
Scaling Betweenness Approximation to Billions of
Edges by MPI-based Adaptive Sampling

Alexander van der Grinten
Department of Computer Science

Humboldt-Universität zu Berlin
Berlin, Germany

avdgrinten@hu-berlin.de

Henning Meyerhenke
Department of Computer Science

Humboldt-Universität zu Berlin
Berlin, Germany

meyerhenke@hu-berlin.de

Abstract—Betweenness centrality is one of the most popular
vertex centrality measures in network analysis. Hence, many
(sequential and parallel) algorithms to compute or approximate
betweenness have been devised. Recent algorithmic advances have
made it possible to approximate betweenness very efficiently
on shared-memory architectures. Yet, the best shared-memory
algorithms can still take hours of running time for large graphs,
especially for graphs with a high diameter or when a small
relative error is required.

In this work, we present an MPI-based generalization of
the state-of-the-art shared-memory algorithm for betweenness
approximation. This algorithm is based on adaptive sampling;
our parallelization strategy can be applied in the same manner to
adaptive sampling algorithms for other problems. In experiments
on a 16-node cluster, our MPI-based implementation is by a
factor of 16.1x faster than the state-of-the-art shared-memory
implementation when considering our parallelization focus – the
adaptive sampling phase – only. For the complete algorithm, we
obtain an average (geom. mean) speedup factor of 7.4x over the
state of the art. For some previously very challenging inputs, this
speedup is much higher. As a result, our algorithm is the first
to approximate betweenness centrality on graphs with several
billion edges in less than ten minutes with high accuracy.

Index Terms—betweenness centrality, approximation, adaptive
sampling, MPI-parallel graph algorithm, big graph data analytics

I. INTRODUCTION

Betweenness centrality (BC) is a popular vertex centrality
measure in network analysis. As such, it assigns a numerical
score to each vertex of a graph to quantify the importance of
the vertex. In particular, the (normalized) betweenness b(x)
of a vertex x ∈ V in a graph G = (V,E) is defined as
b(x) := 1

n(n−1)
∑
s 6=t

σst(x)
σst

, where σst(x) is the number of
shortest s-t paths over x and σst is the total number of shortest
s-t paths. Betweenness has applications in many domains: to
name just a few, Bader et al. [3] mention lethality in biological
networks, study of sexually transmitted diseases, identifying
key actors in terrorist networks, organizational behavior, and
supply chain management processes. BC is, however, known
to be expensive to compute. The classical exact algorithm
by Brandes [8] has a running time of O(|V ||E|); it is still
the basis for many exact parallel or distributed algorithms

This work is partially supported by German Research Foundation (DFG)
grant ME 3619/3-2 within Priority Programme 1736 Algorithms for Big Data.

today. Moreover, recent theoretical results suggest that it
is unlikely that a subcubic algorithm (w. r. t. |V |) exists to
compute betweenness exactly on arbitrary graphs [1]. Thus,
for large graphs beyond, say, 5M vertices and 100M edges,
exact betweenness algorithms can be seen as hardly practical,
not even parallel and distributed ones (see Section II).

For betweenness approximation, however, fast practical
algorithms exist. The fastest known betweenness approxi-
mation algorithm is the KADABRA algorithm by Borassi
and Natale [7]. This algorithm uses sampling to obtain a
probabilistic guarantee on the quality of the approximation:
with a probability of (1−δ), the resulting betweenness values
never deviate by more than an additive error of ±ε from the
true values, for all vertices of the input graph. δ and ε are
constants that can be chosen arbitrarily (but smaller choices
increase the algorithm’s running time). More specifically,
KADABRA performs adaptive sampling, i. e., the algorithm
does not compute a fixed number of samples a priori. Instead,
the algorithm’s stopping condition depends on the samples that
have been taken so far – this fact implies that parallelization
is considerably more challenging for adaptive sampling al-
gorithms than for “traditional” (i. e., non-adaptive) sampling.
In particular, in the context of parallelization, checking the
stopping condition of adaptive sampling algorithms requires
some form of global aggregation of samples.

