
ar
X

iv
:1

90
7.

08
52

6v
4

 [
cs

.D
C

]
 2

1
Fe

b
20

20

ASYNC: A Cloud Engine with Asynchrony and

History for Distributed Machine Learning

Saeed Soori∗, Bugra Can†, Mert Gurbuzbalaban‡ and Maryam Mehri Dehnavi§

∗ § Department of Computer Science, University of Toronto, Toronto, Canada
† ‡ Department of MBS, Rutgers Univeristy, New Jersey, USA

Email: ∗sasoori@cs.toronto.edu, †bugra.can@rutgers.edu, ‡mert.gurbuzbalaban@rutgers.edu, §mmehride@cs.toronto.edu

Abstract—ASYNC is a framework that supports the imple-
mentation of asynchrony and history for optimization methods on
distributed computing platforms. The popularity of asynchronous

optimization methods has increased in distributed machine learn-
ing. However, their applicability and practical experimentation on
distributed systems are limited because current bulk-processing
cloud engines do not provide a robust support for asynchrony and
history. With introducing three main modules and bookkeeping
system-specific and application parameters, ASYNC provides
practitioners with a framework to implement asynchronous ma-
chine learning methods. To demonstrate ease-of-implementation
in ASYNC, the synchronous and asynchronous variants of two
well-known optimization methods, stochastic gradient descent
and SAGA, are demonstrated in ASYNC.

Index Terms—Machine learning, cloud computing

I. INTRODUCTION

Distributed optimization has gained significant traction in

recent years and is frequently used to solve modern large-

scale machine learning problems [1]. The challenges of dealing

with huge datasets, has lead to the development of optimiza-

tions methods with asynchrony and history. Asynchronous

optimization methods reduce worker idle times and mitigate

communication costs. Operations on a history of gradients

augments the noise (stochasticity) to improve convergence [2].

Distributed optimization methods operate on batches of data

and thus have to be implemented in cluster-computing engines

with a bulk (coarse-grained) computation model.

There exists several general coarse-grained distributed data

processing systems. Hadoop [3] and Spark [4] are based

on the iterative map-reduce model but use a synchronous

iterative communication pattern. Thus, because of not support-

ing asynchrony, their execution is vulnerable to the diverse

performance profile caused by slow workers, i.e. stragglers,

and network latency in a distributed platform. Also history

can not be efficiently maintained in these engines as it requires

storing bulky worker-results, and introduces overheads to their

lineage-based [4] or checkpointing fault tolerance implemen-

tations.

Recently, a number of coarse-grained machine learning

engines such as Petuum [5] and Litz [6], have adopted

the parameter server [7] architecture to implement asyn-

chronous communication between nodes with push-pull op-

erations. Asynchrony in distributed optimization methods is

implemented with consistency models, i.e. barriers, expressed

via a dependency graph that maintain a trade-off between

system efficiency and algorithm convergence. Parameter server

paradigms implement a specific class of consistency models,

i.e. stale synchronous parallel (SSP) paradigms using a fixed

dependency graph, which use a static staleness threshold to

control worker wait times. However, recent advancements in

distributed optimization [8], [9] demand for wider range of

customized consistency models (CCMs), often defined by the

user such as throttled-release [9], that control worker wait

times using parameters such as worker-task-completion time

[8] and require to adaptively adjust the parameters at runtime.

CCMs can not be implemented in available parameter server

frameworks as it needs the underlying dependency graph to

adaptively be reconfigured at runtime. Also, Petuum does not

support history and Litz preserves the history by periodic

checkpointing with significant overheads. Other distributed

parameter-server frameworks such as DistBelief [10] and Ten-

sorFlow [11] are specialized for deep learning applications and

thus do not naturally support consistency models and history.

Amongst the fine-grained distributed data processing sys-

tems, primarily used for streaming applications, RAY [12]

and Flink [13] support asynchronous function invocations with

dynamic data flow graphs [14]. However, these frameworks do

not support CCMs and are primarily designed for fine-grained

tasks, and thus can not naturally extend to a bulk-processing

engine. Also, while streaming engines (because of processing

fine tasks) can store local results and intermediate data on

workers to support history with low-overhead, bulk processing

engines can not efficiently store the worker-results because of

processing coarse tasks.

In principle, with massive system engineering efforts, ma-

chine learning practitioners can implement one-off asyn-

chronous optimization methods with re-engineering systems

and interfaces. However, this comes at the cost of pushing

system challenges such as scheduling, bookkeeping, and fault

tolerance to the application developer. For example, Spark can

support history if previous worker-results are stored to disk

and checkpointed; this will create large storage overheads.

Supporting CCMs is more challenging as the entire Spark

engine has to change to support asynchronous execution. An

expert MPI programmer can use asynchronous primitives to

implement SSP [15]. However, this leads to increased program

complexity and the complexity will increase if customized

consistency models were to be implemented. Noteworthy, MPI

does not have a robust support for fault tolerance and thus is

http://arxiv.org/abs/1907.08526v4

typically not used for cloud computing.

This work presents ASYNC, a bulk processing cloud-

computing framework, built on top of Spark, that supports

the implementation of distributed optimization methods with

asynchrony and history. ASYNC implements an asynchronous

execution to Spark’s engine and enables the workers and/or

the master to bookkeep (log) system-specific and application

parameters. The asynchronous execution paradigm and the

bookkeeping structures work together to construct a dynamic

dependence graph for the implementation of custom consis-

tency models and to recover history with a partial broadcast

of model parameters. Major contributions of this paper are:

• A novel framework for machine learning practitioners to

implement and dispatch asynchronous machine learning

applications with custom consistency models on cloud

and distributed platforms. ASYNC introduces three mod-

ules to cloud engines, ASYNCcoodinator, ASYNCbroad-

caster, and ASYNCscheduler to enable the asynchronous

gather, broadcast, and schedule of tasks and results.

• A efficient history recovery strategy implemented with

the ASYNCbroadcaster and bookkeeping attributes, to

facilitate the implementation of variance reduced opti-

mization methods that operate on historical gradients.

• A robust programming model with extensions to the

Spark API that enables the implementation of asynchrony

and history while preserving the in-memory and fault

tolerant features of Spark.

