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Always be Two Steps Ahead of Your Enemy∗

Maintaining a routable overlay under massive churn in networks with an almost

up-to-date adversary

Thorsten Götte† Vipin Ravindran Vijayalakshmi‡ Christian Scheideler§

Abstract

We investigate the maintenance of overlay networks under massive churn, where an adversary
may churn a constant fraction αn of nodes over the course of O(log n) rounds. In particular, the
adversary has an almost up-to-date information of the network topology as it can observe only a
slightly outdated topology that is at least 2 rounds old with a provably minimal restriction that
new nodes can only join the network via nodes that have taken part in the network for at least
one round. We show that it is impossible to maintain a connected topology if adversary has up-
to-date information about the nodes’ connections. As our main result we present an algorithm
that constructs a new overlay- completely independent of all previous overlays - every 2 rounds.
Furthermore, each node sends and receives only O(log3 n) messages each round. As part of our
solution we propose the Linearized DeBruijn Swarm (LDS), a highly churn resistant overlay, which
will be maintained by the algorithm. However, our approaches can be transferred to a variety of
classical P2P topologies where nodes are mapped into the [0, 1)-interval.

1 Introduction

Peer-to-peer (P2P) networking has proven to be a useful technique to construct resilient decentralized
systems. In a P2P architecture the nodes are connected via the Internet and form a logical network
topology, also known as an overlay network. Within the overlay each node has a logical address and
logical links that allows it to search and store information in the network.

A key requirement for all applications that rely on P2P networks is reliable communication between
all nodes, i.e., each node should be able to send a message to another node at all times. This is
complicated by the fact that in every large-scale system, errors and attacks are the rule rather than the
exception. At the same time there is usually no or only little admission control for new participants.
This implies a massive amount of churn, i.e., nodes joining and leaving the network at any given time.
In fact, empirical studies have shown that 50% of all nodes are subjected to churn over the course of an
hour [20]. This alludes for robust and distributed protocols that maintain connected overlays in spite
of heavy churn.

In this work we deal with the problem of maintaining a routable overlay under adversarial churn.
We define an overlay as routable, if each node in every round is able to send a message to a given logical
address p ∈ [0, 1). In each round the adversary picks a set of nodes that leave the network and proposes
a set nodes that join the network.

It is easy to see that an adversary that knows all connections between the nodes can simply partition
the network by churning out the neighborhood of a node. Previous literature, e.g., [3, 2, 6], therefore
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considered models with an additional restriction, where the adversary has slightly outdated information
about the nodes’ connections. In particular, the adversary could access all information that is at least
O(log logn) rounds old, where n ∈ Z

+ is the minimal number of nodes in the network in each round.
This includes the nodes’ connections, internal states, random decisions, the contents of all messages, etc.
Within these O(log logn) rounds the nodes execute a distributed algorithm that completely rearranges
the network topology. However, we remark that the techniques presented in [3, 2, 6] cannot be used if
one wants to grant the adversary access to even more recent information.

To overcome above mentioned restriction, we propose a trade-off in the form of a (a, b)-late omni-
scient adversary that has an almost up-to-date information about the network topology, but is more
outdated with regard to all other aspects. In particular, it has full knowledge of the topology after a
rounds and complete knowledge of messages, internal states, etc. after b rounds. In the real world,
an adversary with similar properties could, e.g., be an agency eavesdropping on an Internet exchange
points. They can see who communicates based on the involved IP-addresses but are unable to decrypt
the messages (or take longer to decrypt them).

Our main contribution is a distributed overlay maintenance algorithm that completely rearranges
the network every 2 rounds and can therefore handle a (2, O(log n))-late adversary. Furthermore,
the algorithm allows for routing a message to a logical address p ∈ [0, 1) within O(log n) rounds. The
algorithms are randomized and the results hold with high probability (w.h.p.)1 . The overlay we consider
in this work is an extension of the Linearized DeBruijn Graph presented in Richa et al. [17] (which by
itself is based on the DeBruijn Graph and draws ideas from Naor and Wieder [16]) that uses quorums
of logarithmic size to send and receive messages. The latter is adapted from Fiat et al. [9], where the
authors use this approach for the Chord-Overlay. We further present a robust algorithm that minimizes
the number of messages sent in every step. Our approach uses several structural properties of the
overlay as well as a careful analysis of non-independent events to ensure fast reconfiguration of the
network.

1.1 Model

We assume that time proceeds in synchronous2 rounds and observe a dynamic set of nodes V :=
(

V0, V1, . . .
)

such that Vt is the set of nodes in round t. Each node is identified by a unique and immutable
identifier denoted by ID. A node u ∈ Vt can send a message to a node v ∈ Vt only if it knows the ID of
node v. In a real-world network these IDs could, e.g., be the nodes’ IP addresses. This results in series
of graphs G :=

(

G0, G1, . . .
)

with Gi = (Vi, Ei) and Et := {(u, v) | u sends a message to v in round t}.
Observe that each Gi is a directed graph. Creating an edge may be compared to sending a UDP (User
Datagram Protocol) message to the desired receiver or establishing a TCP connection. We assume that
a node can create edges to O(log n) different nodes in each round and can send O(polylogn) bits via
each edge. Note that throughout this paper we assume that an ID is of size O(log n).

Our model assumes that the set V is determined by an adversary. This implies, in every round t
the adversary can propose a set Ot ⊂ Vt−1 that leaves the network and a set Jt ⊂ Vt that joins the
network, i.e., Vt := Vt−1 \Ot ∪ Jt. In particular, the adversary has to comply to the following rules.

1. Lateness.

As mentioned in the introduction, we consider the adversary to be (2, O(logn))-late omniscient,
i.e., the adversary has slightly outdated knowledge of the topology, i.e., the series of graphs
G := (G0, G1, . . . ) created through the communication between nodes. In particular, since our
adversary is 2-late in round t the adversary has full knowledge of all graphs until Gt−2. Further, it
has no knowledge of the nodes’ internal states and the contents of messages for O(log n) rounds,
i.e., the adversary learns the content of message sent in round t only in round t+O(log n).

1Throughout this paper w.h.p. means with probability
(

1− 1

nk

)

, where n is the number of nodes and k is a tunable

constant
2Synchronicity is a standard assumpution in the related work as nodes need to react to the adversary’s changes in a

timely manner.
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2. Churn Rate.

For all Vt ∈ V it holds that |Vt| ∈ [n, κn], where κ ≥ 1 is a small constant. In other words,
the number of nodes stays within Θ(n). For a suitable value T ∈ O(log n), we assume that
Vt+T ∩ Vt ≥ (1 − α)n, where α ∈ [0, 1) is a fixed constant. This allows the churn to be O(n) in
each round as long as there is a stable set of size Θ(n) that remains in the network for at least T
rounds.

3. Bootstrap Phase.

We assume that until a round B ∈ O(log2 n) the adversary is inactive and no churn occurs, also
known as the bootstrap phase. We would like to remark that several other works also assume a
bootstrap phase to prepare the random sampling (cf. [3, 2, 6]). Only after the conclusion of the
bootstrap phase, is the adversary allowed to begin churning nodes in or out of the network.

4. Restricted Join.

Additionally, we assume that a new node v ∈ Vt \ Vt−1 can only join the network via a node
w ∈ Vt ∩ Vt−2, i.e., the node v joins via node w in round t. In Section 2 we show that for our
purposes this is a necessary condition. Finally, the number of nodes that join the network via the
same node v ∈ Vt is a constant φ ∈ O(1) 3.

We remark that our model incorporates observations from Stutzbach and Reza [20] that new nodes
join and leave very frequently but there is a (relatively) stable set of older nodes. Note that to the best
of our knowledge this is a significantly more flexible model compared to other related work. Given the
above mentioned constraints, a round t consists of the following four steps.

1. At the beginning of each round the adversary can select a set of nodes Ot ⊂ Vt−1 that leave the
network in round t. These nodes do not receive any messages and leave the network immediately.
Further, the adversary may propose a set of nodes Jt that joins the network in round t. For each
node v ∈ Jt the adversary selects a bootstrap node w ∈ Vt \Jt (satisfying the necessary conditions
for Restricted Join) that receives a reference to v.

2. Next, all nodes that are still in the system receive all messages sent in the previous round. Note
that this even holds for messages that were sent by nodes that were churned out in the current
round. In other words, if a node can send out a message, it will be received.

3. After receiving all messages, a node can perform calculations on its local variables and the received
messages.

4. Finally, each node may send messages to other nodes. Recall that sending a message to another
node implicitly creates an edge in the graph Gt+1. Every message sent in round t is received in
the round t+ 1. Furthermore, due to the lateness condition these edges can only be seen by the
adversary at the beginning of the round t+ 3.

1.2 Related Work

There has been extensive work on analyzing overlay networks under high adversarial churn. As already
mentioned in the introduction, these works had a variety of different model assumptions. See Augustine
and Sivasubramaniam [3] for a comprehensive survey on previous results. In the following, we only
concentrate on models closely related to ours.

First, there was a series of papers (cf. [19, 9, 4]) that assumed only a subset of nodes is subjected
to adversarial churn. However, these nodes could also act byzantine and try to sabotage the overlay’s
maintenance and the routing by sending corrupted messages. A general assumption was that up to a

3In principle our algorithm in Section 4 could be extended to tolerate O(polylog n) joins per node as in [3]. We chose
a constant because a higher number of joins would only increase the number of messages by a poly-logarithmic factor and
does not introduce further algorithmic challenges.
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Table 1: Overview of different models in the literature

Paper Latenessa Churn Rateb Immediate

[3] (O(log logn), O(log logn)) (αn,O(log logn)) Yes

[6] (O(log logn), O(log logn)) (n− n
logn , O(log logn)) Noc

[1] (O(log n), O(log n))
(

O
(

n
logn

)

, O(logn)
)

Yes

Our work (2, O(log n)) (αn,O(log n)) Yes

a An adversary is (a, b)-late if it has full knowledge of the topology after a
rounds and complete knowledge after b rounds.

b The churn rate is (C, T ) if the adversary can perform C join/leaves in T
rounds.

c Nodes remain in the network for additional O(log logn) rounds.

constant fraction of nodes would be malicious. Scheideler [19] present a protocol that spreads these
nodes over the network such that each connected subset of logarithmic size contains a constant fraction
of non-byzantine nodes. Fiat et al. [9] build upon this work and present a full overlay maintenance
algorithm that provided a robust Distributed Hash Table. In their approach, each virtual address
p ∈ [0, 1) is maintained by a committee of O(log n) nodes. We will reuse this idea in our work.

In more recent works all of the nodes are subjected to adversarial churn and not only a fixed set.
However, these works usually do not consider byzantine behavior. The adversary in these papers can
be described by three properties: The lateness, the churn rate, and if it is immediate. We say adversary
is (a, b)-late if it has full knowledge of the topology after a rounds and complete knowledge of all sent
messages, internal states, etc. after b rounds. The churn rate is (C, T ) if the adversary can perform C
join/leaves in T rounds. Last, an adversary is immediate if churned out nodes have to leave the network
immediately and without the possibility to send and receive more messages. Table 1 shows an overview
over the different models. Note that the table is only for comparison as it simplifies some of the models
and does not depict all of their respective nuances. However, these simplifications do not weaken the
adversary.

Augustine et al. [2] present an algorithm that builds and maintains an overlay in the presence of
a nearly completely oblivious adversary. Here, the overlay no longer has a fixed structure but is an
unstructured expander graph of constant degree. Note that this overlay has no virtual addressing.
However, in [1] the authors present a scheme that allows to quickly search for data in these networks.

Further, Drees et al. [6] build a structured expander, a so-called Hd-Graph, which is the union of d
random rings. Their adversary is not only O(log logn)-late with regard to communication, it also has
access to all nodes’ memory and all sent messages after O(log log n). Nodes that are churned out in
round t may remain in the network until some round T ∈ O(t + log logn). Thus, it is not immediate.

Last, the SPARTAN framework presented in [3] probably bears the greatest resemblance with our
work. In SPARTAN the nodes maintain a logical overlay resembling a butterfly network. To ensure
robustness each of the butterfly’s virtual nodes is simulated by O(log n) nodes. The key difference
between our work and SPARTAN is the adversary’s lateness. Similar to [6], the SPARTAN framework
assumes the adversary to be (O(log logn),O(log logn))-late, but in return allows the churn to be as high
as αn in O(log logn) rounds. However, unlike [6], SPARTAN allows the adversary to be immediate.

1.3 Our Contribution

In this work we present an algorithm which given a dynamic set of nodes V :=
(

V0, V1, . . .
)

chosen by a

(2, O(log n))-late adversary, creates a series of graphs G :=
(

G0, G1, . . .
)

with Gi := (Vi, Ei), such that
it holds w.h.p. that Gi is routable, i.e., each node can send a message to a logical address p ∈ [0, 1).

The paper is organized as follows.

• In Section 1.4 we introduce the Linearized DeBruijn Swarm (LDS). This graph topology is based
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on the linearized DeBruijn Graph presented by Richa et al. [17] and the concept of swarms used
by Fiat et al. [9] for the Chord overlay network.

• In Section 2 we show that our model assumptions are necessary in order the solve the problem.
In particular, we show that any adversary can partition a network where nodes can join via
nodes that themselves just joined one round ago. Further, we prove that our model requires the
adversary to be at least 1-late with regard to the topology.

• In Section 3 we present a routing algorithm for the LDS, which optimizes the congestion if we want
guaranteed message delivery. In this section, we also define when a dynamic overlay is routable.

• Section 4 we present our main contribution, an algorithm that rearranges the graph topology such
that it is completely rebuilt every 2 rounds but still allows routing. The message complexity is
O(log3 n) messages per node and round w.h.p4 .

1.4 Definitions and Preliminaries

In this section we present some definitions and results from probability theory that we will use in the
analysis of our algorithms. During our analysis we deal with both dependent and independent random
variables. The two following general classes of random variables will prove to be useful. First, there is
Negative Correlation:

Definition 1 (Negative Correlation, see e.g. [18, p. 31]) A set of random variables X1, X2, . . . , Xn

are said to negatively correlated if any subset XS ⊆ X it holds that,

E

[

∏

i∈S

Xi

]

≤
∏

i∈S

E[Xi].

Here, S ⊆ [1, n] is the set of indices in XS.

Further, there is the slightly stronger notion of Negative Association:

Definition 2 (Negative Association [12, 21]) A set of random variables X1, X2, . . . , Xn are said
to negatively associated (NA) if for any two functions f, g both monotonically increasing (or both mono-
tonically decreasing) defined on disjoint subsets of X it holds that,

E[f(X) · g(X)] ≤ E[f(X)] · E[g(X)].

Note that all independent and hyper-geometric random variables are always NA [7].

Corollary 1 (NA implies Negative Correlation [21]) Let X1, X2, . . . , Xn be a set of NA random
variables. Then for all XS ⊂ X such that i 6= j it holds that,

E

[

∏

i∈S

Xi

]

≤
∏

i∈S

E[Xi].

The following propositions from Joag-Dev and Proschan [12] will be extensively used in many of our
proofs.

Proposition 2 ([12, 7]) If X := (X1, . . . , Xn) and Y := (Y1, . . . , Ym) are negatively associated sets of
random variables that are mutually independent, then the vector (X,Y ) := (X1, . . . , Xn, Y1, . . . , Yn) are
also negatively associated.

