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Abstract—Pregel’s vertex-centric model allows us to implement
many interesting graph algorithms, where optimization plays an
important role in making it practically useful. Although many
optimizations have been developed for dealing with different
performance issues, it is hard to compose them together to
optimize complex algorithms, where we have to deal with multiple
performance issues at the same time. In this paper, we propose
a new approach to composing optimizations, by making use
of the channel interface, as a replacement of Pregel’s message
passing and aggregator mechanism, which can better structure
the communication in Pregel algorithms. We demonstrate that
it is convenient to optimize a Pregel program by simply using a
proper channel from the channel library or composing them to
deal with multiple performance issues. We intensively evaluate
the approach through many nontrivial examples. By adopting the
channel interface, our system achieves an all-around performance
gain for various graph algorithms. In particular, the composition
of different optimizations makes the S-V algorithm 2.20x faster
than the current best implementation.

Index Terms—Distributed Computing, Performance Evalua-
tion, Software Architecture

I. INTRODUCTION

Nowadays, with the increasing demand of analyzing large-
scale graph data in billion or even trillion scale (e.g., the
social network and world wide web), lots of research [17],
[27] has been devoted to distributed systems for efficiently
processing large-scale graphs. Google’s Pregel system [16]
is one of the most popular frameworks to handle such kind
of massive graphs. It is based on the BSP model [25] and
adopts the vertex-centric paradigm with explicit messages to
support scalable big graph processing. Pregel’s vertex-centric
model has demonstrated its usefulness in implementing many
interesting graph algorithms [16], [18], [21], [30], and imposed
influence over the design of Pregel-like systems, such as
Giraph [1], GPS [19], Mizan [11], Pregel+ [2].

While Pregel provides a friendly interface for processing
massive graphs, current research shows that it is important to
introduce optimizations for dealing with various performance
issues such as imbalanced workload (a.k.a. skewed degree
distribution) [2], [8], [29], redundancies in communication [3],
[19], [29] and low convergence speed [23], [24], [28]. How-
ever, there remains one challenge: although the usefulness of
these optimizations are well demonstrated in solving simple
algorithms such as PageRank and single-source shortest path
(SSSP)1, it is, however, hard to combine them together to

1PageRank and SSSP are basically a loop executing a simple
computation kernel.

implement complex algorithms, where we may have to deal
with multiple performance issues at the same time.

To see this challenge clearly, let us consider the S-V algo-
rithm [22], [30], a known algorithm for computing connected
components in undirected graph, which can be regarded as
a distributed union-find algorithm [7]. Essentially, it is an
iterative algorithm with two key operations — pointer jumping
and tree merging. For the pointer jumping operation, the
communication suffers from imbalanced workload [29], and in
the meantime in the tree merging operation, the neighborhood
communication (every vertex broadcasts a message to all of
its own neighbors) could be potentially very heavy. Although
there are techniques in separate systems [3], [19], [29] dealing
with each case, there is no system capable of optimizing away
both issues at the same time. The main reason is Pregel’s
monolithic message mechanism. When having multiple com-
munication patterns in a single Pregel program, the system
has no idea which message is for what purpose, thus it can do
nothing for optimization.

In this paper, we propose a new approach to composing
various optimizations together, by making use of the interface
called channel [32] as a replacement of Pregel’s message
passing mechanism. Informally, a channel is responsible for
sending or receiving messages of a certain pattern for some
purpose (such as reading all neighbors’ states, requesting
data from some other vertex and so on). And by slicing the
messages by their purpose and organizing them in channels,
we can characterize each channel by high-level communication
patterns, identify the redundancies or potential performance
issues, and then apply suitable optimizations to deal with the
problems.

The technical contributions of this work can be summarized
as follows.
• First, we provide Pregel with a channel-based vertex-centric

programming interface, which is intuitive in the sense that
it is just a natural extension of Pregel’s monolithic message
mechanism. To demonstrate the power of the channel inter-
face, we implement three optimizations as special channels
and show how they are easily composed to optimize com-
plex algorithms such as the above S-V algorithm.

• Second, we have fully implemented the system and the
experiment results convincingly show the usefulness of
our approach. The channel interface itself contributes to a
message reduction up to 82% especially for complex algo-
rithms, and the three optimized channels further improve the
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performance of the algorithms they are applicable (3.16x
for PageRank, 3.29x for Pointer-Jumping and 5.02x for
weakly connected components). Specially, the composition
of different optimizations makes the S-V algorithm 2.20x
faster than the best implementation available now.
The rest of the paper is organized as follows. Section II

briefly reviews the basic concepts of Pregel, Section III
introduces the programming interface of our channel-based
system, as well as non-trivial examples showing how opti-
mizations are composed in the same algorithm. Section IV
presents the channel mechanism and the implementation of our
optimizations as channels. Section V presents the experiment
results, Section VI discusses the related work, and Section VII
concludes the paper.

II. BACKGROUND

In this section, we give a brief introduction to Pregel and
illustrate the limitations of its message passing interface.

A. Pregel

A Pregel computation consists of a series of supersteps sep-
arated by global synchronization points. In each superstep, the
vertices compute in parallel executing the same user-defined
function (usually the compute() method) that expresses the
logic of a given algorithm. A vertex can read the messages
sent to it in the previous superstep, mutate its state, and
send messages to its neighbors or any known vertex in the
graph. The termination of the algorithm is based on every
vertex voting to halt. Vertices can be reactivated externally by
receiving messages.

