
Scheduling on (Un-)Related Machines

with Setup Times∗

Klaus Jansen1, Marten Maack1, and Alexander Mäcker2

1Department of Computer Science, University of Kiel, Kiel,
Germany

2Heinz Nixdorf Institute and Computer Science Department,
Paderborn University, Paderborn, Germany

1{kj,mmaa}@informatik.uni-kiel.de
2alexander.maecker@uni-paderborn.de

Abstract

We consider a natural generalization of scheduling n jobs on m parallel
machines so as to minimize the makespan. In our extension the set of jobs
is partitioned into several classes and a machine requires a setup whenever
it switches from processing jobs of one class to jobs of a different class.
During such a setup, a machine cannot process jobs and the duration of
a setup may depend on the machine as well as the class of the job to be
processed next.

For this problem, we study approximation algorithms for non-identical
machines. We develop a polynomial-time approximation scheme for uni-
formly related machines. For unrelated machines we obtain an O(logn+
logm)-approximation, which we show to be optimal (up to constant fac-
tors) unless NP ⊂ RP . We also identify two special cases that admit
constant factor approximations.

1 Introduction

We consider a problem that is a natural generalization of the classical
parallel machine scheduling problem: We are given a set of n jobs as
well as m parallel (identical, uniformly related or unrelated) machines
and the goal is to find an assignment of jobs to machines so as to min-
imize the makespan. Our generalization assumes the set of jobs to be
partitioned into K classes and a machine needs to perform a setup when-
ever it switches from processing a job of one class to a job of a different

∗This work was partially supported by the German Research Foundation (DFG) within
the Collaborative Research Centre “On-The-Fly Computing” (SFB 901) and by DFG project
JA 612/20-1

1

ar
X

iv
:1

80
9.

10
42

8v
1

 [
cs

.D
S]

 2
7

Se
p

20
18

class. Thereby, the length of the setup may depend on the machine as
well as the class of the job to be processed, but does not depend on the
class previously processed on the machine. Such an explicit modeling
of (sequence-(in)dependent) setup times has several applications/motiva-
tions: they occur in production systems, for example, as changeover times,
times for cleaning activities or for preparations such as the calibration of
tools; or in computer systems, for example, due to the transfer of data
required to be present at the executing machine [2, 3, 1].

In the past, approximation algorithms for this problem have been de-
signed for the case of identical machines [24, 18, 17], however, not much is
known about the non-identical case. The goal of this paper is to advance
the understanding of the problem in case the machines have different ca-
pabilities, which we capture by modeling them as uniformly related or
unrelated machines. This seems to be an important topic as it is a nat-
ural special case of the following problem, which is quite present in the
literature on heuristics and exact algorithms (cf. [2, 3, 1]), but lacks (to
the best of our knowledge) theoretical investigations with provable per-
formance guarantees: Jobs need to be processed on parallel unrelated
machines and each job has a setup time that might depend on the ma-
chine as well as the preceding job. Note that in this paper we require the
setup times to have a certain regular structure in the sense that it is 0 for
a job j if j is preceded by a job of the same class and otherwise it only
depends on j’s class and the machine.

1.1 Model & Notation

We consider a scheduling problem that generalizes the classical problem
of minimizing the makespan on parallel machines: In our model, we are
given a set J of n := |J | jobs as well as a set M of m := |M| parallel
machines. Each job j ∈ J comes with a processing time (size) pij ∈ N≥0

for each i ∈ M. Additionally, the set J of jobs is partitioned into K
classes K. Each job j belongs to exactly one class kj ∈ K and with each
class k ∈ K and machine i ∈ M a setup time sik ∈ N≥0 is associated.
The goal is to compute a non-preemptive schedule in which each job is
processed on one machine and each machine processes at most one job
at a time and which minimizes the makespan: A schedule is given by a
mapping σ : J → M and the goal is to minimize (over all possible σ)
the makespan maxi∈M Li given by the maximum load of the machines
Li :=

∑
j∈σ−1(i) pij +

∑
k∈{kj :j∈σ−1(i)} sik. Intuitively, one can think of

the load of a machine as the processing it has to do according to the jobs
assigned to it plus the setups it has to pay for classes of which it does
process jobs. This reflects problems where a machine i processes all jobs
belonging to the same class in a batch (a contiguous time interval) and
before switching from processing jobs of a class k′ to jobs of class k it
has to perform a setup taking sik time. For simplicity of notation, for a
fixed problem instance and an algorithm A, we denote the makespan of
the schedule computed by A as |A|.

In the most general model for parallel machines, the unrelated ma-
chines case, there are no restrictions on the processing times pij , which
therefore can be completely arbitrary. In case of uniformly related ma-

2

chines, each machine i has a fixed speed vi and the processing time pij
only depends on the job j and the speed of machine i and is given by
pij =

pj
vi

. Finally, we consider the restricted assignment problem, where

each job j has a set Mj of eligible machines (on which it can be processed)
and the processing time is the same on all of them, that is, pij = pj for
all i ∈Mj and pij =∞ otherwise.

For each of these variants we assume that the setup times behave sim-
ilar to the jobs, that is, in the unrelated case we have arbitrary setup
times sik depending on the machine i and the class k; in the uniform
case we have, sik = sk

vi
; and in the restricted assignment case, we have

sik ∈ {sk,∞}. This model seems sensible, if we assume that the differ-
ent behavior is due to qualitative differences between the machines, like
suggested by the names of the problems.

1.1.1 Further Notions

A polynomial time (approximation) algorithm A is called to have an ap-
proximation factor α if, on any instance, |A| ≤ α|Opt| holds, where |Opt|
denotes the optimal makespan. In case A is a randomized algorithm, we
require that E[|A|] ≤ α|Opt|, where the expectation is taken with re-
spect to the random choices of A. An approximation algorithm is called a
polynomial time approximation scheme (PTAS) if, for any ε > 0, it com-
putes a (1 + ε)-approximation in time polynomial in the input size and
(potentially) exponential in 1

ε
.

Our approximation algorithms almost all follow the idea of the dual
approximation framework introduced by Hochbaum and Shmoys in [14].
Instead of directly optimizing the makespan, we assume that we are given
a bound T on the makespan and we are looking for an algorithm that
computes a schedule with makespan (at most) αT or correctly decides that
no schedule with makespan T exists. Employing this idea, it is easy to see
that using binary search started on an interval I 3 |Opt| that contains
the optimal makespan, finally provides an approximation algorithm with
approximation factor α.

1.2 Related Work

Uniformly Related Machines. As already discussed, our model can be
viewed as a generalization of classical parallel machine models without
setup times (where all setup times are 0). For these models, it is known
for a long time due to the work of Hochbaum and Shmoys [15] that a PTAS
can solve the problem of uniformly related machines arbitrarily close to
optimal. More recently, in [16] Jansen even shows that the running time
can be further improved by coming up with an EPTAS, a PTAS with
running time of the form f(1/ε)× poly(|I|), where f is some computable
function and |I| the input size.

Unrelated Machines and Restricted Assignment. The case of unre-
lated machines significantly differs from the uniform case due to an inap-
proximability result of 3/2 (unless P=NP) as proven by Lenstra, Shmoys
and Tardos in [23]. On the positive side, there are algorithms that pro-
vide 2-approximations based on rounding fractional solutions to a linear

3

programming formulation of the problem. A purely combinatorial ap-
proach with the same approximation factor is also known [11]. For special
cases of the restricted assignment problem stronger results are known,
e.g., Ebenlendr et al. [9] show that the lower bound of 3/2 even holds for
the more restrictive case where |M(j)| ≤ 2 for all j, and design a 1.75-
approximation algorithm for this case. For the general restricted assign-
ment case, Svensson [26] provides an algorithm for estimating the optimal
makespan within a factor of 33

17
. Jansen and Rohwedder [19] improve this

to 11
6

and also [20] give an algorithm with quasipolynomial running time
and approximation ratio 11

6
+ ε.

