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Abstract—
Scalable QR factorization algorithms for solving least squares

and eigenvalue problems are critical given the increasing par-
allelism within modern machines. We introduce a more general
parallelization of the CholeskyQR2 algorithm and show its
effectiveness for a wide range of matrix sizes. Our algorithm
executes over a 3D processor grid, the dimensions of which can
be tuned to trade-off costs in synchronization, interprocessor
communication, computational work, and memory footprint.
We implement this algorithm, yielding a code that can achieve
a factor of Θ(P 1/6) less interprocessor communication on
P processors than any previous parallel QR implementation.
Our performance study on Intel Knights-Landing and Cray
XE supercomputers demonstrates the effectiveness of this
CholeskyQR2 parallelization on a large number of nodes.
Specifically, relative to ScaLAPACK’s QR, on 1024 nodes of
Stampede2, our CholeskyQR2 implementation is faster by 2.6x-
3.3x in strong scaling tests and by 1.1x-1.9x in weak scaling tests.

I. INTRODUCTION

The reduced QR factorization A = QR, Q ∈ Rm×n

with orthonormal columns and upper-triangular R ∈ Rn×n,
is a ubiquitous subproblem in numerical algorithms. It can
be used to solve linear systems, least squares problems, as
well as eigenvalue problems with dense and sparse matrices.
In many application contexts, these problems involve very
overdetermined systems of equations in a large number of
variables, driving a need for scalable parallel QR factorization
algorithms. We study communication-efficient algorithms for
QR factorizations of rectangular matrices m ≥ n.

Our work builds on a recently developed algorithm,
CholeskyQR2 [1], a Cholesky-based algorithm designed for
tall and skinny matrices. The well-known CholeskyQR al-
gorithm computes R̂ ≈ R as the upper triangular factor in
the Cholesky factorization of n×n matrix ATA, then solves
m triangular linear systems of equations, Q̂ = AR̂−1. The
forward error in computing Q̂ in CholeskyQR can be as high
as Θ(κ(A)2) where κ(A) is the condition number of A. On
the other hand, the triangular solves are backward stable, so
Q̂R̂ = A + δA with ||δA|| = O(ε) where ε is the relative
error in the machine floating point representation. Therefore,
when under effect of round-off error, CholeskyQR computes
an accurate factorization of A into a product of a nearly
orthogonal matrix Q̂ and a triangular matrix R̂.

CholeskyQR2 provides a correction to the orthogonal
factor by running CholeskyQR once more on Q̂ itself to

algorithm latency (α) bandwidth (β) flops (γ)

MM3D logP mn+nk+mk

P2/3 mnk/P

CFR3D P 2/3 logP n2/P 2/3 n3/P

1D-CQR logP n2 mn2/P + n3

3D-CQR P 2/3 logP mn/P 2/3 mn2/P

CA-CQR c2 logP mn
dc

+ n2

c2
mn2

P
+ n3

c3

CA-CQR (Pn/m)2/3 logP (mn2/P )2/3 mn2/P

Table I: Summary of asymptotic costs for each algorithm
described in the paper for QR of m× n matrix on P
processors (for CA-CQR first using c× d× c processor
grid, then with best choice of c, d). CA-CQR2 achieves
same asymptotic costs as CA-CQR.

obtain QδR = Q̂, where δR is upper-triangular and near
identity. The upper-triangular factor can then be updated
as R = δRR̂. If Q̂ was computed to within a few digits
of accuracy, which is guaranteed if κ(A) = O(

√
1/ε), it

will be close to orthogonal and therefore well-conditioned.
In this case, the CholeskyQR of Q̂ will not lose much
precision from round-off error and the QR factorization
given by CholeskyQR2 will be as accurate as Householder
QR [2]. Recently, an extension to CholeskyQR2 has been
proposed that uses a third CholeksyQR execution to achieve
unconditional stability (as good as Householder QR) [3].

In previous work [4], a 1D parallelization of the algo-
rithm was shown to provide minimal communication cost
and synchronization (a logarithmic factor less than other
communication-avoiding algorithms [5]). In this work, we
extend the algorithm to a 3D parallelization that requires min-
imal communication cost for matrices with arbitrary dimen-
sions. We utilize efficient parallel algorithms for Cholesky
factorization and matrix multiplication. Communication-
efficient of matrix multiplication and Gaussian elimination
algorithms are well-studied and have demonstrated perfor-
mance improvement in implementation. We present a simple
adaptation of the algorithm therein [6] to Cholesky factoriza-
tion. Tradeoffs between synchronization and bandwidth are
investigated using a tunable parameter, φ, representing the
depth of recursion. We focus on minimizing bandwidth cost
given unbounded memory. We provide a summary of the cost
analysis of the algorithm and its main components in Table I.
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(a) Strong scaling for matrices with dimensions given in legend.
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(b) Weak scaling for m×n matrices so mn2 scales linearly with node count.

Figure 1: Performance on Stampede2 with 64 MPI processes/node of CholeskyQR2 and ScaLAPACK.

A key advantage of CholeskyQR2 is its practicality. It
requires only matrix multiplications and Cholesky factor-
izations. Of the QR algorithms that achieve asymptotically
minimal communication (match 3D matrix multiplication
in bandwidth cost) [7]–[10], none have been implemented
in practice. Our implementation of the 3D Cholesky-QR2
algorithm (CA-CQR2) shows that the improvement in com-
munication cost allows improvements over the performance
of a state-of-the-art library for parallel QR (ScaLAPACK’s
PGEQRF) on large node counts. Our performance results are
summarized in Figure 1(a) for strong scaling and Figure 1(b)
for weak scaling, which show performance for the median
execution time of 5 iterations for the best performing choice
of processor grid at each node count.

