
MOARD: Modeling Application Resilience to
Transient Faults on Data Objects

Luanzheng Guo
EECS, University of California, Merced

lguo4@ucmerced.edu

Dong Li
EECS, University of California, Merced

dli35@ucmerced.edu

Abstract—Understanding application resilience (or error toler-
ance) in the presence of hardware transient faults on data objects
is critical to ensure computing integrity and enable efficient
application-level fault tolerance mechanisms. However, we lack a
method and a tool to quantify application resilience to transient
faults on data objects. The traditional method, random fault
injection, cannot help, because of losing data semantics and
insufficient information on how and where errors are tolerated. In
this paper, we introduce a method and a tool (called “MOARD”)
to model and quantify application resilience to transient faults on
data objects. Our method is based on systematically quantifying
error masking events caused by application-inherent semantics
and program constructs. We use MOARD to study how and why
errors in data objects can be tolerated by the application. We
demonstrate tangible benefits of using MOARD to direct a fault
tolerance mechanism to protect data objects.

I. INTRODUCTION

Transient faults due to high energy particle strikes, wear-
out, etc. are expected to become a critical contributor to in-
field system failures of high performance computing (HPC).
If those faults manifest in architecturally visible states (e.g.,
registers and the memory) and those states hold values of a
data object, then we have transient faults on the data object.
Transient faults on a data object impact application outcome
correctness. Understanding application resilience to transient
faults on data objects is critical to ensure computing integrity
in future large scale systems.

Furthermore, many common application-level fault toler-
ance mechanisms focus on data objects. Understanding ap-
plication resilience to transient faults on data objects can be
helpful to direct those mechanisms. Application-level check-
point is an example of such an application level fault tolerance
mechanism. By periodically saving correct values of some data
objects into persistent storage, application-level checkpoint
makes application resumable when a failure happens. Some
algorithm-based fault tolerance methods [1], [2] are other
examples. They can detect and locate errors in specific data
objects. However, those application-level fault tolerance mech-
anisms can be expensive (e.g., 35% performance overhead
in [3]). If data corruptions of a data object are easily tolerable
by the application, then we do not need to apply those
mechanisms to protect the data object, which will improve
performance and energy efficiency. Hence, understanding ap-
plication resilience to transient faults on data objects is useful
to direct those application level fault tolerance mechanisms.

However, we do not have a method or a tool to quantify
application resilience to transient faults on data objects. The
current common practice to understand application resilience
to transient faults in HPC is application-level random fault
injection (RFI) [4], [5], [6]. Although RFI is useful, it cannot
study application resilience to transient faults on data objects
because of the following two reasons.

First, RFI loses application semantics (data semantics). RFI
randomly selects instructions and triggers random bit flip in
input or output operands of the instructions. Typically RFI
performs a large amount of random fault injection tests, and
then calculates that among all fault injection tests, how many
of them succeed (i.e., having correct application outcomes).
However, we do not know the data value corrupted by RFI
belongs to which data object. Second, RFI gives us little
knowledge on how and where errors are tolerated [7]. Under-
standing “how” and “where” is necessary to identify why the
application is vulnerable to the value corruption of some data
objects, and provides feedback on how to apply application-
level fault tolerance mechanisms effectively and efficiently.

In this paper, we introduce a method to model and quantify
application resilience to transient faults on data objects. Our
method is based on an observation that, application resilience
to transient faults on data objects is mainly because of
application-inherent semantics and program constructs. For ex-
ample, a corrupted bit in a data structure could be overwritten
by an assignment operation, hence does not cause an outcome
corruption; a corrupted bit of a molecular representation in a
Monte Carlo method-based simulation may not matter to the
application outcome because of the statistical nature of the
simulation. Based on the above observation, the quantification
of application resilience to transient faults on data objects
is equivalent to quantifying error masking events caused by
application-inherent semantics and program constructs, and as-
sociating those events with data objects. By analyzing applica-
tion execution information (e.g., the architecture-independent,
LLVM [8] IR trace), we can accurately capture those error
masking events, and provide insightful analysis on how and
where an error tolerance happens. Furthermore, analyzing ap-
plication execution information, we can use memory addresses
of data objects and track register allocation to associate data
values in registers and memory with data objects. Such a
method introduces data semantics into the analysis.

Quantifying application resilience to transient faults on

ar
X

iv
:2

10
2.

06
89

9v
1

 [
cs

.D
C

]
 1

3
Fe

b
20

21

data objects must address a couple of research problems.
First, we have little knowledge of the characteristics of error
masking events. This creates a major obstacle to recognize
those events and achieve analytical quantification. Second,
we do not have a good metric to make the quantification.
Simply counting the number of error masking events cannot
provide a meaningful quantification, because the number can
be accumulated throughout application execution. The fact
that a data object has many error masking events does not
necessarily mean that the application is resilient to the value
corruption of the data object because those events may be
only a small portion of the total operations on data objects.
Third, determining the impact of an error occurrence on the
correctness of application outcome is challenging. The error
can propagate to many data objects. Tracking all of those
errors for analysis is prohibitive. In addition, an error may
not impact the correctness of application outcome because
of algorithm semantics in the application. However, recogniz-
ing algorithm semantics requires detailed application domain
knowledge, which is prohibitive for common users.

Based on the method of quantifying error masking events,
we systematically model and quantify application resilience
to transient faults on data objects, and address the above
problems. We first characterize error masking events and
classify them into three classes: operation-level error masking,
error masking when error propagation, and algorithm-level
error masking. We further introduce a metric. The metric
quantifies how often error masking happens. Based on the
metric, the comparison of application resilience to transient
faults between different data objects is more meaningful
than based on simply counting error masking events. Our
classification of error masking events and the proposed metric
are fundamental, because they lay a foundation not only for
modeling application resilience to transient faults on data
objects, but also for other research, such as the placement
of error detectors [9] and application checkpoint [10].

Based on our classification and metric, we introduce a
model. Given a data object, our model examines operations
in the dynamic instruction trace. For each operation that
consumes elements of the data object, the model makes the
following inference: if an element consumed by the operation
has an error, will the application outcome remain correct?
The inference procedure of the model includes three practical
techniques to recognize the three classes of error masking
events: (1) detecting operation-level error masking based on
operation semantics, (2) tracking error propagation by limiting
propagation length for analysis, and (3) detecting algorithm-
level error masking based on deterministic fault injection.
For (2), limiting propagation length is a technique based on
the characterization of error propagation. This technique does
not impact our conclusion on error masking while avoiding
expensive analysis; for (3), the deterministic fault injection
treats the application as a black box without requiring detailed
application domain knowledge.

In summary, this paper makes the following contributions:
• A systematic method and a metric to analytically model

application resilience to transient faults on data objects,
which is unprecedented;

• A comprehensive classification of error masking events, and
methods to recognize them;

• An open-sourced system tool, MOARD [11], to model
application resilience to transient faults on data objects.

• An evaluation of representative, computational algorithms
and two scientific applications to reveal how application-
level error masking typically happens on data objects;

• A case study to demonstrate the benefit of using a model-
driven approach to direct error tolerance designs.

II. BACKGROUND

In this section, we introduce the fault model and give an
introductory description of application-level error masking.

A. Fault Model

We focus on transient faults that change the values of data
objects. Those faults are not corrected by hardware (e.g.,
ECC), propagate through a high level of the system, and
become observable to the application [12].

In terms of application resilience in the existence of cor-
rupted data values, we focus on application outcome correct-
ness. The application outcome is deemed correct as long as it
is acceptable. Depending on the notion of the acceptance, the
outcome correctness can refer to precise numerical integrity
(e.g., the outcome of a multiplication operation must be
numerically precise) or refer to satisfying a minimum fidelity
threshold (e.g., the outcome of an iterative solver must meet
certain convergence thresholds).