4Note that we do not seek to optimize message complexity
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p

v

p S(v2 )

S(v+1
2 )

S(v)

Figure 1: A node v is connected each node in red areas. Note that the swarms S(v), S(v2 ), and S(v+1
2 )

are real subsets. These sets are chosen such that they contain O(log n) nodes w.h.p. Recall that in a
classical Debruijn Graph it would only be connected to the nodes left and right of v i.e., v

2 and v+1
2 .

Proposition 3 ([12, 7]) Let (X1, . . . , Xn) be negatively associated random variables. For some k ≤ n,
let I1, . . . , Ik ⊆ [n] be disjoint index sets. For j ∈ [k], let fj : R|Ik| 7→ R be functions that are all non-
decreasing or all non-increasing. Define Yj := fj(Xi : i ∈ Ij). Then the random variables (Y1, . . . , Yk)
are negatively associated.

Further, we make use of the following Chernoff Bounds, which are defined as follows.

Lemma 4 (Chernoff-Hoeffding Bounds [7, 15]) Let X :=
∑

Xi be the sum of negatively corre-
lated random variables with Xi ∈ {0, 1}.Then it holds that for any 0 < δ < 1,

Pr[X ≥ (1 + δ)E[X ]] ≤ e−
δ
2
E[X]
2

and

Pr[X ≤ (1 − δ)E[X ]] ≤ e−
δ
2
E[X]
3 .

and for any δ ≥ 1, it holds:

Pr[X ≥ (1 + δ)E[X ]] ≤ e−
δE[X]

3 .

Throughout this work we assume that each node in the network is aware of n and κ, i.e., the lower
and upper bound on the number of nodes currently in the network. We make this simplification due
to Stutzbach and Reza [20], that the number of nodes stays relatively stable. Furthermore, in order
to simplify notations, we define λ := 2 log κn 5. We would like to remark that all of our algorithms
presented in this manuscript may be adapted to work with close estimates of λ and λ

n using approaches
presented in [17, 9, 14, 13].

DeBruijn Swarm

We now present our overlay, the Linearized DeBruijn Swarm (LDS), which is a combination of a well-
analyzed network overlay of low degree, i.e., the Linearized DeBruijn Graph (LDG) presented in [17, 8]
with techniques from robust overlays, i.e., the usage of logarithmic quorums that simulate a single node
[9]. Note that the LDG is inspired by but not equivalent to the classical DeBruijn Graph. The notion
of swarms were also described in Fiat et al. [9].

In the remainder of this section we present the LDS’s topology and show some of its basic properties.
Each node v ∈ V chooses a position pv ∈ [0, 1) uniformly and independently at random. Note that for
the sake of convenience, the position of a node v ∈ V , we just write v instead of pv. It should always
be clear from the context if we refer to the node, its ID, or its (current) position. However, we will
attempt to make the context sufficiently clear in order to reduce the level of ambiguity.

All nodes can calculate the distance to another node via the distance function d : V 2 → [0, 1). Given
two nodes v, w ∈ V the distance function d returns the shortest distance (hop counts) between v and
w in the [0, 1)-torus.

5For convenience we assume throughout this work that λ is an integer
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Formally, the function d : V × V 7→ [0, 1) is defined as follows,

d(v, w) :=

{

|v − w| if |v − w| ≤ 1/2

1− |v − w| otherwise.
(1)

Furthermore, the distance function also satisfies the triangular inequality, i.e.,

d(v, w) ≤ d(v, z) + d(z, w) for all z ∈ V. (2)

For convenience we introduce the following notions for the relation between two nodes u, v ∈ V . If
|u − v| ≤ 1/2, then u is left (clockwise) of v if u < v and right (clockwise) otherwise. For |u − v| > 1/2
the relation is reversed. Further, the set 〈u, v〉 ⊂ V contains all nodes which are right of u and also left
of v. Given a node w we say that u is closer to w than v if d(u,w) < d(v, w). Last, we call a node u the
closest neighbor of v if there exists no other node u′ ∈ V closer to v than u, i.e., u := argmin

k∈V
d(k, v).

In the LDG presented by Richa et al. [17], each node v connects to exactly six other nodes. Namely,
the two closest nodes left and right of pv and the two closest node left and right of the points pv

2 and
pv+1

2 respectively. We extend this structure such that, each node connects to O(log n) closest neighbors.
For a given point p ∈ [0, 1) we call S(p) ⊂ V the swarm of p. It holds that v ∈ S(p) if and only if
d(v, p) ≤ cλ

n . Here, c > 1 is a robustness parameter which should be chosen as small as possible. These
swarms (and not the nodes) will be the building blocks of our overlay. We call the swarms S(p) adjacent
to S(p′) if there is an edge (v, w) between every node v ∈ S(p) and w ∈ S(p′). Note that each swarm
S(p) spans an interval of length 2cλ

n as it consists of two intervals of length cλ
n to the left and right of

p respectively. Sometimes it will be necessary to distinguish between the nodes in the left and right
interval of p, so we define SL(p) := {v ∈ S(p) | v is left of p} and SR(p) := {v ∈ S(p) | v is right of p}
as the left and right side of S(p). Given this notion of swarms, we can now formally define the adapted
overlay. Formally the LDS is defined as follows:

Definition 3 (Linearized DeBruijn Swarm) Let V ⊂ [0, 1) be a set of points with |V | = n and
λ := logn. Then, the LDS Gc := (V,EL ∪ EDB) with parameter c ∈ N has the following properties:

• (v, w) ∈ EL ⇐⇒ w ∈ V and d(v, w) ≤ 2cλ
n .

• (v, w) ∈ EDB ⇐⇒ w ∈ V and d
(

v+i
2 , w

)

≤ 3cλ
2n with i ∈ {0, 1}.

A Linearized DeBruijn Swarm is illustrated in Figure 1. Over the course of this paper we will refer
to the edges in EL as list edges, whereas the edges in EDB as DeBruijn edges.

From Definition 3 we state the following lemma.

Lemma 5 (Swarm Property) Consider any point p ∈ [0, 1) and its swarm S(p) ⊂ V . Then S(p) is
adjacent to S

(

p
2

)

and S
(

p+1
2

)

.

Proof: Let p ∈ [0, 1) be any point and v ∈ S(p) be a node in p’s swarm. From Definition 3 this
implies that d(p, v) ≤ cλ

n . We now show that node v has a connection to every node in S
(

p
2

)

and

S
(

p+1
2

)

. For the proof we only analyze adjacency to S
(

p
2

)

, since the other case is analogous. We
distinguish between the following two scenarios.

1. If |p− v| ≤ 1
2 , then from (1) it holds that,

d
(p

2
,
v

2

)

:=
∣

∣

∣

p

2
−

v

2

∣

∣

∣ =
1

2
|p− v| ≤

1

2

cλ

n
. (3)

Let u be any node in S(p2 ), then d
(

u, p
2

)

≤ cλ
n . Then using (2) and (3) we get,

d
(

u,
v

2

)

≤ d
(

u,
p

2

)

+ d
(p

2
,
v

2

)

7



≤
cλ

n
+

cλ

2n

=
3cλ

2n
. (4)

From Definition 3, since node v has a DeBruijn edge to each node w ∈ V with d (v/2, w) ≤ 3cλ/2n,
then using (4) the lemma follows.

2. Otherwise, |p− v| > 1
2 .

Observe that this only occurs if either p ∈
[

0, cλ
n

]

or p ∈
[

1− cλ
n , 1

)

, i.e., the point p is close to
0 or 1 and v lies on the opposite site of the interval. We distinguish between the following two
cases.

(a) If p ∈
[

0, cλ
n

]

, then it also holds that p
2 ∈ [0, p]. Implies,

d
(

v,
p

2

)

≤ d(v, p) ≤
cλ

n
. (5)

Then, by the triangle inequality and inequality (5), it holds that for every node u ∈ S
(

p
2

)

,

d(u, v) ≤ d
(

u,
p

2

)

+ d
(p

2
, v
)

≤
2cλ

n
.

From Definition 3, the node u is then a list neighbor of v and the lemma follows.

(b) Otherwise, if p ∈
[

1− cλ
n , 1

)

then it holds that p
2 ∈

[

1
2 −

cλ
2n ,

1
2

)

. Now consider the distance
between p

2 and v+1
2 . Here, it holds

d

(

v + 1

2
,
p

2

)

:=
∣

∣

∣

v + 1

2
−

p

2

∣

∣

∣ =
1

2
|v + 1− p|.

Observe that since v < p and p < v+1, it holds that |(1+ v)− p| is equivalent to 1− |v− p|.
Therefore, the inequality simplifies to

d

(

v + 1

2
,
p

2

)

=
1

2
(1− |v − p|) =

1

2
d(v, p).

Since 1
2d(v, p) ≤

cλ
2n , applying the triangle inequality we get that for every node u ∈ S(p/2),

d

(

u,
v + 1

2

)

≤ d
(

u,
p

2

)

+ d

(

v + 1

2
,
p

2

)

≤
cλ

n
+

cλ

2n

=
3cλ

2n
. (6)

From Definition 3, since node v has a DeBruijn edge to each node w ∈ V with d (v+1/2, w) ≤
3cλ/2n, then using (6) the lemma follows.

The next lemma shows that if nodes are assigned to the [0, 1)-interval uniformly and independently
at random, then all swarms have roughly the same size w.h.p.

Lemma 6 (Swarm Size) Let the swarm size to be cλ
n with c ≥ 12k and assume all nodes pick their

positions uniformly and independently at random. Then for any point p ∈ [0, 1) it holds that,

Pr

[

1

2
cλ < |S(p)| < 2cλ

]

≥ 1−
2

nk
,

where |S(p)| denoted the number nodes in S(p).
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Figure 2: Example for the first four steps of a trajectory

Proof: The proof follows from a standard application of the Chernoff bound. Given that each node
picks its position uniformly and independently at random in [0, 1)-interval, the probability that a node
chooses a point in an interval of length cλ

n is exactly cλ
n

6.
Let X be a random variable that counts the number of nodes in S(p). For each v ∈ V , let Xv be

a binary random variable such that, Xv = 1, if v picked a position in a swarm S(p) and 0, otherwise.
Clearly, it holds that X :=

∑

v∈V Xv and E[X ] = cλ for every p. Furthermore, it holds that X :=
∑

v∈V Xv is the sum of independent random variables. Hence, using Lemma 4 it holds that for c ≥ 12k,

Pr

[

X ≤
1

2
E[X ]

]

≤ e−
E[X]
12 ≤ e−kλ = n−k. (7)

Moreover, it holds that for c ≥ 2k,

Pr[X ≥ 2E[X ]] ≤ e−
E[X]

2 ≤ e−kλ = n−k. (8)

Then, using (7), (8) and the fact that the expected number of nodes in an interval of size cλ
n is cλ, the

union bound yields the desired result.

Routing in a Linearized DeBruijn Graph

Our routing algorithm described in Section 3 is based on the classical LDG’s routing algorithm presented
in [17, 8]. Before we go into the details of our algorithm, we will first recall the classical LDG’s routing
algorithm. Routing in the LDG works by a bitwise adaption of the target address. Recall that we
assume each node knows λ. Therefore, given any destination p ∈ [0, 1), a node can calculate the first λ
bits (p1, . . . , pλ) of p’s binary representation. Then, starting with the least significant bit pλ, the node
v sends the message to the node closest to x1 := v+pλ

2 . For this, it uses the corresponding DeBruijn

edge. After that, the message is sent to the node closest to x2 := x1+pλ−1

2 . This goes on until the first
bit p1. Finally, as a consequence of Lemma 6 there are w.h.p. only O(log n) hops over list edges left to
p.

Definition 4 (Trajectory) Let v ∈ V be a node and p ∈ [0, 1) be an arbitrary point. Further let
(v1, . . . , vλ) ∈ {0, 1}λ and (p1, . . . , pλ) ∈ {0, 1}λ be the λ most significant bits of v and p respectively.
Then the trajectory τ(v, p) := x0, . . . , xλ+1 ∈ [0, 1)λ+2 is a series of points defined as follows.

xi :=











v i = 0

(pλ−i+1, . . . , pλ, v1, . . . , vλ−i) i ≤ λ

p i = λ+ 1

For each point xi in the trajectory, forward the message to the node closest to it. Then, forward the
message along list edges until it reaches the target.

6Note that since c is a constant and λ ∈ O(logn), therefore for big enough n, cλ

n
≤ 1.
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2 Impossibility Results and Lower Bounds

In this section, we present two fundamental impossibility results for our model. First, we show that it
is impossible to maintain a connected overlay under massive churn and a (0,∞)-late adversary. This
adversary always has up-to-date information about the topology, but is oblivious of everything else,
e.g., the sent messages, the nodes’ random decisions, etc. Second, we show the necessity that new nodes
can only join via bootstrap nodes that are in the network for at least 2 rounds.

We begin with an auxiliary lemma and show that any adversary with a churn rate (αn,O(log n))
can completely exchange the set of nodes within O(log n) rounds if α is a constant. Therefore it simply
churns out the nodes in chunks of size αn.

Lemma 7 Consider any (a, b)-late adversary that proposes a series of nodes V := V0, V1, . . . such that
for all Vt ∈ V it holds that |Vt| ∈ Θ(n) and |Vt ∩ Vt+T | ≥ (1− α)n for T ∈ O(log n) and some constant
α ∈ (0, 1). Then within O(α−1 logn) rounds the adversary can churn out all nodes from V0.

Proof: For simplification assume that α := 1
β with β > 1. and that n

β is an integer. If this is not

the case, the adversary can add/remove some nodes such that it holds.

Now divide the set V0 into β disjoint subsets V 1
1 , . . . , V

β
0 of size n

β each. The adversary’s strategy is

as follows: For i ∈ 1, . . . , β churn out V i
0 in round T · i and replace it with a set Ṽ i of the same size.

Thus, the following three statements hold:

1. Recall that β is a constant. Thus, after β · T rounds all nodes V0 have been churned out.

2. For each node that is churned out in round t a new node is churned in. This ensures that the
number of nodes in each round is n.

3. Within a period of length T only one set of size n
β = αn is churned out. Thus, there always is a

subset of size (1− α)n which remains in the system for T rounds.

Thus, the strategy fulfills all requirements and churns out all nodes from V0 within O(log n) rounds.
This was to be shown.

We now show the impossibility for a (0,∞)-late adversary. The idea behind this proof is as follows:
Consider a node v ∈ Vt joining the network in round t via some node w ∈ Vt. Then only w and all
nodes w communicates with know v. A 0-late adversary can immediately detect and churn out these
nodes. Thus, no node in the entire system knows v. The result is stated in the following lemma.

Lemma 8 A (0,∞)-late adversary with churn rate (αn,O(log n)) for some α ∈ (0, 1), can disconnect
any overlay in O(log n) rounds.

Proof: Let the execution start at round 0 and let V0 be the initial set of nodes with |V0| := n. Now
consider the following strategy:

1. Let a node v join the network in round 0 via any node in V0.

2. Further, let a node w join via v in round 2.

We will show that within O(log n) rounds, a 0-late adversary can separate w from the network.
Let D2 ⊂ V0 be the set of all nodes that v communicates with in round 2. Note that |D2| ∈ O(log n)

because we assume that each node can only communicate with a logarithmic number of other nodes in
one round. As v is the only node that knows w in round 2, it holds that w can only be known by nodes
from D′ := D2 ∪ {v} in round 3. On the other hand, v may have sent a set of IDs Dw ⊂ V0 to w in
round 2. These are the only nodes that w knows.