Setup Times. Scheduling with an explicit modeling of setup times has
a long history, particularly within the community of operations research.
The vast majority of work there studies hardness results, heuristics and
exact algorithms, which are evaluated through simulations, but without
formal performance guarantees. The interested reader is referred to the
exhaustive surveys on these topics by Allahverdi et al. [2, 3, 1]. In con-
trast, literature in the domain of approximation algorithms with proven
bounds on the performance is much more scarce. Schuurman and Woeg-
inger [25], consider a model where jobs are to be processed on identical
machines in a preemptive way so as to minimize the makespan. Whenever
a machine switches from processing one job to a different job, a setup time
is necessary. Schuurman and Woeginger design a PTAS for the case of
job-indepedent setup times and a 4/3-approximation for the case of job-
dependent setup times. In [5], Correa et al. consider a similar model where
jobs can not only be preempted but be split arbitrarily (thus, job parts
can also be processed simultaneously on different machines). They design
a (1 +φ)-approximation, where φ ≈ 1.618 is the golden ratio, for the case
of unrelated machines as well as an inapproximability result of e

e−1
. The

model with classes and (class-independent) setups was first considered by
Mäcker et al. for identical machines in [24], where constant factor approx-
imations are presented. In [18], Jansen and Land improve upon these
results by providing a PTAS (even) for the case of class-dependent setup
times. This result has been further improved in [17] to an EPTAS. The
same work [17] also improves on the result from [25] (mentioned above)
by giving an EPTAS for the respective problem and obtains an EPTAS
for the identical machines case of the model given in [5] (discussed above).

Our model with classes and setup times has also been considered for
objective functions other than makespan by Divakaran and Saks for a
single machine. In [7], they give a 2-approximation for the weighted com-
pletion time objective and an algorithm achieving a maximum lateness
that is at most the maximum lateness of an optimal solution for a ma-
chine running at half the speed. In [8], they design and analyze an (online)
algorithm having a constant approximation factor for minimizing the max-
imum flow time. In [6], Correa et al. study the objective of minimizing the
weighted completion time in the setting where jobs can be split arbitrar-
ily and each part requires a setup before being processed. They propose
constant factor approximations for identical and unrelated machines.

4

1.3 Our Results

In Section 2, we present the first PTAS for scheduling on uniformly related
machines with setup times. Roughly speaking, our main technical contri-
bution, is to simplify the problem, such that for each setup class the setup
times can be ignored on all machines but those whose speeds belong to
some bounded (class dependent) interval of machine speeds. In Section 3
we study the case of unrelated machines and start with a randomized
rounding based algorithm to compute O(logn+ logm)-approximations in
Section 3.1. We prove that this bound is (asymptotically) tight (unless
NP = RP) by providing a randomized reduction from the SetCover
problem in Section 3.2. We conclude in Section 3.3.2 with identifying two
special cases of unrelated machines that admit constant factor approxi-
mations by showing how a rounding technique from [5] can be employed
to approximate these cases.

2 Uniformly Related Machines

In this section, we develop a PTAS for uniformly related machines based
on a dual approximation. To bootstrap the dual approximation frame-
work, that is, to determine a (small) interval containing |Opt|, we could,
with a very efficient runtime (dominated by time for sorting) of O(n logn),
compute a constant factor approximation based on the standard LPT-rule
as follows: Let Jks = {j ∈ J : kj = k, pj < sk} be the set of jobs of class
k being smaller than the setup time of k. Replace the jobs in Jks by
d
∑
j∈Jks

pj/ske many (placeholder) jobs of class k, each with a size of sk.

Then apply the standard LPT-rule ignoring any classes and setups (that
is, sort all jobs by non-increasing size and add one after the other to the
machine where it finishes first); and finally, add all required setups to the
LPT-schedule and replace the placeholder by the actual jobs. As LPT
provides (1+ 1√

3
)-approximations for scheduling on uniformly related ma-

chines [22], a straightforward reasoning shows this approach to provide
3(1 + 1√

3
) ≈ 4.74-approximations.

Lemma 2.1. Using the LPT-rule as described above, yields an approxi-
mation factor of 3(1 + 1√

3
) ≈ 4.74.

Proof. Consider an optimal schedule and let Si be the set of classes for
which there is a setup on machine i. Then, there is a schedule with
load at most |Opt| +

∑
k∈Si sik on machine i after replacing the small

jobs by placeholder jobs. Also, when ignoring any setups, this load is
decreased to at most |Opt|. Therefore, using LPT, we find a schedule
with makespan at most (1 + 1√

3
)|Opt|. Now let Ci be the set of classes

of which jobs are scheduled on machine i in the LPT schedule. Replacing
the placeholder by actual jobs can increase the makespan by at most∑
k∈Ci sik and adding the required setups can increase it by the same

amount. Since
∑
k∈Ci sik ≤ (1 + 1√

3
)|Opt|, the lemma follows.

2.1 PTAS

The roadmap for the PTAS is as follows:

5

1. Simplify the instance.

2. Find a relaxed schedule for the simplified instance via dynamic pro-
gramming, or conclude correctly that no schedule with makespan T
for the original instance exists.

3. Construct a regular schedule for the simplified instance using the
relaxed schedule and a greedy procedure.

4. Construct a schedule for the original instance using the one for the
simplified instance.

Concerning the second and third step, first note that the makespan
guess T , given by the dual approximation framework, enables a packing
perspective on the problem: On machine i there is an amount of Tvi free
space and the jobs and setup times have to be placed into this free space.
Now, a job or setup time may be big or small relative to this free space, say
bigger or smaller than εTvi. In the latter case, i can receive one additional
job or setup time in a PTAS, or several for another threshold parameter
than ε. Hence, we have to be cautious when placing big objects but can
treat small objects with less care. Roughly speaking, in a relaxed schedule
some jobs and setups are fractionally placed on machines for which they
are small, and for jobs that are big relative to the setup time of their class,
the setup is ignored.

For the dynamic program, we define intervals of machine speeds, called
groups, and the groups are considered one after another ordered by speeds
and starting with the slowest. In each interval, the speeds differ at most by
a constant factor. This enables us to reuse ideas for the identical machine
case developed in [18] for the single groups. However, there has to be
some information passed up from one group to the next, and this has to
be properly bounded, in order to bound the running time of the dynamic
program. While, we can use some standard ideas for classical makespan
minimization on uniformly related machines (without setup times), e.g.
from [15], there are problems arising from the setup classes. Mainly,
we have to avoid passing on class information between the groups. As
a crucial step to overcome this problem, we show that for each group
there is only a bounded interval of machine speeds for which we have to
properly place the setup times. In the algorithm, we define the groups
wide enough and with overlap such that for each class there is a group
containing the whole interval relevant for this class. When going from one
group to the next, we therefore do not have to pass on class information
of jobs that have not been scheduled yet. This, together with proper
simplification steps enables us to properly bound the running time of the
dynamic program.

In the following, we describe the PTAS in detail, starting with the
simplification steps, followed by some definitions and observations that
lead to the definition of a relaxed schedule, and lastly, we present the
dynamic program.

Throughout this section ε > 0 denotes the accuracy parameter of the
PTAS with 1/ε ∈ Z≥2; and log(·) the logarithm with basis 2. Furthermore,
for a job j or a setup class k, we call the values pj and sk the job or setup
size respectively, in distinction from their processing time pij = pj/vi or
setup time sk/vi on a given machine i.

6

Simplification Steps. We perform a series of simplification steps:
First, we establish minimum sizes of the occurring speeds, job and setup
sizes; next, we ensure that the job sizes of a class are not much smaller
than its setup size; and lastly, we round the speeds, job and setup sizes.
Most of the used techniques, like geometric rounding or the replacement
of small objects with placeholders with a minimum size, can be consid-
ered folklore in the design of approximation algorithms for scheduling
problems. Similar arguments can be found, e.g., in [18], [15], [16] or [10].

Let I be the original instance and vmax = max{vi | i ∈M}. We remove
all machines with speeds smaller than εvmax/m and denote the smallest
remaining speed after this step by vmin. Furthermore, we increase all job
and setup sizes that are smaller than εvminT/(n + K) to this value, and
call the resulting instance I1. By scaling, we assume vminT = 1 in the
following.

Lemma 2.2. If there is a schedule with makespan T for I, there is also
a schedule with makespan (1 + ε)2T for I1; and if there is a schedule with
makespan T ′ for I1, there is also a schedule with makespan T ′ for I.

Proof. Given a schedule for I, the summed up load on machines missing in
I1 is upper bounded by εvmaxT and we can place it on a fastest machine.
Furthermore, increasing the setup and processing times can increase the
load on any machine by at most εvminT .