Pregel provides the message passing interface for inter-
vertex communication and aggregator for global communica-
tion.

Message passing and the combiner. In Pregel, vertices
communicate directly with each other by sending messages,
where each message consists of a message value and a
destination. The combiner optimization [16] is applicable if
the receiver only needs the aggregated result (like the sum,
or the minimum) of all message values, in which case the
system is provided an associative binary function to combine
messages for the same destination whenever possible.

Aggregator. Aggregator is a useful interface for global
communication, where each active vertex provides a value,
and the system aggregates them to a final result using a user-
specified operation and makes it available to all vertices in the
next superstep.

B. Problems in Pregel’s Message Interface

Pregel is designed to support iterative computations for
graphs, and it is indeed suitable for algorithms like the
PageRank or SSSP. However, it is noteworthy that vertex-
centric graph algorithms are in general complex. Even for
some fundamental problems like connected component (CC),
strongly connected component (SCC) and minimum spanning
forest (MSF), their efficient vertex-centric solutions require

multiple computation phases, each having different commu-
nication patterns [21], [30]. For such complex algorithms, all
the computation phases have to share Pregel’s message passing
interface, which causes the following problems:
• When different message types are needed in different com-

putation phases, the Pregel’s message interface has to be
instantiated with a type that large enough to carry all those
message values.

• Usually, we can no longer optimize any of the communica-
tion patterns in these computation phases, since the system
cannot distinguish which message is to be optimized.
As mentioned before, these are the consequences of Pregel’s

monolithic message mechanism, which may not only increase
the message size, but also prevent the possible optimizations
to be applied. We have detailed discussions using S-V in
Section III-C and evaluation results showing the message
overhead (up to 5x) in Section V-A. It motivates us to design
a better communication interface for Pregel to handle a wide
range of complex vertex-centric graph algorithms.

III. PROGRAMMING WITH CHANNELS

The channel mechanism is designed to help users better or-
ganize the communications in vertex-centric graph algorithms.
Concretely speaking, the channels are message containers
equipped with a set of methods for sending/receiving messages
or supporting a specific communication pattern (see Table I
and Table II for the standard and optimized channels; the
details are in Section IV-C). In this section, we first introduce
the programming interface using the PageRank example, then
we show how different optimizations can be easily composed
via channels in a more complex algorithm called the S-V [22].

A. A Standard PageRank Implementation Using Channels

Writing a vertex-centric algorithm in our system using
the standard channels is rather straightforward for a Pregel
programmer. We present a PageRank Implementation in Fig. 1,
which is basically obtained from a Pregel program by replac-
ing the sending/reading of messages by a user-defined message
channel’s send/receive methods.

In the first 30 supersteps, each vertex sends along out-
going edges (if exists) its tentative PageRank divided by
the number of outgoing edges (lines 21–25), over a user-
defined message channel msg. This channel is an instance of
CombinedMessage, so a combiner is provided to the channel’s
constructor (line 9). In the next superstep, a vertex gets the sum
of the values arriving on this channel (lines 18) and calculate a
new PageRank. To avoid PageRank lost in dead ends (vertices
without outgoing edges), we need a sink node to collect the
PageRank from those dead ends and redistribute it to all nodes,
which is implemented by an aggregator agg. Users explicitly
add the PageRank to the aggregator (line 27) and reads the
aggregated result in the next superstep (line 16).

B. Channels and Optimizations

In our channel-based system, we offer a set of optimizations
as special channels (in Table II), which can be regarded



TABLE I: The APIs for standard channels.

Message-Passing Channels Aggregator Channel
DirectMessage(Worker<VertexT> *w); CombinedMessage(Worker<VertexT> *w, Aggregator(Worker<VertexT> *w,

Combiner<ValT> c); Combiner<ValT> c);
void send_message(KeyT dst, ValT m); void send_message(KeyT dst, ValT m); void add(ValT v);
MsgIterator<KeyT, ValT> &get_iterator(); const ValT &get_message(); const ValT &result();

TABLE II: The APIs for optimized channels.

Scatter-Combine Request-Respond Propagation (Simplified)
ScatterCombine(Worker<VertexT> *w, RequestRespond(Worker<VertexT> *w, Propagation(Worker<VertexT> *w,
Combiner<ValT> c); function<RespT(VertexT)> f); Combiner<ValT> c);

void add_edge(KeyT dst); void add_edge(KeyT dst);
void set_message(ValT m); void add_request(KeyT dst); void set_value(ValT m);
const ValT &get_message(); const RespT &get_respond(); const ValT &get_value();

1 using VertexT = Vertex<int, PRValue >;
2 auto c = make_combiner(c_sum, 0.0); // a combiner
3 class PageRankWorker : public Worker<VertexT> {
4 private:
5 // two channels are defined here
6 CombinedMessage <VertexT, double> msg;
7 Aggregator <VertexT, double> agg;
8 public:
9 PageRankWorker():msg(this, c), agg(this, c) {}

10
11 void compute(VertexT &v) override {
12 if (step_num() == 1) {
13 value().PageRank = 1.0 / get_vnum();
14 } else {
15 // s: the pagerank of the "sink node"
16 double s = agg.result() / get_vnum();
17 value().PageRank = 0.15 / get_vnum()
18 + 0.85 * (msg.get_message() + s);
19 }
20 if (step_num() < 31) {
21 int numEdges = value().Edges.size();
22 if (numEdges > 0) {
23 double msg = value().PageRank / numEdges;
24 for (int e : value().Edges)
25 msg.send_message(e, msg);
26 } else
27 agg.add(value().PageRank);
28 } else
29 vote_to_halt();
30 }
31 };

Fig. 1: PageRank implementation using channels.

as more efficient implementations (compared to the standard
message passing channels) of several communication patterns.