• A demonstration of ease-of-implementation in ASYNC

with the implementation and performance analysis of

the stochastic gradient descent (SGD) [1] algorithm and

its asynchronous variant using a CCM. Also, the im-

plementation of the history-based optimization method

SAGA [16] and its asynchronous variant in ASYNC. Our

results demonstrate that asynchronous SAGA (ASAGA)

[17] and asynchronous SGD (ASGD) outperform their

synchronous variants up to 4 times on a distributed

system with stragglers.

II. PRELIMINARIES

Distributed machine learning often results in solving an op-

timization problem in which an objective function is optimized

by iteratively updating the model parameters until conver-

gence. Distributed implementation of optimization methods

includes workers that are assigned tasks to process parts of

the training data, and one or more servers, i.e. masters, that

store and update the model parameters. Distributed machine

learning models often result in the following structure:

min
w∈Rd

F (w) =
1

m

m
∑

i=1

f (i)(w) (1)

where w is the model parameter to be learned, m is the number

of workers, and f (i)(w) is the local loss function computed

by worker i based on its assigned training data. Each worker

has access to ni data points, where the local cost has the form

f (i)(w) :=

ni
∑

j=1

f̄
(i)
j (w) (2)

for some loss functions f̄
(i)
j : R

d → R. For example, in

supervised learning, given an input-output pair
(

xij , yij
)

, the

loss function can be f̄ i
j(w) = ℓ(〈w, φ(xij)〉, yij) where φ is a

fixed function of choice and ℓ(·, ·) is a convex loss function

that measures the loss if yij is predicted from xij based on

the model parameter w. This setting covers empirical risk

minimization problems in machine learning that include linear

and non-linear regression, and other classification problems

such as logistic regression [2]. In particular, if φ(x) = x

and the ℓ(·, ·) function is the square of the Euclidean distance

function, we obtain the familiar least squares problem

f̄ i
j(w) = ‖xT

ijw − yij‖
2 (3)

where

f (i)(w) :=

ni
∑

j=1

f̄
(i)
j (w) = ‖Aiw − bi‖

2 (4)

with bi = {yij}
ni

j=1 is a column vector of length ni and Ai ∈

R
ni×d is called the data matrix as its j-th row is given by the

input xT
ij .

In the following we use the gradient descent (GD) algo-

rithm as an example to introduce stochastic optimization and

other terminology used throughout the paper such as mini-

batch size. The introduced terms are used in all optimiza-

tion problems and are widely used in the machine learning

literature. GD iteratively computes the gradient of the loss

function ∇F (wk) =
1
m

∑m

i=1 ∇f (i)(wk) to update the model

parameters at iteration k. To implement gradient descent on a

distributed system, each worker i computes its local gradient

∇f (i)(wk); the local gradients are aggregated by the master

when ready. The full pass over the data at every iteration of the

algorithm with synchronous updates leads to large overheads.

Distributed stochastic gradient descent (SGD) methods and

their variants [18] are on the other hand scalable and pop-

ular methods for solving (1). Distributed SGD replaces the

local gradient ∇f (i)(wk) with an unbiased stochastic estimate

∇̃f (i)(wk) of it, computed from a subset of local data points:

∇f̃ (i)(wk) :=
1

bi

∑

s∈Si,k

∇f̄ (i)
s (wk), (5)

where Si,k ⊂ {1, . . . , ni} is a random subset that is sampled

with or without replacement at iteration k, and bi := |Si,k|
is the number of elements in Si,k [1], also called the mini-

batch size. To obtain desirable accuracy and performance,

implementations of stochastic optimization methods require

tuning algorithm parameters. For example, the step size and

the mini-batch sizes are parameters to tune in SGD [1].

III. MOTIVATION FOR ASYNCHRONY AND HISTORY

Asynchrony is implemented to improve the converge rate

and time-to-solution of optimization methods on cluster-

computer platforms with slow machines (stragglers). In dis-

tributed optimization, workers compute local gradients of

Fig. 1: An overview of the ASYNC framework.

the objective function and then communicate the computed

gradients to the server. To proceed to the next iteration of

the algorithm, the server updates the shared model parameters

with the received gradients, broadcasts the most recent model

parameter, and schedules new tasks. In asynchronous opti-

mization, the server can proceed with the update and broadcast

of the model parameters without having to wait for all worker

tasks to complete. This asynchrony allows the algorithm to

make progress in the presence of stragglers which is known as

an increase in hardware efficiency [19]. However, this progress

in computation comes at a cost, the asynchrony inevitably adds

staleness to the system wherein some of the workers compute

gradients using model parameters that may be several gradient

steps behind the most updated set of model parameters which

can lead to poor convergence. This is also referred to as a

worsening in statistical efficiency [18].

Asynchronous optimization methods are formulated and

implemented with properties that balance statistical efficiency

and hardware efficiency to maximize the performance of

the optimization methods on distributed systems. Consistency

models, i.e. barrier control strategies, are used to design

asynchronous optimization methods that enable this balance.

Barriers in asynchronous algorithms determine if a worker

should proceed to the next iteration or if it should wait until

a specific number of workers have communicated their results

to the server. The most well-known barrier control strategy

is the Stale Synchronous Parallel (SSP) in which workers

synchronize when staleness (determined by the number of

stragglers) exceeds a threshold. ASYNC supports SSP and also

facilitates the implementation of custom consistency models

that apply barriers based on parameters such as worker-task-

completion time and scheduling delays.

History augments the noise from stochastic gradients to

improve the convergence rate of the optimization method.

Distributed optimization methods used in machine learning

applications are typically stochastic [1]. Stochastic optimiza-

tion methods use a noisy gradient computed from random

data samples instead of the true gradient which can lead

to poor convergence. Variance reduction techniques, used in

both synchronous and asynchronous optimization, augment the

noisy gradient to reduce this variance. A class of variance-

reduced asynchronous algorithms that have led to significant

improvements over traditional methods memorize the gradi-

ents computed in previous iterations, i.e. historical gradients

[16]. Historical gradients can not be implemented in cluster-

computing engines such as Spark primarily because Spark

can only broadcast the entire history of the model parameters

which can be very large and can lead to significant overheads.