3D QR factorization algorithms face challenges in their
complexity, high constants, and incompatibility with BLAS-
like routines. Previously studied parallel CholeskyQR2
(CQR2) algorithms do not scale for matrices of an arbitrary
size. The merit of our communication-avoiding CholeskyQR2
(CA-CQR2) algorithm lies in the combination of its sim-
plicity and asymptotic efficiency. It relies upon a tunable
processor grid to ensure optimally minimal communication
for matrices of any size while being easy to implement. Our
contributions are a detailed specification, cost analysis, im-
plementation, and performance evaluation of this algorithm.

II. FOUNDATION AND PREVIOUS WORK

We study the scalability of parallel QR factorization al-
gorithms via interprocessor communication cost analysis. In
this section, we introduce results necessary for our work, and
provide brief summaries of related work. We first consider
collective communication and the parallel algorithms we use
for matrix multiplication and Cholesky factorization.

A. Preliminaries

In presenting these algorithms and analyzing their costs,
we use the α-β-γ model as defined below.

α→ cost of sending or receiving a single message
β → cost of moving a single word of data among processors
γ → cost of computing a single floating point operation

Our analysis assumes α � β � γ, which is reflective of
current parallel computer architectures.

We define a few sequential routines and give their asymp-
totic costs [11].

C ← aX + Y : Tα−βaxpy

(
m,n

)
= 2mn · γ

C ←MM(A,B) = AB : Tα−βMM

(
m,n, k

)
= 2mnk · γ

C ← Syrk(A) = ATA : Tα−βsyrk

(
m,n

)
= mn2 · γ

L← Chol(A) = LLT : Tα−βChol

(
n
)

= (2n3/3) · γ

B. Processor Grids and Collective Communication

Collective communication serves as an efficient way to
move data among processors over some subset of a processor
grid. We define a 3D processor grid Π containing P proces-
sors. Π[x,y, z] uniquely identifies every processor in the grid,
where each of the corresponding dimensions are of size P

1
3

and x,y, z ∈ [0, P
1
3−1]. Π can be split into 2D slices such

as Π[:, :, z], row communicators such as Π[:,y, z], column
communicators such as Π[x, :, z], and depth communicators
such as Π[x,y, :].

Allgather, Allreduce, and Broadcast are collectives used
heavily in the multiplication and factorization algorithms
explored below. As these are well known [12]–[16], we
give only the function signature and a brief description
of each. We assume butterfly network collectives for cost
analysis [13], which are optimal or close to optimal in the
α-β-γ model.

• Transpose(A,Π[y,x, z]) : all processors Π[x,y, z]
swap local array A with processor Π[y,x, z] via point-
to-point communication.



• Bcast(A,B, r,Π[:,y, z]) : root processor Π[r,y, z] dis-
tributes local array A to every processor in Π[:,y, z] as
local array B.

• Reduce(A,B, r,Π[x, :, z]) : all processors in Π[x, :, z]
contribute local arrays A to an element-wise reduction
onto root processor Π[x, r, z] as local array B.

• Allreduce(A,B,Π[x, :, z]) : all processors in Π[x, :, z]
contribute local arrays A to an element-wise reduction,
the result of which is broadcasted into local array B.

• Allgather(A,B,Π[x,y, :]) : all processors in Π[x,y, :]
contribute local arrays A to a concatenation, the result
of which is broadcasted into local array B.

The costs of these collective routines can be obtained
by a butterfly schedule, where n words of data are being
communicated across P processors.

Tα−βTransp

(
n, P

)
= δ(P ) (α+ n · β)

Tα−βBcast

(
n, P

)
= 2 log2 P · α+ 2nδ(P ) · β

Tα−βReduce

(
n, P

)
= 2 log2 P · α+ 2nδ(P ) · β

Tα−βAllreduce

(
n, P

)
= 2 log2 P · α+ 2nδ(P ) · β

Tα−βAllgather

(
n, P

)
= log2 P · α+ nδ(P ) · β

where

δ(x) =

{
0 x ≤ 1
1 x > 1

}
.

We disregard the computational cost in reductions by the
assumption β � γ.

C. Matrix Multiplication

Matrix multiplication C = AB over Π and other cubic
partitions of Π is an important building block for the 3D-
CQR2 and CA-CQR2 algorithms presented below. We use a
variant of 3D matrix multiplication (which we refer to as 3D
SUMMA) that achieves asymptotically optimal communica-
tion cost over a 3D processor grid [17]–[22]. Our algorithm
MM3D is a customization with respect to known algorithms.
First, B is not distributed across Π[P

1
3−1, :, :] and is in-

stead distributed across Π[:, :, 0] with A. Second, instead
of distributing matrix C across Π[:, 0, :], we Allreduce C
onto Π[:, :, z],∀z ∈ [0, P

1
3−1] so that each 2D slice holds a

distributed copy. These differences are motivated by the need
for C to be replicated over each 2D slice of Π in our new
algorithms. A cyclic distribution is used as it is required by
our 3D Cholesky factorization algorithm detailed below. See
Algorithm 1 for specific details.

The cost of MM3D for multiplying an m×n matrix by a
n× k matrix is given in Table I.

D. Cholesky Factorization

Assuming A is a dense, symmetric positive definite matrix
of dimension n, the factorization A = LLT can be expanded
into matrix multiplication of submatrices of dimension n/2
[6], [23],[

A11

A21 A22

]
=

[
L11

L21 L22

] [
LT11 LT21

LT22

]
,

Algorithm 1 [Π〈C〉]←MM3D
(
Π〈A〉,Π〈B〉,Π

)
Require: Π has P processors arranged in a P 1/3 ×

P 1/3 × P 1/3 grid. Matrices A and B are replicated
on Π[:, :, z],∀z ∈ [0, P

1
3−1]. Each processor Π[x,y, z]

owns a cyclic partition of m × n matrix A and n × k
matrix B, referred to as local matrices Π〈A〉 and Π〈B〉,
respectively. Let X , Y , and Z be temporary arrays with
the same distribution as A and B.

