending a message M storing u itself and labelvk

to vk. Upon
receiving M , vk is able to check if labelvk

= vk.label and send a reply storing the (correct)
label vk.label to u in case labelvk

6= vk.label, s.t. u corrects its label labelvk
. This implies

that the number of corrupted labels is reduced, but there may be a new trace generated
for u.right. But since the number of corrupted node labels is finite and is not duplicating,
eventually, the overall number of corrupted node labels will reduce to 0. J

3 Self-stabilizing Supervised Skip Ring

In this section we first extend the skip ring topology by introducing a supervisor. The
description of our BuildSR is then split into two sub-protocols: One sub-protocol is executed



1:8 Self-Stabilizing Supervised Publish-Subscribe Systems

by the supervisor, the other one is executed by every other node. Adapting publish-subscribe
terminology, we denote a node v ∈ V as subscriber for the rest of the paper.

Recall that every subscriber v is assumed to know the supervisor s, and this information
is read-only, so the graph G always contains edges (v, s). The assumption of having such a
supervisor is not far-fetched, because even pure peer-to-peer systems need a common gateway
that acts as an entrance point for peers.

Our goal in this section is to construct a self-stabilizing protocol in which subscribers
form a skip ring with the help of the supervisor, starting from any initial state. The extension
to a self-stabilizing publish-subscribe system is then described in Section 4.

3.1 Supervisor Protocol
The first part of the BuildSR protocol is executed by the supervisor. The supervisor
maintains the following variables:
- A database ⊂ {0, 1}∗ × V containing subscribers and their corresponding labels. Denote

n := |database|.
- A variable next ∈ N that is used to notify subscribers in a round-robin fashion.

In the supervisor’s Timeout method, the supervisor chooses a subscriber v in a round-
robin fashion (using the variable next) from its database. Then the supervisor sends a
message to v containing v’s label labelv, as well as the correct values for v’s predecessor predv

and successor succv according to the database. We call such a triple (predv, labelv, succv)
the configuration for v.

In addition to the above action, the supervisor has to check the integrity of its database:
We say that the database of s is corrupted, if at least one of the following conditions hold:
(i) There exists a tuple (label, v) ∈ database with v =⊥. (There exists a tuple without any

subscriber)
(ii) There exist entries (label1, v1), (label2, v2) ∈ database with label1 6= label2 and v1 = v2.

(There exist multiple tuples storing the same subscriber)
(iii) There exists i ∈ {0, . . . , n − 1}, s.t. for all (labelv, v) ∈ database it holds labelv 6= l(i).

(There are labels missing)
(iv) There exists i ≥ n, s.t. there is a tuple (label, v) ∈ database with label = l(i). (There

exists a tuple with an incorrect label)

All of these cases may occur in initial states. Note that when using a hashmap for the
database, we do not need to check explicitly whether there are multiple tuples with the same
label or whether there are tuples with the label set to ⊥. We perform the following actions
to tackle the above 4 cases:

(i) Upon detecting a tuple (label,⊥) ∈ database, we simply remove it from the database.
(ii) Whenever a subscriber v wants to unsubscribe or request its configuration, the supervisor

first searches the database for all tuples (l, w) with w = v. It then removes all duplicates
except the tuple with lowest label, guaranteeing that v is associated with no more than
one label.

(iii) In Timeout the supervisor checks for all i ∈ {0, . . . , n − 1} if there is a tuple (l(i), v)
stored in the database. If not, then the supervisor takes the tuple (l(j), w) ∈ database
with maximum j ∈ N, j > i and replaces its label with l(i).

(iv) It is easy to see that the action for (iii) also solves case (iv).
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Observe that all of these actions are performed locally by the supervisor, i.e., they
generate no messages. Therefore we assume that the database of the supervisor is always in
a non-corrupted state from this point on.

3.2 Subscriber Protocol
In this section we discuss the part of the BuildSR protocol that is executed by each
subscriber. First, we present the variables needed for a subscriber. Note that we intentionally
omit the reference to the supervisor s here, since s is assumed to be hard-coded. A subscriber
v ∈ V stores the following variables:
- v.label ∈ {0, 1}∗ ∪ {⊥}: The unique label of v or ⊥ if v has not received a label yet.
- v.left, v.right, v.ring ∈ {0, 1}∗ × (V ∪ {⊥}): Left and right neighbor in the ring as well

as the cyclic connection in case r(v.label) is minimal/maximal.
- v.shortcuts ⊂ {0, 1}∗ × (V ∪ {⊥}): All of v’s shortcuts.

For the rest of the protocol description, we use v.left and v.right to indicate v’s left
(resp. right) neighbor in the ring even if the left (resp. right) neighbor is stored in v.ring
instead of v.left (resp. v.right). We also may refer to the variables v.left, v.right, v.ring
as v’s direct ring neighbors. Recall that each subscriber executes the extended BuildRing
protocol from Section 2.2.

3.2.1 Receiving correct Labels
For now we focus on the ring edges only. Our first goal is to guarantee that every subscriber
v eventually stores its correct label in v.label.

Recall that we have periodic communication from the supervisor to the subscribers,
i.e., the supervisor periodically sends out the configurations to all subscribers stored in its
database. This action alone does not suffice in order to make sure that every subscriber
eventually stores its correct label, since in initial states the database may be empty and
subscriber labels may store arbitrary values. Thus, we also need periodic communication
from subscribers to the supervisor. The challenge here is to not overload the supervisor
with requests in legitimate states of the system. Each subscriber v periodically executes the
following actions:

(i) If v.label =⊥, then v asks the supervisor to integrate v into the database and send v its
correct configuration.

(ii) If v.label 6=⊥, then, with probability 1/(2k · k2), v asks the supervisor for its correct
configuration, where k = |v.label|.

Action (ii) is dedicated to handle subscribers that have incorrect labels or already store a
label, but are not known to the supervisor. Upon receiving a configuration request from a
subscriber v, the supervisor integrates v into the database (if it is not already contained in
the database) and sends v its configuration and thus its correct label.

We still need some further actions to tackle special initial states: Imagine a subscriber
v having a label such that the probability mentioned in (ii) becomes negligible. In case
v is not contained in the supervisor’s database yet, v will send a configuration request to
the supervisor with only very low probability. The following action is able to solve this
problem under the assumption that there exists a subscriber w that is already contained in
the supervisor’s database and has v stored as one of its direct ring neighbors.
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(iii) W.l.o.g. let w.left = (labelv, v). If w receives a configuration from the supervisor and
pred 6= v, it checks whether w.left is closer than the left ring neighbor (labelp, pred) ∈
{0, 1} × V proposed by the configuration, i.e., |r(labelv) − r(w.label)| ≤ |r(labelp) −
r(w.label)|. In case this holds, w requests the supervisor to send the correct configuration
to w.left.