IV. ASYNC: A CLOUD COMPUTING FRAMEWORK WITH

ASYNCHRONY AND HISTORY

ASYNC is a framework, built on top of Spark [4], for

the implementation and execution of asynchrony and history

in optimization algorithms while retaining the map-reduce

model, scalability, and fault tolerance of state-of-the-art cluster

computing engines. Figure 1 demonstrates an overview of the

ASYNC engine. The three main modules in ASYNC are

the ASYNCcoordinator, ASYNCbroadcaster, ASYNCscheduler.

ASYNC also collects and stores bookkeeping structures. These

structures are communicated between the workers and the

master and are either system-specific, i.e. status, or are related

to the application, i.e. attributes. This section elaborates how

the internal elements of ASYNC work together to facilitate

the implementation of asynchrony and history.

Bookkeeping structures in ASYNC. Bookkeeping structures

are used by the main modules of ASYNC to enable the

implementation of asynchrony and history. These structures

are collected by ASYNC at runtime and are stored on the

master. With the help of the ASYNCcoordinator, each worker

communicates to the master, application-specific attributes

such as task results and the mini-batch size. Workers’ recent

status such as worker staleness, average-task-completion time,

and availability1 are also logged and stored in a table called

1A worker is available if it is not executing a task and unavailable otherwise

TABLE I: Transformations, actions, and methods in ASYNC. AC is the ASYNCcontext and Seq[T] is a sequence of elements

of type T.

Actions

ASYNCreduce(f:(T,T) ⇒ T, AC)

ASYNCaggregate(zeroValue: U)
(seqOp: (U, T) ⇒ U, combOp: (U, U) ⇒ U), AC)

Reduces the elements of the RDD using the specified associative
binary operator.
Aggregates the elements of the partition using the combine
functions and a neutral ”zero” value.

Transformations ASYNCbarrier(f:T ⇒ Bool, Seq[T]) Returns a RDD containing elements that satisfy a predicate f.

Methods

ASYNCcollect()
ASYNCcollectAll()
ASYNCbroadcast(T)
AC.STAT
AC.hasNext()

Returns a task result.
Returns a task result and its attributes.
Creates a dynamic broadcast variable.
Returns the current status of all workers.
Returns true if a task result exists.

STAT with the help of the ASYNCcoordinator.

Implementing asynchrony with the ASYNCcoordinator,

ASYNCscheduler, and the status structures. To implement

asynchrony, ASYNC implements a dynamic task graph com-

putation model which uses the consistency model to dynam-

ically determine executing tasks and their assigned workers.

The execution of tasks on workers is automatically triggered

by the system using a computation graph. Task and data

objects are the nodes in this graph and the edges are the

dependency amongst nodes/tasks. The computation graph in

classic consistency models such as SSP does not change at

runtime because the models do not rely on runtime informa-

tion such as the system state. However, many CCMs take

information from the current state of the system as input

and couple this information with the barrier control strategy

to dynamically build the computation graph. To implement

CCMs, the ASYNCcoordinator periodically communicates

with the workers to update system-specific parameters in the

STAT table. The ASYNCscheduler uses the parameters in

STAT and a user-defined barrier control strategy to update the

computation graph. The computation graph is then executed

to apply the desired constancy model.

Implementing history with the ASYNCbroadcaster and the

attributes. In each iteration of an optimization method that uses

history, the computed gradients from previous iterations are

used together with the current model parameters to update the

model parameters. Implementing history in a coarse-grained

computation engine via explicitly storing bulky worker-results,

i.e. previous gradients, leads to significant storage overheads.

A fault tolerant execution will also have overheads in this

approach as large gradients have to be periodically check-

pointed or recomputed explicitly using a lineage.

ASYNC does not explicitly store, communicate, or compute

past gradients. Instead we use the approach from [2] in which

the history of past gradients is recovered, when needed, using

previous model parameters. Recovering history has low stor-

age and computation overheads in coarse-grained computation

models. By recovering history, workers in ASYNC do not

need to store any previously computed gradients and only

the previous model parameters are stored on the master. The

cost of storing the model parameters has an inverse relation

to the batch size [1] and thus reduces as the granularity

of tasks increase, e.g. larger batch sizes. Also, to recover

a past gradient, a worker only needs to subtract its recent

model parameter from the previous model parameter that is

broadcasted to it from the master; the approach in [2] is then

used to update the master-side model parameters based on the

history. The ASYNCbroadcaster in ASYNC is responsible for

the asynchronous broadcast of model parameters between the

master and individual workers. Attributes such as the mini-

batch size, required by the master to apply history to its model

parameters, are also broadcast using the ASYNCbroadcaster.

V. PROGRAMMING WITH ASYNC

To use ASYNC, developers are provided an additional set

of ASYNC-specific functions, on top of what Spark provides,

to access the bookkeeping structures and to implement asyn-

chrony and history. The programming model in ASYNC is

close to that of Spark. It operates on resilient distributed

datasets (RDD) to preserve the fault tolerant and in-memory

execution of Spark. The ASYNC-specific functions also either

transform the RDDs, known as transformations in Spark, or

conduct lazy actions. In this section, ASYNC’s programming

model and API is first discussed. We then show the imple-

mentation of SGD and its asynchronous variant which uses a

CCM. A well-known history-based optimization method called

SAGA [16] and its asynchronous variant with a CCM is also

implemented. Finally, we discuss the implementation of other

consistency models in ASYNC.

A. The ASYNC programming model

Asynchronous Context (AC) is the entry point to ASYNC

and should be created only once in the beginning of the

application. The ASYNCscheduler, the ASYNCbroadcaster,

and the ASYNCcoordinator communicate via the AC and with

this communication create barrier controls, broadcast vari-

ables, and store workers’ task results and status. AC maintains

the bookkeeping structures and ASYNC-specific functions,

including actions and transformations that operate on RDDs.

Workers use ASYNC functions to interact with AC and to

store their results and attributes in the bookkeeping structures.

The server queries AC to update the model parameters or

to access workers’ status. Table I lists the main functions

available in ASYNC. We show the signature of each operation

by demonstrating the type parameters in square brackets.