1: Bcast
(
Π〈A〉,Π〈X〉, z,Π[:,y, z]

)
2: Bcast

(
Π〈B〉,Π〈Y 〉, z,Π[x, :, z]

)
3: Π〈Z〉 ←MM

(
Π〈X〉,Π〈Y 〉

)
4: Allreduce

(
Π〈Z〉,Π〈C〉,Π[x,y, :]

)
Ensure: C = AB, where C is m × k and distributed the

same way as A and B.

A11 = L11L
T
11, A21 = L21L

T
11,

A22 = L21L
T
21 + L22L

T
22.

This recursive algorithm yields a family of parallel al-
gorithm variants [24]. Rewriting these equations gives a
recursive definition for L← Chol

(
A
)
,

L11 ← Chol
(
A11

)
, L21 ← A21L

−T
11 ,

L22 ← Chol
(
A22−L21L

T
21

)
.

We augment the recursive definition of the Cholesky
factorization, using the recursive definition for Y = L−1, as
motivated by other parallel algorithms leveraging the triangu-
lar inverse [6], [25]. Like before, the factorization I = LY
gets expanded into matrix multiplication of submatrices of
dimension n/2,[

I 0
0 I

]
=

[
L11

L21 L22

] [
Y11
Y21 Y22

]
,

I = L11Y11, I = L22Y22, 0 = L21Y11 + L22Y21.

Rewriting these equations gives a recursive definition for
Y ← Inv (L),

Y11 ← Inv (L11) , Y22 ← Inv (L22) , Y21 ← −Y22L21Y11.

We embed the two recursive definitions and arrive at
algorithm 2, which solves both the Cholesky factorization of
A and the triangular inverse of L. Note that the addition of
solving for L−1 adds only two extra matrix multiplications at
each recursive level to the recursive definition for A = LLT ,
thus achieving the same asymptotic cost. If L−1 were to
be solved recursively at each level, the synchronization cost
would incur an extra logarithmic factor. We address the
missing base case in the cost analysis derivation below.

We incorporate two matrix transposes at each recursive
level to take into account L−T

11 and LT21 needed in the
equations above. Processor Π[x,y, z],∀z ∈ [0, P

1
3−1] must

send its local data to Π[y,x, z] to transpose the matrix
globally.

A cyclic distribution of the matrices among processors
Π[:, :, z],∀z ∈ [0, P

1
3−1] is chosen to utilize every pro-

cessor in the recursive calls performed on submatrices.



Algorithm 2 [L, Y ]←CholInv(A)

Require: A is a symmetric positive definite matrix of di-
mension n.

1: if n = 1 return L = Chol(A), Y = L−1

2: L11, Y11 ← CholInv (A11)
3: L21 ← A21Y

T
11

4: L22, Y22 ← CholInv
(
A22 − L21L

T
21

)
5: L←

[
L11

L21 L22

]
6: Y ←

[
Y11

−Y22L21Y11 Y22

]
7: return L, Y

Require: L is lower triangular, A = LLT .

Upon reaching the base case where matrix dimension n =
no, the submatrix is scattered over the P

2
3 processors in

Π[:, :, z],∀z ∈ [0, P
1
3−1] and an Allgather is performed

so that all processors obtain the submatrix. Then all P
processors perform a Cholesky factorization and triangular
inverse redundantly. See Algorithm 3 for full details.

Algorithm 3 [Π〈L〉,Π〈Y 〉]← CFR3D (Π〈A〉, no,Π)

Require: Π has P processors arranged in a P 1/3 × P 1/3 ×
P 1/3 3D grid. Symmetric positive definite matrix A ∈
Rn×n is replicated on Π[:, :, z],∀z ∈ [0, P

1
3−1]. Each

processor Π[x,y, z] owns a cyclic partition of A given
by Π〈A〉. Let T , W , X , U , and Z be temporary arrays,
distributed the same way as A.

1: if n = no then
2: Allgather

(
Π〈A〉, T,Π[:, :, z]

)
3: L, Y ← CholInv

(
T, n

)
. Π〈L〉,Π〈Y 〉 are saved

4: else
5: Π〈L11〉,Π〈Y11〉 ← CFR3D

(
Π〈A11〉, no,Π

)
6: Π〈W 〉 ← Transpose

(
Π〈Y11〉,Π[y,x, z]

)
7: Π〈L21〉 ←MM3D

(
Π〈A21〉,Π〈W 〉T ,Π

)
8: Π〈X〉 ← Transpose

(
Π〈L21〉,Π[y,x, z]

)
9: Π〈U〉 ←MM3D

(
Π〈L21〉,Π〈X〉T ,Π

)
10: Π〈Z〉 ← Π〈A22〉 −Π〈U〉
11: Π〈L22〉,Π〈Y22〉 ← CFR3D

(
Π〈Z〉, no,Π

)
12: Π〈U〉 ←MM3D

(
Π〈L21〉,Π〈Y11〉,Π

)
13: Π〈W 〉 ← −Π〈Y22〉
14: Π〈Y21〉 ←MM3D

(
Π〈W 〉,Π〈U〉,Π

)
Ensure: A = LLT , Y = L−1, where matrices L and Y are

distributed the same way as A.

The combined communication cost of the base case does
not dominate the cost of the MM3D. We analyze the cost of
CFR3D in Table II.