B. Error Masking

Error masking can happen at the application level and
hardware level. The application-level error masking happens
because of application inherent semantics and program con-
structs. The hardware-level error masking happens because a
fault does not corrupt the precise semantics of hardware [13].

The key of our error tolerance modeling is the application-
level error masking. We particularly study error masking that
happens to individual data objects. We consider that when
an error happens in a data object (other data objects remain
correct before the error happens) how the error impacts the
application outcome correctness. A data object can be an
array or other data structures with many data elements. Other
than data objects, we do not consider the corruption of other
application components (e.g., computing logic). Hence, we
do not aim to model the error tolerance of all application
components but focus on data objects. In addition, we focus
on errors happening in data objects and directly consumed by
the application. Latent errors in data objects (i.e., the errors
not consumed by the application) are not considered because
they do not matter to the application outcome correctness.

III. ERROR TOLERANCE MODELING

We start with a classification of application-level error
masking and then introduce a modeling metric.

2

1 void f unc (double *par A , double * par b ,
2 double * par x)
3 {
4 double c = 0 ;
5
6 / / Pre − p r o c e s s i n g par A
7 par A [0] = s q r t (i n i t I n f o) ;
8 c = par A [2] * 2 ;
9 i f (c>THR)

10 par A [4] = (i n t) c >> b i t s ; / / b i t s h i f t i n g
11
12 / / Using the a l g e b r a i c mult i − gr id s o l v e r
13 AMG Solver (par A , par b , pa r x) ;
14 }

Fig. 1: The example code to show error masking that happens to a
data object, par A.

A. General Description

Error masking that happens to data objects has various rep-
resentations. Listing 1 gives a synthetic example to illustrate
those representations. In this example, we focus on a data
object, par A, which is an array. We study error masking that
happens to this data object. We examine every statement in the
example code. For each statement, we examine if any element
of the data object is involved. If yes, we examine if there
is a data corruption in the element, how the data corruption
impacts the result correctness of the statement, and how the
data corruption propagates to the successor statements which
in turn impact the application outcome correctness.

par A is involved in 4 statements (Lines 7, 8, 10 and
13). The statement at Line 7 has an error masking event: if
an error happens at par A, (in particular, the data element
par A[0], which is consumed by the statement), the error can
be overwritten by an assignment operation, no matter which bit
is flipped in par A[0]. The statement at Line 8 has no explicit
error masking happen. If an error at par A[2] occurs, the error
propagates to c by multiplication and assignment operations.
If the error propagates to Line 10 (bit shifting), depending on
which bit is corrupted at Line 8 and how many bits are shifted
at Line 10, the corrupted bit can be thrown away or remain. If
the corrupted bit is thrown away, then the error in par A[2]
propagating from Line 8 to Line 10 is indirectly masked at
Line 10 (not directly masked at Line 8).

Line 13 is an invocation of an algebraic multi-grid solver
(AMG) taking par A as input. AMG treats par A as a multi-
dimensional grid and can tolerate certain data corruptions in
the grid, because of the algorithm semantics of AMG (particu-
larly, AMG’s iterative structure that mitigates error magnitude
and tolerates incorrectness of numerical results [14]).

This example reveals many interesting facts. In essence, a
program can be regarded as a combination of data objects
and operations performed on the data objects. An operation
(defined at LLVM instruction level) refers to arithmetic com-
putation, assignment, logical and comparison instructions or
an invocation of an algorithm implementation. An operation
may inherently come with error masking effects, exemplified at
Line 7 (error overwriting); an operation may propagate errors,
exemplified at Line 8. Different operations have different
error masking effects, and hence impact the application out-

come differently. Based on the above discussion, we classify
application-level error masking into three classes.

(1) Operation-level error masking. An error that happens
to the target data object is masked because of the semantics
of the operation. Line 7 in Listing 1 is an example.

(2) Error masking when error propagation. Some error
masking events are implicit and have to be identified beyond
a single operation. In particular, a corrupted bit in a data
object is not masked in the current operation (e.g., Line 8
in Listing 1) but the error propagates to another data object
(e.g., the variable c) and masked in another operation (e.g.,
Line 10). Note that simply relying on isolated operation-level
analysis without the error propagation analysis is not sufficient
to recognize these error masking events.

(3) Algorithm-level error masking. Identification of some
error masking events must include algorithm-level informa-
tion. The identification of these events is beyond the first
two classes. Examples of such events include the multigrid
solver [14] and certain sorting algorithm [15]. The algorithm-
level error masking can tolerate errors that happen to many
variables. For example, the multigrid solver can tolerate cer-
tain errors in hundreds of variables [14]. The essence of
algorithm-level error masking is typically due to algorithm
specific definition on execution fidelity and specific program
constructs that mitigate error magnitude during application
execution [16]. Limited analysis at individual operations or
error propagation is not sufficient to build up a big picture to
capture the algorithm-level fault tolerance.

Our modeling is analytical and relies on the quantification
of the above error masking events on data objects. We create
a metric to quantify those events.

B. aDVF: A New Metric

To quantify application resilience to transient faults on a
data object, the key is to quantify how often error masking
happens to the data object. We introduce a new metric,
aDVF (i.e., the application-level Data Vulnerability Factor),
to quantify application resilience to transient faults on data
objects. aDVF is defined as follows.

For an operation with the participation of the target data
object (maybe multiple data elements of the target data object),
we reason that if an error happens to a participating data
element of the target data object, the application outcome
could or could not remain correct in terms of the outcome
value and algorithm semantics. If the error does not cause an
incorrect application outcome, then an error masking event
happens to the target data object. A single operation can
operate on multiple data elements of the target data object.
For example, an ADD operation can use two elements of the
target data object as operands. For a specific operation, aDVF
of the target data object is defined as the total number of error
masking events divided by the number of data elements of the
target data object involved in the operation.

For example, an assignment operation a[1] = w happens to
a data object, the array a. This operation involves one data
element (a[1]) of the target data object a. We calculate aDVF

3

for a in this operation as follows. If an error happens to a[1],
we reason that the erroneous a[1] does not impact correctness
of the application outcome and the error in a[1] is always
masked (no matter which bit of a[1] is flipped). Hence, the
number of error masking events for the target data object a
in this operation is 1. Also, the total number of data elements
involved in the operation is 1. Hence, the aDVF value for the
target data object in this assignment operation is 1/1 = 1.

Based on the above discussion, the definition of aDVF for
a data object X in an operation (aDV FX

op) is formulated in
Equation 1, where xi is a data element of the target data object
X involved in the operation and m is the number of data
elements involved in the operation; f is a function to count
error masking events that can happen to a data element.

aDV FX
op =

m−1∑
i=0

f(xi)/m (1)

To calculate aDVF for a data object in a code segment, we
examine operations in the code segment one by one; For each
operation that involves any element of the target data object,
we consider that if a transient fault happens to the element,
how many error masking events can happen. In general, the
definition of aDVF for a data object in a code segment is
similar to the above for an operation, except that m is the
number of data elements of X involved in all operations of
the code segment. 1 According to the above definition, a higher
aDVF value for a data object indicates that the application is
more resilient to transient faults on the data object; Also, an
aDVF value should be in [0, 1].

To further explain it, we use a code segment from LU bench-
mark in SNU NPB benchmark suite 1.0.3 (a C-based imple-
mentation of the Fortran-based NAS benchmark suite [17]),
shown in Listing 2.