Collective operations in ASYNC. ASYNCreduce is an action

that aggregates the elements of the RDD on the worker and

returns the result to the server. ASYNCreduce differs from

Spark’s reduce in two ways. First, Spark aggregates data across

each partition and then combines the partial results together to

produce a final value. However, ASYNCreduce executes only

on the worker and for each partition. Secondly, reduce returns

only when all partial results are combined on the server, but

ASYNCreduce returns immediately. Task results on the server

are accessed using the ASYNCcollect and ASYNCcollectAll

methods. ASYNCcollect returns task results in FIFO (first-

in-first-out) order and also returns the worker attributes. The

workers’ status can also be accessed with ASYNC.STAT.

Algorithm 1: The SGD Algorithm

Input : points, numIterations, learning rate αi, sampling rate b
Output: model parameter w

1 for i = 1 to numIterations do
2 w br = sc.broadcast(w)
3 gradient = points.sample(b).map(p ⇒ ∇fp(w br.value)).

reduce(+)
4 w -= αi ∗ gradient
5 end

6 return w

Algorithm 2: The ASGD Algorithm

Input : points, numIterations, learning rate αi, sampling rate b
Output: model parameter w

1 AC = new ASYNCcontext
2 for i = 1 to numIterations do
3 w br = sc.broadcast(w)
4 points.ASYNCbarrier(f, AC.STAT).sample(b).map(p ⇒

∇fp(w br.value)) .ASYNCreduce(+ , AC)
5 while AC.hasNext() do
6 gradient= AC.ASYNCcollect()
7 w -= αi ∗ gradient
8 end
9 end

10 return w

Algorithm 3: The SAGA Algorithm

Input : points, numIterations, learning rate α, sampling rate b,
number of points n

Output: model parameter w
1 averageHistory = 0
2 store w in table
3 for i = 1 to numIterations do
4 w br =sc.broadcast(w)
5 (gradient, history)= points.sample(b).map((index,p) ⇒

∇fp(w br.value), ∇fp(table[index])).reduce(+)
6 averageHistory += (gradient - history)∗ b∗n
7 w -= α ∗ (gradient - history + averageHistory)
8 update table
9 end

10 return w

Barrier and broadcast in ASYNC. ASYNCbarrier is a trans-

formation, i.e. a deterministic operation which creates a new

RDD based on the workers’ status. ASYNCbarrier takes the

recent status of workers.STAT and decides which workers to

assign new tasks to, based on a user-defined function. For

Algorithm 4: The ASAGA Algorithm

Input : points, numIterations, learning rate α, sampling rate b,
#points n, #partitions P

Output: model parameter w
1 AC = new ASYNCcontext
2 averageHistory = 0
3 for i = 1 to numIterations do
4 w br = AC.ASYNCbroadcast(w)
5 points.ASYNCbarrier(f, AC.STAT)

.sample(b).map((index,p) ⇒ ∇fp(w br.value),
∇fp(w br.value(index))). ASYNCreduce(+ , AC)

6 while AC.hasNext() do
7 (gradient,history)= AC.ASYNCcollect()
8 averageHistory += (gradient - history)∗ b∗n/P
9 w -= α ∗ (gradient - history + averageHistory)

10 end
11 end

12 return w

example, for a fully asynchronous barrier model the following

function is declared: f : STAT.foreach(true). In Spark,

broadcast parameters are “broadcast variable” objects that

wrap around the to-be-broadcast value. ASYNCBroadcast also

uses broadcast variables and similar to Spark the method

value can be used to access the broadcast value. However,

ASYNCbroadcast differs from the broadcast implementation

in Spark since it has access to an index. The index is used

internally by ASYNCbroadcast to get the ID of the previously

broadcast variables for the specified index. ASYNCbroadcast

eliminates the need to broadcast values when accessing the

history of broadcast values.

B. Case studies

The robust programming model in ASYNC provides control

of low-level features in both the algorithm and the execution

platform to facilitate the implementation of asynchrony and

history in optimization methods. The following demonstrates

the implementation of well-known asynchronous optimization

methods ASGD and ASAGA in ASYNC as examples.

ASGD with ASYNC. An implementation of mini-batch

stochastic gradient descent (SGD) using the map-reduce model

in Spark is shown in Algorithm 1. The map phase applies the

gradient function on the input data independently on workers.

The reduce phase has to wait for all the map tasks to complete.

Afterwards, the server aggregates the task results and updates

the model parameter w. The asynchronous implementation

of SGD in ASYNC is shown in Algorithm 2. With only a

few extra lines from the ASYNC API, colored in blue, the

synchronous implementation of SGD in Spark is transformed

to ASGD. An ASYNCcontext is created in line 1 and is used in

line 4 to create a barrier using the user-defined CCM indicated

by f and based on the current workers’ status, AC.STAT. The

partial results from each partition are then obtained and stored

in AC in line 4. Finally, these partial results are accessed in

line 6 and are used to update the model parameter in line 7.

ASAGA with ASYNC. The SAGA implementation in Spark is

shown in Algorithm 3. This implementation is inefficient and

not practical for large datasets as it needs to synchronously

broadcast a table of all stored model parameters to each

worker, colored in red in Algorithm 3 line 5. The size of this

increases after each iteration and thus broadcasting it leads to

large communication overheads. As a result of the overhead,

machine learning libraries that are build on top of Spark such

as Mllib [20] do not provide implementations of optimization

methods such as SAGA that requires the history of gradi-

ents. ASYNC resolves the overhead with ASYNCbroadcast.

The implementation of ASAGA is shown in Algorithm 4.

ASYNCbroadcast is used to define a dynamic broadcast in

line 4. Then, the broadcast variable is used to compute the

historical gradients in line 5. In order to access the last model

parameters for sample index, the method value is called in line

5. As shown in Algorithm 4, there is no need to broadcast a

table of parameters which allows for efficient implementation

of both SAGA and ASAGA in ASYNC.

CCMs in ASYNC. To enable the implementation of cus-

tom consistancy models, ASYNC provides the interface to

implement user-defined functions that selectively choose from

available workers based on their status. Listing 1 demonstrates

the implementation of two CCMs in ASYNC, CCM1 and

CCM2, as well as the SSP model. CCM1 is the throttled-

release [9] barrier strategy which submits tasks to available

workers only when the number of available workers is at least

k. CCM2 implements a fully asynchronous barrier that allows

workers to progress as soon as their current task finishes.

f: STAT.foreach(Avaialble_Workers >= k) % CCM1

f: STAT.foreach(true) % CCM2

f: STAT.foreach(MAX_Staleness < s) % The SSP

barrier control with a staleness

threshold ’s’

points.ASYNCbarrier(f, AC.STAT) % Apply the

barrier

Listing 1: Pseudo-code for implementing CCMs in ASYNC.