Consider the PageRank example (Fig. 1), by simply chang-
ing one line in the channel definition, we can enable the
scatter-combine optimization that handles the “static messag-
ing pattern”:

5 // change to a scatter-combine channel
6 ScatterCombine <VertexT, double> msg;

Then, in the compute() function, the programmer of course
needs to initialize the scatter-combine channel (by invoking
add edge()) and switches to its dedicated interface, but
the total changes are just five lines of code. Our experi-
ments (subsubsection V-B1) show that, by switching to the
scatter-combine channel, the PageRank immediately gets 2x–
5x faster, and all the programmer need to understand is the
high-level abstraction of each channel.

C. Composition of Channels

In this part, we use a more complicated example called the
Shiloach-Vishkin (S-V) algorithm [22] to show that, users can
easily combine different optimizations (channels) to handle
multiple performance issues in the same program.

1) The S-V Algorithm: The S-V algorithm is in general
an adoption of the classic union-find algorithm [7] to the
distributed setting, which finds the connected components in
undirected graphs with n vertices in O(log n) supersteps. A
distributed tree structured (called the disjoint-set) is maintained
by each vertex holding a pointer to either some other vertex
in the same connected component or to itself if it is a root.
We henceforth use D[u] to represent this pointer for vertex u.
Following is the high-level description of the S-V algorithm
using a domain-specific language called Palgol [34], and it
compiles to Pregel code.

1 // initially suppose we have D[u] = u for every u
2 do
3 // enter vertex-centric mode
4 for u in V
5 // whether u’s parent is a root vertex
6 if (D[D[u]] == D[u])
7 // iterate over neighbors (D[e]: neighbor ’s pointer)
8 let t = minimum [ D[e] | e <- Nbr[u] ]
9 if (t < D[u])

10 // modify the D field of u’s parent D[u]
11 remote D[D[u]] <?= t
12 else
13 // the pointer jumping (path compression)
14 D[u] := D[D[u]]
15 end
16 until fix[D] // until D stabilizes for every u

Starting from n root nodes, the S-V algorithm iteratively
merges the trees together if crossing edges are detected. In
a vertex-centric way, every vertex u performs one of the
following operations depending on whether its parent D[u]
is a root vertex:

• Tree merging (lines 7–11). If D[u] is a root vertex, u sends
the smallest one of its neighbors’ pointer (to which we give
a name t) to the root D[u] and later the root points to the
minimum t it receives (to guarantee the correctness of the
algorithm).

• Pointer jumping (line 14). If D[u] is not a root vertex,
u modifies its pointer to its “grandfather” (D[u]’s current
pointer), which halves the distance to the current root.
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Fig. 2: The architecture of our channel-based system.

The algorithm terminates when all vertices’ pointers do not
change after an iteration. Readers interested in the correctness
of this algorithm can be found in the original paper [30] for
more details.

2) Choices of Channels: In the S-V algorithm, three major
performance issues are identified below by analyzing the
communication patterns in the algorithm.
• The load balance issue in testing whether D[u] is a root

vertex or not for every u. The standard implementation is
to let each u send a request to its current parent D[u], then
the reply message is the parent’s pointer. A few vertices
with very large degree may block the reply phase.

• The heavy neighborhood communication in calculating the
minimum parent ID of the neighboring vertices, where all
vertices need to send a message to each neighbor, regardless
of the vertices’ local state.

• The congestion issue in the modification of parent’s pointer,
due to the existence of high-degree vertices.
Fortunately, our system has already provided all the solu-

tions to these issues, while users just need to choose the proper
channels for each kind of communication pattern. The load
balance issue can be avoided by the request-respond channel,
the heavy neighborhood communication is optimized by the
scatter-combine channel, and a combined-message channel
solves the congestion issue.

IV. CHANNEL IMPLEMENTATION

In this section, we present the design of our channel
mechanism, and demonstrate how three interesting channels
can be implemented for capturing three optimizations.

A. Overview

Fig. 2 shows the architecture of our channel-based system.
Worker is the basic computing unit in our system. When
launching a graph processing task, multiple instances of work-
ers are created, each holding a disjoint portion of the graph (a
subset of vertices along with their states and adjacent lists).
Workers share no memory but can communicate with each
other. Such big picture is common in all Pregel systems, but
the main difference is the hierarchy of the components inside
the worker.

1 class Channel {
2 public:
3 // initialization function
4 virtual void initialize() {};
5 // paired (de)serialization functions
6 virtual void serialize(Buffer &buff) = 0;
7 virtual void deserialize(Buffer &buff) = 0;
8 // return true for additional buffer exchange
9 virtual bool again() { return false; };

10 };

Fig. 3: The core functions of the base class Channel.

In our system, channels form an independent layer inside
the worker between the vertices and the raw buffers. Each
worker has M−1 buffers (where M is the number of workers
launched by the user) for storing binary message data for
each other worker, then the channels can read or write these
buffers in its own address space. Each channel independently
implements a communication pattern (like messages passing
or aggregator) and provides its own interfaces for the vertices,
and users choose the proper channels to implement a graph
algorithm according to the communication patterns it has.