Despite these difficulties, a shared-memory parallelization
of the KADABRA algorithm was presented by the authors of
this paper (among others) in Ref. [24]. While this algorithm
scales to graphs with hundreds of millions of edges with
an error bound of ε = 0.01, betweenness approximation for
really large graphs is still out of reach for current algorithms.
Especially when a higher accurary is desired, current shared-
memory algorithms quickly become impractical. In fact, on
many graphs only a handful of vertices have a betweenness
score larger than 0.01 (e. g., 38 vertices out of the 41 million
vertices of the widely-studied twitter graph; the situation
is similar for other social networks and web graphs) – for
ε = 0.01, an approximation algorithm can only reliably
detect a small fraction of vertices with highest betweenness
score. Choosing ε = 0.001 improves this fraction of reliably
identified vertices by an order of magnitude but requires
multiple hours of running time for large graphs on shared-

ar
X

iv
:1

91
0.

11
03

9v
1

 [
cs

.D
C

]
 2

4
O

ct
 2

01
9

memory machines.

A. Scope and Challenges

The goal of this paper is to provide an efficient MPI-based
algorithm for parallel betweenness approximation. Inside each
MPI process, we want to employ multithreading to utilize
modern multicore CPUs. We consider the scenario in which a
single sample can be taken locally, i. e., independently by each
thread and in parallel, without involving any communication.
Checking the stopping condition, however, does involve global
synchronization (i. e., it requires a global aggregation of per-
thread sampling states). In this scenario, the main challenge is
that we want to reduce the time lost during communication to
a minimum even though we need to perform frequent global
synchronization.

Note that the assumption that we can take samples locally
implies that we do not work with a distributed graph data
structure. This constrains our algorithm to input graphs that
fit into the memory of a single compute node. Fortunately,
this is not an issue for betweenness approximation: today’s
compute nodes usually have more than enough memory to
store the graphs for which betweenness computations are
feasible. In fact, we can fit all networks from well-known
graph repositories like SNAP [14] and KONECT [13] into the
96 GiB of RAM that are available to MPI processes on the
compute nodes considered in our experiments.

B. Our Capabilities

In this paper, we present a new MPI-based algorithm for
betweenness approximation. Our algorithm is a parallelization
of the adaptive sampling algorithm KADABRA. As main
techniques, we use an efficient concurrent data structure
from Ref. [24] to aggregate sampling states from multiple
threads, now combined with MPI reductions to aggregate these
sampling states across process boundaries. We evaluate this
new MPI algorithm on a cluster of 16 compute nodes. The
capabilities of our algorithm can be summarized as follows:
• On a collection of 10 real-world data sets with up to 3.3

billion edges, our MPI algorithm achieves a (geom.) mean
speedup of 7.4× over the state-of-the-art shared-memory
parallelization running on a single compute node.

• The focus of our parallelization is on the algorithm’s
adaptive sampling phase – if we consider only this phase,
we achieve a speedup of 16.1×. In particular, by avoiding
NUMA-related bottlenecks, our MPI algorithm outper-
forms the state-of-the-art shared-memory implementation
even on a single compute node by 20-30%.

• Our code is by far the fastest betweenness approximation
available; it can handle graphs with a few billion edges
in less than ten minutes with an accuracy of ε = 0.001.

II. RELATED WORK

A comprehensive overview on betweenness centrality al-
gorithms is beyond the scope of this paper. We thus focus
on recent parallel approaches and in particular on parallel
approximation algorithms for BC.

Exact algorithms: The algorithm with the fastest asymp-
totic time complexity for computing all BC values is due
to Brandes [8]. It performs |V | augmented single-source
shortest path (SSSP) searches and requires O(|V ||E|) time on
unweighted graphs. The main algorithmic idea is to express
BC contributions by a sum over a recursive formula. This
recursion is evaluated after each SSSP search by accumulating
the contributions bottom-up in the corresponding SSSP tree.