The assumption for action (iii) may not hold in all initial states, i.e., there is a connected
component in which all subscribers have stored labels such that the probability mentioned in
(ii) becomes negligible. Note that actions (i)-(iii) suffice to show convergence in theory. In
order to improve the time it takes the network to converge, we introduce one last periodic
action:

(iv) Subscriber v periodically requests its configuration with probability 1/2 from the super-
visor if it determines, based only on its local information, that its label is minimal.

We now sketch why eventually all subscribers in a connected component C get their correct
label. This is obviously the case when all subscribers in C are stored in the supervisor’s
database as the supervisor will then periodically hand out the correct labels in a round-robin
fashion. Denote a subscriber that is already stored in the supervisor’s database as recorded.
Action (iv) guarantees that we quickly have at least one recorded subscriber in a connected
component C. Assume that C still contains non-recorded subscribers. As long as the
supervisor is able to introduce new recorded subscribers to recorded subscribers in C, C’s
size grows, but since the number of subscribers is finite, C will eventually become static.
For such a static connected component C we know that due to BuildRing, subscribers in
C eventually form a sorted ring. Then there exists at least one ring edge from a recorded
subscriber v ∈ C to a non-recorded subscriber w ∈ C. Furthermore, v’s correct ring neighbor
w′ indicated by its configuration has to be further away from v than w (so for instance
r(v.label) < r(w.label) < r(w′.label) if we consider the right neighbor of v). This holds
because no new subscriber can be introduced to a recorded subscriber in C. Once v receives
its configuration from the supervisor, it triggers action (iii) and requests the configuration
for w, leading to w being inserted into the supervisor’s database and thus reducing the
number of non-recorded subscribers in C by one. This inductively implies that eventually all
subscribers in C are recorded. We now want to bound the expected number of requests that
are periodically sent out to the supervisor when the system is in a legitimate state. For the
next lemma, denote a timeout interval as the time in which every subscriber has called its
Timeout method exactly once.

I Theorem 5. Consider a supervised skip ring with n subscribers in a legitimate state. The
expected number of configuration requests sent out by all subscribers is less than 1 in each
timeout interval.

Proof. Since the system has n subscribers, the maximum length of a subscriber’s label is
equal to log(n) in a legitimate state. In a legitimate state, only the second action (ii) is
executed by subscribers, as all subscribers have stored their correct configuration. Thus,
requests are only sent from a subscriber v to the supervisor with probability based on v’s label
length |v.label|. The number of subscribers with label of length k is equal to 2k−1 and the
probability that a subscriber with label of length k contacts the supervisor in its Timeout
procedure is equal to 1/(2k ·k2). It follows that the expected number of configuration requests
sent out by subscribers with label of length k is equal to

∑2k−1

i=1 1/(2k · k2) = 1/(2k2). In
summary, the expected number of configuration requests that are sent out by all subscribers
is equal to

∑log(n)
k=1 1/(2k2) < 1. J
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3.2.2 Maintaining Shortcuts
In this section we describe how subscribers establish and maintain shortcut edges. Recall
that we have shortcuts on levels k = {1, . . . , dlogne}, where k = dlogne represents the ring
edges that are already established. A subscriber v with label of length k = |v.label| has
exactly 2 shortcuts on each level in {k, . . . , dlogne} in a legitimate state.

We first describe how a subscriber is able to compute all its shortcut labels locally, based
only on the information of its left and right direct ring neighbors. The following approach
only computes the respective labels in [0, 1) that a node should have shortcuts to, but not
the subscribers that are associated with these labels. The idea is the following: In general,
a subscriber v ∈ V has only shortcuts to other subscribers that lie on the same semicircle
as v, i.e., either the semicircle of subscribers within the interval [0, 1/2] or the semicircle of
subscribers within the interval [1/2, 1] (where the 1 is represented by the subscriber with label
0). Consider a subscriber v with r(v.label) ∈ [0, 1) and its two ring neighbors w, u such that
v.left = (labelw, w) and v.right = (labelu, u). If v recognizes that |v.label| < |labelw|, then v
knows that it has to have a shortcut with label s and r(s) = 2 · r(labelw)− r(v.label), because
node w was previously inserted between subscribers with labels s and v.label. After this, v
can apply this method recursively, i.e., it checks for the computed label s if |v.label| < |s|
until it reaches a label of less or equal length. This same procedure is applied analogously
for v.right.

As an example, recall the (stable) ring from Figure 1. Suppose we want to compute all
shortcut labels for the subscriber with (real-valued) label 1/4, based only on the labels of
its direct ring neighbors, which are 3/16 and 5/16. We know that the label 3/16 has length
4, which is greater than the length of label 1/4, which is 2. Thus, we get a shortcut s1 for
1/4 with label 2 · (3/16)− 1/4 = 1/8. The label 1/8 has length 3, which is still greater than
2. Hence we compute a shortcut s2 with label 2 · (1/8) − 1/4 = 0. Finally we know that
the length of label 0 is 1, which is smaller than 2, which terminates the algorithm. The
computation of shortcut labels to 3/8 and 1/2 works analogously.

We are now ready to define the self-stabilizing protocol that establishes and maintains
shortcuts for all subscribers. Consider a subscriber v with label length |v.label| = k. On
Timeout, v checks if v.shortcuts contains subscribers (labelu, u), (labelw, w) on level k. If
that is the case, then v introduces u to w, by sending a message to w containing the reference
of u as well as u’s label labelu. Also, v introduces w to u in the same manner. Note that
for |v.label| = dlogne, v has to consider its two ring neighbors instead of v.shortcuts. On
receipt of such an introduction message consisting of the pair (labelw, w), u checks if it has a
shortcut (labelw′ , w′) with labelw′ = labelw. If that is the case, then u replaces the existing
node reference w′ by w and, if w′ 6= w, forwards the reference of w′ on the sorted ring via
the BuildRing protocol. This way it is guaranteed that shortcuts are established in a
bottom-up fashion.