The next step is to make sure that jobs are not much smaller than
the setup size of their class. Let I2 be the instance we get by replacing
for each class k the jobs with size smaller than εsk with placeholders,
that is, we remove the jobs from J ′k = {j ∈ Jk | pj ≤ εsk} and introduce
d(
∑
j∈J ′

k
pj)/(εsk)e many jobs of size εsk belonging to class k.

Lemma 2.3. If there is a schedule with makespan T ′ for I1, there is one
with makespan (1 + ε)T ′ for I2; and if there is a schedule with makespan
T ′ for I2, there is one with makespan (1 + ε)T ′ for I2.

Proof. Given a schedule for one of the instances, we can greedily replace
jobs with the respective placeholders and vice-versa, over-packing with at
most one object per class and machine. Thereby the overall load on each
machine due to a class scheduled on the machine is increased at most by
a factor of (1 + ε).

Next, we perform rounding steps for the job and setup sizes, as well
as the machine speeds: For each job or setup size t, let e(t) = blog tc. We
round t to 2e(t) + kε2e(t) with k = d(t − 2e(t))/(ε2e(t))e. This rounding
approach is due to Gálvez et al. [12]. Furthermore, we perform geometric
rounding for machine speed, that is, each machine speed v is rounded to
(1 + ε)k

′
vmin, with k′ = blog1+ε(vi/vmin)c. We call the rounded instance

I3.

Lemma 2.4. If there is a schedule with makespan T ′ for I2, there is also
a schedule with makespan (1 + ε)2T ′ for I3; and if there is a schedule with
makespan T ′ for I3, there is also one for I2.

Proof. Each job and setup size is increased at most by a factor of (1 + ε)
by the rounding and each machine speed is decreased at most by a factor
of (1 + ε).

7

γ2vmin
vmin 1

γ2 vmin
vmax

−1 1 G

0 2

speeds

Figure 1: Machine speeds with logarithmic scale. The braces mark groups; the
dashed interval, possible speeds of core machines of some class with core group
2; and the dotted interval, possible speeds of machines where some job with
native group G is big.

Hence, if there is a schedule with makespan at most T for I there is
also a schedule with makespan at most T1 for I3 with T1 = (1 + ε)5T =
(1 + O(ε))T . Furthermore, if we should find a schedule with makespan
T2 for I4 with T1 ≤ T2 = (1 + O(ε))T , we can transform it back into a
schedule for the original instance with makespan at most T3 = (1+ε)T2 =
(1 +O(ε))T .

For the sake of simplicity, we assume in the following that the instance
I is already simplified and the makespan bound T was properly increased.

Preliminaries. We define two threshold parameters δ = ε2 and γ =
ε3. For each class k the core jobs belonging to that class are the ones with
a job size p, such that εsk ≤ p < sk/δ. Bigger jobs are called fringe jobs.
The set of core or fringe jobs of class k is denoted by J̄k and J̃k respectively.
The core machines i of class k, are the ones with sk ≤ Tvi < sk/γ and
faster machines are called fringe machines.

Remark 2.5. For each class k and each job j that belongs to k, j is either
a core or a fringe job and has to be scheduled either on a core or a fringe
machine of k.

A job size p is called small for a speed v, if p < εvT ; big, if εvT ≤ p ≤
vT ; and huge, if p > vT . We use these terms for jobs and machines as
well, e.g., we call a job j small for machine i, if pj < εviT . Since γ/δ = ε
holds, we have:

Remark 2.6. The core jobs of class k are small on fringe machines of k.

Next, we define speed groups (see Fig. 1). For each g ∈ Z, we set
v̌g = vmin/γ

g−1 and v̂g = vmin/γ
g+1. Group g is given by the interval

[v̌g, v̂g). Note that the groups are overlapping with each speed occurring
in exactly two groups. A machine i belongs to group g, if vi ∈ [v̌g, v̂g),
and we denote the set of machines belonging to g by Mg and the set
of corresponding speeds by Vg, i.e., Vg = {vi | i ∈ Mg}. By definition,
the smallest group g with Mg 6= ∅ is group 0. Furthermore, let G be
the biggest number with this property. Because of the first simplification
step, we have G ≤ m/(3ε log(1/ε)) = O(m/ε).

For each job j there are up to three (succeeding) groups containing
speeds for which its size is big, and at least one of them contains all such
speeds. Let g be the smallest group with this property, i.e., pj ≥ εv̌gT

8

and pj < v̂gT . We call g the native group of j. For a group g, the fringe
jobs with native group g will be of interest in the following and we denote
the set of these jobs by J̃g.

Moreover, for each class k there are at most three (succeeding) groups
containing possible speeds of core machines of k, and there is at least one
that contains all of them. Let g be the smallest group with this property,
i.e., sk ≥ v̌gT and sk < v̂gT . We say that g is the core group of k. Note
that k has a core group even if it has no core machines.

Remark 2.7. Let j be a core job of class k and g be the core group of k.
There is a speed v in group g such that pj is big for v.

We have pj < sk/ε
2 because j is a core job; and sk/ε

2 < εv̂gT , because
g is the core group of k. Hence, pj is small for v̂g. Furthermore, we have
pj ≥ εsk ≥ εv̌gT for the same reasons. Therefore, pj is big or huge for v̌g
and there lies at least one speed in between for which it is big.

Relaxed Schedule. In a relaxed schedule, the set of jobs is partitioned
into integral jobs I and fractional jobs F , and an assignment σ′ : I →M
of the integral jobs is given. For each j ∈ I the machine σ′(j) belongs to
the native group of j, if j is a fringe job, and to the core group of k, if j is a
core job of class k. Setups for fringe jobs are ignored, and hence we define
the relaxed load L′i of machine i to be

∑
j∈σ′−1(i) pj +

∑
k:σ′−1(i)∩J̄k 6=∅

sk.
Intuitively, the fractional jobs are placed fractionally together with some
minimum amount of setup in the left-over space on the machines that are
faster than the ones in the respective native or core group. More formally,
we say that the relaxed schedule has makespan T if L′i ≤ T for each i ∈M
and the following space condition for the fractional jobs holds.

Let Fg be the set of fractional fringe jobs with native group g, and
fractional core jobs of class k with core group g; Ai = max{0, T vi − L′i}
the remaining free space on machine i with respect to T ; and Wg the
overall load of fractional jobs with native group g together with one setup
for each class that 1. has core group g, 2. has no fringe job, and 3. has
a fractional core job, i.e., Wg =

∑
j∈Fg pj +

∑
k:Fg∩J̄k 6=∅,J̃k=∅ sk. A job

j ∈ Fg should be placed on a machine that belongs to group g + 2 or a
faster group. Hence, we set the reduced accumulated fractional load Rg
for group g to be max{0, Rg−1 +Wg−2 −

∑
i∈Mg\Mg+1

Ai}. The required

space condition is RG = WG = WG−1 = 0.

Lemma 2.8. If there is a schedule with makespan T for a given instance,
there is also a relaxed schedule with makespan T ; and if there is a relaxed
schedule with makespan T , there is a schedule with makespan (1+O(ε))T .

Proof. The first claim is easy to see: For a given schedule σ with makespan
T , the fringe jobs assigned to a machine of their native group and the
core jobs assigned to the core group of their class form the set I and
we can set σ′ = σ|I . The remaining jobs form the fractional jobs and
they obviously fit fractionally into the left-over space, because we have
a fitting integral assignment of them. This also holds for the setups for
groups with fractional jobs and no fringe jobs: There has to be at least
on setup for each such class on a machine that does not belong to their

9

core group. Dropping the setups of the fringe jobs only increases the free
space further.

We consider the second claim. Let (I,F , σ′) be a relaxed schedule
with makespan T . We construct a regular schedule and start by placing
all the integral jobs like in the relaxed schedule. To place the fractional
jobs, we consider one speed group after another starting with group 0. For
the current group g, we consider the jobs from F ′ ⊂ F , with F ′ = Fg−2,
if g > 0, and F ′ =

⋃
g′≤−2 Fg′ , if g = 0. We partition F ′ into three sets

F1, F2, F3 that are treated differently. The fringe jobs in F ′ are included
in the third group. Let k be a setup class. If the core jobs of k have an
overall size bigger than sk/ε, i.e.,

∑
j∈F′∩J̄k

pj > sk/ε, they belong to F3

as well. Otherwise, they belong to F1 if k has a fringe job and to F2, if it
has none.