Even if some graph manipulations (see e. g., Ref. [20])
help to speed up the Brandes approach, major theoretical
improvements w. r. t. the sequential time complexity (beyond
fixed-parameter results) seem unlikely [1]. Of course, one can
resort to parallelism for acceleration. Consequently, there exist
numerous parallel or distributed algorithms for computing
BC exactly in various computational models: shared-memory
parallel [15], parallel with distributed-memory [22], fully-
distributed [12] as well as (multi-)GPU systems [5], [17], [21]
(among others). Some of these papers operate on massive
graphs – in these cases they report running times for a
relatively small sample of SSSP searches only. Others report
running times for the complete computation – but then usually
on graphs of moderate size only. We observe two exceptions:
Sarıyüce et al. [21] provide exact results for graphs with up
to 234M edges, but their computation on their largest instance
alone requires more than 11 days on a heterogeneous CPU-
GPU system. The second exception is due to AlGhamdi et
al. [2]; they also invest considerable supercomputing time (2M
core hours) for providing BC scores on 20 graphs (some of
them very small) with up to 126M edges.

Approximation algorithms: To deal with the “Θ(|V ||E|)
complexity barrier” in practice, several approximation algo-
rithms have been proposed. An empirical comparison between
many of them can be found in Matta et al. [16]. Different from
previous sampling-based approaches [3], [9], [11] (which we
do not describe in detail due to space constraints, see [16]
instead) is the method by Riondato and Kornaropoulos [18]:
it samples node pairs (instead of SSSP sources) and shortest
paths between them. The algorithm, let us call it RK, approx-
imates the betweenness score of v ∈ V as the fraction of
sampled paths that contain v as intermediate node. This ap-
proach yields a probabilistic absolute approximation guarantee
on the solution quality: the approximated BC values differ by
at most ε from the exact values with probability at least (1−δ),
where ε, δ > 0 can be arbitrarily small constants.

Further improvements over the RK algorithm have re-
cently been obtained using adaptive sampling, leading to
the so-called ABRA [19] (by Riondato and Upfal) and
KADABRA [7] (by Borassi and Natale) algorithms. Borassi
and Natale show in their paper that KADABRA dominates
ABRA (and thus other BC approximation algorithms) in
terms of running time and approximation quality. Hence,
KADABRA is the state of the art in terms of (sequential)
approximation (also see Matta et al. [16] for this conclusion).
Since KADABRA is the basis of our work, we explain it in
some detail in Section III-A.

Surprisingly, only few works have considered parallelism

2

in connection with approximation explicitly so far (among
them our own [24] and to some extent Ref. [7]; both will
be described later). Hoang et al. [12] provide ideas on how to
use approximation in a distributed setting, but their focus is
on exact computation. To the best of our knowledge, there are
no MPI-based parallelizations of KADABRA in the literature.

III. PRELIMINARIES

Throughout this paper, all graphs that we consider are
undirected and unweighted.1 We consider an execution envi-
ronment consisting of P processes (distributed over multiple
compute nodes) and T threads per process. In descriptions
of algorithms, we denote the index of the current process by
p ∈ {0, . . . , P −1}; the index of the current thread is denoted
by t ∈ {0, . . . , T − 1}. Process zero (p = 0) and thread zero
(t = 0) of each process sometimes have special roles in our
algorithms.

The current state-of-the-art algorithm for shared-memory
parallel betweenness approximation algorithm was presented
by van der Grinten et al. [24]. This algorithm is a par-
allelization of the KADABRA algorithm by Borassi and
Natale [7]. As our MPI-based betweenness approximation
algorithm builds upon KADABRA as the underlying sampling
algorithm, we revisit the basic ideas of KADABRA next.

A. The KADABRA Algorithm
An in-depth discussion of the KADABRA algorithm is

beyond the scope of this section; for details, we refer the
reader to the original paper [7]. Specifically, below we do not
discuss how certain functions and constants are determined,
as those computations are quite involved and not instruc-
tive for parallelization purposes. Like previous betweenness
approximation algorithms (such as the RK algorithm [18]),
KADABRA samples pairs (s, t) ∈ V × V of vertices s 6= t;
for each pair, it samples a shortest s-t path. From these
data, the algorithm computes the number c̃(x) of sampled s-t
paths that contain a given vertex x, for each x ∈ V . Let τ
denote the number of samples taken so far. After termination,
b̃(x) := c̃(x)/τ represents the (approximate) betweenness
centrality of x.