Since D′ is of logarithmic size, there exists an α ∈ (0, 1) such that it is well within the permitted
churn size per round. Let all nodes in D′ be churned out in round 3, i.e., before they can communicate
with any more nodes. This ensures that w’s ID cannot be known to any node in the system.

Further, w knows only the IDs received from v as it has only communicated with w until now. Now
continue as follows. In each round until all nodes from V0 are gone:

10



1. Churn out every node w communicates with. This ensures that no new node will learn w’s ID.

2. Use the strategy given above to churn out as much nodes from V0 as possible and churn in the
same amount of new nodes. Note that the total number of nodes does not change.

Using Lemma 7 one can easily verify that within O(log n) rounds all nodes from V0 are gone. Since all
ID that w knows belong to nodes from V0 and no node in the network knows w, it is separated from
the network. This concludes the proof.

We continue with the restrictions for the joining nodes. The result is stated in the following lemma.

Lemma 9 Let v ∈ V be a node that joined in round t. Now assume a model where in round t+1 a new
node w ∈ V can join the network via v. Then a (∞,∞)-late adversary with churn rate (αn,O(log n))
for some α ∈ (0, 1) can disconnect any overlay after O(log n) rounds.

Proof: Consider a set of nodes v1, . . . , vT , vT+1 for some T ∈ O(log n) that join the network one
after another such that vi joins via vi−1 in round i. Further, for each vi let Di be the set IDs that it
initially receives from vi−1. Let the execution start at round 0 and let V0 be the initial set of nodes
with |V0| := n.

We first show that the adversary can create a situation where a node vT+1 that joined the network
in round T +1 only receives IDs of churned out nodes and thereby disconnecting the network. Consider
the following strategy: Let V ′ := v0, . . . , vT be a set of nodes such that each vt ∈ V ′ with t > 1 joins
the network in round t via node vt−1. To be precise, this implies that at the beginning of round t, vt−1

knows the ID of vt an can send a message to vt. Any of these messages will arrive t+ 1. Further, each
vt ∈ V ′ is churned out in round t+ 2, i.e., immediately after the round vt+1 joined.

Now let Dt ⊂ V be set of all IDs that vt knows in round t + 1. We now claim that it holds
Dt ⊂ D1 ∪ {vt−1} for all t > 1.

We proof the claim via induction:

• For the induction’s beginning consider t = 1 and the corresponding node v1. Here, the claim
trivially holds as D1 ⊆ D1.

• For the induction’s step consider any vt with t > 1 and assume that the claim holds for vt−1, i.e.,
it holds that Dt−1 ⊂ D1 ∪ {v0, . . . , vt−2}. Now consider the join of vt in round t. Any message
that reaches vt in round t + 1 must be sent in round t. However, in this round only vt−1 knows
vt and therefore only vt−1 may share the references with vt. Thus, Dt can only be a subset of
Dt−1 ∪ {vt−1}. This proves the claim.

Therefore, a node vT that joins in round T ∈ O(log n) only receive references to nodes from V0 in
round T + 1 (from vT−1). Note that any further reference can reach vT only in round T + 2.

By Lemma 7 the adversary may have churned out all nodes from V0 for some T ∈ O(log n). Now
let a new node vT+1 join via vT in round T +1. Then vT cannot introduce vT+1 to any node currently
in the network and further cannot introduce any node w ∈ VT+1 to vT+1. Thus, once vT is churned out
in round T + 2, it holds that vT+1 is isolated from VT+2. This was to be shown.

We would like to remark that this impossibility is different from the similar statement in [2] because
we allow a node to communicate with O(log n) different nodes instead of constantly many.

3 Routing and Sampling in the LDS under Churn

In this section, we present a low-congestion routing algorithm Alg-Routing. The algorithm delivers
each message w.h.p. even in the presence of churn and a changing communication structure. We also
present a sampling algorithm Alg-Sampling that allows each node to send a message to a uniformly
picked random node. The underlying technique is adapted from King et al. [14, 13].

Our algorithm must perform routing over a dynamic series of graphs D := (D1, D2, . . . ) where each
Di is a LDS. However, there are two problems we need to address, i.e., the churn orchestrated by the
adversary and the dynamic reconfiguration of the overlays. The obvious solution would be to send the
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Listing 1: Alg-Routing

1 Desc: This algorithm is executed on a series of routable graphs D := (D1, H1, . . . ).
The algorithm routes a message m from any node u ∈ V1 to swarm S2λ+2(p).

2
3 Note: The following code is executed by each node u ∈ V t every round t. W.l.o.g.

the Forwarding step executed in even rounds and the Handover step is executed

in odd rounds. The initial step may be executed in odd or even rounds.

Messages are delivered to their target swarms in even or odd round

respectively.

4
5 Initial step

6 Upon sending a message m to p
7 (d1, . . . , dλ)←− λ most significant bits of p
8 if t is even:

9 Send
(

p, 0, (d1, . . . , dλ),m, t
)

to all w ∈ St(v)
10 else:

11 Send
(

p, 0, (d1, . . . , dλ),m, t
)

to all w ∈ St+1(v)
12
13 Forwarding Step

14 Upon receiving m :=
(

p, k, (d1, . . . , dλv
),m, t

)

15 if k ≤ λv:

16 x←− v+dk

2
17 (w1, . . . , wr)←− r nodes chosen u.i.r from S(x)
18 Forward m′ :=

(

p, k + 1, (d1, . . . , dλv
), λv

)

to all wi

19 else if t is even:

20 Deliver m all nodes w ∈ St+1(p) in next round

21 else:

22 Deliver m all nodes w ∈ St(p)
23
24 Handover Step

25 Upon switching to Di+1

26 for each message m
27 (w1, . . . , wC)←− r nodes chosen u.i.r from St+1(x)
28 Forward m to all wi
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message not only to the closest node of each trajectory point but to the whole swarm. However, observe
that this trivial adaption to the LDG routing algorithm fails in the presence of churn. Given that any
node on a message’s trajectory can be churned out, a fraction of routing requests may never reach their
destinations. In particular, if the adversary is aware of the topology, it could even churn out the whole
swarm for a given trajectory point. Therefore, we introduce the notion of a good swarm adapted from
Fiat et al. [9]. In their work, a swarm is good if at least a fixed constant fraction of its nodes take part
in the next round and hence refer to such nodes as good.

Here, we need a slightly stronger notion as we require the good nodes to be somewhat well spread
over the swarm to enable our fast construction. To be precise, we say the left (right) side of a swarm
is good if a constant fraction of its nodes is good and the full swarm is good, if both its left and right
side are good. Further, a LDS is good if all its swarms are good. This property implies that there is
always at least a constant fraction of good nodes in each swarm that can forward the message.

Besides the churn there is the problem of the dynamically rearranging overlay. In particular, the
main algorithm we later introduce in Section 4 will create a series of overlays D1, D2, . . . which will
persist for only 2 rounds each. That means a node changes its position every 2 rounds. If now every
node would keep all its routing messages and forward them from its new position, they would lose all
the progress they made so far. Therefore, we define the so-called handover procedure using a helper
graph Hi. For any point p ∈ [0, 1), let Si(p) be the swarm of p in Di and Si+1(p) be the swarm of p in
Di+1. Denote by |Si(p)| the number of nodes in the swarm Si(p). We assume that during the change
from Di to Di+1 each node from Si(p) can send a message to any set of nodes from Si+1(p), i.e., the
nodes from a helper graph Hi where the swarms Si(p) and Si+1(p) are adjacent. Formally, it is defined
as follows:

Definition 5 (Handover Graph) Let D0, D1, . . . be a series of LDS with Di = (Vi, Ei). Then the
helper graph Hi := (Vi ∩ Vi+1, E

H
i ) is defined as follows:

(v, w) ∈ EH
i ⇐⇒ ∃ p ∈ [0, 1) : v ∈ Si(p) ∧ w ∈ Si+1(p)

Given this definition, we can easily see that the following holds:

Lemma 10 (Handover Property) Let p ∈ [0, 1) be an arbitrary point in the [0, 1]-interval and let
Si+1(p) be its swarm in Di+1. Then in Hi every node in Sr

i (p) knows every other node in Sr
i+1(p). The

same holds for the left side.

Proof: As we will see, the property follows almost directly from the definition of swarms and the
handover graph. We will prove the lemma only for the right side as the proof for the left side is
completely analogous. Let v be any node in SR

i+1(p). By the definition of the Handover graph every

node in Si(pv) knows v as clearly v ∈ Si+1(pv). Since v is right of p and within distance cλ
n of p as it is

in p′s swarm, it holds that SR
i (p) ⊂ Si(v). Thus, by combining it with the definition of the Handover

Graph, we get that every node SR
i (p) ⊂ Si(v) must know v. Since this holds for all nodes v ∈ SR

i+1(p),
all nodes in SR

i (p) must know all nodes in SR
i+1(p) and the lemma follows.

Therefore, the switch can (almost) be handled like every other routing step from one swarm to
another. The only difference is that we only send messages from and to the left and right side of each
swarm respectively. However, if we choose the swarm size cλ

n big enough, this makes no difference.
Later, in Section 4 we will see how to implement such a handover graph whereas here we just treat

it as a property for a simpler description. Note that we call a helper graph Hi good if for each p ∈ [0, 1)
a 3/4-fraction of all nodes in Si+1(p) is not churned out in the next round.

We summarize our observations in following definition for a routable series of graphs:

Definition 6 (Routable Graphs) Let D := (D0, H0, D1, H1 . . . ) be series of graphs defined on nodes
V := (V0, V1, . . . ), s.t., each Di consists of nodes in V2i. Then we call D routable, if

1. each Di is a LDS,

2. each Hi enables is a handover from each Di to Di+1, and

3. each Di (and Hi) is good, i.e., it holds |Si(p) ∩ V2i+1| ≥ 3/4 · |Si(p)| for all p ∈ [0, 1).
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3.1 The Routing Algorithm

We now present a routing algorithm Alg-Routing for a dynamic series of routable graphs D :=
(D1, H1, D2, H2, . . . ). A trivial extension of the LDG routing algorithm would send each message to the
whole swarm of each trajectory point. However, forwarding a message to a whole swarm would require
O(log2 n) messages to be sent in each step. In order to limit this to O(log n) messages7, we adapt the
approach as follows. Assume a node v ∈ Vt wants to route a message m. We first forward m to all
nodes in S(v). Then, each node in S(v) picks r ∈ Θ(1) nodes uniformly and independently at random
from the next swarm S(x1) in the trajectory and forwards m to them. Then, each node that received m
at least once, forwards it to r nodes in S(x2) and so on. Only in the last step the message is forwarded
to all nodes of the target swarm to ensure that the whole swarm receives the message. Listing 1 depicts
the pseudo-code for Alg-Routing.

Analysis

In this section, we analyze Alg-Routing. In particular, we prove that w.h.p. all messages reach their
target and further analyze the dilation, i.e., the number of steps until a message reaches its target, and
the congestion, i.e., the number of messages handled by each node in a round. Note that the latter
depends on how many messages are sent each round and how their destinations are chosen. We would
like to remark that we assume that each node sends exactly the same number of messages and chooses
their destinations independently and uniformly at random.

Theorem 11 Let D be a routable series of LDS defined on nodes V := (V1, V2, . . . ). Further, let each
node v ∈ V1 start t ∈ Z+ messages to random targets p ∈ [0, 1). Then Alg-Routing with r ≥ 16
delivers each message with dilation exactly 2λ+ 2 and congestion O(t logn) w.h.p.

Proof: We begin the proof with the following lemma where we show that each message reaches its
target swarm after exactly 2λ+ 2 rounds if it is not churned out.

Lemma 12 Let D be a routable series of LDS defined on nodes V. Let v be any node in Vt ∈ V, which
sends a message to point p ∈ [0, 1) along the trajectory τ(v, p) using Alg-Routing. Then it holds that
the message arrives at a node in Sλ+1+t(p) in exactly 2λ+ 2 rounds.

Proof: The proof follows by an induction over the trajectory i = 0, . . . , λ and the fact that by our
choice of λ the points xλ and p are close by.

For the induction, observe that in each even step j the message is forwarded along the trajectory
and therefore moves from Sj(xj−1) to Sj(xj), whereas in each odd step the message is handed over
and therefore moves from Sj(xj) to Sj+1(xj)). Lemma 5 and the handover property imply that the
nodes have necessary connections for each step but the last. We now prove by induction that, for each
i ∈ [λ], that each copy of the message is stored at a node v ∈ Si(xi) in round 2i+ t. W.l.o.g. assume
the message is initiated in round t = 0.

(IB) Consider round i = 0, i.e., the round in which the message is started. In this round, the message
is at v = x0 and therefore, is known by S0(x0) in the first step.

(IS) Now suppose that the induction hypothesis holds for any arbitrary i ∈ [0, λ − 1]. We get that
in round 2i any copy of the message is at a node in Si(xi). Now since the round 2i is an even
round, Alg-Routing performs a forwarding step in Di along the trajectory, i.e., every copy of
the message is sent to some node in Si(xi+1). Observe that, the swarm property in Lemma 5
ensures that each node in Si(xi) has a connection to Si(

xi

2 ) and Sλ(
xi+1
2 ). Now since xi+1 is

either xλ

2 or xλ+1
2 , it holds that each node Si(xi) has an edge to each node in Si(xi+1). Therefore,

every copy of the message can be successfully forwarded to each node in Si(xi+1). Next, in round

7Given that αn nodes may fail in single round and we want to route each message on the first try, it reasonable that
one needs O(logn) copies of a message each round to ensure the survival of at least one w.h.p.
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2i + 1, Alg-Routing performs a handover operation on every copy of the message in Si(xi+1)
(overlay Hi). Now we use the Handover Property and observe that each node in Si(xi+1) has by
the definition of Hi, an edge to each node in Si+1(xi+1). Therefore, every copy of the message can
be successfully be sent to a node in Sλ+1(xλ+1) and therefore, available in round 2i+2 := 2(i+1).
This concludes the induction step.

The induction above implies that the message is known by all nodes in Sλ(xλ) in round 2λ. Now recall
that xλ and p are equal in their first λ bits. This implies that the distance between xλ and p is at most

d(xλ, p) ≤
1

2λ

=
1

elog(2)λ
=

1

(eλ)
log(2)

=
1

(κn)
2 log(2)

≤
1

κn
≤

1

n
,

as we defined λ := 2 log(κn). Therefore, the swarms Sλ(xλ) and Sλ(p) are adjacent and the message
can be forwarded and handed over as described in the induction step. This proves the lemma.

In the proof of Lemma 12 we omitted the fact that not all nodes of a swarm forward the message
as they may be churned out before they can do so. Of course, if a complete swarm is churned out,
the message surely can’t be forwarded along the trajectory. However, as stated earlier we assume that
all swarms are good, i.e., only a constant fraction of each swarm is malicious and does not forward the
message.

Lemma 13 Consider a set S with |S| ≥ cλ
2 nodes picked uniformly at random from the set of all nodes

in any given round. Let G ⊂ S be the set of good nodes in S, Then it holds that for churn parameters
α = 1

16 and κ =
(

1 + 1
16

)

, with c ≥ 510k,

Pr

[

|G| ≤
14

17
|S|

]

≤
1

nk
.