Let k be a class whose fractional core jobs are included in F1 or F2.
We will place the fractional core jobs of k all on the same machine. If the
jobs are included in F1, there exists a fringe job with class k and we can
place the fractional core jobs together with such a job. A fringe job of
class k has a size of at least sk/δ = sk/ε

2, and hence the load due to the
fringe job is increased at most by a factor of (1+ε) by this step. This can
happen at most once for each class and hence at most once for each fringe
job. Since all fringe jobs of the class could be fractional, we postpone this
step until all the remaining fractional jobs are placed. If, on the other
hand, the fractional core jobs of class k are included in F2, we construct
a container containing all respective jobs together with one setup of the
class. Note that the setup is already accounted for in the relaxed schedule,
and that the overall size of the container is upper bounded by (1+1/ε)sk.
We call a container small on a machine i, if its size is upper bounded by
εviT . Each machine i belonging to group g or faster groups, is a fringe
machines of class k and therefore we have sk ≤ γviT . Hence, the size of
the container is at most (ε2 + ε3)viT ≤ εviT (because ε ≤ 1/2), i.e., the
container is small on i. We place the container in the next step.

Next, we construct a sequence of jobs and containers and apply a
greedy procedure to place them. We start with an empty sequence and
add all containers from the last step and all fringe jobs from F3 in any
order. The core jobs from F3 are added sorted by classes in the end of the
sequence. If there is a residual sequence that was not placed in the last
iteration, we concatenate the two with the old sequence in the front. We
now consider each of the machines i ∈ Mg \Mg+1 with L′i < viT in turn
and repeatedly remove the first job from the sequence and insert it on the
current machine until the load of the machine exceeds viT . Since all jobs
and containers in the sequence are small on the machines of group g, they
are overloaded at most by factor of (1 + ε) afterwards. For each step, the
overall size of jobs and containers that are left in the sequence is at most
the reduced accumulated fractional load Rg, because the remaining free
space on the machines has either been filled completely, or the sequence
is empty. Since RG = WG = WG−1 = 0, all jobs and containers can be
placed eventually.

Now, all jobs are properly placed, but some setups are still missing.
First, we consider core jobs that have been inserted in the greedy proce-

10

dure and were not contained in a container. If the overall size of such core
jobs of a class k placed on a machine is at least sk/ε, adding the missing
setups increases this size at most by a factor of (1 + ε). However, for each
machine i, there can be at most two such classes k without this property,
namely the class that has been added first and the class that has been
added last on the machine. For each class in between, all core jobs of this
class in the sequence have been added to the machine, and these have
sufficient overall size by construction. Furthermore, if a job of class k was
placed on a machine i in the greedy procedure, i is a fringe machine of
k. Hence, the load of each machine i after this step can be bounded by
(1 + ε)2viT + 2ε3viT ≤ (1 + ε)3viT . Lastly, we add the missing setups
for the fringe jobs, resulting in an additional increase of at most (1 + ε2),
because a fringe job of class k has a size of at least sk/ε

2.

Dynamic Program. To compute a relaxed schedule with makespan
T or correctly decide that there is none, we use a dynamic programming
approach. Therein, the groups of machine speeds are considered one after
another starting with the slowest and going up. For a fixed group the
dynamic program can be seen as an adaptation of the one from [18] for
the identical case, and the overall structure of the program is similar to
approaches used for the classical problem without setup times, e.g., in [15]
and [10]. However, there is some work to be done to combine these ap-
proaches and to deal with the fact, that the speed groups are overlapping.
In order to define the dynamic program and bound its running time, we
first need some additional considerations and definitions. For the sake of
simplicity, we identify the set of classes K with the set of numbers [K] in
the following.

Let Bg be the number of job sizes in I that are big for at least one speed
of group g. We set e(g) = blog εv̌gT c. Because of the rounding of the job
sizes, each size p ∈ Bg is an integer multiple of ε2e(g). Furthermore, we
have 2e(g) ≤ εv̌gT ≤ p ≤ v̂gT ≤ ε−1γ−22e(g)+1. Hence, |Bg| ≤ 2/(ε2γ2) =
O(1/ε8).

We define a superset Lg of possible load values that can occur on a
machine that belongs to group g and g + 1 in a relaxed schedule due to
integral jobs. Such a machine may receive fringe jobs with native group
g or g + 1, core jobs whose core group is one of these, as well as their
setups. The setup sizes have been rounded like the job sizes and for each
of the mentioned setup sizes s we have s ≥ v̌gT and hence s is an integer
multiple of ε2e(g). We set Lg = {kε2e(g) | k ∈ {0, 1, . . . , 2/(ε2γ3)}}. We
have |Lg| ≤ 2/(ε2γ3) + 1 = O(1/ε11).

Next, we define a superset Λ of possible load values of fractional jobs
and corresponding setup sizes in a relaxed schedule. Because of the first
simplification step, each job and setup size is lower bounded by ε/(n+K)
and vmin ≥ εvmax/m. We set e∗ = blog ε/(n + K)c. Because of the
rounding, each job and setup size is a multiple of ε2e

∗
. Furthermore,

the overall load of all jobs together with one setup of each class without
a fringe job can be bounded by mvmaxT ≤ m2/ε, or, more precisely,
if this is not the case we can reject the current guess of the makespan.
Hence, we can set Λ = {kε2e

∗
| k ∈ {0, 1, . . . , 2m2(n + K)/ε3}}, and get

|Λ| = O(m2(n+K)/ε3).

11

Lastly, we bound the number of speeds |Vg| that occur in group g. We
have v̂g = v̌g/γ

2 and applied geometric rounding on the speeds. Hence,
|Vg| = O(log1+ε(1/γ

2)) = O(1/ε log 1/ε) (because ε < 1).
A state of the dynamic program is of the form

(g, k, ι, ξ, µ, λ)

with:

• g ∈ [G] is a group index.

• k ∈ {0, . . . ,K} is a setup class index including a dummy class 0.
The dummy class is included to deal with the fringe jobs with native
group g.

• ι : Bg → {0, . . . , n} is a function mapping job sizes to multiplicities.
Intuitively, ι(p) jobs of size p corresponding to the current class still
have to be dealt with in the current group.

• ξ ∈ {0, 1} is a flag that encodes whether a core job of the current
class has been scheduled as a fractional job.

• µ : Vg×Lg−1∪Lg×{0, 1} → {0, . . . ,m} is a function mapping triples
of machine speeds, load values and flags to machine multiplicities.
We require, that µ(v, `, ζ) = 0, if v ∈ Vg ∩ Vg+1 and ` ∈ Lg \ Lg−1.
Intuitively, we have µ(v, `, ζ) machines of speed v in the current
machine group, with load `, that already received the setup of the
current class (ζ = 1) or not (ζ = 0).

• λ ∈ Λ3 is a load vector. Its values λi corresponds to the load of
fractional jobs together with the corresponding setups that have been
pushed up to faster groups for the current (i = 1), last (i = 2), or
some previous group (i = 3) considered in the procedure.

Let S be the set of states of the dynamic program. Because of the
above considerations, we have |S| = O(GKnmaxg |Bg|mmaxg 2|Vg||Lg−1∪Lg||Λ3|) =
(nmK)poly(1/ε). The states form the vertices of a graph, and the relaxed
schedules correspond to paths from a start to an end state. There are
three types of edges:

1. The edges marking the transition from a group g to the next: For
each state (g, k, ι, ξ, µ, λ) ∈ S with g < G, k = K and ι = 0, there
is an edge connecting the state with (g + 1, 0, ι′, 0, µ′, λ′), where ι′,
µ′ and λ′ are defined as follows. For each p ∈ Bg+1 the value ι′(p)
is the number of fringe jobs with native group g and size p, i.e.,
ι′(p) = |{j ∈ J̃g | pj = p}|. We have λ′1 = 0, λ′2 = λ1, and:

λ′3 = λ2+max
{

0, λ3−
∑

v∈Vg∩Vg−1

∑
`∈Lg−1

(Tv−`)·(µ(v, `, 0)+µ(v, `, 1))
}

Furthermore, µ′(v, `, ζ) is given by µ(v, `, 0) + µ(v, `, 1), if v ∈ Vg ∩
Vg+1, ` ∈ Lg and ζ = 0; by |{i ∈ Mg | vi = v}|, if v ∈ Vg+1 \ Vg,
` = 0 and ζ = 0; and by 0 otherwise.