An example from LU. We calculate aDVF for the array
sum[]. Statement A has an assignment operation involving
one data element (sum[m]) and one error masking event (i.e.,
if an error happens to sum[m], the error is overwritten by the
assignment). Considering that there are five iterations in the
first loop (iternum1 = 5), there are five error masking events
happening to five data elements of sum[].

Statement B has two operations related to sum[] (i.e.,
an assignment and an addition). The assignment operation
involves one data element (sum[m]) and has no error masking
because the new value is added to sum[m] (not overwriting it);
The addition operation involves one data element (sum[m])
and may have one error masking (i.e., certain corruptions
in sum[m] can be ignored, if (v[k][j][i][m] ∗ v[k][j][i][m])
is significantly larger than sum[m]). This error masking is
counted as r′ (0 ≤ r′ ≤ 1), depending on the corrupted
bit position in sum[m] and the error propagation result (see
Sections III-C and IV for further discussion). In the loop
structure where Statement B is, there are (r′ ∗ iternum2) error
masking events that happen to (2 ∗ iternum2) elements of

1If a data element is referenced multiple times in the code segment, this
data element is counted multiple times in m.

1 void l2norm (i n t ldx , i n t ldy , i n t ldz , i n t nx0 , \
2 i n t ny0 , i n t nz0 , i n t i s t , i n t i end , i n t j s t , \
3 i n t j end , double v [] [l d y / 2 * 2 + 1] [l d x / 2 * 2 + 1] [5] , \
4 double sum [5])
5 {
6 i n t i , j , k , m;
7 f o r (m=0;m<5;m++) / / The f i r s t loop
8 sum [m] = 0 . 0 ; / / Statement A
9

10 f o r (k =1; k<nz0 −1; k ++) / / The second loop
11 f o r (j = j s t ; j<j e n d ; j ++)
12 f o r (i = i s t ; i<i e n d ; i ++)
13 f o r (m=0;m<5,m++)
14 sum [m]= sum [m]+ v [k] [j] [i] [m] \
15 *v [k] [j] [i] [m] ; / / Statement B
16
17 f o r (m=0;m<5;m++){ / / The t h i r d loop
18 sum [m]= s q r t (sum [m] / ((nx0 −2) * \
19 (ny0 −2) * (nz0 −2))) ; / / Statement C
20 }
21 }

Fig. 2: A code segment from LU.

sum[], where “r′” comes from the addition operation 2, and
iternum2 is the number of iterations in the second loop.

Statement C has two operations related to sum[] (i.e., an
assignment and a division) but only the assignment operation
has error masking (overwriting). In the loop structure where
Statement C is, there are five iterations (iternum3 = 5).
Hence, there are five error masking events that happen on five
data elements of the target data object. In summary, the aDVF
calculation for sum[] is

aDV F sum
op =

1 ∗ iternum1 + r′ ∗ iternum2 + 1 ∗ iternum3

1 ∗ iternum1 + (1 + 1) ∗ iternum2 + (1 + 1) ∗ iternum3
,

(2)

where each term in the numerator is the number of er-
ror masking events in the first, second, and third loop,
respectively; each term in the denominator is the number
of target data elements involved in each loop; iternum1 =
5, iternum3 = 5 and iternum2 = (nz0 − 2) ∗ (jend − jst) ∗
(iend− ist) ∗ 5.

To calculate aDVF for a data object, we must rely on
effective identification and counting of error masking events
(i.e., the function f). In Sections III-C, III-D and III-E,
we introduce a series of counting methods based on the
classification of error masking events.

C. Operation-Level Analysis

To identify error masking events at the operation level,
we analyze all possible operations. In particular, we analyze
architecture-independent, LLVM instructions and characterize
their error tolerance based on operation semantics. We classify
the operation-level error masking as follows.

(1) Value overwriting. An operation writes a new value
into a data element of the target data object and the error
in the data element (no matter where the corrupted bit is in
the data element) is masked. For example, the store operation
overwrites the error in the store destination. We also include

2The addition operation with the corrupted sum[m] can propagate the error
to the assignment. This error propagation effect is included in r′.

4

trunc and bit-shifting operations into this category because the
error could be truncated or shifted away in those operations.

(2) Logical and comparison operations. If an error in the
target data object does not change the correctness of logical
and comparison operations, the error is masked. Examples
of such operations include logical AND and the predicate
expression in a switch statement.

(3) Value overshadowing. If the corrupted data value in an
operand of an addition or subtraction operation is overshad-
owed by the other correct operand involved in the operation,
then the corrupted data can have an ignorable impact on
the correctness of application outcome. For example, the
data value “10” in an addition operation (“10e+6 + 10”) is
corrupted and the addition operation becomes “10e+6 + 11”.
But such data corruption may not matter to the application
outcome because the operand “10e+6” is much larger than
the magnitude of the data corruption. We further discuss how
the overshadowing effect is determined in Section IV.

The above three operation-level error masking impacts the
application outcome differently. Error masking based on value
overwriting and logic and comparison operations can make
the application outcome numerically the same as the error-
free case. Error masking based on value overshadowing can
make the application outcome numerically different from or
the same as the error-free case.

For value overshadowing, if the application outcome is
numerically different, the application outcome can still be
acceptable because of algorithm semantics; if the application
outcome is numerically the same, operations after the value
overshadowing must help tolerate corrupted bits. For the above
two cases, we do not attribute error masking to the algorithm
level or error propagation level. Instead, we attribute it to
operation-level value overshadowing because value overshad-
owing initiates error masking. Without value overshadowing,
algorithm or error propagation may not mask errors.

The effectiveness of the above error masking heavily relies
on the error pattern. The error pattern is defined by how
erroneous bits are distributed within a corrupted data element
(e.g., single-bit vs. spatial multiple-bit, least significant bit vs.
most significant bit). Depending on where the erroneous bit is,
the error in the data object could or could not be masked. Take
as an example the bit shift operation (Line 10) in Listing 1.
Depending on the error pattern, the shift operation can remove
or keep the corrupted bit.

To determine the existence of the above (2) and (3) error
masking, we must consider error patterns (i.e., the spatial
aspect of errors [18]). In the practice of our resilience mod-
eling, given an operation to analyze, we enumerate possible
error patterns for the target data object. Then, we derive the
existence of error masking for each error pattern without
application execution. Suppose there are n error patterns and
m (0 ≤ m ≤ n) of which have error masking. Then the
number of error masking events is calculated as m/n, which
is a statistical quantification of possible error masking. In the
example of the bit shift (Line 10 in Listing 1), assuming that
c is 64-bit and we consider single-bit errors, then there are

64 error patterns. For each error pattern, we decide if the
corrupted bit is shifted away. If 10 of the 64 fault patterns have
the corrupted bit shifted, then the number of error masking
events for the data object c in this shift operation is 10/64.

D. Error Propagation Analysis

If we analyze a specific error pattern in an operation (named
“target error pattern” and “target operation” in the rest of this
section) and determine that the error cannot be masked in
the target operation, then we use error propagation analysis
to capture error masking (i.e., the temporal aspect of er-
rors [18]). Using a dynamic instruction trace as input, the error
propagation analysis tracks whether the errors (including the
original one and the new ones because of error propagation)
are masked in the successor operations based on the operation-
level analysis without application execution. If all of the
errors are masked and hence the application outcome remains
numerically the same as the error-free case, then we claim that
the original error in the target operation is masked.

For the error propagation analysis, a big challenge is to track
all contaminated data which can quickly increase as the error
propagates. Tracking all the contaminated data significantly
increases analysis time and memory usage. A solution to
this challenge is deterministic fault injection. Different from
random fault injection, the deterministic fault injection injects
an error at the target operation using the target error pattern
and then run the application to completion. If the application
outcome is numerically the same as the error-free case, then
the original and the new errors are masked, and the error mask-
ing based on error propagation takes effect. If the application
outcome is numerically different but still accepted, then the
algorithm-level error masking takes effect.