3.3 Handling Subscriber Failures
We now consider the case that subscribers v ∈ V are allowed to crash without warning.
In this case the address v.id ceases to exist. Consequently, even though nodes may still
send messages to v, these messages do not invoke any action on v. Note that we do not
consider supervisor failure, since it is assumed to be hard-coded. The challenge here is to
restore the system to a correct supervised skip ring that does not contain v, i.e., we need to
exclude v from the system. In pure peer-to-peer systems this scenario is a problem, since
we have to maintain failure detectors [3] at each node in order to be able to determine if
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some neighboring node has crashed. This leads to an increased overhead in the complete
system. However, in our setting it suffices to establish only one single failure detector at
the supervisor, because we only need to make sure that the database will eventually contain
the correct data. Consequently, if the supervisor notices that subscriber v has crashed, it
just has to remove v from its database. By periodically executing the actions for restoring a
corrupted database we know that the database will eventually contain the correct data.

4 Self-Stabilizing Publish-Subscribe System

In this section we show how to use our BuildSR protocol as a self-stabilizing publish-
subscribe system. We start by discussing some general modifications and then describe the
operations subscribe, unsubscribe and publish.

Let T ⊂ N be the set of available topics that one may subscribe to. To construct a
publish-subscribe system out of our self-stabilizing supervised overlay network, we basically
run a BuildSR protocol for each topic t ∈ T at the supervisor. Thus, the supervisor has to
extend its database to be in ({0, 1}∗)|T | × V . From here on, we assume that each message
contains the topic it refers to, such that the receiver of such a message can match it to the
respective BuildSR protocol. Once a subscriber wants to subscribe to some topic t ∈ T , it
starts running a new BuildSR protocol for topic t. Upon unsubscribing, the subscriber may
remove the respective BuildSR protocol, once it gets the permission from the supervisor,
implying that the supervisor has removed the subscriber from its database. By assigning the
topic number to each message that is sent out, we can identify the appropriate protocol at
the receiver. For convenience, we still consider only one supervised skip ring for the rest of
the paper.

4.1 Subscribe/Unsubscribe
When processing a subscribe(v) operation, the supervisor executes the following actions
(denote by n the number of nodes in the database before the subscribe/unsubscribe request):

1. Insert (l(n), v) into the database.
2. Send v its correct configuration (predv, l(n), succv).

The correctness of subscribe follows immediately, since our protocol is self-stabilizing.
Note that the supervisor can easily extract the tuples predv and succv from the database,
since all tuples are sorted based on the value of their labels. Our approach has the advantage
that it spreads multiple sequential subscribe operations through the skip ring, meaning that
a pre-existing subscriber is involved (i.e., it has to change its configuration) only for two
consecutive subscribe operations. Afterwards its configuration remains untouched until the
number of subscribers has doubled. This is due to the definition of the label function l. As
an example consider the skip ring SR(16) from Figure 1 and assume that there are 16 new
subscribers that want to join. Then these new subscribers are inserted in between consecutive
pairs of old subscribers on the ring, as they receive (real-valued) labels 1/32, 3/32, 5/32, . . ..

When processing an unsubscribe(v) operation, the supervisor executes the following
actions:

1. Remove (labelv, v) from the database.
2. Get the tuple (labelw, w) with labelw = l(n − 1) from the database and replace labelw

with v’s label labelv in the database.
3. Send w its new configuration (predv, labelv, succv).
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4. Inform v that it is granted permission to delete all its connections to other subscribers.

After both subscribers have received their correct label from the supervisor, the ring
will stabilize itself. Note that the supervisor’s database is already in a legitimate state
after the initial subscribe (resp. unsubscribe) message has been processed by the supervisor.
Therefore, the supervisor does not rely on additional information from subscribers to stabilize
its database. The following lemma states the correctness of unsubscribe.

I Lemma 6. After a subscriber v has sent an unsubscribe(v) request to the supervisor, v
eventually gets disconnected from the graph induced by ER ∪ ES.

Proof. Assume that subscriber v ∈ V sends an unsubscribe(v) request to the supervisor. By
definition of the unsubscribe protocol, the supervisor removes v from its database and sends
v its configuration that is (⊥,⊥,⊥). Hence, v sets v.label =⊥ and answers all incoming
introduction messages from other subscribers with the request to delete the connection to
v. By definition of BuildSR, every subscriber u that has an edge (u, v) ∈ ER ∪ ES will
eventually introduce itself to v, leading to v eventually getting disconnected from the graph
induced by ER ∪ ES . This proves the lemma. J

It follows from the above descriptions that the supervisor only has to send out a constant
number of messages per subscribe/unsubscribe request:

I Theorem 7. In a legitimate state, the message overhead of the supervisor and subscribers
is constant for subscribe/unsubscribe operations.

4.2 Publish
In the following paragraphs we extend our protocol to be able to provide publish operations
in a self-stabilizing manner. Note that the presented approach is used only to realize a
self-stabilizing publication-dissemination-approach. There exist dedicated protocols (e.g.
flooding, see Section 4.3) that realize a more efficient distribution of publications among the
subscribers. A self-stabilizing protocol for publications is able to correct eventual mistakes
that occurred in the flooding approach. For storing publications at each subscriber, we use
an extended version of a Patricia trie [16] to effectively determine missing publications at
subscribers. We first define the Patricia trie and later on present a protocol that is able
to merge all publications in all Patricia tries. This results in each subscriber storing all
publications.

A trie is a search tree with node set T over the alphabet Σ = {0, 1}. Every edge is
associated with a label c ∈ Σ. Additionally, every key x ∈ Σk that has been inserted into the
trie can be reached from the root of the trie by following the unique path of length k whose
concatenated edge labels result in x.

A Patricia trie is a compressed trie in which all chains (i.e., maximal sequences of nodes
of degree 1) are merged into a single edge whose label is equal to the concatenation of the
labels of the merged trie edges. We store a Patricia trie at each subscriber v ∈ V , denoted
by v.T . Each leaf node in a Patricia trie stores a publication p ∈ P∗, where P = {0, 1}
is the alphabet for publications. Note that each inner node t ∈ T of a Patricia trie T has
exactly 2 child nodes denoted by c1(t), c2(t) ∈ T . Furthermore, we want to assign a label to
each node: The label t.label ∈ Σk of an inner node t ∈ T is defined as the longest common
prefix of the labels of t’s child nodes (with ⊥ being the empty word). If t is a leaf node
storing a publication p ∈ P∗, we define t’s label to be the unique key generated by the
collision-resistant hash function h̄m : N × P∗ → {0, 1}m, where a pair (v.id, p) ∈ N × P∗
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contains the unique ID of the subscriber v ∈ V that generated the publication p. Note that
the constant m ∈ N and the hash function h̄m are known to all subscribers, ensuring that
every label for a publication has the same length.