Proof: Observe that by definition, for a churn rate of α, there are at least (1−α)n nodes that would
survive into the next round. Therefore, there are at least 15

16n good nodes in any given round. Also,
since there could be at most κn nodes, there are at most 17

16n nodes in any given round. Therefore, the
fraction of good nodes in the [0, 1)-interval in any given round is then at least 15

17 . Furthermore, nodes
pick their position uniformly at random in the [0, 1)-interval.

Let S ⊂ Vt be a set of nodes in round t picked uniformly at random from the [0, 1)-interval such
that, |S| ≥ cλ

2 . For each v ∈ S, let Xv be a {0, 1} r.v. such that Xv = 1 if v is a good node, and Xv = 0
otherwise. We know that,

Pr[Xv = 1] =
15

17
.

Therefore,

E[Xv] =
15

17
.

The expected number of good nodes in the set S is then,

E

[

∑

v∈S

Xv

]

=
15

17
|S|.
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The random variables X1, . . . , X|S| represent random sampling without replacement and therefore
observe a permutation distribution which are negatively associated [12].

Now, let XS =
∑

v∈S Xv be the number of good nodes in the set S. Then applying the Chernoff
bound on NA random variables with c ≥ 510 · k we get,

Pr

[

XS ≤

(

1−
1

15

)

E[XS ]

]

≤ exp

(

−
|S|

255

)

≤ exp

(

−
cλ

510

)

≤ exp (−kλ) = n−k.

Thus, as long as we observe only O(nk) swarms and each side of each swarm has more than cλ
2 nodes

w.h.p, a simple union bound implies that in all swarms both the left and right side are good w.h.p.
Using Lemma 13 we can now show that the messages reach their destination w.h.p.

Lemma 14 Let m be a message that is routed along τ(v, p) := x0, . . . , xλ+1 using Alg-Routing.
Then, it holds that all nodes in Sλ+1(xλ+1) receive m w.h.p after exactly 2λ+ 2 rounds for r = 16.

Proof: We prove by induction that, for each t ∈ [2λ+ 2], it holds that if t is an even round then, at
least half of all good nodes in St/2(xt/2) receive the message m w.h.p. Otherwise, if t is an odd round,
at least half of all good nodes in SR

⌈t/2⌉(x⌈t/2⌉−1) and SL
⌈t/2⌉(x⌈t/2⌉−1) receive the message m w.h.p.

(IB) Consider round t = 0, i.e., the round in which the message is initiated. If this is an even round,
then observe that Alg-Routing forwards message m from node v, i.e., x0, to all nodes in S0(x0).
Using Lemma 6 and 13 we can conclude that at least half of all good nodes in the swarm S0(x0)
received the message m and survive until the next round. Therefore, the induction hypothesis
holds. Otherwise, if t = 0 is an odd round, Alg-Routing handovers the message m from node v
to all nodes in S1(x0). Again, using Lemma 6 and 13, S1(x0) is a good swarm and therefore, the
induction hypothesis holds.

(IS) Now suppose the induction hypothesis holds for any arbitrary t ∈ [2λ + 1] and w.l.o.g. assume
that round t = 2λ+ 1 is an odd round.

Note that the handover step works analogously, the only difference is that we do not send messages
from one swarm to another but from the right/left side from one swarm to the right/left side of
another. However, since these sets are smaller, we assume the swarm size to be at least cλ

n (and

not 2cλ
n ). This way, we cover both cases. By the induction’s hypotheses, at least half of all

good nodes in Sλ+1(xλ) received message m w.h.p. and therefore, each of these nodes forward r
copies of the message m to nodes picked uniformly and independently at random from the swarm
Sλ+1(xλ+1). We now show that at least half of all good nodes in the swarm Sλ+1(xλ+1) receive
the message w.h.p. in the round 2λ+ 2.

From Lemma 6, it holds that |Sλ+1(xλ+1)| ≤ 4|Sλ+1(xλ)| w.h.p. Furthermore, by the induction
hypothesis we know that at least half of all good nodes in Sλ+1(xλ) received m and therefore
forward r copies of m. Thus, in total there are at least r/8 · |Sλ+1(xλ+1)| copies of m sent to
Sλ+1(xλ+1). The probability that any of these messages is sent to a given node v′ ∈ Sλ+1(xλ+1)
is 1

|Sλ+1(xλ+1)|
, since the destinations are chosen uniformly at random. Observe that one can

view the forwarding of messages from Sλ+1(xλ) to uniformly and independently picked nodes in
Sλ+1(xλ+1) as a balls-into-bins experiment, where (at least) r/8 · |Sλ+1(xλ+1)| balls are thrown
into |Sλ+1(xλ+1)| bins. Using Propositions 2 and 3 one can show that the number of nodes
in Sλ+1(xλ+1) that receive at least one ball is NA [7]. For i ∈ {1, . . . , |Sλ+1(xλ+1)|} and j ∈
{1, . . . , r/8 · |Sλ+1(xλ+1)|}, let Xi,j be an indicator random variable such that, Xi,j = 1 if message
j is sent to node i (picked uniformly and independently at random) by Alg-Routing in round
2λ+ 1, and Xi,j = 0 otherwise.

Lemma 15 (Zero-One Lemma [7]) If Y1, . . . , Yn are zero-one random variables such that
∑

i Yi =
1, then Y1, . . . , Yn are NA.
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For any fixed j ∈ {1, . . . , r/8 · |Sλ+1(xλ+1)|}, let Yi := Xi,j for all i ∈ {1, . . . , |Sλ+1(xλ+1)|.
Then, from Lemma 15 we know that the random variables Y1, . . . , Y|Sλ+1(xλ+1)| are NA. Since
each message j ∈ {1, . . . , r/8 · |Sλ+1(xλ+1)|} is destined to a node that is picked uniformly and
independently at random, using Proposition 2, we can conclude that the set of random variables
(Xi,j)i∈{1,...,|Sλ+1(xλ+1)|},j∈{1,...,r/8·|Sλ+1(xλ+1)|} are NA.

For each i ∈ {1, . . . , |Sλ+1(xλ+1)|} consider a non-decreasing function as follows,

Xi =

{

1
∑

j∈{1,...,r/8·|Sλ+1(xλ+1)|
Xij > 0

0 otherwise.

Therefore, for each i ∈ {1, . . . , |Sλ+1(xλ+1)|},

Pr[Xi = 1] = 1−

(

1−
1

| Sλ+1(xλ+1) |

)|Sλ+1(xλ+1)|·r/8

≥ 1−

(

1

e

)
r

8

.

From Proposition 3, we know that the random variables X1, . . . , X|Sλ+1(xλ+1)| are NA.

Let Gλ+1(xλ+1) ⊆ Sλ+1(xλ+1) denote the set of good nodes in Sλ+1(xλ+1). For each v ∈
Gλ+1(xλ+1), Gv be a {0, 1} random variable such that, Gv = 1 if node v received at least one
copy of m from some node in Sλ+1(xλ) and Gv = 0, otherwise. Observe that Xi denotes if a
node in Sλ+1(xλ+1) received at least one message in round 2λ+2 when exactly |Sλ+1(xλ+1)| · r/8
messages are sent to Sλ+1(xλ+1) uniformly and independently at random. Since |Sλ+1(xλ+1)| · r/8
is a lower bound on the number of message being sent, for each v ∈ Gλ+1(xλ + 1) we have that,

Pr[Gv = 1] ≥ Pr[Xv = 1].

Moreover, the random variables (Gv)v∈Gλ+1(xλ+1) are also NA as they can be seen as a subset
of (Xv)v∈Sλ+1(xλ+1). To see this, first recall that the random variables (Xi)i∈{1,...,|Sλ+1(xλ+1)|} are
NA. In particular, this fact is independent of the number of messages and nodes in Sλ+1(xλ+1).
Now observe that for each v ∈ Gλ+1(xλ+1), the random variable Gv is a non-decreasing function
of its associated random variable Xv. Therefore, we can conclude that the random variables
(Gv)v∈Gλ+1(xλ+1) are also NA.

Let G :=
∑

v∈Gλ+1(xλ+1)
Gv be a random variable that counts the number of good nodes in

Sλ+1(xλ+1) that received at least one copy of m in round 2λ+2. From Lemma 13, we know that
there are 14/17 fraction of good nodes in Sλ+1(xλ+1) w.h.p. Therefore, the expected number of
good nodes that receive at least one message is given by,

E[G] =
∑

v∈Gλ+1(xλ+1)

E[Gv]

≥
∑

v∈Gλ+1(xλ+1)

(

1−
1

er/8

)

=

(

1−
1

er/8

)

14

17
|Sλ+1(xλ+1)|.

To complete the induction it suffices to show that,

Pr

[

G ≤
1

2
|Sλ+1(xλ+1)|

]

≤
1

nk
.
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Using δ = 2
7 in Lemma 4 with r = 16 we get,

Pr

[

G ≤

(

1−
2

7

)(

1−
1

e2

)

14

17
|Sλ+1(xλ+1)

]

≤ exp

(

−
4

49 · 3

(

1−
1

e2

)

14

17
|Sλ+1(xλ+1)|

)

Lemma 6 then implies,

≤ exp

(

−
4

49 · 3

(

1−
1

e2

)

14

17

cλ

2

)

= exp

(

−
4

357

(

1−
1

e2

)

cλ

)

for c ≥ 510 · k we get,

≤ n−k.

We conclude the analysis by observing each node’s congestion. Therefore, we first bound the ex-
pected number of trajectories that cross an interval in each round. Note that a trajectory is defined on
points in [0, 1) and not on actual nodes (except the first and last element). We can see that it holds:

Lemma 16 Assume all nodes choose their position independently and uniformly at random in the [0, 1)-
interval. Moreover, let each node send ϕ ∈ Z+ messages to targets picked independently and uniformly
at random from the [0, 1)-interval. Then for every I ⊂ [0, 1) it holds that,

1. Xj
I is the sum of independent {0, 1} random variable,

2. E
[

Xj
I

]

= kn|I|,

where Xj
I is a random variable that counts the number of trajectories that have their jth step in the

interval I and |I| denotes the size of the interval I.

Proof: W.l.o.g. assume that I := [a, b] with 0 ≤ a ≤ b < 1.

1. Let Xj
I:(v,i) be a {0, 1} random variable such that, Xj

I:(v,i) = 1 if the trajectory of a message

i ∈ [ϕ] started by a node v crosses the interval I in its jth step and Xj
I:(v,i) = 0, otherwise. Then the

number of messages with their jth step in the interval I is given by,

Xj
I =

∑

v∈V

∑

i≤ϕ

Xj
I:(v,i).

Observe that a message’s trajectory is uniquely defined by the starting node v and the end point p. Since
for each message the target node is chosen uniformly and independently at random from [0, 1)-interval,

we conclude that the set of random variables
(

Xj
I:(v,i)

)

v∈V,i∈[ϕ]
are independent.

2. We prove by induction that for each j ∈ [λ+ 1] step along the trajectory, it holds that,

E
[

Xj
I

]

= kn|I|.

Consider step j = 0 i.e., the step where is messages are at their starting node at x0. For each v ∈ V ,
let Xv be a {0, 1} random variable such that, Xv = 1 if node v ∈ I and Xv = 0, otherwise. Observe that
the nodes pick their positions uniformly and independently at random in the [0, 1)-interval. Therefore,

Pr[Xv = 1] = |I|.
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This implies,

E

[

∑

v∈V

Xv

]

=
∑

v∈V

Pr[Xv = 1] = n|I|.

Since each node initiates ϕ ∈ Z+ messages to randomly picked targets in the [0, 1)-interval,

E
[

X0
I

]

= E

[

∑

v∈V

ϕ ·Xv

]

= nϕ|I|.

Now assume the induction hypothesis holds for every j ∈ [λ], this implies,

E
[

Xλ
I

]

= ϕn|I|.

Let I0 := I ∩ [0, 1/2) and I1 := I ∩ [1/2, 1) be the parts of I that lie in the first and second half of
[0, 1)-interval, respectively. Then,

E
[

Xλ+1
I

]

= E
[

Xλ+1
I0

]

+E
[

Xλ+1
I1

]

.

Observe that for each i ∈ {0, 1} the bit representation of each point on Ii begins with i. Therefore
for any message m destined to a uniformly and independently picked target p ∈ [0, 1)-interval, it’s
trajectory crosses interval Ii in the jth step of the trajectory if and only if pj = i, where pj is the jth

most significant bit of p in the binary representation. W.l.o.g. we only analyze I0 to show that,

E
[

Xλ+1
I0

]

= ϕn|I0|.

The proof for E
[

Xλ+1
I1

]

= ϕn|I1| is analogous and follows using similar arguments.

Consider an arbitrary trajectory τ := x0, . . . , xλ+1 ∈ [0, 1)λ+2 with xλ+1 ∈ I0 := [a, b0]. From
Definition 4 it must then hold that xλ = 2xλ+1. Therefore, for all trajectories that cross the interval
I0 ∈ [0, 1/2) it holds that xλ = 2xλ+1 and hence, the λth step must be in the interval J := [2a, 2b0]. The
size of the interval is then,

|J | = 2|I0|.

By the induction hypothesis we know that,

E
[

Xλ
J

]

= ϕn|J | = 2kn|I0|.

Note that since for every message it’s target is picked uniformly and independently at random from
the [0, 1)-interval, this is equivalent to the thought experiment of flipping a fair coin for each bit of the
target address. Therefore, the probability that a trajectory τ in interval J points towards the interval
I0 in it’s (λ+ 1)th step is then,

Pr[τλ+1 ∈ I0] =
1

2
,

where τλ+1 denotes the position of the trajectory τ in step λ+ 1.
Then, the expected number of trajectories that point from the interval J to the interval I0 is given

by,

E
[

Xλ+1
I0

]

=

∞
∑

ℓ=0

E
[

Xλ+1
I0
|Xλ

J = ℓ
]

·Pr
[

Xλ
J = ℓ

]

(Law of Total Expectation)

=
∞
∑

ℓ=0

∑

τ∈[1,...,ℓ]

Pr[τλ+1 ∈ I0] ·Pr
[

Xλ
J = ℓ

]

=

∞
∑

ℓ=0

ℓ

2
·Pr

[

Xλ
J = ℓ

]
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=
1

2

∞
∑

ℓ=0

ℓ ·Pr
[

Xλ
J = ℓ

]

=
1

2
E
[

Xλ
J

]

= kn|I0|.

Since |I| = |I0|+ |I1| we get,

E
[

Xλ+1
I

]

= ϕn|I0|+ ϕn|I1| = ϕn|I|.

This completes the induction.

Using Lemma 16 we can then bound from above the expected congestion for Alg-Routing.

Lemma 17 If each node picks its position and the t ∈ Z+ target nodes uniformly and independently at
random, then Alg-Routing has a expected congestion at most 24rtcλ.

Proof: Let v ∈ V be any node and let
[

v ± cλ
n

]

=: Iv ⊂ [0, 1) be an interval that contains all points
p with v ∈ S(p). Observe that a message may be routed via v only if its trajectory passes the interval
Iv. From Lemma 16 we know that for any given round j the expected number of trajectories that cross
the interval Iv is then,

E
[

Xj
Iv

]

= 2tcλ,

where Xj
Iv

is a random variable that counts the number of trajectories that have their jth step in the
interval Iv. Using the Chernoff bound we get,

Pr
[

Xj
Iv
≥ 3tcλ

]

≤ exp

(

−
1

6
tcλ

)

for c ≥ 510 · k,

≤ n−k.