Because of the deterministic fault injection, we do not need
to analyze operations one by one to track data flow and error
contamination. Hence it is faster. However, the deterministic
fault injection can still be time-consuming, if application
execution time is long. To improve the efficiency of the error
propagation analysis, we optimize the analysis based on the
characteristics of error propagation.

Optimization: bounding propagation path. We observe
that tracking a limited number of operations (k operations)
after the target operation is often sufficient to decide the exis-
tence of the propagation-based error masking. Our observation
is based on 1000 random fault injection tests on 16 data objects
from eight benchmarks (see Table I for benchmark details).
We observe that 87% of the fault injection tests that cannot
mask errors within 10 operations (k = 10) after fault injection
lead to numerically incorrect application outcomes; 100% of
the fault injection tests that cannot mask errors within 50
operations (k = 50) after fault injection lead to numerically
incorrect application outcomes. This fact indicates that errors
that are not masked within a limited number of operations
have little chance to be masked by further error propagation.

The rationale to support the above observation is as follows.
An error in a data object typically propagates to a large amount
of data (objects) quickly. After a certain number of operations,

5

it is very unlikely that all errors are able to be masked by
further error propagation and making a conclusion of no error
masking by error propagation is correct in most cases.

Based on the above observation, we only need to track the
first k operations after the target operation to determine the
existence of the propagation-based error masking. In particu-
lar, after analyzing k operations (k = 50 in our evaluation),
(1) If not all errors due to error propagation are masked at the
operation level, we conclude that the errors will not be masked
at the operation level by further error propagation. But those
errors may be masked by algorithm (if the user wants to do
algorithm-level analysis), pending further investigation; (2) If
all errors due to error propagation are masked and based on
the operation-level analysis we can derive that the application
outcome remains numerically correct, then we claim error
masking due to error propagation happens.

E. Algorithm-Level Analysis

Identifying the algorithm-level error masking demands do-
main and algorithm knowledge. In our modeling, we want to
minimize the usage of that knowledge, such that the modeling
methodology can be general across different domains. The
traditional random fault injection treats the program as a
black-box. Hence, using the traditional random fault injection
could be an effective tool to identify the algorithm-level error
masking. However, to avoid the randomness, we use the
deterministic fault injection again.

In particular, when we analyze a specific error pattern in a
target operation and decide that the error cannot be masked
in the target operation and next k operations, we inject an
error using the error pattern in the target operation and run
the application to completion. If the application outcome is
numerically different from the error-free case but acceptable
in terms of algorithm semantics, then algorithm-level error
masking takes effect. If the application outcome is numerically
the same, then error masking due to error propagation happens,
which should be rare based on the above discussion on
“bounding propagation path”.

Discussion: Although we employ the deterministic fault
injection, it cannot replace our modeling because of two
reasons. First, the fault injection space without our modeling
is typically huge (trillions of fault injection sites [7]), which is
prohibitive for implementation. Second, the deterministic fault
injection tells us little about how an error is tolerated.

IV. IMPLEMENTATION

To calculate the aDVF value for a data object, we develop
a tool, named MOARD (standing for MOdeling Application
Resilience to transient faults on Data data objects). Figure 3
shows the tool framework and its algorithm. MOARD has
three components: an application trace generator, a trace
analysis tool, and a deterministic fault injector.

The application trace generator is an LLVM instrumenta-
tion pass to generate a dynamic LLVM IR trace. LLVM IR is
architecture independent and each instruction in the dynamic
IR trace corresponds to one operation. We extend a trace

generator [19] to enable trace generation for MPI applications.
During the trace analysis, we consider error propagation by
MPI communication, but do not consider those cases where
errors happen in the communication.

The trace analysis tool is the core of MOARD. Using an
application trace as input, the tool can calculate the aDVF
value of any data object with known memory address range.
In particular, the trace analysis tool conducts the operation-
level and error propagation analysis. For those unresolved
analyses, the trace analysis tool will output a set of fault
injection information for the deterministic fault injection. Such
information includes dynamic instruction IDs, IDs of the
operands that reference the values of the target data object,
and the bit locations of the operands that correspond to those
error patterns with undetermined error masking. After the
fault injection results (i.e., the numerical values of application
outcome and whether the outcome is acceptable) are available
from the deterministic fault injector, we re-run the trace
analysis tool, and use the fault injection results to address the
unresolved analyses and update the aDVF calculation.

For the error propagation analysis, we associate data seman-
tics (the data object name) with the data values in registers,
such that we can identify the data of the target data object in
registers. To associate data semantics with the data in registers,
MOARD tracks the register allocation when analyzing the
trace, such that we can know at any moment which registers
have the data of the target data object.

To determine the existence of value overshadowing in an
addition or subtraction operation, we use the deterministic fault
injection. Particularly, given a target operand in an addition or
subtraction operation for value overshadowing analysis, we
enumerate all error patterns for deterministic fault injection
tests. If the following two conditions are true, then we derive
that the value overshadowing happens in the operation:
• Some error patterns result in small magnitudes of the

operand (smaller than the magnitude of the other operand
in the operation); the application outcome is acceptable.

• The other error patterns result in larger magnitudes of the
operand (larger than those in the first condition) but the
application outcome is not acceptable.

The error masking of the value shadowing is quantified as x/y,
where x is the number of error patterns in the first condition
and y is the number of all error patterns. For example, suppose
we have an addition operation (a + b, a = 1000 and b = 1)
and b is our target data object. We enumerate error patterns in
b (assuming 32 single-bit-flip error patterns). If five patterns
result in the values of b as 0, 3, 5, 9 and 17, which are smaller
than a and the application outcome is acceptable, and the other
26 patterns result in larger b (larger than 0, 3, 5, 9, and 17)
but the application outcome is not acceptable, then the value
overshadowing happens (the corrupted b is overshadowed by
a), and is quantified as 5/32.

The deterministic fault injector is a tool to resolve those
error masking analyses undetermined by the trace analysis
tool. The input to the deterministic fault injector is a list
of fault injection sites generated by the trace analysis tool.

6

Fig. 3: MOARD, a tool for modeling application resilience to transient faults on data objects

Similar to the application trace generation, the deterministic
fault injector is also based on the LLVM instrumentation. We
use the LLVM instrumentation to count dynamic instructions
and trigger bit flips. The application execution will trigger bit
flip when a fault injection site is encountered.

To accelerate the calculation of aDVF, we leverage the
existing work [7], [20] that explores “error equivalence” based
on the similarity of intermediate execution states to avoid
repeated analysis and fault injections on instructions. During
our evaluation, MOARD calculates aDVF for 16 data objects
in eight benchmarks within one day on a cluster of 256 cores,
which is comparable to the execution time of existing fault
injection work [7], [20].

V. EVALUATION

In this section, we use aDVF as an metric to evaluate
application resilience to transient faults on data objects with a
set of benchmarks. Furthermore, we validate the accuracy of
our aDVF calculation. We also compare aDVF calculation with
the traditional fault injection to show the power and benefits
of aDVF calculation.

A. Evaluating Application Resilience to Transient Faults on
Data Objects Using aDVF

We study 12 data objects from six benchmarks of the NAS
parallel benchmark (NPB) suite and four data objects from
two scientific applications. Those data objects are chosen to
be representative: they have various data access patterns and
participate in different execution phases. Table I gives details
on the benchmarks and applications. The maximum error
propagation path for aDVF analysis is 50, for which we do not
lose analysis accuracy as we discuss in Section III-D. Similar
to [7], [20], [23], we only study single-bit errors because they
are the most common errors.