VI. RESULTS

We evaluate the performance of ASYNC by implement-

ing two asynchronous optimization methods, namely ASGD

and ASAGA, and their synchronous variants to solve least

squares problems. We implement the throttled-release CCM

for the both asynchronous methods and use history in ASAGA

and SAGA. The performance of ASGD and ASAGA are

compared to their synchronous implementations in Spark. To

the best of our knowledge, no library or implementation of

asynchronous optimization methods exists on Spark. However,

to demonstrate that the synchronous implementations of the

algorithms using ASYNC are well-optimized, we first compare

the performance of the synchronous variants of the tested opti-

mization methods in ASYNC with the state-of-the-art machine

learning library, Mllib [20]. Mllib is a library that provides

implementations of a number of synchronous optimization

methods. In subsection VI-C we evaluate the performance of

ASGD and ASAGA in ASYNC in the presence of stragglers.

Dataset Row numbers Column numbers Size

rcv1 full.binary 697,641 47,236 851.2MB
mnist8m 8,100,000 784 19GB
epsilon 400,000 2000 12.16GB

TABLE II: Datasets for the experimental study.

0 2 4 6 8 10
time(ms) 105

10-3

10-2

10-1

100

101

102

er
ro

r

mnist8m-MLlib
mnist8m-ASYNC
epsilon-MLlib
epsilon-ASYNC
rcv1-MLlib
rcv1-ASYNC

Fig. 2: The performance of SGD implemented in ASYNC

versus Mllib.

A. Experimental setup

We consider the distributed least squares problem defined in

(4). Our experiments use the datasets listed in Table II from the

LIBSVM library [21], all of which vary in size and sparsity.

The first dataset rcv1 full.binary is about documents in the

Reuters Corpus Volume I (RCV1) archive, which are newswire

stories. The second dataset mnist8m contains handwritten

digits commonly used for training various image processing

systems, and the third dataset epsilon is the Pascal Challenge

2008 that predicts the presence/absence of an object in an

image. For the experiments, we use ASYNC, Scala 2.11, Mllib

[20], and Spark 2.3.2. Breeze 0.13.2 and netlib 1.1.2 are used

for the (sparse/dense) BLAS operations in ASYNC. XSEDE

Comet CPUs [22] are used to assemble the cluster.

To demonstrate the performance of asynchronous algorithms

and their robustness to the heterogeneity in cloud environ-

ments, we evaluate the implemented methods in the presence

of stragglers. Two different straggler behaviours are used: (i)

Controlled Delay Straggler (CDS) experiments in which a

single worker is delayed with different intensities; (ii) the

Production Cluster Stragglers (PCS) experiments in which

straggler patterns from real production clusters are used. The

CDS experiments are ran with all three datasets on a cluster

composed of a server and 8 workers. The PCS experiments

require a larger cluster and thus are conducted on a cluster

of 32 workers with one server using the two larger datasets

(mnist8m and epsilon). In all configurations a worker runs

an executor with 2 cores. The number of data partitions is

32 for all datasets and in the implemented algorithms. The

0 2 4 6 8 10 12 14
time(ms) 105

10-4

10-3

10-2

10-1

100

101

102
er

ro
r

Sync
ASYNC
Sync-0.3
ASYNC-0.3
Sync-0.6
ASYNC-0.6
Sync-1.0
ASYNC-1.0

(a) mnist8m

0 1 2 3 4 5 6
time(ms) 105

10-4

10-3

10-2

10-1

100

er
ro

r

Sync
ASYNC
Sync-0.3
ASYNC-0.3
Sync-0.6
ASYNC-0.6
Sync-1.0
ASYNC-1.0

(b) epsilon

0 2 4 6 8 10 12 14
time(ms) 105

10-4

10-3

10-2

10-1

100

er
ro

r

Sync
ASYNC
Sync-0.3
ASYNC-0.3
Sync-0.6
ASYNC-0.6
Sync-1.0
ASYNC-1.0

(c) rcv1 full.binary

Fig. 3: The performance of ASGD and SGD in ASYNC with 8 workers for different delay intensities of 0%, 30%, 60% and

100% which are shown with ASYNC/SYNC, ASYNC/SYNC-0.3, ASYNC/SYNC-0.6 and ASYNC/SYNC-1.0 respectively.

experiments are repeated three times; the average reported.

Parameter tuning: A sampling rate of b = 10% is selected

for the mini-batching SGD for mnist8m and epsilon and b =

5% is used for rcv1 full.binary. SAGA and ASAGA use b =

10% for epsilon, b = 2% for rcv1 full.binary, and use b =1%

for mnist8m. For the PCS experiment, we use b = 1% for

mnist8m and epsilon. We use the same step size as Mllib and

tune it for SGD to converge faster. A fixed step size is used

in SAGA which is also tuned for faster convergence. The step

size is not tuned for the asynchronous algorithms. Instead,

we use the following heuristic, the step size of ASGD and

ASAGA is computed by dividing the initial step size of their

synchronous variants by the number of workers [23]. We run

the SGD algorithm in Mllib for 15000 iterations with sampling

rate of 10% and use its final objective value as the baseline

for the least squares problem.

B. Comparison with Mllib

We use ASYNC for implementations of both the syn-

chronous and the asynchronous variants of the algorithms

because (i) ASYNC’s performance for synchronous methods

is similar to that of Mllib’s; (ii) asynchronous methods are

not supported in Mllib; (iii) synchronous methods that require

history of gradients can not be implemented in Mllib because

of discussed overheads. To demonstrate that our implementa-

tions in ASYNC are optimized, we compare the performance

of SGD in ASYNC and Mllib for solving the least squares

problem [24]. Both implementations use the same initial step

size. The error is defined as objective function value minus the

baseline. Figure 2 shows the error for three different datasets.

The figure demonstrates that SGD in ASYNC has a similar

performance to that of Mllib’s on 8 workers, the same pattern

is observed on 32 workers. Therefore, for the rest of the

experiments, we compare the asynchronous and synchronous

implementations in ASYNC.