Therefore, the total number of trajectories that pass interval Iv in any round j is at most 3tcλ w.h.p.
We know from Definition 4, that a trajectory passing interval Iv in step j, had it’s step j − 1 in either
interval J0 :=

[

2
(

v ± cλ
n

)]

with pj = 0, or in the interval J1 :=
[

2
(

v ± cλ
n

)

− 1
]

with pj = 1. Observe
that the size of these intervals i.e., |J0| = |J1| = 2|Iv|. From Lemma 6 we know that the number of
nodes in each of these interval i.e., J0 and J1, are at most 8cλ w.h.p. Therefore, the total number of
messages that will be forwarded to the interval Iv in any given round is then at mostM = (r·8cλ)·(3tcλ)
w.h.p.

Let (Xv
i )i∈[M ] be a set of {0, 1} random variables such that, Xv

i = 1 if message mi is sent to node

v and Xv
i = 0, otherwise. From Lemma 6 we know that any interval of size 2cλ

n has at least cλ nodes
w.h.p. Then,

Pr[Xv
i = 1] ≤

1

cλ
.

The expected congestion is then,

E





∑

i∈[M ]

Xv
i



 ≤
1

cλ
(r · 8cλ) · (3tcλ) = 24rtcλ.

Theorem 11 follows directly from Lemmas 12, 14 and 17.
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Listing 2: Random Sampling Alg-Sampling

1 Desc: This algorithm is executed on a routable graph D := (D1, H1, . . . ). It routes a

message m from any node u ∈ Vt to a node v (almost) uniformly picked from

Vt+2λ+2.

2
3 Send a message m to a random node v ∈ Vt+2λ+2

4 p←− Uniformly chosen from [0, 1)
5 ∆←− Uniformly chosen from [0, 2cλ]
6 Route message (m, p,∆) to target S(p) using Alg-Routing

7
8 Upon receiving (m, p,∆) from Alg-Routing

9 P ←− {w ∈ S(p) | pw ∈ S(p)}
10 Choose w such that |{u |u ∈ 〈p, w〉}| = ∆ mod P
11 Deliver m to w

3.2 The Random Sampling Algorithm

Besides routing to a random swarm S(p) for some p ∈ [0, 1) the algorithm Alg-Routing can also
be extended to send a message to a node (and not swarm) chosen uniformly at random. We call this
algorithm Alg-Sampling. The underlying approach is adapted from King and Saia [14] and King et
al. [13]. In their algorithm, King and Saia condition on the fact that the hash function that provides
the nodes with their positions has certain properties. In particular, these properties are fulfilled with
probability at least 1− 3

n on a randomly chosen hash function h. This is not good enough for our case
as we need a sampling routine that works correctly w.h.p., i.e., with probability 1 − 1

nk where we can
freely choose some k > 1. We strongly believe that their approach can be adapted to work, w.h.p.,
however we will only show a weaker statement that suffices for our needs. In particular, we only need
the sampling probabilities to be within a constant factor, i.e., between, 1

4n and 5
n . Our approach works

as as follows. A node first picks a value p ∈ [0, 1) uniformly at random and routes the message to the
swarm S(p) using algorithm Alg-Routing. Then, the message is only delivered to some randomly
chosen node w ∈ S(p). For this, the message includes a random chosen number ∆ ∈ [0, 2cλ]. The
message is then delivered to the node for which it holds |{u |u ∈ 〈p, w〉}| = ∆ mod |S(p)|, i.e., the ∆th

node (in S(p)) that is right of p. Since all nodes in S(p) know |S(p)| (because they know the IDs of all
nodes in S(p)) and ∆ (because they all received the message) this can checked locally without further
messages. The following lemma bounds the sampling probability.

Lemma 18 Let D be routable. Assume, a node v ∈ Vt starts a message mv using Alg-Sampling.
Then for all u ∈ Vt+2λ+2,

Pr[u receives mv] ∈

[

1

4n
,
5

n

]

.

Furthermore, for any two nodes v, w ∈ Vt that start messages mv and mw, respectively, it holds that for
all u ∈ Vt+2λ+2,

Pr[u receives mv] = Pr[u receives mw].

Proof: Let Y (v, u) be a {0, 1} random variable such that Y (v, u) = 1 in the event that v samples
u i.e., the message mv is delivered to u. Further, let p ∈ [0, 1) be the point that v chooses in line 4 of
Alg-Sampling. Then, we make the following observations.

1. As a necessary condition to sample the node u, node v must pick some point p ∈ S(u). Otherwise,
u will never be considered in the second step. This happens with probability 2cλ

n .

2. Given that p ∈ S(u), Alg-Sampling still needs to pick u uniformly from all nodes in S(p). The
probability for this depends only on |S(p)| and ∆. By Lemma 6 we know that w.h.p. it contains
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at most 2cλ nodes and at least cλ/2 nodes. Since ∆ ≤ 2cλ and c
2λ ≤ |Sl(p)| ≤ 2cλ there are at

least one and at most 4 choices of ∆ that result in u being picked.

These observations are sufficient to prove the statement. For the lower bound we get that:

Pr[Y (v, u)] = Pr
[

p ∈ SL(u)
]

·Pr
[

u is picked from SR(p)
]

≥ Pr
[

p ∈ SL(u)
]

·

(

Pr
[

|SR(p)| ≤ 2cλ
] 1

2cλ
+Pr

[

|SR(p)| > 2cλ
] 1

n

)

=
cλ

n
·

((

1−
1

nk

)

1

2cλ
+

1

nk+1

)

≥
1

2n
−

1

2nk+1

≥
1

4n
.

The proof for the upper bound is analogous, we simply need to replace the upper bound for the swarm
size with the lower bound. We get

Pr[Y (v, u)] = Pr
[

p ∈ SL(u)
]

·Pr
[

u is picked from SR(p)
]

≤ Pr
[

p ∈ SL(u)
]

·

(

Pr
[

|SR(p)| ≥
c

2
λ
] 1

cλ
+Pr

[

|SR(p)| ≤
c

2
λ
]

· 1

)

=
2cλ

n
·

((

1−
1

nk

)

1

cλ
+

1

nk

)

≤
cλ

n
·

(

4

cλ
+

1

nc

)

=
4

n
+

2cλ

nk+1

≤
5

n
.

This concludes the first part of the lemma.
It remains to show that (messages of) nodes v and w are delivered to a node u with the same

probability. Let pv and pw ∈ [0, 1) be the points picked by these nodes for their respective messages.
Further, let ∆v and ∆w ∈ [0, 2cλ] be random numbers. Let ℓ(u, p) := |{w |w ∈ 〈p, u〉}| and U(u, p) be
the number of possible choices of ∆ that lead to u being picked given that the message is routed to p
in the first step. Note that any point p ∈ [0, 1) and any ∆ ∈ [0, 2cλ] is picked with equal probability by
v and w. Therefore, it holds that,

Pr[Y (v, u)] = Pr
[

pv ∈ SL(u)
]

·Pr
[

u is picked from SR(pv)
]

= Pr
[

pv ∈ SL(u)
]

·





∑

p∗∈SL(u)

Pr[pv = p∗] ·Pr
[

ℓ(u, p∗) = ∆v mod |SR(p∗)|
]





= Pr
[

pv ∈ SL(u)
]

·





∑

p∗∈SL(u)

Pr[pv = p∗]
U(p∗)

|SR(p∗)|





= Pr
[

pw ∈ SL(u)
]

·





∑

p∗∈SL(u)

Pr[pw = p∗]
U(p∗)

|SR(p∗)|





= Pr
[

pw ∈ SL(u)
]

·





∑

p∗∈SL(u)

Pr[pw = p∗] ·Pr
[

ℓ(u, p∗) = ∆w mod |SR(p∗)|
]
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= Pr
[

pw ∈ SL(u)
]

·Pr
[

u is picked from SR(pw)
]

= Pr[Y (w, u)].

The third equality is due to the fact that,

Pr
[

pv ∈ SL(u)
]

= Pr
[

pw ∈ SL(u)
]

=
cλ

n
,

and for any p ∈ [0, 1),
Pr[pv = p] = Pr[pw = p].

This follows from the fact that all nodes use the same random hash function h to compute the positions.
This concludes the proof.

4 The Maintenance Algorithm

In this section we present our main contribution. Our algorithm maintains a routable dynamic overlay
D = (D0, H0, D1, . . . ) with high probability. Before we present the algorithm, we will first give an
overview on our assumptions and choice of churn parameters.

We assume a (2, 2λ + 7)-late adversary with a churn rate (n/16, 2λ + 7). This implies that within
2λ + 7 (i.e. O(log n)) rounds, a constant fraction of nodes can be subjected to churn. Further, we
assume that the number of nodes in any round is at most (1+ 1/16)n. Note that the values α = 1/16 and
κ = (1+ 1/16) are chosen for the sake of convenience in analysis. We require a bootstrap phase of length
B := 2λ + 2 at the beginning of the algorithm. In this phase no churn occurs and this enables us to
initialize our algorithm. Such a bootstrap phase is a standard assumption in the area of churn-resistant
overlays and is very likely necessary to construct a robust overlay.

We also assume that the system starts in an initial LDS D0 in round 0. This assumption is made
for convenience as the initial overlay can easily be constructed in the churn-free bootstrap phase using
algorithms from [10, 11]. Using their techniques this can be achieved in O(log2 n) rounds with a deter-
ministic algorithm or in O(log n) rounds w.h.p. with a randomized algorithm. Both these algorithms
assume that the congestion and degree of each node is polylogarithmic, so they fit well into our com-
putational model. We would like to remark that since our focus lies on fast reconfiguration and not
on optimizing the bootstrap phase we omit the algorithmic details and the corresponding analysis. For
ease of notation we will refer to round t+B simply as t.

Let Vt := Vt∩Vt−1 denote the set of all rounds except for the newly joined nodes in any given round
t. Over the course of this section we distinguish between three types of nodes in each round t. Namely,
the set of mature nodes Mt ⊆ V t, which are nodes that are in the network for at least 2λ + 2 rounds
(or 2λ + 3 if they joined in an odd round), the set of fresh nodes Ft := V t \Mt which are nodes that
are at least one round, but less than 2λ+ 2 rounds old, and the set of newly joined nodes i.e., Vt \ V t.
Observe that V t := Mt ∪ Ft and due to our choice of churn parameters, it holds Mt ≥ n(1 − 1

16 ) and
Ft ≤ n/16.

Our algorithm is comprised of two subroutines, Alg-LDS and Alg-Random, that are executed
in concurrently. Alg-LDS ensures that all mature nodes build a routable overlay each round and
Alg-Randommakes sure that all fresh nodes (which are not part of the routable overlay) stay connected
to O(log n) mature nodes until they mature themselves. This ensures that the matures node can route
a message on behalf of the fresh nodes over the overlay. The main result of this section (and this paper)
is stated in the following theorem.

Theorem 19 Subroutines Alg-LDS and Alg-Random maintain a series of overlays D such that for
O(nk) rounds w.h.p,

1. the mature nodes form a routable series of graphs D := (D0, H0, D1, . . . ),

2. each fresh node is known by Θ(logn) mature nodes, and
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3. the congestion is O(log3 n) per node and round.

We would like to remark that both Alg-LDS and Alg-Random are heavily randomized and can
possibly fail to create a connected and routable overlay if they are executed for too long. For example,
the algorithm could fail if certain swarms are too small and/or too many messages are dropped by the
routing algorithm. In these cases, the algorithm cannot construct the desired overlays and needs to be
restarted along with another bootstrap phase. Given that the algorithm runs correctly w.h.p., i.e. no
failure happens with probability O(n−k) for a tunable constant k > 0, we can only guarantee that the
algorithm runs smoothly for O(nk) rounds w.h.p. until some failure happens. This follows by a simple

application of the union bound. Throughout this chapter we assume that k log(n)
n << 1, i.e., both k and

log(n) are very small compared to n. Therefore, our algorithms only become applicable for large values
of n (say n > 106k). However, as our goal is to show that the messages per node stays logarithmic
in n even under heavy churn, we believe that it is justified to only consider very high values of n. In
particular, we do not seek (nor claim) that we make the optimal choice of constants.

Alg-LDS and Alg-Random exchange four types of messages between the nodes to build a series
of overlay.

1. The message Connect(v) is sent by a fresh node v to advertise itself to a mature node in the
overlay. It only contains v’s identifier.

2. The messageCreate(v, ptv) is used to introduce a node v to its neighbours in St(p
t
v). The message

contains the node’s ID and its position ptv in the overlay Dt ∈ [0, 1).

3. The message Join(v, ptv) is used to introduce a node v to nodes in St−1(p
t
v). It is routed from its

origin to position ptv in overlay Dt. It contains the identifier of v and its position ptv ∈ [0, 1).

4. The message Token(v) is sent by a mature node v to a point in the [0, 1)-interval picked (almost)
uniformly at random. It only contains v’s identifier.

Building a Routable Overlay

After the bootstrap phase, the algorithmAlg-LDS creates a series of overlaysD = (D0, H0, D1, H1, . . . )
that contain allmature nodes in any given round. In particular, in every even round t = 2i the algorithm
creates an LDS Di which consists of all mature nodes V t. In each odd round t = 2i+ 1 the algorithm
creates a handover graph Hi in which for each p ∈ [0, 1) it holds that Si(p) and Si+1(p) are adjacent
(Lemma 5), where Si(p) and Si+1(p) are the swarms of point p in Di and Di+1, respectively.

To construct a series of overlays, all mature nodes continuously choose new positions p0v, p
1
v, . . . for

the corresponding overlays D0, D1, . . . and use the routing algorithm to find their neighbors. More
precisely, the construction of Di begins in round 2i − (2λ + 2). Every node v ∈ V 2(i−λ−1) picks
a position piv ∈ [0, 1] uniformly at random and routes its ID to the target piv along the trajectory
(v, x1, · · · , xλ, p

i
v). This message arrives 2λ rounds later, i.e., in round 2i − 2 at the swarm Si−1(xλ).

Then, within two rounds, Alg-LDS first constructs the handover graph Hi−1 and a new LDS Di based
on these positions. This ensures that in the even rounds the forwarding step from Alg-Routing can
be performed and the handover in the odd rounds. Thus, Alg-LDS maintains a routable overlay.

The algorithm proceeds in rounds. In any given round, every mature node picks a random po-
sition p ∈ [0, 1) and routes its ID using message Join(ID, p) to the respective target points using
Alg-Routing. This is the position the node will occupy in Di in round 2i.

It uses the routing algorithm Alg-Routing to send its ID to the swarms Si−1(p), Si−1(p/2), and
Si−1(p+1/2) thereby creating the handover graphHi−1 in round 2i−1. Starting from the handover graph
Hi−1, the overlay Di can then be created in a single additional round through local introductions.

We will now describe the construction of the overlaysHi−1 and Di in detail given that the algorithm
worked correctly until that round. We assume the system is currently in an even round t = 2i− 2 and
in all previous rounds the mature nodes formed a routable overlay D := D0, H0, . . . , Di−1. In other
words, all messages of the from (v, piv) where v is an identifier and piv is its position in Di, are one round
away from reaching their target. Then, the construction of Hi−1 and Di is as follows.
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Listing 3: Overlay Maintenance Algorithm Alg-LDS

1 Desc: In every even round 2t the algorithm creates a LDS Dt consisting of all

nodes that joined the network before round 2t− (λ+ 2) and performs the

Forwarding Step from Alg-Routing. In every odd round 2t+ 1 the algorithm

performs a handover from Dt to Dt+1 using a helper graph Ht.