In addition to node labels, we let nodes store (unique) hash values: We use another
collision-resistant hash function h : {0, 1}∗ → {0, 1}∗ and define the hash value t.hash of
a leaf node t as h(t.label). If t is an inner node, then t.hash is defined as the hash of the
concatenation of the hashes of t’s child nodes, i.e., t.hash := h(h(c1(t).label) ◦ h(c2(t).label)).
This approach is similar to a Merkle-Hash Tree (MHT) [15], which also hashes data using a
collision-resistant hash function and building a tree on these hashes. However, our approach
does not require one-way hash functions, which is a standard assumption in MHTs, because
we do not require our scheme to be cryptographically secure.

If a subscriber v ∈ V wants to publish a message p ∈ P∗ over the ring, v just inserts p
into its own Patricia trie. The publication p is then spread among all subscribers of the ring
by the following protocol, executed at each subscriber v ∈ V : Subscriber v periodically sends
a request CheckTrie(v, rv) to one of its ring neighbors (chosen randomly) containing v
itself and the root node rv ∈ v.T of v’s Patricia trie. Note that sending an arbitrary node
t ∈ v.T along a message CheckTrie means that we only store t.label and t.hash in the
request while ignoring t’s outgoing edges. Upon receiving a request CheckTrie(v, tv) with
tv ∈ v.T , a subscriber u ∈ V does the following: It searches for the node tu ∈ u.T with label
tu.label = tv.label and checks if tu.hash = tv.hash. The following three cases may happen:

(i) tu.hash = tv.hash: Then we know that the set of publications stored in the subtrie of
u.T with root node tu are the same as the set of publications stored in the subtrie of v.T
with root node tv. Subscriber u does not send any response to v in this case.

(ii) tu.hash 6= tv.hash: Then the contents of the subtries with roots tu, tv differ in at least
one publication. In order to detect the exact location, where both Patricia tries differ, u
responds to v by sending a request CheckTrie(u, c1(tu), c2(tu)) to v, which is handled
by v as two separate CheckTrie requests CheckTrie(u, c1(tu)) and CheckTrie(u,
c2(tu)).

(iii) tv does not exist in u.T : Then v.T contains publications that do not exist in u.T .
Subscriber u is able to compute the label prefix of those missing publications: First,
u searches for the node c ∈ u.T with label prefix tv.label and |c.label| minimal, i.e.,
c.label = tv.label ◦ b1 ◦ . . . ◦ bk with b1, . . . , bk ∈ {0, 1} and |c.label| = |tv.label| + k

minimal. If such a node c exists, then u.T may contain at least all publications with label
prefix c.label. Furthermore, u knows that all publications with label prefix tv.label◦(1−b1)
are missing in its Patricia trie. As a consequence, u requests v to continue checking the
subtrie with root node of label c.label and to deliver all publications with label prefix
p = tv.label ◦ (1− b1) to u. It does so by sending a CheckAndPublish(u, c, p) request
to v, where v internally calls CheckTrie(u, c) and, in addition, delivers all publications
with label prefix p to u. In case that a node c as described above cannot be found in u.T ,
u just requests v to deliver all publications with prefix tv.label to u, since that subtrie is
missing in u.T .

With this approach, only those publications are sent out that are assumed to be missing
at the receiver.

As an example consider two subscribers u, v ∈ V with Patricia tries as shown in Figure 2.
Note that P4 is missing in v.T . We describe how v will eventually receive P4.

First assume that u sends out a CheckTrie(u, ru) message to v in its Timeout method
with ru being the root node of u’s Patricia trie. Subscriber v then compares the hash ru.hash
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Figure 2 Example Patricia tries u.T and v.T for two subscribers u, v ∈ V .

with the hash of its root node, which is not equal. Thus, v sends a message CheckTrie(v,
(0, h(h(P1) ◦ h(P2))), (100, h(P3))) to u, which forces u to compare the hashes the nodes with
labels 0 resp. 100 to the hashes h(h(P1) ◦ h(P2)) resp. h(P3). Both comparisons result in
the hashes being equal, which ends the chain of messages at subscriber u.

Now assume, that v sends out a CheckTrie(v, rv) message to u in its Timeout method
with rv being the root node of v’s Patricia trie. Subscriber u compares the rv.hash with
ru.hash and spots a difference. Thus, it sends a message CheckTrie(u, (0, h(h(P1) ◦
h(P2))), (10, h(h(P3) ◦ h(P4)))) to v. For the node with label 0 this results in both hashes
being equal, but then v cannot find a node with label 10 in its Patricia trie, which is why
v sends a message CheckAndPublish(v, (100, h(P3)), p = 101) to u. Note that the node
with label 100 is the node with label of minimum length for which 10 is a prefix. Thus,
p = (10 ◦ (1− 0)) = 101. The CheckAndPublish request forces u to compare the hashes
of its node with label 100 to the given hash h(P3), which results in both hashes being
equal. Furthermore, u sends all publications with labels of prefix 101 to v, which is only the
publication P4. After v has inserted P4 in its Patricia trie, both tries are equal, resulting in
two equal root hashes.

The example shows that it is important at which subscriber the initial CheckTrie
request is started.

4.3 Flooding

As an extension to the above approach, we can make use of shortcuts to spread new
publications over the ring: Whenever a subscriber u ∈ V generates a new publication p, u
inserts p into u.T and broadcasts p over the ring, by sending a PublishNew(p) message
to all of its neighbors v with (u, v) ∈ ER ∪ ES . Upon receiving such a PublishNew(p)
message, a subscriber v ∈ V checks if p is already stored in v.T . If not, then v inserts p into
v.T and continues to broadcast p by forwarding the PublishNew message to its neighbors.
In case that p is already stored in v.T , v just drops the message. By applying this flooding
approach on top of the self-stabilizing publish protocol, we can achieve faster delivery of
new publications in practice (recall that the skip ring has a diameter of logn). Still, if a
new subscriber joins a topic, it has to rely on the core BuildSR protocol to receive all
publications. Furthermore, note that we do not rely on flooding to show convergence of
publications.
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5 Analysis

In this section we show that BuildSR is self-stabilizing according to Definition 1. We also
show that eventually all subscribers are storing all publications in their respective Patricia
tries. The combination of the first two theorems yields that BuildSR is self-stabilizing:

I Theorem 8 (Network Convergence). Given any initially weakly connected graph G =
(V,ER ∪ ES) with n nodes, BuildSR transforms G into a skip ring SR(n).