C. Robustness to stragglers

Controlled Delay Straggler: We demonstrate the effect of

different delay intensities in a single worker on SGD, ASGD,

0% 30% 60% 100%
delay

0

1

2

3

4

5

6

av
er

ag
e

w
ai

t t
im

e
pe

r
ite

ra
tio

n
(m

s)

ASGD-mnist8m
SGD-mnist8m
ASGD-epsilon
SGD-epsilon
ASGD-rcv1
SGD-rcv1

Fig. 4: Average wait time per iteration with 8 workers for

ASGD and SGD in ASYNC for different delay intensities.

SAGA, and ASAGA by simulating a straggler with controlled

delay [19], [25]. From the 8 workers in the cluster, a delay

between 0% to 100% of the time of an iteration is added to

one of the workers. The delay intensity, which we show with

delay-value %, is the percentage by which a worker is delayed,

e.g. a 100% delay means the worker is executing jobs at half

speed. The controlled delay is implemented with the sleep

command. The first 100 iterations of both the synchronous

and asynchronous algorithms are used to measure the average

iteration execution time.

SAGA ASAGA SGD ASGD

mnist8m 42.8367 ms 9.8125 ms 6.4433 ms 3.5745 ms

epsilon 6.9926 ms 1.1721 ms 5.3112 ms 1.4165 ms

TABLE III: Average wait time per iteration on 32 workers.

The performance of SGD and ASGD for different delay

intensities are shown in Figure 3 where for the same delay

intensity the asynchronous implementation always converges

1 2 3 4 5 6 7 8
time(ms) 105

10-4

10-3

10-2

10-1

100

101

er
ro

r

Sync
ASYNC
Sync-0.3
ASYNC-0.3
Sync-0.6
ASYNC-0.6
Sync-1.0
ASYNC-1.0

(a) mnist8m

0 2 4 6 8 10 12
time(ms) 105

10-4

10-3

10-2

10-1

er
ro

r

Sync
ASYNC
Sync-0.3
ASYNC-0.3
Sync-0.6
ASYNC-0.6
Sync-1.0
ASYNC-1.0

(b) epsilon

0 2 4 6 8
time(ms) 105

10-4

10-3

10-2

10-1

100

er
ro

r

Sync
ASYNC
Sync-0.3
ASYNC-0.3
Sync-0.6
ASYNC-0.6
Sync-1.0
ASYNC-1.0

(c) rcv1 full.binary

Fig. 5: The performance of ASAGA and SAGA in ASYNC for different delay intensities of 0%, 30%, 60% and 100% which

are shown with ASYNC/SYNC, ASYNC/SYNC-0.3, ASYNC/SYNC-0.6 and ASYNC/SYNC-1.0 respectively.

faster to the optimal solution compared to the synchronous

variant of the algorithm. As the delay intensity increases, the

straggler has a more negative effect on the runtime of SGD.

However, ASGD converges to the optimal point with almost

the same rate for different delay intensities. This is because the

ASYNCscheduler continues to assign tasks to workers without

having to wait for the straggler. When the task result from

the straggling worker is ready, it independently updates the

model parameter. Thus, while ASGD in ASYNC requires more

iterations to converge, its overall runtime is considerably faster

than the synchronous method. With a delay intensity of %100,

a speedup of up to 2× is achieved with ASGD vs. SGD.

Figure 4 shows the average wait time for each worker over

all iterations for SGD and ASGD. The wait time is defined

as the time from when a worker submits its task result to the

server until it receives a new task. In the asynchronous algo-

rithm, workers proceed without waiting for stragglers. Thus

the average wait time does not change with changes in delay

intensity. However, in the synchronous implementation worker

wait times increase with a slower straggler. For example, for

the mnist8m dataset in Figure 4, the average wait time for SGD

increases significantly when the straggler is two times slower

(delay = 100%). Comparing Figure 3 with Figure 4 shows that

the overall runtime of ASGD and SGD is directly related to

their average wait time where an increase in the wait time

negatively affects the algorithms convergence rate.

The slow worker pattern used for the ASGD experiments is

also used for ASAGA. Figure 5 shows experiment results for

SAGA and ASAGA. The communication pattern in ASAGA

is different from ASGD because of the broadcast required to

compute historical gradients. In ASAGA, the straggler and its

delay intensity only affects the computation time of a worker

and does not change the communication cost. Therefore, the

delay intensity does not have a linear effect on the overall

runtime. However, Figure 5 shows that increasing the delay

intensity negatively affects the convergence rate of SAGA

while the ASAGA algorithm maintains the same convergence

rate for different delay intensities.

0% 30% 60% 100%
delay

2

4

6

8

10

12

14

16

av
er

ag
e

w
ai

t t
im

e
pe

r
ite

ra
tio

n
(m

s)

ASAGA-mnist8m
SAGA-mnist8m
ASAGA-epsilon
SAGA-epsilon
ASAGA-rcv1
SAGA-rcv1

Fig. 6: Average wait time per iteration with 8 workers for

ASAGA and SAGA in ASYNC for different delay intensities.

The workers’ average wait time for ASAGA is shown in

Figure 6. With an increase in delay intensity, workers in SAGA

wait more for new tasks. The difference between the average

wait time of SAGA and ASAGA is more noticeable when

the delay increases to 100%. In this case, the computation

time is significant enough to affect the performance of the

synchronous algorithm, however, ASAGA has the same wait

time for all delay intensities.

Production Cluster Stragglers: Our PCS experiments are

conducted on 32 workers with straggler patterns in real pro-

duction clusters [26], [27]; these clusters are used frequently

by machine learning practitioners. We use the straggler be-

haviors reported in previous research [28], [29] all of which

are based on empirical analysis of production clusters from

Microsoft Bing [27] and Google [26]. Empirical analysis

from production clusters concluded that approximately 25%

of machines in cloud clusters are stragglers. From those, 80%

have a uniform probability of being delayed between 150% to

0 0.5 1 1.5 2 2.5 3 3.5
time(ms) 106

10-3

10-2

10-1

100

101

102

er
ro

r

epsilon-ASYNC
epsilon-Sync
mnist8m-ASYNC
mnist8m-Sync

Fig. 7: The performance of ASGD and SGD in ASYNC on

32 workers shown with ASYNC and SYNC respectively.