2
3 Note: The following code is executed by each node u ∈Mt every even and odd round

respectively. The messages are handled in the given order. The last block of

commands in each phase is executed after all messages have been handled.

4
5 Even Round

6 Upon receiving CREATE(v, ptv) from u′

7 Du
t ←− Du

t ∪ {(v, p
t
v)} ⊲ u creates edges to these nodes

8
9 Upon receiving JOIN(v, pt+1

v ) from Alg-Routing

10 Send JOIN(v, pt+1
v ) to all nodes w ∈ Du

t with

ptw ∈ 〈p
t+1
v ± 2cλ

n 〉 ∪ 〈
pt+1
v

2 ±
3c
2nλ〉 ∪ 〈

pt

v
+1
2 ± 3c

2nλ〉
11
12 Finally
13 Perform Forwarding Step from Alg-Routing using edges created from Dt

14 C ←− All fresh nodes known by u (provided trough Alg-Random)

15 ∀v ∈ C ∪ {u} do:

16 pv ←− h(v, t)
17 Route message JOIN(v, pt+λ+1

v ) to target pt+λ+1
v using Algorithm Alg-Routing

18
19 Odd Round

20 Upon receiving JOIN(v, pv) from a node u′

21 Ht ←− Ht ∪ {(v, pv)} ⊲ u creates edges to these nodes

22
23 Finally
24 Perform Handover Step from Alg-Routing using edges created from Ht

25 ∀(v, pt+1
v ) ∈ Ht+1 do:

26 Send CREATE(v, pt+1
v ) to all nodes (w, pt+1

w ) ∈ Ht with

pt+1
w ∈ 〈pt+1

v ± 2cλ
n 〉 ∪ 〈

pt+1
v

2 ±
3c
2nλ〉 ∪ 〈

pt

v
+1
2 ± 3c

2nλ〉
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1. In round 2i−2 Alg-Routing executes the forwarding step. This implies, all messages are routed
to their target location. In particular, each message with target point p will be received by all
nodes in Si−1(p). Recall that this is ensured by the fact that the message is sent to all nodes
in Si−1(p) in the last step of the trajectory. Additionally, note that Alg-LDS ensures that the
message is also forwarded to all nodes in 〈p± 2cλ

n 〉, 〈
p
2 ±

3cλ
2n 〉, and 〈

p+1
2 ±

3cλ
2n 〉.

2. In round 2i − 1, each node w ∈ 〈piv ±
2cλ
n 〉 ∪ 〈

pi

v

2 ±
3cλ
2n 〉 ∪ 〈

pi

v
+1
2 ± 3cλ

2n 〉 receives messages of the
form Join(v, piv). Therefore, the construction of the handover graph Hi−1 follows directly from
the correctness of Alg-Routing and Definition 5. In the remainder of round 2i− 1 two routines
are processed concurrently. First, the handover step of Alg-Routing is executed. Second, all
nodes must learn their neighbors in Di in order to execute the forwarding step in round 2i. For
this, the nodes iterate over all received messages of the form (v, piv) and introduces them to all
their neighbors. By introduction, we mean that the neighbor’s ID and position is sent to v. As
we will see, for every pair of neighbors in Di there is at least one node that knows both their IDs
and introduces them. These messages arrive in round 2i.

3. Finally, at the beginning of round 2i, each node knows all its neighbors in new overlay Di (and
all messages that need to be forwarded in Di). Thus, all mature nodes form the overlay Di (and
can perform the forwarding step).

Note that after round 2i+1 the nodes’ positions in Di and Di+1 are in no relation with each other and
hence, the edges in Di+1 are independent of Di. Therefore, the adversary stays oblivious of all nodes’
current positions.

Further, observe that our approach requires that both the fresh and the mature nodes send out the
join requests and that all messages take exactly the same time to reach its destination. The latter is
ensured through Alg-Routing. For the former we assume that each fresh node is known by least one
mature node, which is part of Di. However, this will be ensured by Alg-Random and explained in
the next section.

Listing 3 presents the pseudocode for the algorithm. Each node has the two variables Du
t and Hu

t .
Du

t stores u’s neighborhood in Dt whereas Hu
t stores the references for the handover. Both variables

may be reset at the end of each round. The nodes pick a random position in the [0, 1)-interval using
a uniform hash function h : V × N → [0, 1) known to all nodes. This hash function can either be
established in the bootstrap phase by sending O(log2 n) bits of shared randomness to each node or we
can assume it is known to all nodes. The former case, it would have to be renewned every O(log(n)) as
the adversary could gain access to it. One way to do this would be to transform the routing algorithm
into a broadcast algorithm that can send a given message to all nodes. For brevity we omit this and
simply assume that all nodes know h and the adversary does not have access to it.

This hash function takes the node’s ID and the current round as an input and computes a random
value pv. Note that this choice excludes some points in [0, 1) from being picked as all values need to
be encoded in O(log n) bits. However, this does not impact the correctness of our algorithms. Instead,
we just handle the values returned by h as continuous values as it is a standard assumption (see, e.g.
[14, 13] for the usage in overlay networks and [5] for a proof that these functions can indeed be simulated
by few random bits).

Recall that the fresh nodes are not part of the overlay. Therefore, the mature nodes send out requests
on behalf of each fresh node u ∈ Ft known to them. Note that each node can compute h(u, t) if it knows
u’s ID. The IDs of these nodes are stored in the variable C. This variable is set by Alg-Random.
Details on how it set can be found in the next section.

4.1 Analysis of Alg-LDS

In this section we show that Alg-LDS maintains a dynamic overlay with the properties needed for
routing. Throughout this section we assume that Alg-Random works correctly and each fresh node is
connected to Θ(logn) mature nodes at any time. Thus, every node in the networks starts a join request
in every even round.

26



Lemma 20 Let Dt := (D0, H0 . . . , Di) be routable graph until round t = 2i. Then it holds Dt+2 :=
(D0, H0 . . . , Di, Hi, Di+1) is a routable graph until round t+ 2 w.h.p.

Proof: W.lo.g. we assume that the algorithm is currently in round t = 2i and the overlays Dt :=
(D0, H0 . . . , Di) were routable. This implies that the mature nodes know all neighbors in Di, all join
requests (v, pi+1

v ) started 2λ rounds ago are delivered, and the nodes are ready to perform the final
forwarding step of the messages. Due to Lemma 13 we know that Di is good, and at least 3/4-fraction
of each swarm in Di survives until 2i + 1. We will now show that Alg-LDS maintains the following
three properties.

1. Alg-LDS successfully constructs Hi in round 2i+ 1,

2. constructs a new LDS Di+1 in round 2i+ 2, and

3. all swarms St+2(p) are good w.h.p.

Together, these three properties imply that Dt+2 := (D0, H0 . . . , Di, Hi, Di+1) are a series of routable
overlay.

The following lemma shows that Alg-LDS constructs Hi in round 2i+1, i.e., we show that for any
p ∈ [0, 1), every node in S2i(p) knows the ID of every node in S2i+1(p). The proof essentially follows
using correctness of Alg-Routing and Lemma 5.

Lemma 21 (Correctness of the Handover Construction) Let Dt := (D1, H1 . . . , Di) be routable

graph until round t = 2i. Then, in round 2i+1, each node in 〈pi+1
v ± 2cλ

n 〉∪〈
pi+1
v

2 ±
3cλ
2n 〉∪〈

pi+1
v

+1
2 ± 3cλ

2n 〉
receives (v, pi+1

v ) w.h.p. This implies that in round 2i+ 1 the nodes form the Handover graph Hi.

Proof: The proof follows directly using correctness of Alg-Routing and the overlay’s topology.
Since Dt is routable until (and including) round 2i, all messages that were started in round 2i − 2λ
are correctly routed to their target swarm w.h.p. via Alg-Routing. This includes all Join(v, pi+1)
messages that were started in round 2i− 2λ. Due to Lemma 13 we know that Dt is good w.h.p. Thus,

in round 2i + 1 every node in 〈pi+1
v ± 2cλ

n 〉 ∪ 〈
pi+1
v

2 ± 3cλ
2n 〉 ∪ 〈

pi+1
v

+1
2 ± 3cλ

2n 〉 received Join(v, pi+1) and
therefore knows v w.h.p. The proof then follows from the definition of the Handover graph Hi.

We continue with the construction of Di+1. In particular, we show that every mature node v ∈

Si+1(p
i+1
v ) creates an edge to each of its new neighbors in v′ ∈ Si+1(p

i+1
v ) ∪ Si+1(

pi+1
v

2 ) ∪ Si+1(
pi+1
v

+1
2 ).

We divide the neighbors into two sets.

1. the list neighbors left and right of pi+1
v , and

2. the DeBruijn neighbors left and right of
pi+1
v

2 and
pi+1
v

+1
2 .

The following lemma show that for all nodes v and v′ which will be neighbors in Di+1, w.h.p. there is at
least one node w that receives the messages (v, pt+1

v ) and (v′, pt+1
v′ ) in round 2i+1 and thus introduces

the nodes.

Lemma 22 Let v, w be any two neighbors in Di+1, then w.h.p.

|{u ∈ G2i+1|u receives (v, pi+1
v ) and (w, pi+1

w )}| ≥
14

17
cλ,

where G2i+1 ⊆ V2i+1 are the set of good nodes in the round 2i+ 1.

Proof: Consider two nodes v and w with d(pi+1
v , pi+1

w ) ≤ 2cλ
n , i.e., neighbors in Di+1. W.l.o.g. we

assume that pi+1
w is right of pi+1

v and d(pi+1
v , pi+1

w ) = 2cλ
n . We make these simplifying assumptions since

(a) the proof is analogous for the left and right side and (b) any closer point can only have more nodes
for the introduction.
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Observe that the last step of Alg-Routing is executed in round 2i. Particularly, Alg-LDS

ensures that the message Join(v, pi+1
v ) and Join(w, pi+1

w ) is forwards to every node in the interval
[

pi+1
v , pi+1

v + 2cλ
n

]

and
[

pi+1
w , pi+1

w − 2cλ
n

]

, respectively. This is possible due to the topology of Di. This

implies there is a interval I ∈ [0, 1) of length 2cλ
n such that all nodes belonging to this interval receive

both Join(v, pi+1
v ) and Join(w, pi+1

w ) in round 2i + 1. The claim then follows using Lemma 6 that
interval I has at least cλ nodes w.h.p. and Lemma 13 that at least 14

17 of those nodes in the interval I
are good nodes and remain until round 2i+ 2 w.h.p.

The next lemma shows that a (2, 2λ+ 7)-late adversary effectively reduces the adversarial churn to
a randomized churn as the adversary is oblivious to which nodes belongs to which swarm in any given
round.

Lemma 23 A (2, 2λ+ 5)-late adversary enables Alg-LDS construct Di+1 independent of Di.

Proof: The proof follows from the correctness of Alg-Routing and Alg-LDS. Recall that in
every even round, each mature node in v ∈ M2i−(2λ+2) picks a position piv in Di for itself and also for
the fresh nodes that are connected to them. This is the position the node v occupies in round 2i i.e.,
LDS Di. Join(v, piv) is routed using Alg-Routing and arrives at piv in round 2i − 1 i.e., Hi−1 and
then within a round Alg-LDS constructs Di. Therefore, a (2, 2λ + 5)-late adversary is oblivious to
the position of node v until round 2i+ 2. However, observe that Alg-LDS ensures that the node is at
the position pi+1

v picked uniformly at random from [0, 1)-interval in round 2i+2. This implies that the
position of node v in Di+1 is independent of Di.

Finally, Lemma 20 follows from Lemma 21, 22, and 23. This concludes the analysis of the mainte-
nance algorithm.

Handling New and Fresh Nodes

We now present Alg-Random in detail. This algorithm ensures that each fresh node is known by
δ ∈ O(log n) randomly chosen good mature nodes each round w.h.p. Algorithm is executed in rounds
on nodes set Ft and Mt corresponding to the fresh and mature nodes of round t, respectively. Recall
that every fresh node joins the network via a node which has been in the network for at least two
rounds. This enables the bootstrapping node to update the newly joined node with IDs of O(log(n))
mature nodes and also advertise the ID of the newly joined node to O(log(n)) mature nodes in the
overlay in the subsequent round. Each fresh node f ∈ Ft which is at least one round old, advertises
its own ID to O(log(n)) mature nodes in the overlay. Every such unique advertisement a mature node
receives, is associated with a unique key in [0, O(log(n))] and stored in its memory. Each mature node
m ∈Mt, uniformly and independently at random samples O(log(n)) other mature nodes in the overlay
using ALG-SAMPLING. Each sampled ID of a matured node is either sent to a newly joined node
(i.e. less than a round old and bootstrapped via m) with probability p = 1/2 or is with probability
1 − p forwarded to the ID of a fresh node, if available, whose key is picked uniformly at random from
[0, O(log(n))].

Note that at the end of round t a node forgets all its incoming connections from fresh nodes and the
assignment of numbers to IDs is reset. Last, note that the bootstrap phase ends once the first tokens
reach their target.

Listing 4 depicts the pseudocode for Alg-Random. We use two types of messages, TOKEN(v)
and CONNECT (v). Both messages only contain a nodes v’s ID. The former is used to spread the
mature nodes’ IDs, the latter is used send a fresh node’s ID for sampling. Note that all token that are
ready to create an are stored in the variable T . Further, the array (c1, . . . , c2δ) stores the assignment
of numbers to IDs. It holds ci = v if v’s ID is assigned to i. If no ID is assigned to i we write ci = ⊥.
Note that the set C mentioned in Listing 3 consists of all ci 6= ⊥. Last, note that a node can distinguish
whether it received a TOKEN(v) message through Algorithm Alg-Sampling, i.e., in step 1 of the
sampling process sketched above, or directly from a node, i.e., in step 3.
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Listing 4: Random Overlay Algorithm Alg-Random

1 Desc: In each round t each fresh node connects to δ mature nodes that joined at

least t− (2λ+ 5) rounds ago.

2
3 Note: The following code is executed by each node u ∈ V every round t. All types

of messages are received in the given order. The last block of commands is

executed after all messages have been handled.

4
5 Round t
6 Upon receiving TOKEN(v) from node u′:

7 T ←− T ∪ {v} ⊲ Tokens ready to be used

8
9 Upon receiving CONNECT (v) from node v:

10 if ∃i ∈ [0, 2δ] with ci = ⊥
11 i←− number chosen uniformly from all i ∈ [0, 2δ] with ci = ⊥
12 ci ←− v
13
14 Upon v joining:

15 (w1, . . . , wδ)←− δ tokens chosen u.i.r from T
16 Send CONNECT (v) to all w1, . . . , wδ ⊲ u sends on behalf of v
17 (w1, . . . , wδ)←− δ tokens chosen u.i.r from T
18 Send TOKEN(w1), . . . , TOKEN(wδ) to v ⊲ Supply v with tokens

19
20 Upon receiving TOKEN(v) through Algorithm Alg-Sampling:

21 x←− uniformly chosen from {0, 1}
22 if x = 0:
23 ci ←− random element from ci, . . . , c2δ
24 Send TOKEN(v) to ci (or discard if ci = ⊥)
25 else if u:
26 T ←− T ∪ {v} ⊲ Tokens ready to be used

27
28 Finally:
29 if u is fresh:

30 (w1, . . . , wδ)←− δ tokens chosen u.i.r from T
31 Send CONNECT (u) to all w1, . . . , wδ

32 else if u is mature:

33 Send TOKEN(v) to τ random nodes using Algorithm Alg-Sampling

34
35 (c1, . . . , c2δ)←− (⊥, . . . ,⊥) ⊲ Reset IDs

36 T ←− ∅ ⊲ Drop unused tokens
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4.2 Analysis of Alg-Random

In this section we show that every fresh node is able is send its ID to δ mature nodes each round w.h.p.
and thus stays connected to the network. In particular, we assume that δ ∈ O(log n). Therefore, we
prove the following lemma.