Figure 4 shows the aDVF results and breaks them down
into the three levels (i.e., the operation level, error propagation
level, and algorithm level).

Error masking happens commonly in data objects across
benchmarks and applications including those scientific appli-
cations (e.g., LULESH and AMG) that are highly sensitive
to data correctness. Several data objects (e.g., r in CG, and
exp1 and plane in FT) have aDVF values close to 1 in
Figure 4, which indicates that most operations working on
these data objects have error masking. Those data objects are
double-precision floating-point and their error masking mainly
comes from value overshadowing and overwriting (Figure 5).
However, a couple of data objects have much less intensive

error masking. For example, the aDVF value of colidx in CG
is only 0.28 (Figure 4). Further study reveals that colidx is an
integer array to store indexes of sparse matrices and there is
few operation-level or error propagation-level error masking
(Figure 5). Its corruption can easily cause segmentation error
caught by the deterministic fault injection. grid points in SP
and BT also have a small aDVF value (0.06 and 0.38 for SP
and BT respectively in Figure 4). Further study reveals that
the array grid points defines input problems for SP and BT.
An error in grid points can easily cause major changes in
computation caught by the error propagation analysis.

Evaluation conclusion 1: The above aDVF-based analysis
reveals the variation of application resilience to transient faults
on data objects and provides insights on whether the corruption
on a data object impacts application outcomes, which is useful
to direct fault tolerance mechanisms.

We further notice that the data objects colidx and r in
CG have 2.19e+09 and 4.54e+07 error masking events (not
shown in Figure 4), respectively. Although colidx has more
error masking events, CG is not more resilient to errors on
colidx than on r. In particular, 75% bit flips that happen in the
elements of colidx involved in the operations of CG causes
incorrect application outcome or segmentation faults, while
less than 1% in r. The above observation provides a strong
support to introduce the metric, aDVF.

Evaluation conclusion 2: Simply counting the number of
error masking events is not sufficient to evaluate application
resilience to errors on data objects.

We further look into the results based on the analysis of the
three levels. Operation-level error masking is very common.
Figure 4 shows that there are 12 data objects whose operation-
level error masking contributes more than 70% of the aDVF
values. For exp1 in FT and rhoi in SP, the contribution of the
operation-level error masking is close to 99%.

We further notice that the contribution of error masking
at the error propagation level to the aDVF result is very
limited. For most of the data objects, the contribution is less
than 10% (Figure 4). For five data objects (colidx in CG,
grid points and u in BT, and grid points and rhoi in SP),
there is no such error masking. Note that our analysis at the
error propagation level is valid even if we increase the error
propagation length. We discuss the impact of error propagation
length in Section III-D.

Different from error masking at the error propagation level,
the contribution of the algorithm-level error masking to the
aDVF result is relatively large. For example, the algorithm-

7

TABLE I: Benchmarks and applications for the study

Name Benchmark description Code segment for evaluation Target data objects
CG (NPB) Conjugate Gradient, irregular memory access (input class S) The routine conj grad in the main loop The arrays r and colidx
MG (NPB) Multi-Grid on a sequence of meshes (input class S) The routine mg3P in the main loop The arrays u and r
FT (NPB) Discrete 3D fast Fourier Transform (input class S) The routine fftXYZ in the main loop The arrays plane and

exp1
BT (NPB) Block Tri-diagonal solver (input class S) The routine x solve in the main loop The arrays

grid points, u
SP (NPB) Scalar Penta-diagonal solver (input class S) The routine x solve in the main loop The arrays rhoi and

grid points
LU (NPB) Lower-Upper Gauss-Seidel solver (input class S) The routine ssor The arrays u and rsd

LULESH [21] Unstructured Lagrangian explicit shock hydrodynamics (input 5x5x5) The routine CalcMonotonicQRegion-
ForElems

The arrays
m elemBC and
m delv zeta

AMG2013 [22] An algebraic multigrid solver for linear systems arising from problems on
unstructured grids (we use GMRES(10) with AMG preconditioner). We use
a compact version from LLNL with input matrix aniso.

The routine hypre GMRESSolve The arrays ipiv and A

0

0.5

1

u rsdaD
V

F

Data object

LU

The operation level The error propagation level The algorithm level

0

0.5

1

u r

MG

0

0.5

1

zeta elemBC

LULESH

0

0.5

1

grid_points rhoi

SP

0

0.5

1

grid_points u

BT

0

0.5

1

exp1 plane

FT

0

0.5

1

r colidx

CG

0

0.5

1

ipiv A

AMG

la
rg

er
 is

 b
et

te
r

Fig. 4: The breakdown of aDVF results based on the three level analysis. The x axis is the data object name.

0

Value overwritting Value overshadowing Logic and comparison operations

0

0.5

1

r colidx

CG

0

0.5

1

u rsdaD
V

F

Data object

LU

0

0.5

1

u r

MG

0

0.5

1

zeta elemBC

LULESH

0

0.5

1

grid_points u

BT

0

0.5

1

exp1 plane

FT

0

0.5

1

grid_points rhoi

SP

0

0.5

1

ipiv A

AMG

L
ar

ge
r

is
 b

et
te

r

Fig. 5: The breakdown of aDVF results based on value overwriting, value overshadowing, and logic and comparison operation at the levels
of operation and error propagation. The x axis is the data object name. zeta and elemBC in LULESH are m delv zeta and m elemBC.

level error masking contributes 19% to the aDVF value for
u in MG and 27% for plane in FT (Figure 4). The large
contribution for u in MG is consistent with the existing
work [14]. For FT (particularly 3D FFT), the large contribution
of algorithm-level error masking in plane comes from frequent
transpose and 1D FFT computations that average out the
data corruption. CG, as an iterative solver, is known to have
the algorithm-level error masking because of the iterative
nature [24]. Interestingly, the algorithm-level error masking in
CG contributes most to application resilience to transient faults
on colidx which is a vulnerable integer data object (Figure 4).

Evaluation conclusion 3: The aDVF analysis gives us deep
information on how errors are tolerated. This may be useful
for refactoring application (e.g., using different algorithms

or different data structures and data types) to improve error
tolerance of data objects.

We further break down the aDVF results based on clas-
sifications of the value overwriting, logical and comparison
operations, and value overshadowing) based on the analysis at
the operation and error propagation levels, shown in Figure 5.
We have the following observation.

The value overshadowing is very common, especially for
(double-precision) floating point data objects (e.g., u in BT,
zeta in LULESH, and rhoi in SP in Figure 5). This finding
has an important indication for studying application-level error
tolerance. We have the following conclusion: the impact of
data corruption can be correlated with the input problem,
because different input problems can have different values

8

of the data objects, which in turn have different effects
of value overshadowing. Hence, the existing conclusions on
application-level fault tolerance [4], [5], [6], [15], [25] with
single input problems must be re-examined with different input
problems to validate the conclusions of application resilience.

B. Model Validation

In this section, we aim to (1) validate the accuracy of our
approach to calculate aDVF, and (2) demonstrate that aDVF
correctly quantifies application resilience to transient faults on
data objects.

We validate our modeling approach by comparing the aDVF
result with the result of exhaustive fault injection (particularly,
the success rate of exhaustive fault injection tests). The ex-
haustive fault injection is different from the traditional random
fault injection. With an exhaustive fault injection campaign,
we inject faults into all valid fault injection sites. A valid
fault injection site is a bit in an instruction operand or output
that has a value of the target data object. We use those fault
injection sites, because we quantify application resilience to
transient faults on data objects. The exhaustive fault injection
is accurate to quantify application resilience to transient faults
on data objects, because of its full coverage of all fault sites.
However, the number of valid fault injection sites can be
very large (e.g., trillions of sites in CG (Class A)). Hence,
although the exhaustive fault injection is accurate and good for
model validation in this section, this method is not practical,
compared with aDVF.