Tα−βBaseCase (no, P ) =
2

3
log2 P · α+ n2oδ(P ) · β +

1

2
n3o · γ

= O
(
logP · α+ n2oδ(P ) · β + n3o · γ

)
Choice of no depends on the non-recursive communication

cost. Our algorithm computes n
no

Allgathers, one for each

# Cost

2 Tα−βAllgather

(
n2
o, P

2/3
)

3 Tα−βCholInv

(
no

)
5 Tα−βCFR3D

(
n/2, P

)
6 Tα−βTransp

(
n2/(8P 2/3), P 2/3

)
7 Tα−βMM3D

(
n/2, n/2, n/2, P

)
8 Tα−βTransp

(
n2/(4P 2/3), P 2/3

)
9 Tα−βMM3D

(
n/2, n/2, n/2, P

)
10 Tα−βaxpy

(
n/2, n/2

)
11 Tα−βCFR3D

(
n/2, P

)
12 Tα−βMM3D

(
n/2, n/2, n/2, P

)
14 Tα−βMM3D

(
n/2, n/2, n/2, P

)
Table II: Per-line costs of Algorithm 3.

base case. The total cost is as follows:

Tα−βCFR3D

(
n, P

)
= 2Tα−βCFR3D

(
n/2, P

)
+ (8 log2 P + 2δ(P )) · α

+

(
45n2 + 14n

)
δ(P )

8P 2/3
· β +

n3

P
· γ

= O
(n logP

no
· α+ n

(
no+

n

P 2/3

)
· β + n

(
n2o+

n2

P

)
· γ
)
.

Choice of n
no

creates a tradeoff between the synchroniza-
tion cost and the communication cost. We minimize commu-
nication cost over synchronization by choosing no = n/P

2
3 .

The resulting cost of the 3D algorithm is listed in Table I.

E. QR Factorization

QR factorization decomposes an m × n matrix A into
matrices Q and R such that A = QR. We focus on the
case when m ≥ n and Q and R are the results of a reduced
QR factorization. In this case, Q is m× n with orthonormal
columns and R is n × n and upper-triangular. Parallel QR
algorithms have received much study [4], [26]–[31], but
focus has predominantly been on 2D blocked algorithms. 3D
algorithms for QR have been proposed [7], [8].

Algorithms 4 and 5 give pseudocode for the sequential
CholeskyQR2 (CQR2) algorithm. It is composed of matrix
multiplications and Cholesky factorizations and unlike other
QR factorization algorithms, does not require explicit QR
factorizations [1]. Using the building block algorithms ex-
plored above, we seek to extend the existing parallel 1D-
CQR2 algorithm given in Algorithms 6 and 7 to efficiently
handle an arbitrary number of rows and columns.

Algorithm 4 [Q,R]← CQR (A)

Require: A is m× n
1: W ← Syrk (A)
2: RT , R−T ← CholInv (W )
3: Q←MM

(
A,R−1

)
Ensure: A = QR, where Q is m × n with orthonormal

columns, R is n× n upper triangular



Algorithm 5 [Q,R]← CQR2 (A)

Require: A is m× n
1: Q1, R1 ← CQR (A)
2: Q,R2 ← CQR (Q1)
3: R←MM(R2, R1)

Ensure: A = QR, where Q is m × n with orthonormal
columns, R is n× n upper triangular

F. 1D-CholeskyQR2

The existing parallel 1D-CQR2 algorithm is solved over
1D processor grid Π [1]. It partitions the m × n matrix A
into P rectangular chunks of size m/P × n. Each processor
performs a sequential symmetric rank-m/P update (syrk)
with its partition of A, resulting in n × n matrix Π〈X〉 =
Π〈A〉TΠ〈A〉,∀p ∈ [0, P−1]. 1D parallelization allows each
processor to perform local matrix multiplication with its
initial partition of A and to contribute to the summation
across rows using an Allreduce. Each processor performs
a sequential Cholesky factorization on the resulting matrix
and solves for R−T . Because Q is distributed in the same
manner as A, horizontal communication is not required and
each processor can solve for Π〈Q〉 with Π〈A〉 and its copy
of R−1. See Figure 2 and Algorithm 6 for further details.

1D-CQR2 calls 1D-CQR twice to solve for Q as shown in
Algorithms 5 and 7. Each processor can solve for R← R2R1

sequentially. This algorithm ensures that Q is distributed the
same as A and R is stored on every processor.

In general, 1D-CQR2 can only be applied to extremely
overdetermined matrices, where m > n/P and n is small
enough to make the Allreduce feasible under given memory
constraints. In particular, the algorithm incurs per proces-
sor memory footprint and computation costs of O(n2) and
O(n3), respectively. This algorithm performs well under
these conditions [1], yet otherwise achieves poor scalability
in communication, computation, and memory footprint. We
show that CA-CQR2 can scale efficiently when m > n.

Algorithm 6 [Π〈Q〉, R]← 1D-CQR
(
Π〈A〉,Π

)
Require: Π has P processors arranged in a 1D grid. Each

processor owns a (cyclic) blocked partition of m×n input
matrix A given by Π〈A〉 ∈ Rm

P ×n. Let X be distributed
the same as Q, Z be distributed the same as R.

1: Π〈X〉 ← Syrk
(
Π〈A〉

)
2: Allreduce

(
Π〈X〉, Z,Π

)
3: RT , R−T ← CholInv

(
Z
)

4: Π〈Q〉 ←MM
(
Π〈A〉, R−1

)
Ensure: A = QR, where Q is distributed the same as A,

R is an upper triangular matrix of dimension n owned
locally by every processor

See Tables III and IV for the costs attained in the 1D-
CQR and 1D-CQR2 algorithms, respectively. The overall
asymptotic cost is listed in Table I.

Algorithm 7 [Π〈Q〉, R]← 1D-CQR2
(
Π〈A〉,Π

)
Require: Same result as Algorithm 6.