2. The edges marking the transition from one class to another: For
each state (g, k, ι, ξ, µ, λ) ∈ S with k < K and ι = 0, there is an

12

edge connecting the state with (g, k + 1, ι′, 0, µ′, λ), where ι′ and µ′

are defined as follows. If g is the core group of k, for each p ∈ Bg
the value ι′(p) is the number of core jobs of class k and size p, i.e.,
ι′(p) = |{j ∈ J̄k | pj = p}|, and otherwise ι′ = 0. Furthermore, we
have µ′(v, `, 0) = µ(v, `, 0) + µ(v, `, 1) and µ′(v, `, 1) = 0 for each
v ∈ Vg and ` ∈ Lg−1 ∪ Lg.

3. The edges corresponding to scheduling decisions of the single jobs:
For each (g, k, ι, ξ, µ, λ) with ι 6= 0 there are up to 2|Vg||Lg−1 ∪
Lg| + 1 edges corresponding to the choices of scheduling some job
on a machine with a certain speed and load, that already received
a setup or not, or treating the job as fractional. Let p ∈ Bg be
the biggest size with ι(p) > 0. We define ι′ as the function we
get by decrementing ι(p). For each speed v ∈ Vg and each load
` ∈ Lg−1 ∪ Lg, we add up to two edges: If µ(v, `, 0) > 0, k > 0 and
`+p+sk ≤ vT we add an edge to the state (g, k, ι′, ξ, µ′, λ), where µ′

is the function we get by decrementing µ(v, `, 0) and incrementing
µ(v, ` + p + sk, 1). If µ(v, `, 0) > 0 and ` + p ≤ vT , we add an
edge to the state (g, k, ι′, ξ, µ′′, λ), where µ′′ is the function we get
by decrementing µ(v, `, 1) and incrementing µ(v, ` + p, 1). Lastly,
we add one edge to the state (g, k, ι′, ξ′, µ, λ′) with λ′2 = λ2 and
λ′3 = λ3. If k > 0, k has no fringe job, and ξ = 0 we have ξ′ = 1 and
λ′1 = λ1 + p+ sk. Otherwise, ξ′ = ξ and λ′1 = λ1 + p.

The start state of the dynamic program has the form (0, 0, ι, 0, µ, λ), with
ι, µ, and λ defined as follows. For each p ∈ B0 the value ι(p) is the number
of fringe jobs with native group 0 and size p; and for each speed v ∈ V0,
the value µ(v, 0, 0) is the number of machines with speed 0. Otherwise,
we have µ(v, `, ζ) = 0. For each g ∈ Z, let K′g ⊆ [K] be the set of
classes with core group g that do not have a fringe job. We have λ1 = 0,
λ2 =

∑
j∈J̃−1

pj +
∑
k∈K′−1

(sk+
∑
p∈J̄k

pj) and λ3 =
∑
g<−1

(∑
j∈J̃g pj +∑

k∈K′g
(sk +

∑
p∈J̄k

pj)
)
.

The end states have the form (G,K, 0, 0, µ′, λ′), where µ′ and λ′ have
the following form. For each v ∈ VG, we have µ′(v, `, ζ) = 0, if ` > vT ,
and

∑
`∈LG−1∪LG

∑
ζ∈{0,1} µ

′(v, `, ζ) = |{i ∈MG | vi = v}|. Furthermore,

λ′1 = λ′2 = 0, and λ′3 ≤
∑
v∈VG

∑
`∈LG−1

(Tv − `) · (µ(v, `, 0) + µ(v, `, 1)).

It can be easily verified that a relaxed schedule corresponds to a path
from the start state to an end state, and that such a schedule can be
recovered from such a path. Hence, the dynamic program boils down to
a reachability problem in a simple directed graph with (nmK)poly(1/ε)

vertices.

3 Unrelated Machines

In this section, we study the problem of scheduling unrelated parallel
machines with setup times. Recall that for the classical model without
setup times it is known [23] that it cannot be approximated to within
a factor of less than 3

2
(unless P=NP) and that 2-approximations are

possible. This is in stark contrast to our setting where, as we will see,

13

the existence of classes and setups makes the problem significantly harder
so that not even any constant approximation factor is achievable. We
approach the problem by formulating it as an integer linear program of
which we round its optimal fractional solution by randomized rounding.
We will see in Section 3.1 that this gives a tight approximation factor of
Θ(logn+ logm). In Section 3.2, we turn to inapproximability results and
show that under certain complexity assumptions, this factor is essentially
optimal. We conclude with two special cases that admit constant factor
approximations in Section 3.3.

Consider the following integer linear program ILP-UM, describing the
problem at hand:∑

j∈J

xijpij +
∑
k∈K

yiksik ≤ T ∀i ∈M (1)

∑
i∈M

xij = 1 ∀j ∈ J (2)

xij , yik ∈ {0, 1} ∀i ∈M, j ∈ J , k ∈ K (3)

yikj ≥ xij ∀i ∈M, j ∈ J (4)

xij = 0 ∀i ∈M, j ∈ J : pij > T (5)

For each job j, there is an assignment variable xij stating whether or not
job j is assigned to machine i. Additionally, for each class k there is one
variable yik indicating whether or not machine i has a setup for class k.
Then, Equation (1) ensures that the load, given by processed jobs and
setups, on each machine does not violate the desired target makespan T .
Equations (2) and (3) make sure that each job is completely assigned to
one machine. By Equation (4) it is guaranteed that if a job j of class kj
is assigned to machine i, then a setup for class kj is present on machine
i. Equation (5) guarantees that no job j that is too large on machine i to
be finished within the desired makespan bound is assigned to machine i.

3.1 Approximation Algorithm

Starting with an optimal solution (x∗, y∗) to the linear relaxation of
ILP-UM where we replace Equation (3) by 0 ≤ xij , yik ≤ 1, we can use
the following approach to compute an integral solution approximating an
optimal schedule:

1. For each i ∈M and k ∈ K, set yik = 1 with probability y∗ik (perform
a setup for k on i) and yik = 0 with probability 1− y∗ik.
If yik = 1, then, for each job j with kj = k, set xij = 1 (assign j to i)
with probability x∗ij/y

∗
ik and xij = 0 with probability 1− (x∗ij/y

∗
ik).

2. Repeat Step 1. c logn times.

3. If there are unassigned jobs left, then schedule each job j ∈ J on
machine argmini∈M{pij}.

4. If a job is assigned to multiple machines, remove it from all but one.
If a class’s setup occurs multiple times on a machine, remove all but
one.

14

The following analysis already appeared in a fairly similar way in [21].
However, for the sake of completeness and due to small adaptations, we
restate it in the following.

Lemma 3.1. Step 5. is executed with probability at most 1/nc.

Proof. Consider a fixed job j ∈ J and a fixed iteration h, 1 ≤ h ≤ c logn.
Let Āhij be the event that job j is not assigned to machine i after iteration
h. Let Āhj be the event that job j is not assigned to any machine after
iteration h. We have

Pr[Āhij |Āh−1
j] = (1− y∗ikj) + y∗ikj

(
1−

x∗ij
y∗ikj

)
= 1− x∗ij . (6)

Taking into account all m machines, we then have

Pr[Āhj |Āh−1
j]

(6)

≤
∏
i∈M

(1− x∗ij)
(2)

≤
(

1− 1

m

)m
≤ 1

e
. (7)

Hence, for the probability that j is not assigned to any machine after h
iterations we have

Pr[Āhj] = Pr[Āhj |Āh−1
j] · Pr[Āh−1

j]

= . . .

= Pr[Āhj |Āh−1
j] · Pr[Āh−1

j |Āh−2
j] · . . . · Pr[Ā1

j]
(7)

≤
(

1

e

)h
,

and hence for h = c logn, we obtain the lemma.

In the next lemma we show that the expected load assigned to a ma-
chine per iteration is bounded by O(T). This together with the previous
lemma, then proves the final result. Compared to [21], there is a slight
difference in our proof: If qij describes the probability that job j is as-
signed to machine i in an iteration of the randomized rounding algorithm,
then in [21] the authors can (and do) use the fact that

∑
qijpij ≤ T .