Proof. First of all, note that eventually all corrupted messages are received. Furthermore, a
corrupted message cannot trigger an infinite chain of corrupted messages, i.e., eventually the
false information is either corrected or received but not spread anymore. We assume this
fact for the rest of the proof.

We start with the supervisor and prove the following lemma:

I Lemma 9 (Supervisor Validity). Eventually the supervisor’s database will not be corrupted
anymore.

Proof. We show for every condition that may occur in a corrupted database that the
condition does not occur anymore at some point in time.
(i) Assume that there exists a tuple (label, v) ∈ database with v =⊥. Then this tuple is

simply deleted from the database (see Algorithm 3, line 41).
(ii) Assume that there are entries (label1, v1), (label2, v2) ∈ database, label1 6= label2 and v1 =

v2. At some point in time the supervisor wants to send the configuration to v1 (Algorithm 3,
line 5), which leads to the supervisor calling CheckMultipleCopies(v1). Therefore,
the supervisor is able to detect the entries (label1, v1), (label2, v2). W.l.o.g. assume
that (label1, v1) is detected before (label2, v2) in the for-loop of CheckMultipleCopies.
Then the supervisor just removes the redundant tuple (label2, v2) from the database,
which resolves this condition.

(iii) Assume there exists i ∈ {0, . . . , n − 1}, such that for all (labelv, v) ∈ database it holds
labelv 6= l(i). In this case, the supervisor is able to detect this corruptness: It asks for
the entry with label l(i) in the database (Algorithm 3, line 43). Then the supervisor
proceeds as follows: It replaces the label of the entry (l(j), w) with maximum j > i with
the label l(i) (see Algorithm 3, line 45). Note that (l(j), w) has to exist in this case,
since otherwise i ≥ |database| = n, which is a contradiction.

(iv) Finally, assume that there exists i ≥ n, s.t. there is a tuple (label, v) ∈ database with
label = l(i). Then there exists a number j ∈ {0, . . . , n− 1}, for which there is no tuple
(l(j), w) ∈ database, so eventually (label, v) gets its label changed to (l(j), v).

In the end we showed that all 4 conditions that may occur in a corrupted database do not
occur in the database from some point in time on, which concludes the proof. J

Using this lemma, we are ready to prove the convergence of the supervisor:

I Lemma 10 (Supervisor Convergence). After the supervisor’s database has reached a non-
corrupted state, all subscribers v ∈ V will eventually become recorded.

Proof. Recall that we call a subscriber recorded, if it is stored in the supervisors’s database.
Note that the supervisor does not remove subscribers from its (non-corrupted) database
unless it gets the request to do so, which is not the case as we do not consider unsubscribe
operations here.
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Let v ∈ V be a non-recorded subscriber. Then either v.label =⊥ or v.label 6=⊥. Recall
the actions described in Section 3.2.1. If v.label =⊥, then v requests its configuration from
the supervisor via action (i) and becomes recorded.

Now let v.label 6=⊥. If v does not have connections to other subscribers (i.e., v.left =
v.right =⊥), then v requests its configuration from the supervisor via action (iv), as v thinks
that it is the subscriber with minimal label, so v becomes recorded.

It remains to consider the general case, where we are given a connected component C
of subscribers. Action (iv) guarantees that C quickly contains at least one subscriber that
is recorded. As long as the supervisor is able to introduce new recorded subscribers to
recorded subscribers in C, C’s size grows, but since the number of subscribers is finite, C will
eventually become static. We show that for such a static connected component C, eventually
all subscribers will become recorded: Consider the potential function

Φ(C) = |{v ∈ C | v is non-recorded}|.

We show that eventually, Φ(C) = 0. Following the same argumentation from above, it is easy
to see that Φ is never increasing. Let Φ(C) = c for an arbitrary constant c > 0. Then all
subscribers in C eventually form a sorted ring due to BuildRing. This implies that there
exists a ring edge (v, w) from a subscriber v that is already contained in the supervisor’s
database to a subscriber w that is not yet contained in the supervisor’s database. W.l.o.g. let
v.right = w. Since w is not know to the supervisor, the database has to contain a different
right neighbor for v. Let w′ ∈ C,w′ 6= w be this neighbor, i.e., as the supervisor sends v
its correct configuration, it tells v that w′ should be its right ring neighbor. But then it
has to hold r(v) < r(w) < r(w′). Note that r(v) < r(w′) < r(w) cannot hold, since this
contradicts the fact that subscribers in C have already arranged themselves in a sorted ring
and no new subscriber can be introduced to a recorded subscriber in C, as C is already
static. This implies that upon receiving its configuration, v triggers action (iii) and requests
the configuration for w at the supervisor, reducing Φ by one and finishing the proof. J

Having the supervisor’s database converged, we know that the ring of subscribers eventu-
ally converges:

I Lemma 11 (Ring Convergence). After each subscriber v ∈ V has stored its correct config-
uration from the supervisor the ring induced by edges ER has converged.

Proof. The supervisor periodically sends the correct configuration to each subscriber in a
round-robin fashion (Algorithm 3, line 5). This implies that after n calls of the supervisor’s
Timeout procedure, each subscriber has stored its correct label. Note that this does not
necessarily include the correct ring neighbors: A subscriber v ∈ V may have received its
configuration (predv, labelv, succv) from the supervisor, but the subscriber u stored in predv

(resp. succv) may not yet. This may result in v modifying v.left = predv via BuildRing,
because u may not have received its correct label. Since at least all labels are correct now,
each subscriber receives its configuration from the supervisor the second time and does not
change its list neighbors anymore. J

Finally, we need to prove the convergence of the shortcuts for all subscribers:

I Lemma 12 (Shortcut Convergence). Assume that each subscriber v ∈ V has its correct
configuration stored. Then all correct shortcut links will eventually be established at some
point in time for all subscribers v ∈ V .
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Proof. Using Lemma 11, we assume that the sorted ring induced by edges ER is already
correctly built. We perform an induction over the levels i ∈ {1, . . . , dlogne} of shortcuts
and show that all shortcuts on each level are eventually established. The induction base
(i = dlogne) trivially holds, as shortcuts on level dlogne are ring edges in ER. For the
induction hypothesis, assume that all shortcuts on level i have already been established, i.e.,
all nodes in Ki := {w ∈ V | |labelw| ≤ i} already form a sorted ring (recall Definition 2). In
the induction step we show that all shortcuts on level i− 1 are eventually established. It is
easy to see that Ki−1 ⊂ Ki holds. Denote the sorted ring over nodes in Ki as Ri. Observer
that each node v ∈ Ki \ Ki−1 has two neighbors u,w in Ri with u,w ∈ Ki−1. Thus, by
definition of our protocol, v eventually introduces u to w and vice versa when calling its
Timeout method. This implies that the shortcuts (u,w) and (w, u) are established. The
above argumentation implies that the ring Ri−1 is established eventually, which concludes
the induction. J

Having shown the convergence of the supervisor (Lemma 10), the sorted ring for all
subscribers (Lemma 11) and the convergence of the shortcuts for all subscribers (Lemma 12),
we have proved the convergence of the overall system (Theorem 8). J

I Theorem 13 (Network Closure). If the explicit edges in G = (V,ER ∪ ES) already form a
supervised skip ring SR(n), then they are preserved at any point in time if no subscribers
join or leave the system.