Note that the aDVF result cannot be exactly the same as
the exhaustive fault injection result, because the definitions
of aDVF and exhaustive fault injection are different. Hence,
we validate the modeling accuracy by quantifying application
resilience to transient faults for multiple data objects, and
then ranking them based on the quantification. Ideally, the
rank order of data objects based on the aDVF calculation
should be exactly the same as that based on the exhaustive
fault injection. A correct order of data objects in terms of
application resilience to transient faults is critical to decide
which data objects should be protected by fault tolerance
mechanisms.

We focus on a function (conj grad()) from CG and
a function (CalcMonotomicQRegionForElems()) from
LULESH. We study major data objects in the two functions
(those data objects take most of memory footprint). We use
single-bit flip in fault injection. The results are shown in Fig-
ure 6. We notice that the aDVF and exhaustive fault injection
rank the data objects in the same order. aDVF correctly reflects
application resilience to transient faults on data objects.

C. Comparing aDVF Calculation with the Traditional Ran-
dom Fault Injection (RFI)

We compare aDVF calculation with RFI. We aim to reveal
the limitation of this traditional approach, and demonstrate the
predictive power of aDVF, compared to RFI.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

rowstrcolidx a p q m_z m_x m_y

CG LULESH

Success rateaD
V

F

aDVF success rate (exhaustive fault injection)

La
rg

er
is

be
tte

r

Fig. 6: Model validation against exhaustive fault injection. The x axis
shows the data object name.

0.
27 0.

28
0.

25

0.1

0.2

0.3

500 1000 1500 2000 2500 3000 3500 aDVF

m_x m_y m_z

The number of fault injection tests

Su
cc

es
s r

at
e

Fig. 7: The RFI results with the margin of error (the confidence level
95%) and aDVF results. The results are for three data objects (m x,
m y, and m z) from CalcMonotomicQRegionForElems() of
LULESH.

1) RFI: We use the following method for RFI. We use valid
fault injection sites, as defined in Section V-B, for RFI. In each
fault injection test, we randomly trigger a single-bit flip in a
valid fault injection site. The number of fault injection tests
is determined by a statistical approach [26] using confidence-
level of 95% to ensure statistical significance. We do seven sets
of fault injection tests, and the number of fault injection tests in
the seven sets ranges from 500 to 3500 with a stride of 500. We
use three equal-sized, floating-point arrays (m x, m y, and
m z) in the function CalcMonotomicQRegionForElems()
of LULESH for study.

Figure 7 shows the results of RFI (the success rate). The
figure also shows the margin of error (shown as small red
bars in the figure). The results reveal that the results of
RFI are sensitive to the number of fault injection tests. For
example, for m z, the success rates of RFI are 0.28 and 0.19
for 1000 and 3000 random fault injection tests, respectively.
There is 49% difference between the two results. Furthermore,
in terms of application resilience to transient faults on data
objects, we cannot rank the three target data objects in a
consistent order across the seven test sets. For example, the
success rate of RFI for m x is lower than that for m z, when
the number of fault injection tests is 500, 1000, and 1500.
However, the observation is opposite, when the number of
fault injection tests is 2000 and 3500. In other words, using
RFI, we cannot make any conclusion that LULESH is more
resilient to transient faults on a data object than on another data
object (even through the margin of error is considered). The
reason is three-fold: randomness of RFI, limited confidence
level, and inability to capture error masking events.

9

2) aDVF: We measure aDVF of the three data objects.
Figure 7 shows the results (see the last group of bars). We rank
the three objects in a determined order (i.e., no inconsistence in
the aDVF calculation results, no matter how many times we
calculate aDVF). The order is also verified by the accurate,
exhaustive fault injection (see Section V-B for discussion).
Having a determined order is important for guiding error
tolerant designs (e.g., deciding which data object should be
protected by a fault tolerance mechanism).

Evaluation conclusion 4: The calculation of aDVF is
deterministic, meaning that we can deterministically rank data
objects in terms of application resilience to transient faults on
the data objects. Using the traditional RFI, we cannot do so.
RFI can be ineffective for guiding error tolerant designs.

VI. CASE STUDY

In this section, we study a case of using aDVF to help
system designers decide whether a specific application-level
fault tolerance mechanism is helpful to improve application
resilience to transient faults on data objects.

Application-level fault tolerance mechanisms, such as
algorithm-based fault tolerance [27], [28], [29], are extensively
studied as a means to increase application resilience to tran-
sient faults on data objects. However, those mechanisms can
come with big performance and energy overheads (e.g., 35%
performance loss in [3]). To justify the necessity of using
those mechanisms, we must quantify the effectiveness of those
mechanisms. With the introduction of aDVF, we can evaluate
if application resilience to transient faults on data objects is
effectively improved with fault tolerance mechanisms in place.

We focus on a specific application-level fault tolerance
mechanism, the algorithm-based fault tolerance (ABFT) for
general matrix multiplication (C = A× B) [28]. This ABFT
mechanism encodes matrices A, B, and C into a new form
with checksums. If an error happens in an element of C,
leveraging the checksums, we are able to correct and detect the
erroneous element. We apply the aDVF analysis on this ABFT
and the matrix C is the target data object. We compare the
aDVF values of C with and without ABFT. Figure 8 shows the
results. The figure shows that ABFT effectively improves error
tolerance of C: the aDVF value increases from 0.0172 to 0.82
(the larger is better). The improvement mostly comes from
the value overwriting during error propagation. This result is
expected because a corrupted element of C is not corrected
by ABFT right away. Instead, it will be corrected in a specific
verification phase of ABFT during error propagation.

Given the effectiveness of this ABFT, we further explore
whether this ABFT can help us improve resilience to transient
faults on a data object in an application, Particle Filer (PF)
from Rodinia [30], without knowing the application resilience
of PF. PF has a critical variable, xe, which is repeatedly
used to store vector multiplication results. Given the fact that
a vector can be treated as a special matrix, we can apply
ABFT to protect xe for those vector multiplications. Using
xe as our target data object, we perform the aDVF analysis
with and without ABFT. We want to answer a question: Will

0

0.2

0.4

0.6

0.8

1

ABFT_[C] [C]

aD
V

F

The algorithm level
The error propagation level
The operation level

0

0.2

0.4

0.6

0.8

1

ABFT_[C] [C]

aD
V

F

Logic and comparison operations
Value shadowing
Value overwritting

La
rg

er
is

be
tte

r

Fig. 8: Using aDVF analysis to study application resilience to
transient faults on C in matrix multiplication (MM). Notation: [C] is
MM without applying ABFT on C; ABFT [C] is MM with ABFT
taking effect.

0

0.2

0.4

0.6

0.8

1

ABFT_[xe] [xe]

aD
V

F

The algorithm level
The error propagation level
The operation level

0

0.2

0.4

0.6

0.8

1

ABFT_[xe] [xe]

aD
V

F

Logic and comparison operations
Value shadowing
Value overwritting

La
rg

er
 is

 b
et

te
r

Fig. 9: Using aDVF analysis to study the effectiveness of ABFT for
a data object xe in PF. [xe] has no protection of ABFT; ABFT [xe]
has ABFT taking effect on xe.

using ABFT be an effective fault tolerance mechanism for
protecting xe in PF?