Lemma 24 (Random Overlay Lemma) Assume that until round t−1 each fresh node was connected
to at least 1

2δ good nodes each round. Then, it holds w.h.p. that each v ∈ Ft successfully connects to 1
2δ

good nodes.

We prove the lemma in several steps. First, we show that each node receives Ω(τ) tokens w.h.p. To
prove this we make use of a simple balls-into-bins argument. Recall that each mature node in starts τ
tokens in round t− (2λ+5) that reach their random destination in round t. Further, we can show that
the tokens are uniformly distributed among all nodes.

Lemma 25 Assume Lemma 24 held until round t − 1. Further, let X(θ, v) denote the event that any
token θ reaches v in round t. Then the following statements hold:

1. Any token reaches v ∈ Vt with the same probability, i.e.,

Pr[X(θ, v) = 1] = Pr[X(θ′, v) = 1].

2. For each token θ, it holds

Pr[X(θ, v) = 1] ≥
1

32n
.

Proof:

1. We extend Lemma 18 to fresh nodes and show all token reach a node v ∈ Vt with the same (but
not necessarily uniform) probability. Consider a token θ independently of its source node and let
X(θ, u) indicate that θ reaches u. Further, let V ′

t−1 ⊂Mt−1 be the set of all nodes that know v’s
ID. If v receives θ in round t, then the following two events must happen

(a) The token must be sent to any mature node v′ ∈ Vt−1 using Alg-Sampling. We denote
this event as X1(θ, v

′).

(b) Given any v′ ∈ V ′
t−1 received θ, it must forwarded is to v in round t − 1. We denote this

event as Xv′

2 (θ, v).

We can easily show that both these events have the same probability for two tokens of possibly
different origin. The uniformity of the first event directly follows from Lemma 18. Here, we
showed that Pr[X1(w, v

′)] = Pr[X1(u, v
′)] for every u,w ∈ Vt−(2λ+5) and v ∈ Vt. Note that

for two different v′, v′′ ∈ Vt the probabilities Pr[X1(w, v
′)] and Pr[X1(w, v

′)] may differ. The
uniformity of the second event follows from the fact that each token is forwarded to v with
probability of exactly 1

4δ . To finalize the proof, consider two nodes u,w ∈ Vt−λ and let θu and θw

be tokens sent by v and w respectively. Then,

Pr[X(θu, v) = 1] =
∑

v′∈V ′

t−1

Pr
[

X1(θ
u, v′) = 1 ∩Xv′

2 (θu, v) = 1
]

=
∑

v′∈V ′

t−1

Pr[X1(θ
u, v′) = 1] ·Pr

[

Xv′

2 (θu, v) = 1 | X1(θ
u, v′) = 1

]

=
∑

v′∈V ′

t−1

Pr[X1(θ
w, v′) = 1] ·Pr

[

Xv′

2 (θw, v) = 1 | X1(θ
w , v′) = 1

]

= Pr[X(θw, v) = 1].

Here, the first equality is due to the law of total probability and second equality is due to Lemma 18
and the fact that each mature node v′ forwards a token to a fresh node with probability 1

4δ .
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2. The fact that Pr[X(v, w) = 1] ∈ Ω( 1n ) then follows from three facts:

(a) First, a token reaches a given mature node with probability at least 1
4n . This follows directly

from Lemma 18.

(b) Second, each fresh node is connected to at least δ
2 mature nodes w.h.p. This follows because

we assume that Lemma 24 holds true in round t− 1.

(c) Last, a mature node forwards a token to a connected node with probability 1
4δ .

Combining these three facts yields the result. Formally:

Pr
[

X(θ, v) = 1 |
∣

∣V ′
t−1

∣

∣ ≥ δ/2
]

=
∑

v′∈V ′

t−1

Pr[X1(θ, v
′) = 1] ·Pr

[

Xv′

2 (θ, v) = 1 | X1(θ, v
′) = 1

]

≥
∑

v′∈V ′

t−1

1

4n

1

4δ

≥
δ

2

1

4n

1

4δ

≥
1

32n
.

Lemma 26 Assume Lemma 24 held until round t− 1. Further, let X(u, v) denote the event that any
token sent by u reaches v in round t. Then the following statements hold:

1. Each node sends at least one token to node v ∈ Vt with the same probability, i.e., ∀u,w ∈ Vt−(2λ+5)

Pr[X(u, v) = 1] = Pr[X(w, v) = 1].

2. For each u ∈ Vt−(2λ+2) it holds

Pr[X(u, v) = 1] ≥
τ

33n
.

Proof:

1. Now, we observe the variables X(u, v) and X(w, v) that denotes if any of u’s or w’s tokens reached
v. Recall that both u and w send τ tokens. We denote these tokes as θu1 , . . . , θ

u
τ and θu1 , . . . , θ

u
τ .

Let X(θ, v) be defined as in Lemma 25. The probability that any of these tokens reach v is given
by:

Pr





⋃

i=1,...,τ

X(θui , v) = 1



 = 1−Pr





⋂

i=1,...,τ

X(θui , v) = 0





Since all these tokens are independent, it holds that:

Pr





⋂

i=1,...,τ

X(θui , v) = 0



 =
∏

i=1,...,τ

(1−Pr[X(θui , v) = 1])

The same holds respectively for Pr
[

⋂

i=1,...,τ X(θwi , v) = 0
]

. Putting these observations together,

we get that:

Pr[X(u, v) = 1] = Pr





⋃

i=1,...,τ

X(θui , v) = 1



 = 1−Pr





⋂

i=1,...,τ

X(θui , v) = 0
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= 1−
∏

i=1,...,τ

(1−Pr[X(θui , v) = 1])

= 1−
∏

i=1,...,τ

(1−Pr[X(θwi , v) = 1])

= 1−Pr





⋂

i=1,...,τ

X(θwi , v) = 0



 = Pr





⋃

i=1,...,τ

X(θwi , v) = 1





= Pr[X(w, v) = 1].

This was to be shown.

2. For any pair of v and u, the probability is lower bounded by

Pr[X(u, v) = 1] = 1−Pr[X(u, v) = 0]

= 1−
∏

i=1,...,τ

(1−Pr[X(θui , v) = 1])

= 1−

(

1−
1

32n

)τ

≥ 1− exp
(

−
τ

32n

)

≥ 1−

(

1−
τ

32n
+
( τ

32n

)2
)

≥
τ

32n
−
( τ

32n

)2

≥
τ

33n

where for the second inequality we use the fact that for all x ≤ 1,

exp(x) ≤ 1 + x+ x2.

The last inequality follows from fact that τ ∈ O(log n) and thus τ
32n can be made arbitrarily small

for a big enough n.

Together with our assumptions on the churn rate, we get the following lemma:

Lemma 27 Let c ≥ 280k. Let each mature node start τ ≥ 20cλ token, then each fresh node receives at
least τ

100 distinct token with probability at least 1− 1
nk .

Proof: Recall that at least 15
16n mature nodes in round t− (2λ+5) that start τ tokens each. Hence,

the minimal number of nodes that start tokens is at least K := 15n
16 . Further, there are at most 17

16n
nodes in round t. Fix a node v and let X1, . . . , XK be the indicator variables that a nodes has a token
that reaches v. Then the expected number of distinct tokens received by node v is given by,

E

[

K
∑

i=1

Xi

]

≥
K
∑

i=1

τ

33n
≥

15τn

16 · 33 · n
≥

τ

50
,

where we use Pr[Xi = 1] = τ
33n due to Lemma 26. Given that all mature nodes send their tokens

independent of one another, the Chernoff Bound is applicable and the lemma follows for a big enough
c. In particular, it holds for c ≥ 280k:

Pr
[

X ≤
τ

100

]

= Pr
[

X ≤ (1 − 1/2)
τ

50

]
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≤ exp
(

−
τ

4 · 50 · 3

)

≤ exp (−kλ) = n−k.

This basically tells us that - as long as we choose τ bigger than 20cλ - each node will receive roughly
Ω(τ) distinct tokens w.h.p, which it can then use to advertise itself and the new nodes connected to it.

Next, we need to consider, how big we need to choose τ such that each node has enough tokens
to ensure that it is able to connect to δ

2 mature nodes. Lemma 27 gives us that choosing τ such that
τ

100 ≥ (φ+ 1) · δ, where φ = O(1) is the maximum number of nodes that could join via a fresh node in
any given round, then each fresh node has enough tokens to advertise itself to δ distinct mature nodes
every round and also provide for the newly joined nodes.

In the following we can assume that each fresh node sends a connection request to δ nodes. However,
these requests can still fail for two reasons:

1. First, the ID of the token used for the connections belongs to a node that has been churned out.

2. Second, the the target has received more than 2δ connection requests and refuses the connection.

The first factor depends on the number of nodes have been churned out and on the numbers of connec-
tions we make. The second term only depends on the random process that creates these edges.

We begin by showing that only a small fraction of connection request are sent to churned out nodes.
In the following lemma we say node v is good in round t if and only if v ∈ Vt−(2λ+5) ∩Vt+2 and referred
to as bad, otherwise.

Lemma 28 Suppose that τ ≥ 26000kλ and δ ≥ 60kλ, then each fresh node has at least δ
2 connections

to good nodes with probability at least 1− 1
nk .

Proof: The proof of this lemma is straightforward and mostly technical. The basic outline is as
follows: Due to its lateness the adversary cannot anticipate where a node will send its tokens. Thus,
the tokens of good and bad nodes will randomly spread to the fresh nodes. As will see, in expectation
each fresh node roughly receives a 15

16 fraction of good nodes. Since the sampling is independent, this
implies there is at least a 13

18 fraction w.h.p (for a big enough τ) due to the Chernoff Bound. Since a
fresh node randomly draws its connection without replacement there are also 13

18δ successful connections
in expectation. Since drawing without replacement is NA, another application of the Chernoff bound
concludes the proof.

We will now prove these claims in more detail: Fix a node v ∈ Vt that advertises itself or a newly
joined node. Let X1, . . . , Xδ be the binary RVs such that Xj denotes if jth advertisement by v is
successful, i.e., its identifier is advertised to a good node. The outcome of X =

∑

i Xi depends on two
values, the overall number of tokens that v received and the number of identifiers of good nodes.

We have already established that the number of distinct tokens that a node receives can be subjected
to the Chernoff Bound and is therefore concentrated around its expectation. The same holds for the
number of good identifiers. Let G be the number of good identifiers that v draws from the set of
available tokens. One can easily verify that G is the sum independent binary random variables: For
each good node w ∈ Vt−(2λ+5)∩Vt+2

, let Gw ∈ {0, 1} be the indicator for the event that w sends one
token with its identifier to v. Then it holds G :=

∑

w∈Vt−(2λ+5)∩Vt+2
Gw and all Gw’s are independent.

Recall that at least n
(

1− 1
16

)

and at most n
(

1 + 1
16

)

nodes started tokens 2λ+5 rounds ago. Since
at most a 1/16-fraction of all nodes that started a token are churned out until round t+2, it holds that
(

15
16

)2
n is a lower bound for the number of good tokens started 2λ+ 5 rounds ago.

Let now Y be the number of all distinct tokens that v received. Let p ∈ [ τ
33n ,

τ
n ] be the probability

that at least token of a fixed node reaches v. Then, it holds E[Y ] ≤ pn
(

1 + 1
16

)

and E[G] ≥ p
(

15
16

)2
n.

We will upper and lower bound Y and G respectively. We start with Y . Assuming that pn ≥ 768kλ
the Chernoff Bound gives us that,

Pr

[

Y ≥
9

8
pn

]

= Pr[Y ≥ (1 + 1/17)(1 + 1/16)pn] ≤ exp
(

−
pn

2 · 17 · 16

)

≤ exp (−kλ) = n−k. (9)
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Pr

[

G ≤
13

16
pn

]

≤ Pr

[

G ≤ (1− 1/15)

(

15

16

)2

pn

]

≤ exp

(

−
152 · pn

3 · 162 · 152

)

≤ exp (−kλ) = n−k. (10)

Therefore, it remains to show that we can choose pn big enough for these statements to hold. Recall
that τ

n ≥ p ≥ τ
33n , then for τ ≥ 26000kλ, we have that pn ≥ 768kλ.

Now, we condition on (9) and (10) being false and denote this event as G. In this case, a simple
calculation reveals that at least a 13

18 -fraction of tokens is good. If we pick δ′ = min{δ, Y } of these tokens
uniformly at random without replacement, a constant fraction will point to good nodes in expectation:

E[X | G] ≥

n(1+ 1
16 )

∑

g= 13
16pn

9
8pn
∑

y=0

Pr[G = g, Y = y | G] · δ′
g

y

≥

n(1+ 1
16 )

∑

g= 13
16pn

9
8pn
∑

y=0

Pr[G = g, Y = y | G] · δ′
13
16pn
9
8pn

= δ′
13
16pn
9
8pn

n(1+ 1
16 )

∑

g= 13
16 pn

9
8 pn
∑

y=0

Pr[G = g, Y = y | G]

= δ′
13
16pn
9
8pn

= δ′
13

18
.

We show that under these circumstances at least half of all advertisements go to good nodes for a big
enough δ′. Note that we observe a hyper-geometric distribution, which is known to be NA (cf. [7]).
Thus, by the Chernoff Bound, a constant fraction points to living nodes w.h.p. if we choose δ′ high
enough. In particular, by choosing δ ≥ 60kλ

Pr

[

δ
∑

i=0

Xi ≤
1

2
δ | G

]

≤ Pr

[

δ
∑

i=0

Xi ≤ (1− 5/18)
13

18
δ

]

≤ exp

(

−
52 · 13δ

3 · 183

)

≤ exp

(

−
δ

60

)

⊲Using
52 · 13

3 · 183
≥

1

60

≤ exp (−kλ) = n−k. ⊲for δ ≥ 60kλ

Note that since G holds w.h.p, we have that

Pr

[

δ
∑

i=0

Xi ≤
1

2
δ

]

= Pr[G] ·Pr

[

δ
∑

i=0

Xi ≤
1

2
δ | G

]

+Pr[¬G] ·Pr

[

δ
∑

i=0

Xi ≤
1

2
δ | ¬G

]

≤ Pr[G] ·Pr

[

δ
∑

i=0

Xi ≤
1

2
δ | G

]

+Pr[¬G] · 1

= Pr[G] ·Pr

[

δ
∑

i=0

Xi ≤
1

2
δ | G

]

+Pr

[

(Y ≥ (1 + 1/15)pn) ∪

(

|G| ≤
14

16
pn

)]

≤

(

1−
1

nk

)

1

nk
+

2

nk
≤

3

nk
.