This, however, is not true in our case due to different constraints in the
underlying linear program.

Lemma 3.2. Let Li describe the load on machine i after the c logn iter-
ations. Then, Pr[Li = O(T (logn+ logm)) ∀i ∈M] = 1− 1/nc.

Proof. Let us first consider the load on the machines due to processed
jobs. Let Zhij be a random variable with

Zhij =

{
pij/T, if j assigned to i in iteration h

0, otherwise.

Let ZJi =
∑c logn
h=1

∑
j∈J Z

h
ij . Then, we have

E[ZJi] =
1

T

c logn∑
h=1

∑
k∈K

∑
j∈J :kj=k

0 · (1−y∗ik)+y∗ik

 ∑
j:kj=k

x∗ij
y∗ik

pij

 (1)

≤ c logn.

15

Using the essentially same reasoning to analyze the load on the machines
due to setups and denoting ZSi the analog of ZJi , we also have E[ZSi] ≤
c logn. Because all Zi are sums of independent random variables with
values in [0, 1], we can now apply standard Chernoff-bounds and obtain

for δ := 3(log(n+m)
c logn

+ 1) that Pr[∃i : Li ≥ (1 + δ)Tc logn] ≤ Pr[∃i, x ∈
{S,J } : Zxi ≥ (1 + δ)c logn] ≤ (m+ n) exp(− 1

3
δc logn) ≤ (1/n)c.

Taking the last two lemmas together with the fact that the makespan
is always upper bounded by O(T · n), we obtain the following theorem.

Theorem 3.3. With high probability and on expectation the randomized
rounding approach provides a solution with makespan O(T (logn+logm)).

By choosing the parameter c sufficiently large when applying the al-
gorithm within the dual approximation framework, we obtain an ap-
proximation factor of O(logn + logm). Also, it is not too hard to see
that this bound is actually tight as one can prove an integrality gap of
Ω(logn + logm) for the linear relaxation of ILP-UM. This can be shown
by using a construction following the ideas for proving the integrality gap
for set cover (e.g. [27, p. 111-112]).

Corollary 3.4. There is a polynomial time randomized algorithm with
approximation factor O(logn+ logm), which matches the integrality gap
of the linear relaxation of ILP-UM.

3.2 Hardness of Approximation

We now show that the approximation factor of Θ(logn+logm) is (asymp-
totically) optimal unless all problems in NP have polynomial-time Monte
Carlo algorithms. Recall that the complexity class RP (Randomized
Polynomial-Time) is defined as the class of problems L for which there is a
randomized algorithm running in polynomial time and with the following
properties (e.g. see [13]):

• If the input x /∈ L, the algorithm outputs “No” with probability 1.

• If the input x ∈ L, the algorithm outputs “Yes” with probability at
least 1/2.

Therefore, if such an algorithm outputs “Yes”, it provides the correct
answer; if it, however, outputs “No”, it might err.

In what follows, we show the following result on the hardness of ap-
proximating our problem on unrelated machines.

Theorem 3.5. Scheduling with setup times on unrelated machines cannot
be approximated within a factor of o(logn + logm) in polynomial time
unless NP ⊂ RP. This even holds for the restricted assignment case.

To do so, we reduce from the following formulation of the well-known
SetCover problem: In SetCoverGap there is given a universe U of
N := |U| elements and a collection of m subsets of U . The goal is to
decide whether there is a solution covering U that consists of t subsets or
if (at least) αt subsets are needed. We call an instance with the former
property a Yes-instance and with the latter a No-instance. A result from
[4] shows the following lemma.

16

Lemma 3.6 (Theorem 7 in [4]). There exists a t such that it is NP-hard
to decide SetCoverGap for α = Θ(logN) and logm = O(logN).

The idea of our reduction is to exploit the apparent connection between
SetCover and our unrelated machines variant: Each set is mapped to a
machine and each element is mapped to a job. A machine can process a
job if and only if the respective set contains the respective element. Ad-
ditionally assuming that all jobs belong to the same class, by this we see
that a Yes-instance requires much less setups than a No-instance. Un-
fortunately, this not yet leads to a respectively high and small makespan.
However, by creating a larger number of classes and randomizing the
mapping between sets and machines, we can achieve a (more or less) even
distribution of setups that need to be done and hence, depending on the
type of the SetCoverGap instance, a high or small makespan. We for-
malize this idea in the proof of Theorem 3.5.

Proof. Given an instance I for SetCoverGap, we construct an instance
I ′ for our problem with the following properties:

1. The reduction can be done in polynomial time and I ′ consists of
n = Θ(Nc) jobs, for some constant c.

2. If I is a No-instance, then I ′ has a makespan of at least Ω(K
m
· αt).

3. If I is a Yes-instance, then I ′ has a makespan of at most O(K
m
· t)

with probability at least 1/2.

Consequently, there is a gap of Ω(α) and by Property 1. and Lemma 3.6,
α = Ω(logn) and α = Ω(logm) and the existence of a polynomial-time al-
gorithm with approximation factor o(logn+logm) for our problem makes
the problem SetCoverGap solvable in expected polynomial time, yield-
ing the theorem.

We now show how to construct I ′. In instance I ′ there are m unrelated
machines and K = m

t
logm classes. All setup times are set to be 1, that

is, sik = 1 for all i ∈ M, k ∈ K. The jobs {jk1 , jk2 , . . . , jkN} of class
k = 1, 2, . . . ,K are defined by the N elements in I in the following way:
We choose a permutation πk : M → M at random (and independent
from the choices of πk′ for k′ 6= k). Then, for each element e in the
SetCoverGap instance I, we create a job jke in instance I ′ that has a
size pijke = 0 if e ∈ Sπk(i) and pijke =∞ otherwise.

Next, we take a look at the makespan of I ′ if I is a No-instance.
In this case, at least αt sets are needed to cover all elements. However,
this implies that for each class at least that many machines are needed to
process all jobs (or otherwise the makespan is∞). Therefore, by summing
over all K classes, at least K · αt setups need to be performed. By an
averaging argument this leads to the existence of a machine with makespan
of at least K

m
· αt.

We now turn our attention to the case where I is a Yes-instance and
show that with probability at least 1/2 there is a solution with makespan
O(K

m
· t). To this end, we setup a machine i for class k (and process all

jobs j of class k on machine i that fulfill pij = 0) if Sπk(i) is part of the
solution to I. Therefore, each class is setup on t of the m machines. For
a fixed machine i and a fixed class k, the probability that i is setup for

17

k is consequently t/m since πk(i) is chosen uniformly at random. Also,
the probability that i is setup for all classes of a fixed subset of r classes
is (t/m)r as the πk are chosen independently. Therefore, the probability
that a fixed machine i is setup for at least r classes is upper bounded by(

K

r

)(
t

m

)r
≤
(
Ket

rm

)r
.

Hence, for the probability that there is some machine which is setup for
at least r := 2Ket/m + 2 logm = O(K

m
· t) classes is (for m ≥ 2) upper

bounded by

m ·
(
Ket

rm

)r
≤ m ·

(
1

2

)2 logm

≤ 1

m
≤ 1

2
.

Therefore, I ′ has a makespan of at most O(K
m
· t) with probability at least

1/2.
Also note that log(n) = log(K · N) ≤ log(m logm · N) = O(logN),

where the last equality holds due to the polynomial relation between m
and N according to Lemma 3.6. This concludes the proof.

3.3 Special Cases with Constant Approximations

In this section, we identify and approximate two special cases of unre-
lated machines, for which constant factor approximations are possible.
Both cases require classes to have certain structural properties that make
the reduction and hence, the inapproximability from Section 3.2 invalid:
Either we consider the restricted assignment case with the additional as-
sumption that the set of eligible machines is the same for all jobs of a
class, or we assume that, on each machine, all jobs of a given class have
the same processing times.

3.3.1 Restricted Assignment with Class-uniform Restric-
tions

Although even the restricted assignment variant of our scheduling problem
cannot be approximated with a factor of o(logn) as shown in Theorem 3.5,
in this section we will see that the following special case admits a much
better approximation factor. Let the restricted assignment problem with
class-uniform restrictions be defined as the restricted assignment problem
with the additional constraint that for all j, j′ ∈ J with kj = kj′ it holds
Mj = Mj′ . That is, all jobs of a class k have the same set of eligible
machines and by abuse of notation call this set Mk.