B. Channels

The channel is designed for allowing experts to im-
plement new optimizations with ease. Fig. 3 shows the
base class Channel and its core functions: initialize(),
serialize() for writing data to worker’s raw buffer,
deserialize() for reading data from worker’s raw buffer
(after the buffer exchange) and again() for supporting
multiple rounds of communication. All the channels in our
paper are implemented as derived classes of Channel with
proper implementations of these four functions (in particular
serialize() and deserialize()).

To clearly see how the workers and channels cooperate
with each other, we present the computation logic of the
worker in Fig. 4. The worker’s computation is organized as
synchronized supersteps. In each superstep, the worker first
calls the compute() on every vertex, then it performs several
rounds of buffer exchanges. In each round, the system in-
vokes the active channels’ serialize() and deserialize()
methods to exchange data between the channels and the
buffers. All channels are set to active at the beginning, but
they can deactivate themselves by returning false in the
again() function. Channels’ initialize() is invoked at the
beginning of the computation. While not explicitly presented
in the code, the channels can activate vertices through the
Worker’s interface by providing the vertex’s ID or local index.
That is how our system simulates the voting-to-halt mechanism
of Pregel.

C. Optimized Channels

As the last part of this section, we give a brief introduction
of the three optimized channels currently provided in our
library, which target three important performance issues in
vertex-centric graph processing.



1 load_graph()
2 foreach channel c do c.initialize()
3 foreach vertex v do v.set_active(true)
4 while (active vertex exists) // a superstep
5 foreach active vertex v do this.compute(v)
6 foreach channel c do c.set_active(true)
7 while (active channel exists)
8 foreach active channel c do c.serialize()
9 buffer_exchange()

10 foreach active channel c do
11 c.deserialize()
12 c.set_active(c.again())
13 end_for
14 end_while
15 end_while
16 dump_graph()

Fig. 4: The computation logic of the worker for illustrating
the channel mechanism.
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1) Scatter-Combine Channel: The scatter-combine abstrac-
tion is a common high-level pattern appeared in many single-
phase algorithms such as PageRank, single-source shortest
path (SSSP) and connected component (CC). The communi-
cation in this model is captured by a scatter() function
on each vertex to send the same value to all neighbors, and
a combine() function to combine the messages for each
receiver. We focus on a special case where every vertex needs
to send a value to all of its neighbors2 regardless of its local
state. An iterative algorithm having such static messaging pat-
tern will waste time repeating the same message dispatching
procedure, while a proper pre-processing can greatly reduce
the computation time as well as the message size.

Fig. 5 demonstrates the computation logic of the scatter-
combine channel. Suppose the vertices on an worker is indexed
by 0..numv-1, then each local edge is a pair (idx, dst) where
idx refers to a local vertex and the dst can be an arbitrary
vertex in the graph. We sort the edges by dst in advance, then
by scanning the array of the sorted edge list once, we can
quickly calculate for each destination a combined message
value. This is much cheaper than the normal message routine
which typically requires hashing or sorting.

The APIs for the scatter-combine channel are presented
in the first column of Table II. Users need to initialize

2In some algorithms like SSSP or WCC, only active vertices need
to send messages, which is not the case we are targeting here.
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Fig. 6: The execution logic for the request-respond channel.

the channel by adding the outgoing edges of each vertex
through the add edge() function before the first message
sending occurs in the execution. Then, every vertex emits an
initial messages using the send message() interface and the
combined messages for each vertex can be obtained by the
get message() method in the next superstep.

2) Request-Respond Channel: This is a communication
pattern where two rounds of message passing (say the request
phase and respond phase) together form a conversation to let
every vertex request an attribute of another vertex. Typically,
such computation contains vertices with high degree which
causes imbalanced workload in the respond phase, and the
solution is to merge the requests of the same destination
on each worker. More details can be found in the original
paper [29].

Our implementation of this optimization is illustrated in
Fig. 6. A request is a pair (idx, dst) where idx refers to
a local requester and the dst can be an arbitrary vertex in
the graph. The worker sorts the requests by dst and sends
exactly one message containing the worker ID to each of the
unique destinations. When receiving the response values, the
worker performs another scan to the sorted requests, which is
sufficient to reply to all the requesters.

The middle column of Table II shows the APIs of the
request-respond channel. When creating the channel, users
need to provide a function that generates a response value
from a vertex value. The whole procedure is implemented in
an implicit style; A vertex invokes add request() with the
destination vertex ID; all the requests are delivered after the
request phase, and the vertices receiving any request will be
automatically involved, and a response value is produced by
the user-provided function.

3) Propagation Channel: The last optimized channel is to
speedup the convergence for a class of propagation-based al-
gorithms. In these algorithms, typically, some vertices emit the
initial labels, and in each of the following supersteps, vertices
receiving the labels will perform some computation and may
further propagate a new label to their outgoing neighbors.
Since the propagation is between neighbors, such algorithms
converge very slowly on graphs with large diameters.
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putation logic.

The design of this channel is inspired by two existing tech-
niques for improving the convergence speed. First, the GAS
model [8] with an asynchronous execution mode can perform
the crucial updates as early as possible without waiting for the
global synchronization. Although this implementation is not
feasible in our synchronous system, the high-level abstraction
is suitable for describing such kind of computation. Second,
the block-centric computation model [23], [24], [28] is an
extension of Pregel which opens the partition to users, so that
users can choose a suitable partition method and implement
a block-level computation to perform the label propagation
within a connected subgraph.