KADABRA improves upon previous betweenness approx-
imation algorithms in two respects: (i) it uses adaptive sam-
pling instead of taking a fixed number of samples, and (ii)
it takes samples using a bidirectional BFS instead of an
“ordinary” (i. e., unidirectional) BFS. To check the stopping
condition of KADABRA’s adaptive sampling procedure, one
has to verify whether two functions f(b̃(x), δL(x), ω, τ) and
g(b̃(x), δU (x), ω, τ) simultaneously assume values smaller
than ε, for all vertices x ∈ V of the graph. Here, ω is a
statically computed maximal number of samples, and δL(x)
and δU (x) are per-node failure probabilities computed such
that δL(x) + δU (x) < δ holds.2 The constants δL, δU and ω

1The parallelization techniques considered in this paper also apply to
directed and/or weighted graphs if the required modifications to the underlying
sampling algorithm are done. For more details, see Ref. [7].

2The exact choices for δL(x) and δU (x) do not affect the algorithm’s
correctness, but they do affect its running time.

need to be precomputed before adaptive sampling is done. As
a result, KADABRA consists of the following phases:

1) Diameter computation. This is the main ingredient
required to compute ω.

2) Calibration of δL and δU . In this phase, the algorithm
takes a few samples (non-adaptively) and optimizes δL
and δU based on those initial samples.

3) Adaptive sampling. The adaptive sampling phase con-
sumes the majority of the algorithm’s running time.

B. Parallelization of Adaptive Sampling Algorithms

In this work, we focus on the parallelization of the adaptive
sampling phase of KADABRA. As mentioned in the introduc-
tion, the main challenge of parallelizing adaptive sampling is
to reduce the communication overhead despite the fact that
checking the stopping condition requires global synchroniza-
tion. It is highly important that we overlap sampling and
the aggregation of sampling states: in our experiments, this
aggregation can incur a communication volume of up to 25
GiB, while taking a single sample can be done in less than
10 milliseconds. Thus, we want to let each thread take its
own samples independently of the other threads or processes.
Each thread t conceptually updates its own c̃t vector and its
number of samples τt after taking a sample. Checking the
stopping condition requires the aggregation of all c̃t vectors
to a single c̃ =

∑
c̃t, i. e., the aggregation of O(PT) vectors

of size O(|V |). Our algorithms will not maintain a (τt, c̃t) pair
explicitly. Instead, our algorithms sometimes have to manage
multiple (τ, c̃) pairs per thread. For this purpose, we call such a
pair S := (τ, c̃) a state frame (SF). The state frames comprise
the entire sampling state of the algorithm (aside from the
constants mentioned in Section III-A).

Also note that the functions f and g involved in the stopping
condition are not monotone w.r.t. c̃ and τ . In particular, it is
not enough to simply check the stopping condition while other
threads concurrently modify the same state frame; the stopping
condition must be checked on a consistent sampling state.
Furthermore, it is worth noting that “simple” parallelization
techniques – such as taking a fixed number of samples before
each check of the stopping condition – are not enough [24].
Since they fail to overlap computation and aggregation, they
are known to not scale well, even on shared-memory machines.

We remark that the challenges of parallelizing KADABRA
and other adaptive sampling algorithms are mostly identical.
Hence, we expect that our parallelization techniques can be
adapted to other adaptive sampling algorithms easily as well.

IV. MPI-BASED ADAPTIVE SAMPLING

As the goal of this paper is an efficient MPI-based par-
allelization of the adaptive sampling phase of KADABRA,
we need an efficient strategy to perform the global aggre-
gation of sampling states while overlapping communication
and computation. MPI provides tools to aggregate data from
different processes (i. e., MPI_Reduce) out-of-the-box. We
can overlap communication and computation simply by using
the non-blocking variant of this collective function (i. e.,

3

Algorithm 1 MPI parallelization (no multithreading)

1: S ← 0 . aggregated state frame
2: d← false . d =̂ termination flag
3: Sloc ← 0 . Sloc =̂ state frame (τp, c̃p) of process p
4: while not d do
5: for n0 times do . n0 =̂ appropriately chosen const.
6: Sloc ← Sloc + SAMPLE()