Note that we can add the following valid constraints given by Equa-
tions (8) to (10) to ILP-UM:∑

j:kj=k

xijpij + yiksik ≤ yikT ∀i ∈M,∀k ∈ K (8)

xij = 0 ∀i ∈M, j ∈ J : pij + sikj > T (9)

yik = 0 ∀i ∈M, k ∈ K : sik > T (10)

18

Equation (8) holds because a job of a class k can only by processed on a
machine i if this machine is setup for class k. Additionally, Equations (9)
and (10) avoid the assignment of jobs to machines where the setup or
the job’s processing time is too large. Let ILP-RA denote the program
given by Equations (1) to (4) and (8) to (10). Unfortunately, we do not
know how to round a solution to the linear relaxation of ILP-RA to a
good approximation for our problem. However, instead we formulate a
different, relaxed linear program LP-RelaxedRA, which we will utilize for
our approximation algorithm:∑

k∈K

x̄ik(p̄ik + αiksik) ≤ T ∀i ∈M (11)

∑
i∈M

x̄ik = 1 ∀k ∈ K (12)

x̄ik ≥ 0 ∀i ∈M, k ∈ K (13)

x̄ik = 0 ∀i ∈M, k ∈ K : sik > T (14)

This linear program takes a different view in the sense that it does not
operate on the level of jobs but instead it has a variable x̄ik for each
class-machine-pair determining the fraction of (the workload of) class k
processed on machine i. Therefore, let p̄ik :=

∑
j:kj=k

pij be the overall

workload of class k if its jobs can be processed on machine i, and p̄ik =∞
otherwise. Also, let αik := max

{
1, p̄ik

T−sik

}
. If x is a feasible solution

to ILP-RA, then x̄ with x̄ik :=
∑
j:kj=k

xij
pij
p̄ik

is a feasible solution to

LP-RelaxedRA as the next lemma proves.

Lemma 3.7. Let x be a feasible solution to ILP-RA. Then x̄ is a feasible
solution to LP-RelaxedRA.

Proof. First, note that Equation (14) directly follows from Equations (9)
and (10). Equation (12) is satisfied as we have∑

i∈M

x̄ik =
∑
i∈M

∑
j:kj=k

xij
pij
p̄ik

=
∑
i∈Mk

1

p̄ik

∑
j:kj=k

xijpij

=
1

p̄k

∑
j:kj=k

pj
∑
i∈Mk

xij = 1,

where the first equality follows by definition of x̄ik, the second because
x̄ik = 0 if i /∈Mk and the last one because

∑
i∈Mk

xij = 1 by Equation (2).
To see why Equation (11) holds, first observe that for x we have

∑
j∈J

xijpij +
∑
k∈K

max

{
max
j:kj=k

xij ,

∑
j:kj=k

xijpij

T − sik

}
sik ≤ T ∀i ∈M (15)

due to Equations (1), (4) and (8). Then we have∑
k∈K

x̄ik(p̄ik + αiksik) =
∑
k∈K

∑
j:kj=k

xij
pij
p̄ik

∑
j:kj=k

pij +
∑
k∈K

∑
j:kj=k

xij
pij
p̄ik

αiksik

=
∑
j∈J

xijpij +
∑
k∈K

αik
p̄ik

∑
j:kj=k

xijpijsik ≤ T,

19

where the first and second equality follow from definition of x̄ik and p̄ik
respectively, and the last inequality holds due to Equation (15).

LP-RelaxedRA is identical to the LP given in [5]. There it is shown
that an extreme solution to the LP can be rounded to a solution with
makespan at most 2T that is feasible for the problem where jobs can
be split arbitrarily but each part requires a (job-dependent) setup. In-
terestingly, even though in our model setups are associated with classes
and even more crucial, we do not allow jobs to be split, the (essentially)
same approach they use, provides an approximation factor of 2 for our
problem, too. The high-level idea how to obtain a 2-approximation based
on an optimal (extreme) solution for LP-RelaxedRA is as follows: It is
known that due to the structure of LP-RelaxedRA, the graph represent-
ing the solution is a pseudo-forest. We can exploit this fact to modify
the solution such that it has a makespan of at most 2T , but in which
(additionally) each machine processes at most one class partly (but not
completely) and in which, for each class k, the property holds that from
the set of machines processing parts of k at most one machine has a load
larger than T . This allows us to greedily assign the actual jobs according
to the (modified) fractional solution to the machines and thereby increas-
ing the load per machine (with load at most T) by at most one setup plus
one job of the same class and hence, by at most T . The details are given
next and for the sake of completeness, we restate the rounding procedure
together with its properties from [5]: Given an extreme solution x̄∗ to
LP-RelaxedRA, all variables x̄ik with x̄∗ik ∈ {0, 1} will remain unchanged,
are excluded from our further considerations and class k is processed on
machine i if x̄∗ik = 1. Let G = (V,E) be the bipartite graph on node set
V = K\{k : ∃i with x̄∗ik = 1}∪M and edge set E = {{i, k} : 0 < x̄∗ik < 1}.
G forms a graph in which each connected component is a pseudotree. For
the sake of rounding, we now construct a subset Ẽ ⊆ E of edges as follows:
For each connected component, let C be the unique cycle (or an arbitrary
path if no cycle exists) and let J(C) be the nodes in C corresponding to
classes. Fix an arbitrary direction along C and starting at an arbitrary
node v ∈ J(C), remove each second edge along C starting with the edge
leaving v. We then end up with a graph only consisting of trees. In the
last step, for each class k ∈ J(C) belonging to C we build a directed tree
rooted in k by directing edges away from the root. Then we remove all
edges leaving machine nodes. All edges that remain after these two steps
belong to Ẽ.

It is not too hard to see, and it is formally proven in [5], that we have
the following lemma.

Lemma 3.8 ([5]). By the construction described above, we have the fol-
lowing two properties for a schedule induced by Ẽ:

1. Each machine i processes at most one class k with {i, k} ∈ Ẽ, and

2. for each class k there is at most one machine i such that {i, k} /∈ Ẽ
(and x̄∗ik > 0).

For each class k we choose an arbitrary machine i+k such that {i+k , k} ∈
Ẽ. If there is a machine i−k such that x̄∗

i−
k
k
> 0 but {i−k , k} /∈ Ẽ, we move

all workload of k processed on i−k from i−k to i+k and add a (full) setup

20

for k to machine i+k . By this and Lemma 3.8 we then have the property
that each machine processes at most one class fractionally. Let M(k) be
the set of machines that process (parts of) class k. We next prove the
following lemma.

Lemma 3.9. For any k ∈ K, all machines in M(k) \ {i+k } have a load of
at most T . The load of i+k is upper bounded by 2T .

Proof. Consider a class k. Note that i+k 6= i+k′ for all k′ 6= k by Lemma 3.8.
Hence, the first statement of the lemma holds. The second statement
follows by an observation already made in [5]: By the constraints of
LP-RelaxedRA, α

i−
k
k
x̄∗
i−
k
k
≤ 1 and by definition of α

i−
k
k
, we have T ≥

p̄
i−
k
k
/α

i−
k
k

+ s
i−
k
k
. Taken together, x̄∗

i−
k
k
p̄
i−
k
k

+ s
i−
k
k
≤ T and because

we consider restricted assignment with class-uniform restrictions, we also
have x̄∗

i−
k
k
p̄
i+
k
k

+ s
i+
k
k
≤ T , proving the lemma.

Finally, we need to explain how to obtain the final feasible schedule
with makespan at most 2T . Obtaining a feasible schedule from the so-
lution so far, requires adding a (full) setup for class k on all machines
i ∈ M(k) \ {i+k } as well as showing how to actually assign the jobs of k
to the machines i ∈ M(k). We say that a time slot of size x is reserved
for class k on a machine i if x̄∗ikp̄ik = x. For any fixed class k, sort the
machines in M(k) so that machine i+k comes last in this ordering. Start-
ing with the first machine in the ordering, take the jobs of k and greedily
fill them into the reserved time slots by assigning the current job to the
current machine if the reserved time slot is not yet full. As soon as a
machine is full, proceed with the next machine. It is not hard to see that
by this procedure the load of each machine i ∈ M(k) \ {i+k } is increased
by an additive of at most sik + maxj:kj=k pij ≤ T and the last machine

i+k keeps its load of at most 2T . Therefore, we have proven the desired
result.