Our propagation channel combines the advantages of these
two techniques: it provides a simplified GAS model which
naturally describes such propagation-based computation, and
its implementation works in a similar way as a block-level
program to accelerate the label propagation. Therefore, users
allocate a channel to obtain a performance gain without
additional efforts on writing the block-level program.

Fig. 7 describes the high-level model for the propagation
channel as well as the execution logic in our implementation.
Initially, each vertex is associated with a value and is set to
active. Whenever having an active vertex u in the graph, it
reads each incoming neighbors and the corresponding edges
(if exists), and calculate a value ai by a user-provided function
f . Then, a combiner h updates the original vertex value u by
each neighbor’s ai and returns a new vertex value u′. If the
new value u′ is different from the original value u, we activate
all outgoing neighbors of u to propagate the update, and finally
u is deactivated after being processed. The computation stops
when all the vertices are inactive. Note that we require h to be
commutative, so that the order of combining ai does not affect
the result. Moreover, when any of the incoming neighbors of
u is modified, u needs to read the modified vertex to update
its own value, instead of recomputing the foldr by reading all
its incoming neighbors’ values.

This computation model is implemented by each worker
performing a BFS-like traversal on the subgraph it holds.
Starting from the initial setting, each worker propagates the
values along the edges as far as possible. It updates the local
vertices directly, but records the changes on remote vertices
as messages. The buffer exchange is performed after no local

TABLE III: Datasets used in our evaluation

Dataset Type |V | |E| avg. Deg
Wikipedia directed 18.27M 172.31M 9.43
WebUK 39.45M 936.36M 23.73

Facebook undirected 59.22M 185.04M 3.12
Twitter 41.65M 2.94B 70.51
Tree∗ rooted tree 100M 100M 1.00

Chain∗ 100M 100M 1.00
USA Road undirected 23.95M 57.71M 2.41
RMAT24∗ & weighted 16.78M 268.44M 16.00

datasets marked with ∗ are synthetic.

updates is viable on any worker. After the remote updates
triggered by messages, a new round of local propagation is
performed. It terminates when all vertices have converged.

The last column of Table II shows the APIs of a simplified
propagation channel without considering the edge weights (for
saving space), so users provide a combiner to calculate the new
vertex value. Each vertex adds its adjacent list to the channel
via add edge() and sets the initial value by set value(),
and in the next superstep, a vertex invokes get value() to
get the final value after the propagation converges. To make the
best use of the propagation channel, users should preprocess
the graph by tagging a partition ID to the vertex IDs.

V. EXPERIMENTS

The experiments are conducted on an Amazon EC2 cluster
of 8 nodes (with instance type m4.xlarge), each having 4
vCPUs and 16G memory. The connectivity between any pair
of nodes in the cluster is 750Mbps. The datasets are listed
in Table III including both real-world graphs (Wikipedia3,
Facebook4, WebUK5, Twitter6(undirected) and USA road net-
work7) and synthesized graphs (a chain, a random tree and a
weighted power-law graph using R-MAT [12]).

We select six representative algorithms in our evaluation,
including PageRank (PR), Pointer-Jumping (PJ), Weakly Con-
nected Component (WCC), S-V algorithm (S-V), Strongly
Connected Component (SCC) and Minimum Spanning Forest
(MSF). For comparison, we also present the results of our best-
effort implementations in Pregel+ [2] and Blogel [28]. Both of
them are typical Pregel implementations, where Pregel+ sup-
ports the request-respond paradigm and mirroring technique
in two special modes (reqresp mode and ghost mode respec-
tively) and Blogel supports the block-centric computation. All
of these systems mentioned above as well as our channel-based
system are implemented in C++ on top of the Hadoop Dis-
tributed File System (HDFS). The source code of our system
can be accessed at https://bitbucket.org/zyz915/pregel-channel.

A. The Channel Mechanism

First, we evaluate the standard channels (the message
passing channels and aggregator) in our system. Basically,

3http://konect.uni-koblenz.de/networks/dbpedia-link
4http://archive.is/tVl1G
5http://networkrepository.com/web uk 2005 all.php
6http://konect.uni-koblenz.de/networks/twitter mpi
7http://www.dis.uniroma1.it/challenge9/download.shtml

https://bitbucket.org/zyz915/pregel-channel
http://konect.uni-koblenz.de/networks/dbpedia-link
http://archive.is/tVl1G
http://networkrepository.com/web_uk_2005_all.php
http://konect.uni-koblenz.de/networks/twitter_mpi
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rewriting a Pregel program into a channel-based version is just
about replacing the matched send-receive pairs into the same
channel’s send/receive function. The message is chosen as
small as possible, and we always use a combiner if applicable.
We compare both implementations to see whether there is any
overhead or benefits introduced by our channel mechanism.

The experiment results are presented in Table IV, where
a straightforward rewriting achieves a speedup ranging from
1.08x to 2.64x among all the five algorithms on those datasets.
For MSF, SCC and S-V, we also observe a significant reduction
on message size ranging from 23% to 82%.

Analysis. The channel mechanism itself can improve the
performance, due to the following two reasons. First, our
system allows users to specify a combiner to a channel
whenever applicable, while in Pregel, we can specify a global
combiner only when all the messages in the algorithm can
use that combiner. This difference makes our S-V and SCC
more message-efficient. where the inapplicability of combiner
in Pregel+ causes a 5.52x message size on Twitter and 1.55x
message size on Facebook.