250% of average-task-completion time. The remaining 20% of

the stragglers have abnormal delays and are known as Long

Tail workers. Long tail workers have a random delay between

250% to 10×. From the 32 workers in our experiment, 6 are

assigned a random delay between 150%-250% and two are

long tail workers with a random delay over 250% up to 10×.

The randomized delay seed is fixed across three executions of

the same experiment.

The performance of SGD and ASGD on 32 workers with

PCS is shown in Figure 7. As shown, ASGD converges to

the solution considerably faster that SGD and leads to a

speedup of 3× for mnist8m and 4× for epsilon. From Figure 8,

ASAGA compared to SAGA obtains a speedup of 3.5× and

4× for mnist8m and epsilon respectively. The average wait

time for both algorithms on 32 workers is shown in Table III.

The wait time increases considerably for all synchronous

implementations which results in slower convergence of the

synchronous methods.

VII. RELATED WORK

To mitigate the negative effects of stale gradients on

convergence, numerous optimization methods support asyn-

chrony. The most widely used optimization algorithms with

asynchrony are stochastic gradient methods [10], [23] and

coordinate descent algorithms [30]. Other work implement

asynchrony by altering the execution bound staleness [19],

[31], by theoretically adapting the method to the stale gradients

[32], and by using barrier control strategies [8], [33]. Variance

reduction approaches use the history of gradients to reduce

the variance incurred by stochastic gradients and to improve

convergence [2], [24], [34]. Numerous algorithms implement

variance reduction techniques in asynchronous methods, some

of which include ASAGA and DisSVRG [34] which supports

asynchrony in convex and non-convex problems.

The demand for large-scale machine learning has led to

the development of numerous cloud and distributed computing

0 2 4 6 8 10
time(ms) 105

10-3

10-2

10-1

100

101

er
ro

r

epsilon-ASYNC
epsilon-Sync
mnist8m-ASYNC
mnist8m-Sync

Fig. 8: The performance of ASAGA and SAGA in ASYNC

on 32 workers shown with ASYNC and SYNC respectively.

frameworks. Commodity distributed dataflow systems such as

Hadoop [3] and Spark [4], as well as libraries implemented

on top of them such as Mllib [20], are optimized for coarse-

grained, often bulk synchronous, parallel data transformations

and thus do not provide asynchrony in their execution models

[3], [4], [35], [36]. Recent work has modified frameworks such

as Spark to support asynchronous optimization methods. ASIP

[37] introduces a communication layer to Spark to support

asynchrony, however, it only implements the asynchronous

parallel consistency model [5] and does not support history.

Glint [7] integrates the parameter server model on Spark.

However, it is designed for topic models with a specialized

consistency model.

Parameter server architectures such as [5], [6] are widely

used in distributed machine leaning since they support asyn-

chrony in their execution models using a static dependency

graph. Petuum [5] implements the SSP execution model. Other

parameter server frameworks include MLNET [38] and Litz

[6]. MLNET deploys a communication layer that uses tree-

based overlays to implement distributed aggregation to only

communicate the aggregated updates without the support for

individual communication of worker-results. These implemen-

tations do not support custom consistency models required

by asynchronous optimization methods nor the history of

gradients. Finally, numerous distributed computing frame-

works have been developed to support specific applications.

For example DistBelief [10] and TensorFlow [11] support

deep learning applications while fine-grained data processing

systems such as RAY [12] and Flink [13] are designed for

streaming problems. The frameworks can not be naturally

extended to support mini-batch optimization methods that

require coarse-grained computation models.

VIII. CONCLUSION

This work introduces the ASYNC framework that facilities

the implementation of asynchrony and history in machine

learning methods on cloud and distributed platforms. Along

with bookkeeping structures, the modules in ASYNC fa-

cilitate the implementation of numerous consistency models

and history. ASYNC is built on top of Spark to benefit

from Spark’s in-memory computation model and fault tolerant

execution. We present the programming model and interface

that comes with ASYNC and implement the synchronous

and asynchronous variants of two well-known optimization

methods as examples. These examples only scratch the surface

of the types of algorithms that can be implemented in ASYNC.

We hope that ASYNC helps machine learning practitioners

with the implementation and investigation to the promise of

asynchronous optimization methods.

REFERENCES

[1] L. Bottou, “Stochastic gradient descent tricks,” in Neural networks:

Tricks of the trade. Springer, 2012, pp. 421–436.

[2] S. J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. J. Smola, “On variance
reduction in stochastic gradient descent and its asynchronous variants,”
in Advances in Neural Information Processing Systems, 2015, pp. 2647–
2655.

[3] A. Hadoop, “Apache hadoop,” URL http://hadoop. apache. org, 2011.

[4] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in Pro-

ceedings of the 9th USENIX conference on Networked Systems Design

and Implementation. USENIX Association, 2012, pp. 2–2.

[5] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie,
A. Kumar, and Y. Yu, “Petuum: A new platform for distributed machine
learning on big data,” IEEE Transactions on Big Data, vol. 1, no. 2, pp.
49–67, 2015.

[6] A. Qiao, A. Aghayev, W. Yu, H. Chen, Q. Ho, G. A. Gibson, and
E. P. Xing, “Litz: Elastic framework for high-performance distributed
machine learning,” in 2018 {USENIX} Annual Technical Conference

({USENIX}{ATC} 18), 2018, pp. 631–644.

[7] R. Jagerman and C. Eickhoff, “Web-scale topic models in spark: An
asynchronous parameter server,” arXiv preprint arXiv:1605.07422, 2016.

[8] J. Zhang, H. Tu, Y. Ren, J. Wan, L. Zhou, M. Li, and J. Wang, “An
adaptive synchronous parallel strategy for distributed machine learning,”
IEEE Access, vol. 6, pp. 19 222–19 230, 2018.

[9] J. R. Albrecht, C. Tuttle, A. C. Snoeren, and A. Vahdat, “Loose
synchronization for large-scale networked systems.” in USENIX Annual

Technical Conference, General Track, 2006, pp. 301–314.