Thus, the statement holds w.h.p. Finally, note that our choice of τ already implies that we receive that
least δ tokens.
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Lemma 29 A (2, 2λ+7)-late adversary enables Alg-Random ensure that every fresh node is connected
to δ

2 mature nodes in each round.

Proof: The proof follows using the correctness of Alg-Routing and Alg-Random. Note that
the adversary is oblivious of the random edges because they only persist for 2 rounds. Each mature
node disseminates tokens to random positions in the [0, 1) interval. The tokens arrive at their target
node for being sampled after 2λ + 2 rounds. The mature nodes that receive the token forward them
to fresh nodes which in turn connect to the mature nodes to stay connected in the network until they
mature themselves. The fresh nodes then receive new tokens from these connections. The entire process
takes 2λ + 5 rounds in total. Therefore, in any given round t a (2, 2λ + 7) adversary is oblivious to
any communication between the fresh nodes and mature nodes, since all connections established until
round t are already defunct, i.e., the adversary is unable to anticipate which tokens reach a given fresh
node. This in turn enables Alg-Random maintain the invariant every round.

Lemma 29 and the churn parameters ensure that there exists a constant size set of good nodes
Gt := Vt−(2λ+5)∩Vt+2 that send a token in round t− (2λ+5) and are not churned out until round Vt+2.
Therefore, if a node receives enough tokens of good nodes, it can successfully advertise its identifier
w.h.p.

It remains to show that at most 2δ fresh nodes connect to a mature node in any given round. We
first analyze the expected number of incoming connections.

Lemma 30 Let A(u, v) denote the event that v advertises itself to u. Then, ∀u,w ∈ Vt and any two
tokens θ, θ′ it holds that,

Pr[A(u, v)] = Pr[A(w, v)].

Proof: We again divide the process into two stages. First, the token of u needs to reach v and then
needs to be picked for the advertisement. Let Y1(u, v) and Y1(w, v) the respective events that tokens of
u and w reached v. By Lemma 25 we already know that these events have the same probability.

Note that the actual choice of the nodes which are advertised only depends on the number of distinct
available tokens. In particular, given that a node received ℓ distinct tokens, the probability for one of
these tokens to be used is min{1, δℓ}. This follows from the fact that we draw (up to) δ tokens uniformly
at random or all tokens if we received less than δ. Thus, we draw without replacements and observe a
hyper geometric distribution.

Let now Nv be the number of distinct tokens received by v. Since all nodes send (at least) one token
to v independently and with same probability p := Pr[Y1(u, v) = 1], the value of Nv only depends on
the number of nodes we observe. More formally, it holds:

Pr[Nv = ℓ] :=
∑

S⊂Mt,|S|=ℓ

Pr

[

⋂

u∈S

Y1(u, v) = 1

]

·Pr





⋂

u′ 6∈S

Y1(u
′, v) = 0





:=
∑

S⊂Mt,|S|=ℓ

∏

u∈S

Pr[Y1(u, v) = 1] ·
∏

u′ 6∈S

Pr[Y1(u
′, v) = 0]

=

(

|Mt|

ℓ

)

pℓ(1− p)n−ℓ.

Thus, if we condition on the fact that v already received a token of a certain node, the probability that
this node receives ℓ− 1 additional tokens from different nodes stays the same. It holds,

Pr[Nv = ℓ | Y1(u, v) = 1] =
∑

S⊂Mt\{u}:|S|=ℓ−1

Pr

[

⋂

u′∈S

Y1(u
′, v) = 1

]

·Pr





⋂

u′′ 6∈S

Y1(u
′′, v) = 0





=

(

|Mt| − 1

ℓ− 1

)

· pℓ−1 · (1− p)|Mt|−(ℓ−1)
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=
∑

S⊂V \{w}:|S|=ℓ−1

Pr

[

⋂

u′∈S

Y1(u
′, v) = 1

]

·Pr





⋂

u′′ 6∈S

Y1(u
′′, v) = 0





= Pr[Nv = ℓ | Y1(w, v) = 1].

Thus, when summing over all different outcomes, we get,

Pr[A(u, v) = 1] = Pr[Y1(u, v) = 1] ·Pr[A(u, v) | Y1(u, v) = 1]

= Pr[Y1(u, v) = 1] ·





|Mt|
∑

ℓ=1

Pr[Nv = ℓ | Y1(u, v)] ·min

{

1,
δ

ℓ

}





= Pr[Y1(w, v) = 1] ·





|Mt|
∑

ℓ=1

Pr[Nv = ℓ | Y1(w, v) = 1] ·min

{

1,
δ

ℓ

}





= Pr[Y1(w, v) = 1] ·Pr[A(w, v) | Y1(w, v) = 1]

= Pr[A(w, v) = 1].

This was to be shown.
Intuitively, this lemma implies that all node have the same probability of receiving an advertisement.

Thus, since there are at δn advertisement, the expected number of incoming connections is bound by δ.

Lemma 31 Fix a mature node w that started tokens 2λ+ 5 rounds ago. Let X be a random variable
that denotes the number of fresh nodes that advertise themselves to w. It holds:

E[X ] ≤ δ.

Proof: Let f := |Ft| be number of fresh nodes and m = |Mt| the number of mature nodes in round
t. Note that f

m is at most 1
8 due to our choice of α and κ.

For a fixed v ∈ Ft and w ∈ Mt let A(v, w) be the binary RV that denotes if v connects to w. Let
now Av :=

∑

w∈Mt
A(v, w) be the random variable that counts v’s advertisements. Since each node

creates at most δ advertisements, it must hold that:

E[Av] ≤ δ

Further, we have that

E[Av] =
∑

w∈V

E[A(v, w)]

This follows from the linearity of expectation. Given that A(v, w) is a binary random variable, we also
have that

E[A(v, w)] = Pr[A(v, w)]

Using Lemma 30 we also know that Pr[A(u, v)] = Pr[A(w, v)]. Now we combine our observations to
bound Pr[A(u, v)]. First, see that:

δ ≥ E[Av] =
∑

w∈V

E[A(v, w)] ⊲By linearity of Expectation

=
∑

w∈V

Pr[A(v, w)] ⊲As E[A(v, w)] = Pr[A(v, w)]

= m ·Pr[A(v, w)] ⊲As Pr[A(v, w)] = Pr[A(v, w′)]

Therefore,

Pr[A(v, w)] ≤
δ

m
.
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Let X be a random variable that counts the number of incoming connections to the node w. Then,

E[X ] =
∑

v∈Ft

E[A(v, w)] ≤
δ

8
.

Thus, our claim holds.

Lemma 32 Each mature node receives at most 2δ connections from fresh nodes w.h.p.

Proof: Fix a mature node w ∈Mt and let Xv ∈ {0, 1} be the random variable that indicates whether
v ∈ Ft connects to w. Further, let X :=

∑

v∈Ft
Xv the sum of all fresh nodes that connect to w.

We will show that (Xv)v∈Ft
is negatively correlated and then use the Chernoff Bound on X :=

∑

v∈Ft
Xv to prove the lemma.

Let A and B be two disjoint subsets of fresh nodes and XA andXB the respective subsets of variables
that correspond to these nodes. We show that,

E[XA ·XB] ≤ E[XA] ·E[XB].

A simple induction then implies that (X)v∈Ft
is negatively correlated: Pick any set S ⊂ [1, n] and

denote the indices in S as i1, . . . , is. Given that the formula above is true for any disjoint subset, we
have:

E





∏

j=i1,...,is

Xj



 ≤ E[Xi1 ] · E





∏

j=i2,...,is

Xj





≤ E[Xi1 ] · E[Xi2 ] ·E





∏

j=i3,...,is

Xj





≤
...

=
∏

j=i1,...,is

E[Xj ].

Here, the inequalities hold by choosing A = {i1} and B = S \A in the first line.
Thus, we will now show that

E[XA ·XB] ≤ E[XA] ·E[XB].

Observe that,

E[XAXB] ≤ E[XA] · E[XB]

⇐⇒ E[XAXB]−E[XA] ·E[XB] ≤ 0

⇐⇒ Cov(XA, XB) ≤ 0.

Thus, we will show that Cov(XA, XB) ≤ 0.
If we condition on the set of tokens that each node receives, then (Xv)v∈Ft

(and therefore XA and
XB) follows the hypergeometric distribution as we draw the received tokens without replacement. Thus,
intuitively for any fixed distribution of tokens to fresh nodes, the conditioned distribution is therefore
negatively correlated. To show this more formally, we need to to precisely condition (Xv)v∈Ft

on the
distribution of tokens. For a simpler presentations denote all tokens sent by w as red tokens, all others
are blue in the following. Let Rv ∈ {0, 1} the random variable that indicates that v ∈ Ft received
red token. Further let Bv count the number of distinct blue tokens not received by v. Thus, the set
Y := (Rv ∪Bv)v∈Ft

completely characterizes the distribution of tokens to nodes.
Using the closure properties of NA, one can show that the set Y := (Rv ∪Bv)v∈Ft

is NA: For each
each red token θ we can define the binary variables X(θ, v). It holds that X(θ, v) = 1 if θ reaches v,
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and 0 otherwise. Observe that for a fixed θ there is at most one X(θ, v) = 1 and all others are 0 as a
token can only be received by one node. Thus, for each token θ the set (X(θ, v))v∈Vt

is NA. Further, if
we fix a node v the sum of all X(θ, v) is NA as well. The variable Rv is now simply defined as

Rv :=

{

1 if
∑τ

i=1 X(θwi , v) > 0

0 else

Since it is monotonically increasing in
∑τ

i=1 X(θwi , v) the variable Rv is also NA.
The same holds almost analogously for the blue tokens, however we need to adapt to the fact that we

count the identifiers that were not received. Therefore, we define X(θ, v) := 1−X(θ, v). In particular,
we set X(θ, v) = 0 if θ reaches v, and 1 otherwise. As X(θ, v) is NA, so is X(θ, v) as it is monotone
function. For each node u ∈ V \ {w} now define Bu

v to be binary variable indicating if any token of u
reached v. Thus, Bu

v equals 1 if all τ tokens of u missed v. We formalize this by setting:

Bu
v :=

{

1 if
∑τ

i=1 X(θu, v) = τ

0 else

Again,
∑τ

i=1 X(θui , v) is NA and thus Bu
v is increasing function of

∑τ
i=1 X(θui , v) it is NA, too. By

summing over all Bu
v , we obtain the number of distinct tokens that did not reach v. Further, the

variables (Bv)v∈Ft
with Bv :=

∑

u∈V Bu
v are NA as each variable is a monotone function on disjoint

NA variables.
Now observe that all Xv’s are independent of one another given Y . Further, the expected value

E[Xv|Rv, Bv] of eachXv is dependent solely on the variablesRv andBv. In particular, eachE[Xv|Rv, Bv]
monotonically rises in both Rv and Bv and is given by,

E[Xv | Y = (Rv, Bv)] = Pr[Xv | Y = (Rv, Bv)]

=
Rv

Rv + (m−Bv)
,

where m = |V \ {w}| is the total number of nodes in round t− (2λ+ 5) that send blue tokens.
Obviously, receiving a red tokens raises the expectation of drawing a red token. However, it also

holds that, the less blue token (i.e., more blue tokens that we don’t receive) we receive the more likely it
becomes to draw a red token. Thus, given two disjoint subsets XA, XB ⊂ X we can view E[XA|Y ] and
E[XB|Y ] as functions that monotonically rise in disjoint subsets YA = (RA∪BA) and YB := (RB∪BB).
With these observations, we can now show that X is negatively correlated using only some technical
arguments. By the law of total convariance, it holds:

Cov ((XA, XB) := E[Cov(XA, XB)|Y ] + Cov (E[XA|Y ],E[XB|Y ])

We see that the first term is 0 since (Xv)v∈Ft
is independent given Y . Note that the covariance of

independent variables is always 0 by definition. Thus, it holds:

Cov (XA, XB) = Cov (E[XA|Y ],E[XB|Y ])

It remains to show that this term is smaller than 0. First, recall that E[XA|Y ] and E[XB|Y ] are
monotonically increasing in YA and YB . Thus, we can view them as monotonically increasing functions
f(YA) := E[XA|Y ] and g(YB) := E[XB|Y ] for disjoint subsets of Y . Further, we showed Y is NA and
thus - by the closure properties of NA - its holds that f(YA) and f(YB) are NA, too. Therefore, the
fact that Cov(f(YA), g(YB)) ≤ 0 follows from the definition of NA. And thus:

Cov (E[XA|Y ],E[XB|Y ]) = Cov (f(YA), g(YB)) ≤ 0.

This implies that (Xv)v∈Ft
is negatively correlated.
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Now, we need one last application of the Chernoff Bound. Using Lemma 31, we know that E[X ] ≤ δ.
Now observe that,

Pr[X > 2δ] = Pr

[

X > 2
δ

E[X ]
E[X ]

]

.

Note that δ
E[X] ≥ 1 and we can therefore use the third bound from Lemma 4 for parameters bigger

than 1. Thus, for δ ≥ 3kλ we get that:

Pr[X ≥ 2δ] ≤ exp

(

−
δ

3

)

≤ exp (−kλ) =
1

nk
.

This shows the lemma as was claimed.

4.3 Congestion

Lemma 33 Algorithms Alg-LDS and Alg-Random have congestion of O(log3 n) per node and round
w.h.p.

Proof: We observe the number of messages due to Alg-LDS and Alg-Random by invocation of
Alg-Routing. We observe the two subroutines Alg-LDS and Alg-Random separately.

1. In Alg-LDS each round every mature starts three routing requests for itself and three routing
requests on behalf of each fresh node connected to it. Since there are at most 2δ fresh nodes
connected to a mature node w.h.p., a given mature node starts O(log n) routing requests.

2. In Alg-Random each round every mature starts O(log n) tokens per round. Each token corre-
sponds to one routing request.

Using Lemma 12 that each routing takes O(log n) rounds and Lemma 17 that for each routing request
Alg-Routing has a congestion of O(log n) per round, Alg-LDS and Alg-Random together have
congestion O(log3 n) per round.

Now we observe the remaining operations performed each round.

1. Recall that each swarm is of size O(log n) w.h.p. Thus, during the introduction step in Alg-LDS

each mature node introduces O(log n) nodes to their O(log n) neighbors. Resulting in a congestion
of O(log2 n) additional messages per node.

2. In Alg-Random each node, w.h.p., receives O(log n) tokens through the sampling algorithm and
forwards them to fresh nodes. Additionally, each fresh node sends out O(log n) advertisements.
Thus, altogether each node exchanges O(log n) messages.

Theorem 1 now follows from lemmas 20, 24 and 33.

5 Future Work & Conclusion

We presented an algorithm that maintains a structured overlay in presence of a (2, O(log n))-late ad-
versary. We permit αn deletions/additions over the course of O(log n) rounds. Note that this is
exponentially higher than in [3] and [6]. However, both their algorithms are not possible if the adver-
sary has more recent knowledge of topology. This suggests a strong connection between an adversaries
lateness with regard to the topology and permitted churn. For future work, one could consider finding
an algorithm that tolerates a (1, O(logn))-late adversary. Also one could consider a hybrid model where
the adversary has an almost up-to-date information about some nodes but is more outdated with regard
to others.
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Further, we did not consider any kind of byzantine behavior. However, the approaches used by
Fiat et. al. [9] could perhaps also be used with our overlay. Given, the overlay can handle byzantine
nodes, further overlay problem, i.e. distributed agreement in the (a, b)-late setting, could also promising
directions for future work.
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