Theorem 3.10. The restricted assignment problem with class-uniform
restrictions admits a 2-approximation.

3.3.2 Unrelated Machines with Class-uniform Processing
Times

A second special case that allows constant factor approximations is the
one of unrelated machines in which all jobs of a given class have the same
processing times on any machine. That is, for all i ∈ M and j, j′ ∈ J it
holds kj = kj′ implies pij = pij′ .

We solve this problem similarly to the restricted assignment prob-
lem with class-uniform restrictions in the previous section. To do so, we
modify the approach as follows: First of all, we replace Equation (14) in
LP-RelaxedRA by

x̄ik = 0 ∀i ∈M, k ∈ K : sik + pij > T for some j with kj = k . (16)

(Note that this is a valid constraint since all jobs of a class k have the same
size on machine i and if a job together with its class’ setup does not fit to
a machine, no workload of class k will be assigned to i at all.) Then we

21

construct the set Ẽ with the properties of Lemma 3.8 as before. Now, for
each class k ∈ K let i−k be the machine such that x̄∗

i−
k
k
> 0 but {i−k , k} /∈ Ẽ

(if it exists). Let i+k,ι, ι = 1, . . . , ιk be the machines such that x̄∗
i+
k,ι
k
> 0

and {i+k,ι, k} ∈ Ẽ. In case x̄∗
i−
k
k
> 1

2
, process the entire class k on machine

i−k . Otherwise, distribute the amount of k processed on i−k proportionally
to the machines i+k,ι. That is, set x̄∗

i−
k
k

= 0 and x̄∗
i+
k,ι
k

= 2x̄∗
i+
k,ι
k
. After

these steps, the load on each machine is at most 2T . Finally, it remains
to add at most one setup to each machine and, as before, to greedily fill
the reserved slots by the actual jobs. This increases the load on each
machine by an additive of at most T due to Equation (16) and hence,
we have constructed a 3-approximation. Together with a straightforward
adaptation of the reduction given in [5], we have the following result.

Theorem 3.11. The unrelated machines case with class-uniform process-
ing times admits a 3-approximation. It cannot be approximated to within
a factor less than 2 unless P = NP .

References

[1] Ali Allahverdi. The third comprehensive survey on scheduling prob-
lems with setup times/costs. European Journal of Operational Re-
search, 246(2):345–378, 2015.

[2] Ali Allahverdi, Jatinder ND Gupta, and Tariq Aldowaisan. A re-
view of scheduling research involving setup considerations. Omega,
27(2):219–239, 1999.

[3] Ali Allahverdi, C. T. Ng, T. C. Edwin Cheng, and Mikhail Y. Ko-
valyov. A survey of scheduling problems with setup times or costs.
European Journal of Operational Research, 187(3):985–1032, 2008.

[4] Noga Alon, Dana Moshkovitz, and Shmuel Safra. Algorithmic con-
struction of sets for k -restrictions. ACM Transactions on Algorithms,
2(2):153–177, 2006.

[5] José R. Correa, Alberto Marchetti-Spaccamela, Jannik Matuschke,
Leen Stougie, Ola Svensson, Vı́ctor Verdugo, and José Verschae.
Strong LP formulations for scheduling splittable jobs on unrelated
machines. Mathematical Programming, 154(1-2):305–328, 2015.

[6] José R. Correa, Victor Verdugo, and José Verschae. Splitting versus
setup trade-offs for scheduling to minimize weighted completion time.
Operations Research Letters, 44(4):469–473, 2016.

[7] Srikrishnan Divakaran and Michael E. Saks. Approximation algo-
rithms for problems in scheduling with set-ups. Discrete Applied
Mathematics, 156(5):719–729, 2008.

[8] Srikrishnan Divakaran and Michael E. Saks. An online algorithm for
a problem in scheduling with set-ups and release times. Algorithmica,
60(2):301–315, 2011.

22

[9] Tomás Ebenlendr, Marek Krcál, and Jiŕı Sgall. Graph balancing: A
special case of scheduling unrelated parallel machines. Algorithmica,
68(1):62–80, 2014.

[10] Leah Epstein and Jiri Sgall. Approximation schemes for scheduling
on uniformly related and identical parallel machines. Algorithmica,
39(1):43–57, 2004.

[11] Martin Gairing, Burkhard Monien, and Andreas Woclaw. A faster
combinatorial approximation algorithm for scheduling unrelated par-
allel machines. Theoretical Computer Science, 380(1-2):87–99, 2007.

[12] Waldo Gálvez, José A. Soto, and José Verschae. Symmetry exploita-
tion for online machine covering with bounded migration. CoRR,
abs/1612.01829, 2016.

[13] Oded Goldreich. Computational complexity: a conceptual perspec-
tive. ACM Sigact News, 39(3):35–39, 2008.

[14] Dorit S. Hochbaum and David B. Shmoys. Using dual approximation
algorithms for scheduling problems theoretical and practical results.
Journal of the ACM, 34(1):144–162, 1987.

[15] Dorit S. Hochbaum and David B. Shmoys. A polynomial approxi-
mation scheme for scheduling on uniform processors: Using the dual
approximation approach. SIAM Journal on Computing, 17(3):539–
551, 1988.

[16] Klaus Jansen. An eptas for scheduling jobs on uniform processors:
Using an milp relaxation with a constant number of integral variables.
SIAM Journal on Discrete Mathematics, 24(2):457–485, 2010.

[17] Klaus Jansen, Kim-Manuel Klein, Marten Maack, and Malin Rau.
Empowering the configuration-ip - new PTAS results for scheduling
with setups times. CoRR, abs/1801.06460, 2018.

[18] Klaus Jansen and Felix Land. Non-preemptive scheduling with setup
times: A PTAS. In Proceedings of the 22nd International Conference
on Parallel and Distributed Computing (Euro-Par), volume 9833 of
Lecture Notes in Computer Science, pages 159–170. Springer, 2016.

[19] Klaus Jansen and Lars Rohwedder. On the configuration-lp of
the restricted assignment problem. In Proceedings of the 28th An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2670–2678, 2017.

[20] Klaus Jansen and Lars Rohwedder. A quasi-polynomial approxima-
tion for the restricted assignment problem. In Proceedings of the 19th
International Conference on Integer Programming and Combinatorial
Optimization (IPCO), pages 305–316, 2017.

[21] Samir Khuller, Jian Li, and Barna Saha. Energy Efficient Scheduling
via Partial Shutdown. In Proceedings of the 21st Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1360–1372, 2010.

[22] Annamária Kovács. New approximation bounds for lpt scheduling.
Algorithmica, 57(2):413–433, 2010.

23

[23] Jan Karel Lenstra, David B. Shmoys, and Éva Tardos. Approxima-
tion algorithms for scheduling unrelated parallel machines. Mathe-
matical Programming, 46:259–271, 1990.

[24] Alexander Mäcker, Manuel Malatyali, Friedhelm Meyer auf der
Heide, and Sören Riechers. Non-preemptive scheduling on machines
with setup times. In Proceedings of the 14th International Sympo-
sium on Algorithms and Data Structures (WADS), volume 9214 of
Lecture Notes in Computer Science, pages 542–553. Springer, 2015.

[25] Petra Schuurman and Gerhard J. Woeginger. Preemptive scheduling
with job-dependent setup times. In Proceedings of the 10th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 759–
767. ACM/SIAM, 1999.

[26] Ola Svensson. Santa claus schedules jobs on unrelated machines.
SIAM Journal on Computing, 41(5):1318–1341, 2012.

[27] Vijay V. Vazirani. Approximation algorithms. Springer, 2001.

24

	1 Introduction
	1.1 Model & Notation
	1.1.1 Further Notions

	1.2 Related Work
	1.3 Our Results

	2 Uniformly Related Machines
	2.1 PTAS

	3 Unrelated Machines
	3.1 Approximation Algorithm
	3.2 Hardness of Approximation
	3.3 Special Cases with Constant Approximations
	3.3.1 Restricted Assignment with Class-uniform Restrictions
	3.3.2 Unrelated Machines with Class-uniform Processing Times