1: Π〈X〉,W ← 1D-CQR
(
Π〈A〉,Π

)
2: Π〈Q〉, Z ← 1D-CQR

(
X,Π

)
3: R←MM

(
Z,W

)
Ensure: Same requirements as Algorithm 6.

# Cost

1 Tα−βsyrk

(
m/P, n

)
2 Tα−βAllreduce

(
n2, P

)
3 Tα−βCholInv

(
n
)

4 Tα−βMM

(
m/P, n, n

)
Table III: Per-line costs of
Algorithm 6.

# Cost

1 Tα−β1D-CQR

(
m,n, P

)
2 Tα−β1D-CQR

(
m,n, P

)
3 (1/3)n3 · γ

Table IV: Per-line costs of
Algorithm 7.

III. COMMUNICATION-AVOIDING CHOLESKYQR2

Our main goal is to develop a parallelization of Cholesky-
QR2 that scales efficiently for rectangular matrices of arbi-
trary dimensions m ≥ n. We start with a 3D algorithm best
suited when m = n.

A. 3D-CQR2

Matrix A is initially distributed across Π[:, :, z],∀z ∈
[0, P 1/3−1] and is partitioned into rectangular chunks of size
m/P 1/3 × n/P 1/3. We compute Z = ATA in a similar
way to MM3D. Processor Π[z,y, z] broadcasts Π〈A〉 along
Π[:,y, z] as Π〈W 〉. Local matrix multiplication with Π〈W 〉T
and Π〈A〉 produces Π〈X〉. A reduction along Π[x, :, z] onto
root z sums each Π〈X〉 along the corresponding subgrid,
resulting in a unique partition of X scattered across Π.
A broadcast along Π[x,y, :],∀x,y ∈ [0, P 1/3−1] fills in
the missing partitions and ensures that each Π[:, :, z],∀z ∈
[0, P 1/3−1] owns a copy of Z.

With Z distributed the same as A, CFR3D and MM3D
can solve for RT and Q, respectively. An alternate strategy
involves computing triangular inverted blocks of dimension
no and solving for Q with multiple instances of MM3D.
This strategy can lower the computational cost by nearly a
factor of 2 when no = n/2, incurring close to a 2x increase
in synchronization cost. As no decreases by a factor of 2,
the synchronization cost increases logarithmically and the
decrease in computational cost remains nearly the same. This

Figure 2: Illustration of each step in the existing parallel
1D-CQR algorithm.



algorithm attains a communication cost (see Table I) equiv-
alent to the lower bounds of LU and matrix multiplication
[32], [33].

B. CA-CQR2

Tunable processor grids have several advantages over static
grids when factoring rectangular matrices. They can match
the shape of the matrix and tune themselves to optimize
certain parameters such as memory size and horizontal com-
munication. These costs can be shown to interpolate between
known algorithms on specific grids. Skinny matrices cannot
take full advantage of the resources provided by a 3D grid,
while square matrices overload the resource capacity that
skinny rectangular grids provide.

The CA-CQR2 algorithm can be seen as a generalization
of 1D-CQR2 and 3D-CQR2. We define a c×d×c rectangular
processor grid Π that partitions the m×n matrix A into rect-
angular blocks of size m

d ×
n
c . CA-CQR2 effectively utilizes

its tunable grid by performing d/c simultaneous instances of
CFR3D on cubic grid partitions of dimension c. This allows
each grid partition to avoid further communication with other
partitions because each has the necessary data to compute the
final step Q = AR−1.

As in 3D-CQR, processor Π[z,y, z] broadcasts Π〈A〉 to
Π[:,y, z],∀y ∈ [0, d−1], z ∈ [0, c−1] as Π〈W 〉, after which
a local matrix multiplication Π〈X〉 ← Π〈W 〉TΠ〈A〉 is
performed. A few extra steps are necessary in order for d/c
cubic partitions of Π to own the same matrix Z = ATA.
First, we subdivide Π along dimension y into d/c contiguous
groups of size c. Each group then participates in a reduction
onto root processor Π[x,y, z],∀x, z ∈ [0, c−1],∀y such
that y mod c = z. To complete the linear combination,
we subdivide Π along dimension y into d/c groups of size
c, where each processor belonging to the same group is a
step size c away. An Allreduce is performed on this sub-
communicator resulting in every processor owning a single
correct submatrix of B = ATA. A final broadcast from root
Π[x,y, z],∀x, z ∈ [0, c−1],∀y such that y mod c = z along
Π[x,y, :],∀x ∈ [0, c−1],y ∈ [0, d−1] ensures that each copy
of B is distributed over all c× c processor subgrids.

With Z distributed as described above, d
c simultaneous

instances of CFR3D and MM3D are performed over Πsubcube
to obtain Q. CA-CQR2 requires calling CA-CQR twice and
performing a final MM3D to solve for R.

CA-CQR2 combines elements of both the 1D-CQR2 and
3D-CQR2 algorithms in order to most efficiently span the
grid range c ∈ [1, P 1/3]. Further details are provided in Fig-
ure 3, pseudocode presented in Algorithms 8 and 9, and the
cost analysis below. Tables V and VI present the costs attain
in the CA-CQR and CA-CQR2 algorithms, respectively.

The overall asymptotic cost (also listed in Table I) is

Tα−βCA-CQR2 (m,n, c, d) = O
(
c2 logP · α+

(mnδ(c)
dc

+
n2

c2

)
· β

+
(mn2

c2d
+
n3

c3

)
· γ

)
.

The overall memory footprint is mn/dc+ n2/c2.