Second, our channel-based system allows users to choose
different message types for different channels, while in
Pregel+, a global message type is chosen to serve all com-
munication in the program. Then, the MSF (we refer to a
particular version here [6]) is a typical example that uses
heterogeneous messages in different phases of the algorithm.
The largest message type is a 4-tuple of integer values for
storing an edge, but the smallest one is just an int.

The channel interface does introduce some overhead, which
causes our SCC implementation slightly worse than the one
in Pregel+. However, such overhead is only visible when the
message synchronization dominates the execution time. For
SCC, it terminates in 1247 supersteps and in most supersteps
the number of active vertices is extremely few (less than
0.01%).

For the rest algorithms, there is no significant difference
when implemented in two systems. Still, our system re-
duces the runtime of PR and WCC by up to 13% and 8%
(using the CombinedMessage class), and for PJ (using the
DirectMessage class) the number is 45%. We believe that
the improvement is due to the choice of message interface (in
particular the message iterator in DirectMessage instead of
nested C++ vectors in Pregel+). Nevertheless, we show that
our system implementation is reasonably efficient.

B. Effectiveness of Optimized Channels

Here, we evaluate the efficiency of our optimized channels
against the message passing channels using the applications
that each kind of channel is applicable. In this part, we choose
rather simple algorithms, so that we can clearly see how
optimized channels can improve the performance in different
scenarios.

1) Scatter-Combine Channel: PageRank is a typical graph
algorithm that can use the scatter-combine algorithm. We test
Pregel+’s basic implementation, Pregel+’s ghost mode (a.k.a.
the mirroring technique [29]), the standard channel version

TABLE IV: Comparison of the basic implementation of graph
algorithms in Pregel+ and channel-based system.

PR WebUK Wikipedia
pregel channel pregel channel

runtime (s) 212.24 205.80 47.32 40.36
message (GB) 63.23 63.23 14.02 14.02

WCC Wikipedia Wikipedia (P)
pregel channel pregel channel

runtime (s) 16.96 15.67 15.31 15.85
message (GB) 2.85 2.85 0.49 0.49

PJ Chain Tree
pregel channel pregel channel

runtime (s) 111.54 69.63 36.25 19.94
message (GB) 39.99 39.99 8.56 8.56

S-V Facebook Twitter
pregel channel pregel channel

runtime (s) 49.74 37.92 382.60 144.99
message (GB) 16.41 11.46 112.21 20.32

MSF USA RMAT24
pregel channel pregel channel

runtime (s) 27.05 16.13 50.56 45.94
message (GB) 8.67 4.86 14.80 12.91

SCC Wikipedia Wikipedia (P)
pregel channel pregel channel

runtime (s) 52.15 61.89 50.51 67.84
message (GB) 9.85 4.98 2.70 1.29

(Fig. 1) and the scatter-combine channel version. For Pregel+’s
mirroring technique, we set the threshold to 16 in all cases.

The experiment results are presented in the upper part
of Table V. The basic mode of Pregel+ and our standard
version are close in both execution time and message size,
while the scatter-combine channel achieves a speedup ranging
from 3.03x to 3.16x and reduces roughly one third of the
message size. Pregel+’s ghost mode use less messages, but
the execution time (including the preprocessing time) is not
reduced significantly on Wikipedia and is even worse on
WebUK.

Analysis. The improvement on execution time clearly shows
the effectiveness of the scatter-combine channel. As explained
in subsubsection IV-C1, it can generate the combined mes-
sages by a linear scan of the edges, while Pregel+’s basic mode
and the CombinedMessages have to use hash table or sorting
to handle the general case. The reduction on total message
size is explained by the removal of redundant transmission of
vertices’ identifiers.

All these three programs use the receiver-centric mes-
sage combining, while Pregel+’s mirroring technique uses
the sender-centric message combining to further reduce the
messages in transmission, where a high-degree vertex only
sends at most one message to each other worker, instead
of one message to each neighbor. However, such method is
computational intensive and the overall computational cost
is still high due to the involvement of hash table. We show
that the computational cost in message processing is a major
problem in some algorithms, and our scatter-combine achieves
better performance than existing approaches.

2) Request-Respond Channel: This optimization is origi-
nally introduced in Pregel+’s reqresp mode and it is interest-



TABLE V: Experiment results for each specialized channel.

Scatter-Combine channel using PR

Program Wikipedia WebUK
runtime message runtime message

pregel+(basic) 47.32 14.02 212.24 63.23
pregel+(ghost) 45.55 4.70 246.41 23.69
channel (basic) 40.36 14.02 205.80 63.23
channel (scatter) 15.58 9.50 67.00 42.86

Request-Respond channel using PJ

Program Tree Chain
runtime message runtime message

pregel+(basic) 36.25 8.56 111.54 39.99
pregel+(reqresp) 54.37 2.62 676.19 28.87
channel (basic) 19.94 8.56 69.63 39.99
channel (reqresp) 11.03 1.75 74.10 19.24

Propagation channel using WCC

Program Wikipedia Wikipedia (P)
runtime message runtime message

pregel+(basic) 16.96 2.85 15.31 0.49
blogel 20.39 1.11 5.10 0.11
channel (basic) 15.67 2.85 15.85 0.49
channel (prop.) 8.64 1.66 3.05 0.17

ing to see which implementation is faster. A representative
application is the pointer-jumping algorithm. Given a (forest
of) rooted tree, each vertex initially knows its parent and tries
to find the root of the tree it belongs to. The algorithm is
actually part of the S-V (Section III-C). We can consider it as
a minimum example that uses the request-respond paradigm.