Proof. We need to show closure for the supervisor’s database as well as for the skip ring.
Again, we start at the supervisor:

I Lemma 14 (Supervisor Closure). If the explicit edges in SR(n) already form a supervised
skip ring, then the supervisor’s database does not get modified anymore, if no subscriber
joins or leaves the system.

Proof. The supervisor’s database is only modified, if Subscribe requests for new subscribers
arrive at s or a subscriber v ∈ V unsubscribes by sending an Unsubscribe request to s.
Both scenarios are forbidden by assumption of the lemma. J

I Lemma 15 (Ring Closure). If the explicit edges in SR(n) already form a supervised skip
ring, then the set ER does not get modified anymore, if no subscriber joins or leaves the
system.

Proof. Messages that are generated by the extended BuildRing protocol do not modify the
edge set ER, since closure of the extended BuildRing protocol (Lemma 4) holds. Observe
that introduction messages for shortcuts do not modify the variables v.left, v.right and
v.ring for a subscriber v ∈ V . Implicit edges generated by configurations sent out by the
supervisor s are just merged with the existing explicit edges at the receiving subscriber v,
since v already stores the correct configuration. J

I Lemma 16 (Shortcut Closure). If the explicit edges in SR(n) already form a supervised
skip ring, then the set ES does not get modified anymore, if no subscriber joins or leaves the
system.

Proof. Note that shortcuts are only modified in IntroduceShortcut or (Algorithm 4,
line 22). IntroduceShortcut is only called to introduce a node u to some shortcut w,
which already exists, since no node generates an introduction message for two nodes that are
not allowed to be connected by a shortcut, as one can easily see via induction. J
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By combining Lemmas 14, 15 and 16, we obtain Theorem 13. J

Furthermore, we can show that the delivery of publications is done in a self-stabilizing
manner.

I Theorem 17 (Publication Convergence). Consider an initially weakly connected graph
G = (V,ER ∪ ES) and assume that there are publications P ⊂ P∗ in the system, stored at
arbitrary subscribers v ∈ V . Then eventually all subscribers store a Patricia trie consisting
of all publications in P .

Proof. First note that in our protocol, no publish messages are deleted from the Patricia
tries, i.e., once a subscriber v ∈ V has a publication p ∈ P stored in its Patricia trie v.T , it
will never remove p from v.T . Therefore, we apply Theorem 8 and assume that the explicit
edges in G already form a supervised skip ring. For a subscriber u ∈ V let Pu ⊆ P be the
set of publication stored in the leaf nodes of u.T . We define the potential of a pair (u, v) of
subscribers by

φ(u, v) = |Pu,v \ Pv|,

where Pu,v is a shorthand expression for Pu ∪ Pv. Note that φ(u, v) = φ(v, u) does not hold
in general, since intuitively speaking, φ(u, v) returns the number of publications stored in
u.T that are missing in v.T . The potential over all subscribers is then defined as

Φ =
∑

(u,v)∈ER

φ(u, v).

It is easy to see that the following Corollary holds:

I Corollary 18. Φ ≥ 0 at any point in time and Φ = 0⇔ Pu = P for all subscribers u ∈ V .

We obtain convergence, if we can show that Φ is monotonically decreasing and eventually
Φ = 0. We show that Φ is monotonically decreasing with the following claim:

I Lemma 19. Φ never increases.

Proof. By definition, Φ only increases, if there is (u, v) ∈ ER for which φ(u, v) increases.
This implies that there is a subscriber w ∈ V , u 6= w 6= v that has sent u a set of
publications Pw ⊂ P via a Publish request that are not contained in v.T yet. Then
φ′(u, v) = |(Pu,v ∪ Pw) \ Pv| = φ(u, v) + |Pw|. But this also implies that φ(w, u) decreases by
|Pw|, because φ′(w, u) = |Pw,u \ (Pu ∪ Pw)| = φ(w, u)− |Pw|, leaving Φ at the same value as
before. J

To complete the proof, we still need to show that eventually Φ = 0.

I Lemma 20. As long as there exists φ(u, v) > 0 for some edge (u, v) ∈ ER, there is a
computation after which φ(u, v) has decreased.

Proof. Let φ(u, v) > 0 for two subscribers u, v ∈ V that are connected via a ring edge
(u, v) ∈ ER. Let p ∈ u.T be the node with minimal label length |p.label|, for which it holds
that all publications stored in the leafs of the subtrie of p are missing in Tv. Note that
p.label is a prefix for all those publications. Obviously, such a node always exists, when
there is one or more publication missing in v.T . Assume to the contrary that we are in state
s with φ(u, v) > 0 and for all possible computations, φ(u, v) does not decrease. We state
a computation in which u delivers all publications with prefix p.label to v, resulting in a
decrease of φ(u, v).
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W.l.o.g. consider the node t ∈ u.T with label length |t.label| minimal, for which t.label
is a prefix of p.label and for which there does not exist a node in v.T with label t.label.
Such a node exists, because in case there is no inner node in u.T with these properties,
we can choose t = p. Note that we consider p.label to be a prefix of itself. Now we look
at the path (ru = t1, . . . tk = t) from the root node ru of u.T to t. It holds that for all
nodes ti with i 6= k on this path, there exists a node t′i ∈ v.T with the same label as ti, i.e.,
t′i.label = ti.label. Otherwise our choice for t would be wrong, since |t.label| is not minimal.
Since h is a collision-resistant hash function for the hash values of the nodes, we have for
i ∈ {1, . . . , k − 1} that ti.hash 6= t′i.hash. We prove the following claim:

I Claim 21. Eventually, subscriber u sends a CheckTrie(u, t) request to v.