Algorithm 8 [Π〈Q〉,Π〈R〉]← CA-CQR (Π〈A〉,Π)

Require: Π has P processors arranged in a tunable grid of
size c× d× c for any integer c in range [0, P

1
3−1]. A is

m×n and is replicated on Π[:, :, z],∀z ∈ [0, c−1]. Each
processor Π[x,y, z] owns a (cyclic) blocked partition of
A given by Π〈A〉 ∈ Rm

d ×n
c . Let W , X , Y , and Z be

temporary arrays distributed the same as A.
1: Bcast

(
Π〈A〉,Π〈W 〉, z,Π[:,y, z]

)
2: Π〈X〉 ←MM

(
Π〈W 〉T ,Π〈A〉

)
3: Reduce

(
Π〈X〉,Π〈Y 〉, z,Π[x, cby/cc : cdy/ce − 1, z]

)
4: Allreduce

(
Π〈Y 〉,Π〈Z〉,Π[x,y mod c : c : d− 1, z]

)
5: Bcast

(
Π〈Z〉,Π〈Z〉,y mod c,Π[x,y, :]

)
6: Define Πsubcube[x,y, z]← Π[x, cby/cc : cdy/ce − 1, z]
7: Π〈RT 〉,Π〈R−T 〉 ← CFR3D

(
Π〈Z〉,Πsubcube

)
8: Π〈Q〉 ←MM3D

(
Π〈A〉,Π〈R−1〉,Πsubcube

)
Ensure: A = QR, where Q and R are distributed the same

as A. Q is m × n orthonormal and R is an upper
triangular matrix of dimension n.

Algorithm 9 [Π〈Q〉,Π〈R〉]← CA-CQR2 (Π〈A〉,Π)

Require: Same requirements as Algorithm 8.
1: Π〈X〉,Π〈Y 〉 ← CA-CQR (Π〈A〉,Π)
2: Π〈Q〉,Π〈Z〉 ← CA-CQR (Π〈X〉,Π)
3: Define Πsubcube[x,y, z]← Π[x, cby/cc : cdy/ce, z]
4: Π〈R〉 ←MM3D (Π〈Z〉,Π〈Y 〉,Πsubcube)

Ensure: Same requirements as Algorithm 8.

Figure 3: Illustration of the steps required to perform CQR
over a tunable processor grid.



# Cost

1 Tα−βBcast

(
mn
dc
, c
)

2 Tα−βMM

(
n/c,m/d, n/c

)
3 Tα−βReduce

(
n2/c2, c

)
4 Tα−βAllreduce

(
n2/c2, d/c

)
5 Tα−βBcast

(
mn
dc
, c
)

7 Tα−βCFR3D

(
n, c3

)
8 Tα−βMM3D

(
m,n, n, c3

)
Table V: Per-line costs of
Algorithm 8.

# Cost

1 Tα−βCA-CQR

(
m,n, c, d

)
2 Tα−βCA-CQR

(
m,n, c, d

)
4 Tα−βMM3D

(
n, n, n, c3

)
Table VI: Per-line costs of
Algorithm 9.

With appropriate choices of c and d, the costs attained
by CA-CQR2 interpolate between the costs of 1D-CQR2
and 3D-CQR2. Optimal communication can be attained by
ensuring that the grid perfectly fits the dimensions of A,
or that the dimensions of the grid are proportional to the
dimensions of the matrix. We derive the cost for the optimal
ratio m

d = n
c (last row of Table I). Both the memory footprint

and communication cost of this algorithm are (mn2/P )2/3.

IV. EVALUATION

We study the performance of our implementation of
the CA-CQR2 algorithm, with respect to ScaLAPACK’s
PGEQRF routine on two supercomputers: Blue Waters and
Stampede21. All variants of CholeskyQR2, including CA-
CQR2, perform 4mn2 + 5n3

3 flops along its critical path,
while ScaLAPACK’s PGEQRF uses Householder QR and
performs 2mn2 − 2

3n
3 such flops. We show that while CA-

CQR2 is somewhat slower than ScaLAPACK on Blue Waters
and when using few nodes of Stampede2, it outperforms
PGEQRF when using a large number of nodes of Stam-
pede2 despite this increase in computation. A key difference
between Stampede2 and Blue Waters is the ratio of peak
floating performance to network communication bandwidth.
Specifically, the ratio of peak flops to injection bandwidth
is roughly 8X higher on Stampede2. This difference also
reflects an architectural trend of flop rates increasing faster
than bandwidth in high-performance computing architectures.
CA-CQR2 is thus better-fit for massively-parallel execution
on newer architectures as it reduces communication at the
cost of computation, yielding a higher arithmetic intensity.

Our scaling studies also illustrate the effects parameters d
and c have on computation cost, communication cost, syn-
chronization cost, and performance as a whole. In particular,
the scaling results on Stampede2 provide the first experi-
mental evidence that performance improvements and superior
scaling can be attained by increasing the memory footprint
to reduce communication for QR factorization. Specifically,
the parameter c determines the memory footprint overhead;
the more replication being used (c), the larger the expected
communication improvement (

√
c) over 2D algorithms.

1We used our own build of ScaLAPACK 2.0.2 on Stampede2, after finding
that the existing MKL implementation stalled during execution of QR with
most processor grids when using 131072 or more MPI processes. We did not
observe a noticeable difference in performance between the two versions.

A. Implementation

Our CA-CQR2 implemetation uses C++ and MPI [34]
for all collective and point-to-point communication routines.
Sequential matrix multiplication and matrix factorization rou-
tine use BLAS [11] and LAPACK [35]. The implementation
does not exploit overlap in computation and communication
and used a cyclic data distribution among processors.