We test pointer-jumping over two types of graphs, one is a
randomly generated tree, and the other is a chain. Vertices are
randomly assigned to workers.

The middle part of Table V summarizes the results on these
two types of graphs. Without the request-respond optimization,
the standard implementations in the two systems use exactly
the same amount of messages, but ours runs 1.81x faster on a
chain and 1.60x faster on a randomly generated tree. Contrary
to expectations, Pregel+’s reqresp mode makes the program
slower than its ordinary version, although the message size
indeed decreases. Using the same idea for optimization, our
request-respond channel runs faster on a randomly generated
tree, and is as good as an ordinary implementation when
tree degrades to a chain. Compared to Pregel+’s reqresp, our
request-respond channel reduces the message size is constantly
33% less, and a performance gain up to 6.06x is observed on
the Chain.

Analysis. Although sharing the same idea, the implemen-
tations of the request-respond paradigm in our system and
Pregel+ are slightly different, which we believe is the main
reason that makes our implementation better in both runtime
and message size. One particular trick in our implementation
is that, when a worker sends the requests to another worker,
it sends a list of vertex IDs, and the receiver sends back a
list of values in exactly the same order. However, in Pregel+,
the receiver replies a pair of vertex ID and a value for each
request, so that the message size increases.

We also observe that, in real algorithms like S-V (Sec-
tion III-C), we are actually dealing with a dynamic forest,
where the finding of the root vertex root is fused with the tree

TABLE VI: Experiment results of the S-V implementations
using different combinations of channels.

Program Facebook Twitter
runtime message runtime message

1-pregel+(reqresp) 35.67 6.33 182.93 19.66
2-channel (basic) 37.92 11.46 144.99 20.32
3-channel (reqresp) 26.83 5.45 138.44 16.76
4-channel (scatter) 33.21 9.09 87.52 13.34
5-channel (both) 22.29 3.08 79.76 9.78

merging. In this special case, Pregel+’s reqresp mode can still
make an improvement (see Table VI). Nevertheless, we verify
that our implementation of the request-respond technique is
reasonably effective, and is faster than the one in Pregel+.

3) Propagation Channel: We consider the HCC algo-
rithm [9] as a suitable example for using this optimization,
which finds the weakly connected component (WCC) of a
directed graph. In this experiment, we present both the results
on the original Wikipedia graph and the partitioned graph
by METIS [10]. We also add the Blogel version here since
the block-centric model is applicable [28]. We choose METIS
since it requires no additional knowledge of the graph.

The experiment results are presented in the bottom part of
Table V. First, the Pregel+ program and a standard channel
version in our system are very close in both execution time
(ours is 8% faster) and message size (the same). The block-
centric version in Blogel works slightly worse on the original
graph, but achieves roughly 3x faster when the input graph is
properly partitioned. Our propagation channel version works
consistently better than all other implementations in terms of
execution time on both graphs (1.67x faster than Blogel). The
number of messages used in the propagation channel version
is the same as the Blogel version, but the message size in
Blogel is 33% less due to its special treatment of partition
information. Nevertheless, running WCC on partitioned graph
is not message intensive.

Analysis. A partitioner reduces the communication cost
between the workers, but for the standard WCCs (program 1
and 3), it still takes a large number of supersteps to converge,
so the execution time is not reduced. Both of Blogel and our
propagation channel use a block-level program to speedup the
convergence and our system outperforms Blogel slightly.

It is also noteworthy that, WCC is quite simple that only
needs around 10 lines of code for the compute() function.
Using the propagation channel in our system does not increase
this number, while the Blogel version requires users to addi-
tionally write a block-level computation of more than 100 lines
of code8. It is clear that our system achieves both conciseness
and efficiency compared to the block-centric model.

C. Combination of Channels

In this part, we verify the multiple performance issues in
the S-V (see discussions in Section III-C) by trying different
combination of channels in our system. We show that a

8http://www.cse.cuhk.edu.hk/blogel/code/apps/block/hashmin/
block.zip

http://www.cse.cuhk.edu.hk/blogel/code/apps/block/hashmin/block.zip
http://www.cse.cuhk.edu.hk/blogel/code/apps/block/hashmin/block.zip


TABLE VII: Experiment results of the Min-Label algorithm

Program Wikipedia Wikipedia (P)
runtime message runtime message

1-pregel+(basic) 52.15 9.85 50.51 2.70
2-channel (basic) 61.89 4.98 67.84 1.29
3-channel (prop.) 31.37 4.42 13.96 1.12

combination of properly chosen channels can finally lead to
much better performance. To cover all the special channels we
have, we also present the experiment results of the Min-Label
algorithm [30] for finding Strongly Connected Components
(SCCs).

1) The S-V Algorithm: According to the previous discus-
sion, the request-respond channel and the scatter-combine
channel are applicable in the algorithm implementation. We
thus have four S-V programs in our system covering all the
combination of the two optimized channels. For comparison,
we also give the result of our best-effort implementation in
Pregel+’s basic and reqresp mode.

The results are presented in Table VI. As expected, the basic
version (program 2) without using any specialized channel
is the slowest, and the fully optimized version (program 5)
takes only half of the execution time. Furthermore, using
either of the request-respond channel (program 3) or the
scatter-combine channel (program 4) can lead to a decent
improvement, but which one is more effective actually depends
on the input graph. Then, even with the request-respond
paradigm, Pregel+ is slower than our unoptimized version on
Twitter, and is only as good as it on Facebook.