Proof. Consider the path (ru = t1, . . . , tk = t) from above from the root node ru of u.T to t.
Assume that k is odd. By definition of our protocol, u will eventually send a CheckTrie(u,
ru) request to v. Since the root hashes are not equal, v sends a CheckTrie(v, t2) request
to u. Since we assumed that ti.hash 6= t′i.hash for all i ∈ {1, . . . , k − 1}, this chain continues
with u sending CheckTrie(u, tj) requests to v, j odd, until u sends a CheckTrie(u, tk)
request to v, which proves the lemma. The case where k is even works analogously when
starting at subscriber v. J

Applying the claim above, we now assume that v has received a CheckTrie(v, t) request.
By our initial assumptions for t it holds that there is no node with label t.label contained
in v.T . Thus, v searches for a node c ∈ v.T with label c.label = (t.label ◦ b1 ◦ . . . ◦ bk) of
minimum length and responds to u with a CheckAndPublish(v, c, p′) request. Here,
p′ = t.label ◦ (1− b1) if c exists, otherwise p′ = t.label.

I Claim 22. p′ = p.label.

Proof. For p′ = t.label, we know that there does not exist a node with a label that has
t.label as a prefix. Hence, all publications with prefix t.label are missing at v.T , implying
t.label = p.label, because we chose p.label to be of minimal length. For p′ = t.label ◦ (1− b1),
we know because of the existence of c ∈ v.T and the non-existence of a node with label t.label
in v.T that there is no node with label t.label ◦ (1− b1) stored in v.T . Thus, all publications
with prefix t.label ◦ (1− b1) are missing in v.T . Since we chose p.label to be of minimal length
we get t.label ◦ (1− b1) = p.label. J

Subscriber u responds to the CheckAndPublish request by sending all publications
P ⊂ P∗ to v that have prefix p′. Since p′ = lp, φ(u, v) decreases and the lemma follows. J

By combining Corollary 18, Lemma 19 and Lemma 20 we proved the theorem. J

Finally we also show convergence for publications.

I Theorem 23 (Publication Closure). Consider a stable supervised skip ring SR(n) and
assume that all subscribers store the exact same Patricia trie containing publications P ⊂ P∗.
Then no Patricia trie is modified by a subscriber as long as no subscriber issues a publish
request and no further subscriber joins the system.

Proof. In this stable network the only type of request regarding publications is the periodic
CheckTrie request. Thus, at the receiver, the hash values of the Patricia tries’ root nodes
are compared. But since all nodes store the same Patricia trie, both hashes are equal,
resulting in no further message being sent out as an answer to the CheckTrie request. J
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6 Conclusion

In this paper we proposed a self-stabilizing protocol for the supervised skip ring, which can
be extended to a self-stabilizing publish-subscribe system. The system is able to effectively
handle node insertions/deletions and is furthermore able to efficiently recover from node
failures.

As parts of our protocol are randomized (subscriber periodically call the supervisor
with a certain probability), one may investigate, if there are deterministic self-stabilizing
protocols for supervised overlay networks. These can probably established by using a token-
passing scheme. Depending on the rate of join/leave requests, the supervisor may adjust
the speed of the token. Then the space overhead for the supervisor could be reduced as it
only needs to know the number of subscribers n. However, it may be harder to prove the
self-stabilization property, as the token-passing scheme has to be able to deal with multiple
connected components, so we leave this to future works.
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A Pseudocode

In order to not blow up the pseudocode, we may use a tuple t1 = (labelt1 , vt1) for comparisons
regarding the label or for remote calls, i.e., we may write t1 < t2 instead of labelt1 < labelt2

when comparing labels, or in case we want to send a message to vt1 , we may just write t1 ←
RemoteCall instead of vt1 ← RemoteCall. This prevents us from always having to
formally define the contents of each tuple t ∈ {0, 1}∗ × V in the code.
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Algorithm 1 BuildList protocol w.r.t. corrupted IDs executed by u ∈ V
1: procedure BuildListTimeout
2: if u.left ≤ u.label then . Analogously for u.right ≥ u.label
3: u.left← Check(u, u.left, LIN)
4: else
5: u← Linearize(u.left)
6: u.left←⊥
7:
8: procedure Check(sender, label, flag ∈ {CY C,LIN})
9: if u.label 6= label then

10: sender ← Introduce(u, flag)
11: else
12: Introduce(sender, flag)
13:
14: procedure Linearize(v)
15: if u.label 6=⊥ then
16: if v = u.left ∨ v = u.right then
17: if v = u.left ∧ labelv 6= u.left then . Analogously for u.right
18: if labelv ≤ u.label then
19: Replace label in u.left with labelv
20: else
21: u← Linearize(v)
22: u.left←⊥
23: else
24: if labelv ≤ u.left then . Analogously for u.right ≤ labelv
25: u.left← Linearize(v)
26: if u.left < labelv ≤ u.label then . Analogously for u.right
27: v ← Linearize(u.left)
28: u.left← v

29: else
30: v ← RemoveConnections(u) . Lets v remove u from its local storage
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Algorithm 2 Extended BuildRing protocol executed by u ∈ V
1: procedure BuildRingTimeout
2: if u.ring =⊥ then
3: if u.left =⊥ ∧u.right 6=⊥ then . Analogously for u.right =⊥ ∧u.left 6=⊥
4: u.right← Introduce(u, CY C)
5: else if u.label =⊥ then
6: u.ring ← RemoveConnections(u) . Lets u.ring delete u
7: u.ring ←⊥
8: else
9: if u.left 6=⊥ ∧u.ring > u.label then . Analogously for u.right

10: u.left← Introduce(u.ring, CY C)
11: u.ring ←⊥
12: if (u.left =⊥ ∧u.ring > u.label) ∨ (u.right =⊥ ∧u.ring < u.label) then
13: u.ring ← Check(u, u.ring, CY C)
14: BuildListTimeout
15:
16: procedure Introduce(c = (labelv, v), flag ∈ {CY C,LIN})
17: if u.label 6=⊥ then
18: if u.ring = v ∧ u.ring 6= labelv then
19: if (labelv < u.label ∧ u.ring < u.label) ∨ (labelv > u.label ∧ u.ring > u.label)

then
20: u.ring ← (labelv, v)
21: else
22: u← Introduce((labelv, v))
23: u.ring ←⊥
24: if flag = CY C then
25: if u.ring =⊥ then
26: if (labelv < u.label ∧ u.right =⊥) then . Analogously for u.left
27: u.ring ← v