7: S′loc ← Sloc . take snapshot before reduction
8: Sloc ← 0
9: // aggregate all S′loc into S′ at p = 0

10: while IREDUCE(S′, S′loc) is not done do
11: Sloc ← Sloc + SAMPLE()

12: if p = 0 then . only p = 0 checks stopping condition
13: S ← S + S′ . aggregate snapshot S′ into S
14: d← CHECKFORSTOP(S)

15: // send d at p = 0, receive d at p 6= 0
16: while IBROADCAST(d) is not done do
17: Sloc ← Sloc + SAMPLE()

MPI_Ireduce). Indeed, our final algorithm will make use
of MPI reductions to perform aggregation across processes on
different compute nodes, but a more sophisticated strategy will
be required to also support multithreading. If we disregard
multithreading for a moment and rely purely on MPI for
communication, it is not too hard to construct a parallel
algorithm for adaptive sampling. Algorithm 1 depicts such
an MPI-based parallelization of the adaptive sampling phase
of KADABRA; the same strategy can be adapted to other
adaptive sampling algorithms. The algorithm overlaps commu-
nication with computation by taking additional samples during
aggregation and broadcasting operations (lines 10 and 16). To
avoid modifying the communication buffer during sampling
operations that overlap the MPI reduction, it has to take a
snapshot of the sampling state before initiating the reduction
(line 7). Note that the stopping condition is only checked
by a single process. This approach is chosen so as to avoid
any additional communication – and evaluating the stopping
condition is indeed cheaper than the aggregation required
for the check (this is confirmed by our experiments, see
Section V). In the algorithm, the number n0 of samples before
each aggregation (line 5) should be tuned in order to check
the stopping condition neither too rarely nor too often. The
less often the stopping condition is checked, the larger the
latency becomes between the point in time when the stopping
condition would be fulfilled and the point in time when
the algorithm terminates. Nevertheless, checking it too often
incurs high communication costs. We refer to Section IV-D
for the selection of n0.

Given a high-quality implementation of MPI_Ireduce,
Algorithm 1 can be expected to scale reasonably well with the
number of MPI processes, but it does not efficiently utilize

modern multicore CPUs.3 While it is of course possible to
start multiple MPI processes per compute node (e. g., one
process per core), it is usually more efficient to communicate
directly via shared-memory than to invoke the MPI library.4

More critically, starting multiple processes per compute node
limits the amount of memory that is available to each process.
As our assumption is that each thread can take samples
individually, each thread needs access to the entire graph – and
the largest interesting graphs often fill the majority of the total
memory available on our compute nodes. Because the graph
is constant during the algorithm’s execution, sharing the graph
data structure among multiple threads on the same compute
node thus allows an algorithm to scale to much larger graphs.

In the remainder of this work, we focus on combining the
basic MPI-based Algorithm 1 with an efficient method to
aggregate samples from multiple threads running inside the
same MPI process. We remark that MPI_Ireduce cannot
be used for this purpose; MPI only allows communication
between different processes and not between threads of the
same process. Existing fork-join based multithreading frame-
works like OpenMP do provide tools to aggregate data from
different threads (i. e., OpenMP #pragma omp parallel
for reduction); however, they do not allow overlapped
aggregation and computation. Instead, we will use an efficient
concurrent data structure that we developed in Ref. [24]
for the shared-memory parallelization of adaptive sampling
algorithms.

A. The Epoch-based Framework

In Ref. [24], we presented our epoch-based framework,
an efficient strategy to perform the aggregation of sampling
states with overlapping computation on shared-memory archi-
tectures. In this section, we summarize the main results of that
paper. Subsequently, in Section IV-B we give a functional de-
scription of the mechanism behind the epoch-based framework
without diving into the implementation details of Ref. [24]. In
Section IV-C, we construct a new MPI-based parallelization
based on the epoch-based framework.