[10] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior,
P. Tucker, K. Yang, Q. V. Le et al., “Large scale distributed deep
networks,” in Advances in Neural Information Processing Systems, 2012,
pp. 1223–1231.

[11] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in 12th {USENIX} Symposium on Operating

Systems Design and Implementation ({OSDI} 16), 2016, pp. 265–283.

[12] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan et al., “Ray: A distributed
framework for emerging {AI} applications,” in 13th {USENIX} Sympo-

sium on Operating Systems Design and Implementation ({OSDI} 18),
2018, pp. 561–577.

[13] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in a single
engine,” Bulletin of the IEEE Computer Society Technical Committee

on Data Engineering, vol. 36, no. 4, 2015.

[14] S. Wang, J. Liagouris, R. Nishihara, P. Moritz, U. Misra, A. Tumanov,
and I. Stoica, “Lineage stash: Fault tolerance off the critical path,”
in Proceedings of Symposium on Operating Systems Principles, SOSP,
vol. 19, 2019.

[15] R. L. Graham, T. S. Woodall, and J. M. Squyres, “Open mpi: A
flexible high performance mpi,” in International Conference on Parallel

Processing and Applied Mathematics. Springer, 2005, pp. 228–239.
[16] A. Defazio, F. Bach, and S. Lacoste-Julien, “Saga: A fast incremental

gradient method with support for non-strongly convex composite objec-
tives,” in Advances in Neural Information Processing Systems, 2014, pp.
1646–1654.

[17] R. Leblond, F. Pedregosa, and S. Lacoste-Julien, “Asaga: asynchronous
parallel saga,” arXiv preprint arXiv:1606.04809, 2016.

[18] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting
distributed synchronous sgd,” arXiv preprint arXiv:1604.00981, 2016.

[19] J. Cipar, Q. Ho, J. K. Kim, S. Lee, G. R. Ganger, G. Gibson, K. Keeton,
and E. Xing, “Solving the straggler problem with bounded staleness,”
in Presented as part of the 14th Workshop on Hot Topics in Operating

Systems, 2013.
[20] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,

J. Freeman, D. Tsai, M. Amde, S. Owen et al., “Mllib: Machine learning
in apache spark,” The Journal of Machine Learning Research, vol. 17,
no. 1, pp. 1235–1241, 2016.

[21] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector
machines,” ACM transactions on intelligent systems and technology

(TIST), vol. 2, no. 3, p. 27, 2011.
[22] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw,

V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson et al., “Xsede:
accelerating scientific discovery,” Computing in Science & Engineering,
vol. 16, no. 5, pp. 62–74, 2014.

[23] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free approach
to parallelizing stochastic gradient descent,” in Advances in Neural

Information Processing Systems, 2011, pp. 693–701.
[24] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent

using predictive variance reduction,” in Advances in Neural Information

Processing Systems, 2013, pp. 315–323.
[25] C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Straggler mitigation in

distributed optimization through data encoding,” in Advances in Neural

Information Processing Systems, 2017, pp. 5434–5442.
[26] I. S. Moreno, P. Garraghan, P. Townend, and J. Xu, “Analysis, modeling

and simulation of workload patterns in a large-scale utility cloud,” IEEE

Transactions on Cloud Computing, vol. 2, no. 2, pp. 208–221, 2014.
[27] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica, Y. Lu,

B. Saha, and E. Harris, “Reining in the outliers in map-reduce clusters
using mantri.” in Osdi, vol. 10, no. 1, 2010, p. 24.

[28] P. Garraghan, X. Ouyang, R. Yang, D. McKee, and J. Xu, “Straggler
root-cause and impact analysis for massive-scale virtualized cloud
datacenters,” IEEE Transactions on Services Computing, 2016.

[29] X. Ouyang, P. Garraghan, D. McKee, P. Townend, and J. Xu, “Straggler
detection in parallel computing systems through dynamic threshold
calculation,” in 2016 IEEE 30th International Conference on Advanced

Information Networking and Applications (AINA). IEEE, 2016, pp.
414–421.

[30] X. Lian, Y. Huang, Y. Li, and J. Liu, “Asynchronous parallel stochastic
gradient for nonconvex optimization,” in Advances in Neural Informa-

tion Processing Systems, 2015, pp. 2737–2745.
[31] A. Agarwal and J. C. Duchi, “Distributed delayed stochastic optimiza-

tion,” in Advances in Neural Information Processing Systems, 2011, pp.
873–881.

[32] W. Zhang, S. Gupta, X. Lian, and J. Liu, “Staleness-aware async-sgd
for distributed deep learning,” arXiv preprint arXiv:1511.05950, 2015.

[33] L. Wang, B. Catterall, and R. Mortier, “Probabilistic synchronous
parallel,” arXiv preprint arXiv:1709.07772, 2017.

[34] Y. Ming, Y. Zhao, C. Wu, K. Li, and J. Yin, “Distributed and asyn-
chronous stochastic gradient descent with variance reduction,” Neuro-

computing, vol. 281, pp. 27–36, 2018.
[35] A. Mahout, “Scalable machine-learning and data-mining library,” avail-

able at mahout. apache. org, 2008.
[36] A. G. B. Saadon and H. M. Mokhtar, “iihadoop: an asynchronous

distributed framework for incremental iterative computations,” Journal

of Big Data, vol. 4, no. 1, p. 24, 2017.
[37] J. E. Gonzalez, P. Bailis, M. I. Jordan, M. J. Franklin, J. M. Hellerstein,

A. Ghodsi, and I. Stoica, “Asynchronous complex analytics in a dis-
tributed dataflow architecture,” arXiv preprint arXiv:1510.07092, 2015.

[38] L. Mai, C. Hong, and P. Costa, “Optimizing network performance
in distributed machine learning,” in 7th {USENIX} Workshop on Hot

Topics in Cloud Computing (HotCloud 15), 2015.

	I Introduction
	II Preliminaries
	III Motivation for Asynchrony and History
	IV ASYNC: A Cloud Computing Framework with Asynchrony and History
	V Programming with ASYNC
	V-A The ASYNC programming model
	V-B Case studies

	VI Results
	VI-A Experimental setup
	VI-B Comparison with Mllib
	VI-C Robustness to stragglers

	VII Related work
	VIII Conclusion
	References