B. Architectural Setup

We use both the Stampede2 supercomputer at Texas Ad-
vanced Computing Center (TACC) [36] and the Blue Waters
supercomputer at the National Center for Supercomputing
Applications (NCSA). Stampede2 consists of 4200 Intel
Knights Landing (KNL) compute nodes (each capable of a
performance rate over 3 Teraflops/s) connected by an Intel
Omni-Path (OPA) network with a fat-tree topology (achiev-
ing an injection bandwidth of 12.5 GB/sec). Each KNL
compute node provides 68 cores with 4 hardware threads
per core. Both our implementation and ScaLAPACK use he
Intel/17.0.4 environment with MPI version impi/17.0.3. The
configuration of CA-CQR2 uses optimization flag -03 and
full 512-bit vectorization via flag -xMIC-AVX512.

Blue Waters is a Cray XE/XK hybrid machine composed
of AMD Interlagos processors and NVIDIA GK110 accel-
erators connected by a Cray Gemini 3D torus interconnect
(achieving an injection bandwidth of 9.6 GB/s). We utilize
XE compute nodes which each hold 16 floating-point Bull-
dozer core units and can achieve a performance rate of 313
Gigaflops/s. On Blue Waters, we use the PrgEnv-gnu/5.2.82
module with MPI version cray-mpich/7.5.0 and gcc/4.9.3
compiler. The optimization flags include -O3, -ffast-math, -
funroll-loops, -ftree-vectorize, and -std=gnu++11. We utilize
Cray’s LibSci implementations of BLAS/LAPACK routines
via module cray-libsci/16.11.1.

C. Experimental Setup

For both strong and weak scaling tests, we generate
random matrices. Each data-point displayed in figures cor-
responds to the median execution time out of five iterations.
The performance variation (due to noise) did not seem
significant on both Blue Waters and Stampede2.

We test strong scaling by keeping the m × n matrix size
constant while increasing the number of nodes N , the CA-
CQR2 grid dimension d, and the row-dimension of ScaLA-
PACK’s 2D processor-grid pr by a factor of 2. We test weak
scaling by keeping both the dimensions of local matrices and
the leading-order flop cost constant while increasing both
matrix dimensions, processor grid dimensions, and N . We
alternate between two scaling progressions:

1) increase m, d, and pr by a factor of 2 while leaving n,
CA-CQR2 grid dimension c, and the column-dimension
of ScaLAPACK’s processor grid pc constant,

2) decrease m and d by a factor of 2, increase n and c by
a factor of 2, while leaving pr constant.

The first progression is employed 3x as often as the second.
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Figure 4: (a,b,c) Weak scaling performance Blue Waters.

We test CA-CQR2 against ScaLAPACK’s PGEQRF rou-
tine over a range of matrix sizes, block sizes, pro-
cessor grid dimensions, processes per node (ppn), and
thread counts per MPI process (tpr). In the weak scaling
plots, each CA-CQR2 variant is characterized by a tuple
(d/c, InverseDepth, ppn, tpr), where a and b are defined
on each plot. In the strong scaling plots, each CA-CQR2
is characterized by a tuple (d, c, InverseDepth, ppn, tpr).
InverseDepth determines the last recursive level at which
the triangular inverse factor is computed. InverseDepth
can range between 0 and c/4. In both scaling plots,
each PGEQRF variant is characterized by a tuple
(pr, BlockSize, ppn, tpr).

We vary the ppn and tpr in all tests, choosing
to include the most performant variants among
(ppn, tpr)=(8,8),(16,4),(16,8),(32,2),(32,4),(64,1),(64,2)
on Stampede2, and (ppn, tpr)=(16,1),(16,2) on Blue
Waters. Gigaflop/s is calculated for both CA-CQR2 and
ScaLAPACK, by dividing 2mn2 − 2

3n
3 by the execution

time (ignoring the extra computation done by CA-CQR2).
Therefore, CA-CQR2 achieves a 2x to 4x greater percentage
of peak performance than the plots depict.

D. Weak Scaling

We begin by analyzing results for weak scaling (keeping
work per processor constant) on Blue Waters. Figure 4
demonstrates the performance of our implementation of CA-
CQR2 and ScaLAPACK for differently dilated processor

grids and matrices with an increasing (across plots) ratio
of rows and columns. Within each variant of CA-CQR2,
for weak scaling, both m/d to n/c are kept constant, so
communciation and computation cost stay constant, giving
the increasing synchronization cost an increasingly dominant
effect on performance. We confirm that 1D-CQR2 and CA-
CQR2 variants with small c are not suited for matrices with a
large number of columns. For example, for Figure 4(c), when
using N = 32 nodes, as c increases from c = 1 to c = 2
(so the first parameter in the legend label, d/c, decreases
from 512a/b to 64a/b), we observe a factor of 2x decrease
in execution time, since while the synchronization cost in-
creases by roughly 4x, the communication cost decreases
by roughly

√
2x and the computation cost decreases by

roughly 4x (suggesting execution time is dominated by a mix
of computation and communication costs). The sensitivity
to computation cost can also be observed from other Blue
Waters performance data and in part explains CA-CQR2’s
poor performance relative to ScaLAPACK’s QR on this
architecture.

As the ratio of the number of rows to columns increases
from Figure 4(a) to Figure 4(c), CA-CQR2 shows increas-
ingly better performance relative to PGEQRF, which may
be attributed to the decrease in computational cost over-
head (O(n3) sequential cost term associated with Cholesky
factorizations) relative to Householder QR factorization. In-
deed, both the highest absolute performance and highest
performance relative to ScaLAPACK’s QR on Blue Waters
is achieved for matrices with a relatively smaller number of
columns due to the increase in critical path cost (algorithm
depth / latency cost) associated with increasing n.