Figure 9 shows the results. The figure reveals that using
ABFT does not improve much application resilience to tran-
sient faults on the data object xe: there is only little change
to the aDVF value (0.48 vs. 0.475). We find two reasons for
it: (1) The operation-level error masking accounts for a large
part of error masking, no matter whether we use ABFT or not;
(2) Most errors corrected by ABFT are also correctable by PF.
The second reason is demonstrated by the following fact: with
ABFT, the number of error masking events increases at the
error propagation level but decreases at the algorithm level.
But in total, the number of error masking events at the both
levels with ABFT is almost the same as without ABFT. This
case study is a clear demonstration of how powerful the aDVF
analysis can direct error tolerance designs.

VII. DISCUSSIONS

A. Program Optimization by aDVF

aDVF has many potential usages. We discuss two cases that
use aDVF to optimize programs.

Code optimization: Programmers have been working on
code optimization to improve performance and energy ef-
ficiency. However, the impact of code optimization on ap-
plication resilience is often ignored. There are cases where
optimizing code to improve application resilience is neces-
sary (e.g., [31] and [32]). The code optimization (including
common compiler optimization on applications) can change
memory access patterns and runtime values of data objects,
which in turn impacts error propagation and value shadowing.
aDVF and its analysis give programmers a feasible tool to
study and compare application resilience (from the perspective

10

of data objects) before and after code optimization. The
aDVF analysis is also helpful to pinpoint which part of the
application code is vulnerable from the perspective of data
objects, and hence demands further optimization.

Algorithm choice: To solve a specific computation prob-
lem, we can have multiple algorithm choices. For example,
to solve the Poisson’s equation on a 2D grid, we could
use direct method (Cholesky factorization), Multigrid, or red-
black successive over relaxation. Different algorithms have
different implications on data distribution, parallelism, and
blocking [33]. Which algorithm should be employed depends
on users’ requirements on performance, energy/power effi-
ciency and resilience. aDVF and its analysis can help users
(especially those users working on HPC) make the algorithm
choice from the perspective of application resilience. It would
be also interesting to integrate the aDVF analysis with pro-
gramming language and compiler for algorithm choice, such
as PetaBricks [33].

B. Beyond Single-Bit Errors

MOARD and aDVF calculation are general, meaning that
they can be used for analyzing single-bit errors and multi-bit
errors. In our study and evaluation, we focus on single-bit
errors for two reasons: (1) Multi-bit errors rarely occur in
HPC systems, and most of the existing studies on application
resilience focus on single-bit errors; (2) Existing work reveals
that multi-bit errors can have similar effects as single-bit errors
on applications [34].

To use MOARD and aDVF for analyzing multi-bit errors,
we need to make the following extension. (1) Define multi-
bit error patterns. For example, for two-bit errors, the error
pattern could be spatially contiguous; it could also be spatially
separated (the spatial separation is four bits, for example).
(2) Re-implement the function f (defined in Equation 1)
in MOARD. This indicates that we must re-examine error
masking. For the operation-level analysis, the effects of logical
and comparison operations and value overshadowing will be
different from that for single-bit errors; the effect of value
overwriting may be the same as that for single-bit errors. For
the error propagation analysis, we can use the same method
as for single-bit errors to track error propagation, but the
empirical bound of error propagation (i.e., the parameter k
in Section III-D) must be reset using fault injection tests. For
the algorithm-level analysis, we use the same fault injection-
based method as for single-bit errors, but the injected errors
must follow the defined error pattern.

C. Impact of Input Problems

The aDVF analysis is input dependent. This means that an
application with different input problems may have different
aDVF values for a data object. Such input dependence is be-
cause of multiple reasons. First, the effectiveness of operation-
level error masking is input dependent. For example, a bit
shifting operation for integers, x >> y, can tolerate a single
bit error in the least significant bit of x if y = 1, but can
tolerate three single bit errors in the three least significant bits

of x if y = 3. Second, different input problems can result in
different control flows, which in turn results in different error
propagation. Third, different input problems can result in the
employment of different algorithms. Different algorithms can
result in different algorithm-level error masking.

Because of input dependence nature of the aDVF analysis,
we must do the aDVF analysis whenever the application
changes its input problem. This is a common limitation for
many resilience study, including fault injection, AVF [35],
[13], PVF [36], DVF [37] and [18]. However, a static analysis-
based method cannot address the limitation because of unre-
solved branches and data values. Fortunately, MOARD allows
a user to easily leverage hardware resource to parallelize the
analysis (e.g., deterministic fault injection and trace analysis),
making the analysis easy and efficient, even if the user has
to repeatedly do the aDVF analysis. Furthermore, leveraging
common iterative structures of HPC applications, analyzing a
small trace of the application instead of the whole trace is
often enough. This makes the repeated aDVF analysis even
more feasible. Nevertheless, studying the sensitivity of aDVF
analysis to input problems is our future work.

VIII. RELATED WORK

Application-level random fault injection. Casa et al. [14]
study the resilience of an algebraic multi-grid solver by in-
jecting errors into instruction output based on LLVM. Similar
work can be found in [4], [15]. Li et al. [5] build a binary
instrumentation-based fault injection tool for random fault
injection. Hari et al. [7], [20] aggressively employ static and
dynamic program analyses to reduce the number of fault
injection tests. Menon and Mohror [38] apply algorithmic
differentiation to predict the impact of a SDC on application
output to avoid fault injection. Those research efforts do not
sufficiently consider application semantics (e.g., algorithm-
level fault tolerance), hence provide limited guidance to some
application-level fault tolerance mechanisms. However, those
research efforts can complement our work by accelerating fault
injection. Vishnu et.al [18] associate data semantics with fault
injection to build a machine learning model to predict applica-
tion errors. However, the data semantics is only introduced at
main memory, not registers; also the machine learning model
has to be trained and has no accuracy guarantee. Our method
does not have the above limitation.

Resilience metrics. Architectural vulnerability factor (AVF)
is a hardware-oriented metric to quantify the probability of an
error in a hardware component resulting in incorrect applica-
tion outcomes. It was first introduced in [35], [13] and then
attracted a series of follow-up work. This includes statistical
modeling techniques to accelerate AVF estimate [39], online
AVF estimation [40], Yu et al. [37] introduce a metric, DVF.
DVF captures the effects of application and hardware on error
tolerance of data objects. In contrast to AVF and DVF, aDVF
is a highly application-oriented metric.

IX. CONCLUSIONS

Understanding application resilience (or error tolerance) in
the presence of hardware transient faults on data objects is

11

critical to ensure computing integrity and enable efficient
application level fault tolerance mechanisms. The traditional
methods (such as random fault injection) cannot help because
of losing data semantics and insufficient information on how
and where errors are tolerated. This paper introduces a funda-
mentally new method to quantify application resilience to tran-
sient faults on data objects. In essence, our method measures
error masking events at the application level and associates
the events with data objects. We perform a comprehensive
classification of error masking events and create a series of
techniques to recognize them. We develop an open source tool
to quantify application resilience from the perspective of data
objects. We hope that our method can make the quantification a
common practice. Currently, the deployment of fault tolerance
mechanisms is often a problem because of a lack of a method
to quantify its effectiveness on protecting data objects. Our
work provides a tangible solution to address the problem.

Acknowledgements. This work is partially supported by
U.S. National Science Foundation (CNS-1617967, CCF-
1553645 and CCF-1718194) and LLNL subcontract B629135.
We thank anonymous reviewers for their valuable feedback.

REFERENCES

[1] Z. Chen, “Online-ABFT: An Online ABFT Scheme for Soft Error
Detection in Iterative Methods,” PPoPP, 2013.

[2] T. Davies and Z. Chen, “Correcting Soft Errors Online in LU Factoriza-
tion,” in International ACM Symposium on High-Performance Parallel
and Distributed Computing (HPDC), 2013.

[3] P. Du, A. Bouteiller, G. Bosilca, T. Herault, and J. Dongarra, “Algorithm-
based Fault Tolerance for Dense Matrix Factorizations,” in PPoPP, 2012.