28: if labelv < u.label ∧ u.right 6=⊥ then . Analogously for u.left
29: u.right← Introduce(v, CY C)
30: else if (u.ring < u.label ∧ labelv < u.label) ∨ (u.ring > u.label ∧ labelv >

u.label) then
31: u.ring = argmaxw∈{c,u.ring}{|w − u.label|}
32: w′ ← {c, u.ring} \ w
33: u← Introduce(w′, LIN)
34: w ← Introduce(u.ring, LIN)
35: else
36: u← Introduce(v, LIN)
37: u← Introduce(u.ring, LIN)
38: u.ring ←⊥
39: else
40: Linearize(v) . Method from BuildList with corrupted node ids
41: else
42: v ← RemoveConnections(u) . Lets v remove u from its local storage
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Algorithm 3 BuildSR protocol executed by the supervisor
1: procedure Timeout(true) . Periodically executed!
2: CheckLabels
3: next← next+ 1 mod n

4: Let (label, v) ∈ database with label = l(next)
5: GetConfiguration(v)
6: procedure Subscribe(v)
7: if ∀(l, u) ∈ database : u 6= v then
8: database← database ∪ {(l(n), v)} . Update the database
9: Let predv, succv ∈ database be the predecessor/successor of v in the ring

10: v ← SetData(predv, l(n), succv)
11: else
12: GetConfiguration(v) . Just send all of v’s connections to v
13: procedure Unsubscribe(v)
14: CheckMultipleCopies(v)
15: if ∃(labelu, u) ∈ database : u = v then
16: if n > 1 ∧ l−1(labelu) 6= n− 1 then
17: Let predv, succv ∈ database be the predecessor/successor of v in the ring
18: Let (labelw, w) ∈ database with labelw = l(n− 1)
19: database← database ∪ {(labelu, w)} \ {(labelu, v)} \ {(labelw, w)}
20: w ← SetData(predv, labelu, succv) . Replace w’s id
21: else
22: database← database \ {(labelu, v)} . Just update database
23: v ← SetData(⊥, ⊥, ⊥) . Let v delete its label and connections
24: procedure GetConfiguration(u)
25: CheckMultipleCopies(u)
26: if ∃(labelv, v) ∈ database : v = u then
27: Let predv, succv ∈ database be the predecessor/successor of v in the ring
28: v ← SetData(predv, (labelv, v), succv)
29: else
30: u← SetData(⊥, ⊥, ⊥) . u not part of the database
31: procedure CheckMultipleCopies(v)
32: rem← false

33: for all (l, w) ∈ database do
34: if rem = false ∧ w = v then
35: rem← true

36: else if w = v then
37: database← database \ {(l, w)}
38: procedure CheckLabels . Only called in Timeout
39: for all (l, v) ∈ database do
40: if v =⊥ then
41: database← database \ {(l, v)} . Remove tuple with empty value
42: for all i ∈ {0, . . . , n− 1} do
43: if ∀(l, v) ∈ database : l 6= l(i) then . Tuple could not be found
44: Get the tuple (l(j), w) with maximum j > i

45: database← database \ {(l,⊥), (l(j), w)} ∪ {(l(i), w)} . Set label for w
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Algorithm 4 BuildSR protocol executed by subscribers u ∈ V
1: procedure Timeout(true) . Periodically executed
2: BuildRingTimeout
3: Check and update u.shortcuts, s.t. it contains the correct labels afterwards.
4: if u.label =⊥ then . As long as u has no label: Subscribe to supervisor
5: supervisor ← Subscribe(u)
6: else . Just ask the supervisor for the correct configuration
7: if u thinks that u.label is minimal then
8: Let k := |u.label|
9: With probability 1/2: supervisor ← GetConfiguration(u)

10: else
11: With prob. 1/(2k · k2): supervisor ← GetConfiguration(u)
12: if ∃(lu, u), (lw, w) ∈ v.shortcuts on level k = |v.label| then
13: u← IntroduceShortcut(lw, w)
14: w ← IntroduceShortcut(lu, u)
15:
16: procedure SetData(pred, label, succ)
17: u.label← label

18: if u.left 6=⊥ ∧(pred =⊥ ∨|u.left− u.label| < |pred− u.label|) then
19: supervisor ← GetConfiguration(u.left) . Analog. for u.right, u.ring
20: Update u.left, u.right, u.ring w.r.t. pred, succ and label
21:
22: procedure IntroduceShortcut(l, v)
23: if ∃(l′, v′) ∈ u.shortcuts : l′ = l then
24: if v′ 6= v then
25: u.shortcuts← u.shortcuts \ {(l′, v′)} . Remove old shortcut for label l
26: if v′ 6=⊥ then
27: Linearize((l′, v′))
28: u.shortcuts← u.shortcuts ∪ {(l, v)}
29: else
30: Linearize(v)
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Algorithm 5 Self-Stabilizing publication protocol for a subscriber u ∈ V
1: procedure PublishTimeout
2: Choose a random node v from u.left, u.right, u.ring

3: Let r be the root node of Tu, with label lr and hash hr

4: v ← CheckTrie(u, (lr, hr))
5:
6: procedure Publish(P )
7: for all p ∈ P do
8: if p not stored in the Patricia trie then
9: Insert(p, Tu) . Insert p into Tu

10:
11: procedure CheckTrie(sender ∈ V , tuples ⊂ ({0, 1}∗)2)
12: for all (l, h) ∈ tuples do
13: v ← SearchNode(l, Tu) . Search for the node with label l in Tu

14: if v 6=⊥ then
15: if hv 6= h ∧ v is an inner node of Tu then . If hv = h, subtries are equal
16: Let v1, v2 be v’s child nodes
17: sender ← CheckTrie(u, {(lv1 , hv1), (lv2 , hv2)})
18: else
19: Let c ∈ Tu with minimal label lc = (l ◦ c1 ◦ . . . ◦ ck) for which l is a prefix
20: if c 6=⊥ then
21: sender ← CheckAndPublish(u, (lc, hc), p = (l ◦ (1− c1)))
22: else
23: sender ← CheckAndPublish(u, ∅, l)
24:
25: procedure CheckAndPublish(sender ∈ V , tuples ⊂ ({0, 1}∗)2, pf ∈ {0, 1}∗)
26: CheckTrie(sender, tuples)
27: P ← All publications with prefix pf from Tu

28: sender ← Publish(P )
29:
30: procedure PublishNew(p ∈ Pk)
31: if p not stored in the Patricia trie then
32: Insert(p, Tu) . Insert p into Tu

33: for all v ∈ {u.left, u.right, u.ring} ∪ u.shortcuts do
34: v ← PublishNew(p)
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