Weak scaling results on Stampede2 exhibit similar trends
among CA-CQR2 algorithm variants, yet give performance
improvements over ScaLAPACK’s QR at a range of node
counts determined by the shape of the matrix. Figure 5
demonstrates that as the ratio of rows to columns increases
across plots (and associated flop cost overhead decreases),
CA-CQR2’s P 1/6 reduction in communication can influence
performance at increasingly smaller node counts. CA-CQR2
improves ScaLAPACK’s QR performance at 1024 nodes by
factors of 1.1x in Figure 5(a) with c = 32, 1.3x in Figure
5(b) with c = 16, 1.7x in Figure 5(c) with c = 8, and 1.9x
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Figure 5: (a,b,c,d) Weak scaling performance Stampede2.

in Figure 5(d) with c = 4. The most performant variants of
each algorithm are compared directly in Figure 1(b).

The overhead of synchronization is less prevalent on
Stampede2 than Blue Waters, as evidenced by the relatively
constant performance among variants. Matrices with more
columns (Figures 5(a) and 5(b)) exhibit the best parallel
scaling, due to a higher computation cost, since O(mn2)
grows quadratically with n. By contrast, tall-and-skinny
matrices (Figures 5(c) and 5(d)) are more sensitive to the
increasing synchronization cost overhead.

The computation cost overheads of CA-CQR2 at 1024
nodes for all matrix variants in Figure 5 are all roughly a
factor of 2x, whereas the algorithm’s communication cost
reduction relative to ScaLAPACK’s QR at 1024 nodes is
4
√

2x, 4x, 2
√

2x, and 1x, respectively. Despite the constant
flop cost overhead, CA-CQR2 achieves better performance at
increasingly smaller node counts for matrices with increas-
ingly higher row-to-column ratios that benefit from a smaller
c. Its asymptotically higher synchronization costs associated
with larger c can play as significant a role as its higher
computational costs in determining when this algorithm is
most beneficial on Stampede2.

E. Strong Scaling
We first consider strong scaling on Blue Waters. We

reference each CA-CQR2 processor grid by the parameter
c, which controls the size of two of its dimensions. In Figure
6(b), grid c = 1 attains the best absolute performance at

the smallest node count among CA-CQR2 variants. This can
be attributed to mn/dc � n2/c2 and mn2/dc2 � n3/c3,
communication and flop cost measures, respectively. In gen-
eral, processor grids with smaller c will continue to achieve
higher performance in strong scaling studies as long as these
conditions are met. As the node count increases, the cost
terms dependent solely on the non-scaling parameters n, c
start to dominate and the grids with larger c achieve higher
performance and better scalability. In Figure 6(b), this first
crossover point occurs at N = 256 between grids c = 1
and c = 2. The second crossover point occurs at N = 512
between c = 2 and c = 4. At N = 2048, grid c = 4
achieves the highest performance because its communication
cost and flop cost is smallest. This configuration’s higher
synchronization cost at N = 2048 (and all node counts)
prevents a more drastic performance dropoff. A crossover
point between c = 2 and c = 4 is reached immediately in
Figure 6(a) due to a smaller ratio m/n. These results signify
that matrices with a smaller ratio m/n must employ grids
with larger c to reduce overhead.

Although ScaLAPACK’s QR achieves higher performance
at the lower node counts, at N = 2048, this performance
difference is small as our best CA-CQR2 variants (c = 8
in Figure 6(a) and c = 4 in Figure 6(b)) have scaled more
efficiently. At higher node counts, the asymptotic communi-
cation improvement achieved by CA-CQR2 is expected to be
of greater benefit.
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Figure 6: (a,b) Strong scaling performance on Blue Waters.
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Figure 7: (a,b,c,d) Strong scaling performance on Stampede2.

The strong scaling results in Figures 7(a), 7(b), 7(c), and
7(d) illustrate that CA-CQR2 achieves both higher abso-
lute performance and better scaling than ScaLAPACK’s QR
across a range of matrix sizes. The scaling characteristics of
grids with largest and smallest c are similar to those of Blue
Waters. In all but Figure 7(d), the processor grids with largest
c initially suffer from synchronization overhead, yet attain
the highest performance at N = 1024 by performing the
least communication and computation. The grids with small-
est c exhibit these characteristics in reverse. As discussed
above, the architectural differences between the two machines

strengthens the impact of our algorithm’s asymptotic commu-
nication reduction by diminishing the performance impact
of the inherent work overhead in CQR2 algorithms. CA-
CQR2 improves ScaLAPACK’s QR performance at 1024
nodes by factors of 2.6x in Figure 7(a) with c = 8, 3.3x
in Figure 7(b) with c = 4, 3.1x in Figure 7(c) with c = 4,
and 2.7x in Figure 7(d) with c = 1. The most performant
variants of each algorithm are compared directly in Figure
1(a). Overall, we observe that CA-CQR2 can outperform
optimized existing QR library routines, especially for strong
scaling on architectures with larger compute power relative



to communication bandwidth, a key distinguishing factor
between Stampede2 and Blue Waters (and a segment of a
more general trend).

V. CONCLUSION

We have developed an algorithm that efficiently extends
CholeskyQR2 (CQR2) to rectangular matrices. Our analysis
provides new insights into the communication complexity
of CQR2 and the performance potential of parallel 3D QR
algorithms. Through the use of a tunable processor grid,
CQR2 has been generalized to a parallel algorithm equipped
to efficiently factorize a matrix of any dimensions via an
appropriate 3D algorithm variant. Its simplicity and asymp-
totically optimal communication complexity gives CA-CQR2
promising potential as a parallel QR factorization algorithm.
In comparison to the ScaLAPACK PGEQRF routine on
Stampede2, our implementation achieves better strong and
weak scaling on large node counts.

One next step in this line of work would be to develop
a CA-CQR2 algorithm that operates on subpanels to reduce
computation cost overhead is also of interest for near-square
matrices. Additionally, while minimal modifications are nec-
essary to implement shifted Cholesky-QR [3], a performance
evaluation of this variant would provide insight to the poten-
tial benefits of this unconditionably stable algorithm at scale.
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