[4] J. Calhoun, L. Olson, and M. Snir, “FlipIt: An LLVM Based Fault
Injector for HPC,” in Workshops in Euro-Par, 2014.

[5] D. Li, J. S. Vetter, and W. Yu, “Classifying Soft Error Vulnerabilities in
Extreme-Scale Scientific Applications Using a Binary Instrumentation
Tool,” in International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), 2012.

[6] G. Li, K. Pattabiraman, C.-Y. Cher, and P. Bose, “Understanding
Error Propagation in GPGPU,” in International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2016.

[7] S. K. S. Hari, S. V. Adve, H. Naeimi, and P. Ramachandran, “Re-
lyzer: Exploiting Application-level Fault Equivalence to Analyze App.
Resiliency to Transient Faults,” in ASPLOS, 2012.

[8] LLVM, “LLVM Language Reference Manual,” http://llvm.org.
[9] K. Pattabiraman, Z. Kalbarczyk, and R. K. Iyer, “Application-Based

Metrics for Strategic Placement of Detectors,” in Pacific Rim Interna-
tional Symposium on Dependable Computing, 2005.

[10] A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski, “Design,
Modeling, and Evaluation of a Scalable Multi-level Checkpointing
System,” in Conference on High Performance Computing Networking,
Storage and Analysis (SC), 2010.

[11] Anonymous, “MOARD: Modeling Application Re-
silience to Transient Faults on Data Objects,”
https://github.com/PASAUCMerced/MOARD.

[12] M. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S. Adve, and
Y. Zhou, “Understanding the Propagation of Hard Errors to Software
and Implications for Resilient System Design,” in ASPLOS, 2008.

[13] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“A Systematic Methodology to Compute the Architectural Vulnerabil-
ity Factors for a High-Performance Microprocessor,” in International
Symposium on Microarchitecture, 2003.

[14] M. Casas, B. R. de Supinski, G. Bronevetsky, and M. Schulz, “Fault
Resilience of the Multi-grid Solver,” in ICS, 2012.

[15] V. C. Sharma, A. Haran, Z. Rakamaric, and G. Gopalakrishnan,
“Towards Formal Approaches to System Resilience,” in Pacific Rim
International Symp. on Dependable Computing, 2013.

[16] M. Rinard, H. Hoffmann, S. Misailovic, and S. Sidiroglou, “Patterns and
Statistical Analysis for Understanding Reduced Resource Computing,”
in OOPSLA, 2010.

[17] D. H. Bailey, L. Dagum, E. Barszcz, and H. D. Simon, “NAS Parallel
Benchmark Results,” in International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 1992.

[18] A. Vishnu, H. v. Dam, N. R. Tallent, D. J. Kerbyson, and A. Hoisie,
“Fault Modeling of Extreme Scale Applications Using Machine Learn-
ing,” in IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), 2016.

[19] Y. S. Shao and D. Brooks, “ISA-Independent Workload Characterization
and its Implications for Specialized Architectures,” in IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software
(ISPASS), 2013.

[20] S. K. Sastry Hari, R. Venkatagiri, S. V. Adve, and H. Naeimi, “GangES:
Gang Error Simulation for Hardware Resiliency Evaluation,” in Inter-
national Symposium on Computer Arch., 2014.

[21] I. Karlin, A. Bhatele, and etc., “Exploring Traditional and Emerging
Parallel Programming Models using a Proxy Application,” in IEEE
International Parallel and Distributed Processing Symposium, 2013.

[22] V. Henson and U. Yang, “BoomerAMG: A Parallel Multigrid Solver and
Preconditioner,” Appl. Num. Math, vol. 41, 2002.

[23] R. Venkatagiri, A. Mahmoud, S. K. S. Hari, and S. V. Adve, “Approx-
ilyzer: Towards a Sys. Framework for Instruction-level Approximate
Computing and Its Application to HW Resiliency,” in MICRO, 2016.

[24] M. Shantharam, S. Srinivasmurthy, and P. Raghavan, “Characterizing the
Impact of Soft Errors on Iterative Methods in Scientific Computing,” in
International Conference on Supercomputing (ICS), 2011.

[25] X. Li and D. Yeung, “Application-level Correctness and Its Impact on
Fault Tolerance,” in International Symposium on Computer Arch., 2007.

[26] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical Fault
Injection: Quantified Error and Confidence,” in Conference on Design,
Automation and Test in Europe (DATE), 2009.

[27] Z. Chen, “Algorithm-based Recovery for Iterative Methods without
Checkpointing,” in HPDC, 2011.

[28] P. Wu, C. Ding, and etc., “On-line Soft Error Correction in Matrix
Multiplication,” J. of Computational Sci., vol. 4, no. 6, 2013.

[29] K.-H. Huang and J. A. Abraham, “Algorithm-Based Fault Tolerance for
Matrix Operations,” IEEE Transactions on Computers, vol. C-33, no. 6,
pp. 518–528, 1984.

[30] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in IISWC, 2009.

[31] Debra Werner, “HPE Supercomputer in Orbit is Ready for Researchers,”
https://spacenews.com/hpe-supercomputer.

[32] K. Maeng, A. Colin, and B. Lucia, “Alpaca: Intermittent execution
without checkpoints,” Proceedings of ACM Programming Language,
2017.

[33] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and
S. Amarasinghe, “Petabricks: A language and compiler for algorithmic
choice,” in PLDI, 2009.

[34] B. Sangchoolie, K. Pattabiraman, and J. Karlsson, “One Bit is (Not)
Enough: An Empirical Study of the Impact of Single and Multiple Bit-
Flip Errors,” in International Conference on Dependable Systems and
Networks, 2017.

[35] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. S. Mukherjee,
and R. Rangan, “Computing Arch. Vulnerability Factors for Address-
Based Structures,” in International Symposium of Computer Architecture
(ISCA), 2005.

[36] V. Sridharan and D. R. Kaeli, “Eliminating Microarchitectural Depen-
dency from Architectural Vulnerability,” in IEEE International Sympo-
sium on High-Performance Computer Architecture (HPCA), 2009.

[37] L. Yu, D. Li, S. Mittal, and J. S. Vetter, “Quantitatively Modeling App.
Resiliency with Data Vulnerability Factor,” in SC, 2014.

[38] H. Menon and K. Mohror, “DisCVar: Discovering Critical Variables
Using Algorithmic Differentiation for Transient Faults,” in PPOPP,
2018.

[39] L. Duan, B. Li, and L. Peng, “Versatile Prediction and Fast Estimation of
Architectural Vulnerability Factor from Processor Performance Metrics,”
in HPCA, 2009.

[40] X. Li, S. V. Adve, P. Bose, and J. Rivers, “Online Estimation of Arch
Vulnerability Factor for Soft Errors,” in ISCA, 2008.

12

	I Introduction
	II Background
	II-A Fault Model
	II-B Error Masking

	III Error Tolerance Modeling
	III-A General Description
	III-B aDVF: A New Metric
	III-C Operation-Level Analysis
	III-D Error Propagation Analysis
	III-E Algorithm-Level Analysis

	IV Implementation
	V Evaluation
	V-A Evaluating Application Resilience to Transient Faults on Data Objects Using aDVF
	V-B Model Validation
	V-C Comparing aDVF Calculation with the Traditional Random Fault Injection (RFI)
	V-C1 RFI
	V-C2 aDVF

	VI Case Study
	VII Discussions
	VII-A Program Optimization by aDVF
	VII-B Beyond Single-Bit Errors
	VII-C Impact of Input Problems

	VIII Related Work
	IX Conclusions
	References