Analysis. According to the average degree in Table III,
Twitter is much denser than Facebook, so the neighborhood
communication actually dominates the algorithm. In such case,
the scatter-combine version (program 4) works significantly
better than the request-respond version (program 3). We can
clearly see that even using the request-respond optimization,
the algorithm is still inefficient when the input graph is dense,
since the redundancies in the neighborhood communication
becomes the major problem. Instead, combining two different
optimizations can make the algorithm work consistently well,
regardless of the density of input graph.

2) Min-Label Algorithm: Strongly connected component
(SCC) is a fundamental problem in graph theory and it is
widely used in practice to reveal the properties of the graphs.
A typical Min-Label algorithm [30] for finding SCCs in Pregel
is already complex which is an iterative algorithm where
the main iteration contains four subroutines, including the
removal of trivial SCCs, forward/backward label propagation,
SCC recognization and relabeling. The algorithm suffers the
problem of low convergence speed.

Our system offers a quick fix to this problem by choosing
a Propagation channel for the forward/backward label prop-
agation, which results in a 2x speedup on Wikipedia, and a
nearly 4x faster on partitioned Wikipedia (see Table VII). This
optimization is not possible in any of the existing system.

VI. RELATED WORK

Google’s Pregel [16] is the first specific in-memory sys-
tem for distributed graph processing. It adopts the Bulk-
Synchronous Parallel (BSP) model [25] with explicit messages
to let users implement graph algorithms in a vertex-centric
way. The core design of Pregel has been widely adopted by
many open-source frameworks [17], [27], and most of them
inherit the monolithic message passing interface, meaning that
the messages of different purposes are mixed and indistin-
guishable for the system. As an attempt for optimizing com-
munication patterns, Pregel+ extends Pregel with additional
interfaces (in particular, the reqresp and the ghost mode), but
it is less flexible since the two modes cannot be composed
and adding optimizations is inconvenient.

To support intuitive message slicing in Pregel-like systems,
Telos [15] proposes a layered architecture where interleaving
tasks are implemented as separate Protocols, each having a
user-defined compute() function with a dedicated message
buffer. However, it lacks an essential feature for optimization
that users cannot modify the implementation of the message
buffer. Husky [32] is a general-purpose distributed framework
with the channel interface, and it supports primitives like pull,
push and migrate and asynchronous updates to combine the
strength of graph-parallel and machine learning systems. We
extend this idea for composing optimizations in graph-parallel
system and propose our optimized channels for three common
performance issues.

There has been much research studying the optimizations on
Pregel-like systems, and our optimized channels draw inspira-
tion from this line of research, such as the sender-side message
combining (a.k.a. vertex-replication, mirroring) [2], [3], [13],
[19], the request-respond paradigm [16], the block-centric
model [23], [24], [28] and so on. In particular, our scatter-
combine channel recognizes the static messaging pattern and
reduces the computational cost as well as message size by
pre-processing, which is novel and turns out to be effective
for communication-intensive algorithms like PageRank and S-
V. We also demonstrate how complex algorithms like S-V and
SCC can be optimized by such technique, while most existing
systems only focus on rather simple algorithms.

Apart from Pregel, there are graph-parallel systems that use
high-level models to organize the computation and commu-
nication, which brings more opportunities for optimization.
For example, the Gather-Apply-Scatter (GAS) model (used
by GraphLab [14], PowerGraph [8] and PowerLyra [5]) is a
typical one that describes a vertex-program by three functions,
and the scatter-combine model (used by Graphine [31]) fuses
the scatter and gather operations, resulting a more compact
two-phase model. Our channel mechanism shares the same
spirit; through the channels, we can equip a system with even
more abstractions, so that users can choose whatever suitable
for their algorithms.

There are also graph systems using a functional interface
with high-level primitives to manipulate the entire graph, such
as GraphX [26] (a library on top of Apache Spark [33]) and



its extension HelP [20]. However, their primitives are hard
to compose. Furthermore, experiment results [32] show that
they are less efficient than other systems even on simple
algorithms like PageRank. Sparse-matrix based frameworks
(e.g. the CombBLAS [4] and PEGASUS [9]) are also popular
for handling graphs which provide linear algebra primitives,
but the lack of graph semantics makes it hard for deep
optimizations.

VII. CONCLUSION

In this paper, we propose to use the channel interface as
a replacement of Pregel’s message passing and aggregator
mechanism, which not only structures the communication in
Pregel algorithms in an intuitive way, but also enables different
kinds of optimizations to work together for dealing with
different performance issues in the same program. We also
demonstrate how three optimized channels are implemented in
this manner. Experiments show that, our channel-based system
along with the current three optimized channels can achieve
significantly better performance for a wide spectrum of graph
algorithms.

We believe that, having such system with various modular
optimizations available can help users quickly build efficient
graph applications. In particular, our methodology of “opti-
mizing a program by choosing suitable channels” hopes to
change the current situation that different performance issues
are addressed by separate systems, so that users can get rid
of the steep cost of learning different systems’ interfaces
or strengths, but enjoy using a single all-around system. To
further make this system easy to use for non-expert users, in
the future, we are going to study the compilation from a high-
level declarative domain-specific language Palgol [34] to our
system.
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