The progress of a sampling algorithm derived from the
epoch-based framework is divided into discrete epochs. The
epochs are not synchronized among threads, i. e., while thread
t is in epoch e, another thread t′ 6= t can be in epoch e′ 6= e.
Each thread t allocates a new state frame Set whenever it
transitions to a new epoch e. During the epoch, thread t only
writes to SF Set . Thread t = 0 has a special role: in addition to
taking samples, it is also responsible for checking the stopping
condition. The stopping condition is checked once per epoch,
taking into account the SFs Set generated during that epoch. To
initiate a check of the stopping condition for epoch e, thread
zero has the ability to command all threads to advance to an
epoch e′ > e. Before performing the check, thread zero waits

3We remark that, at least in our experiments, implementations of
MPI_Ireduce did not deliver the desired performance (especially when
compared to MPI_Reduce), see Section IV-F.

4High-quality MPI libraries do implement local communication via shared-
memory; still, the MPI calls involve some additional overhead.

4

Algorithm 2 Epoch-based MPI parallelization

1: S ← 0 . aggregated state frame
2: d← false . atomic termination flag
3: Set ← 0 for all t and e . state frames
4: e← 0 . thread-local epoch variable
5: if t 6= 0 then
6: while not d.atomic load() do
7: Set ← Set + SAMPLE()
8: if CHECKTRANSITION(e) then
9: e← e+ 1

10: else // t = 0
11: loop
12: for n0 times do
13: Se0 ← Se0 + SAMPLE()

14: while FORCETRANSITION(e) is not done do
15: Se+1

0 ← Se+1
0 + SAMPLE()

16: Seloc ← 0 . aggregate epoch snapshot Se from Set
17: for i ∈ {1, . . . , T} do
18: Seloc ← Seloc + Sei
19: // aggregate all Seloc into Se at p = 0
20: while IREDUCE(Se, Seloc) is not done do
21: Se+1

0 ← Se+1
0 + SAMPLE()

22: if p = 0 then
23: S ← S + Se

24: d′ ← CHECKFORSTOP(S)

25: // send d′ at p = 0, receive d′ at p 6= 0
26: while IBROADCAST(d′) is not done do
27: Se+1

0 ← Se+1
0 + SAMPLE()

28: if d′ then . stop threads t 6= 0
29: d.atomic store(true)
30: break
31: e← e+ 1

for all threads to complete the transition. As the algorithm
guarantees that those SFs will never be written to, this check
of the stopping condition yields a sound result.

The key feature of the epoch-based framework is that it can
be implemented without introducing synchronization barriers
into the sampling threads, i. e., it is wait-free for the sampling
threads. It can be implemented without the use of heavyweight
synchronization instructions like compare-and-swap (in favor
of lightweight memory fences). Furthermore, even for thread
zero (that also has to check the stopping condition), the
entire synchronization mechanism can be fully overlapped
with computation. For further details on the implementation
of the epoch mechanism (e. g., details on the memory fences
required for its correctness), we refer to Ref. [24].

B. The Epoch Mechanism as a Barrier

In Ref. [24], the epoch mechanism was stated as a con-
current algorithm in the language of atomic operations and
memory fences. Here, we reformulate it in a functional way;

t = 0

t = 1

t = 2

FORCETRANSITION(e)
called initially

FORCETRANSITION(e)
is done

CHECKTRANSITION(e)
in t = 1

CHECKTRANSITION(e)
in t = 2

Transition in progress

Fig. 1: Epoch transition with T = 3. Orange regions: thread
samples to SF of epoch e. Blue regions: thread samples to SF
of epoch (e + 1). Thick black bars: calls to forceTransition
(t = 0) or checkTransition (t 6= 0). An epoch transition is
always initiated by a call to forceTransition in thread zero.
It always terminates with the last call to checkTransition in
any other thread. The transition period (marked interval) is
overlapped with computation (i. e., sampling) in all threads,
particularly also in thread zero.

this allows us to employ the mechanism in our MPI algorithm
without dealing with the low-level implementation details.

In our functional description, the epoch-based framework
can be seen as a specialized non-blocking barrier. With each
thread t, we implicitly associate a current epoch, identified by
an integer. We define two functions:

• FORCETRANSITION(e). Must only be called by t = 0
in epoch e. Initiates an epoch transition and immediately
causes thread zero to advance to epoch (e + 1). This
function is non-blocking, i. e., thread zero can monitor
whether the transition is already completed or not (in
pseudocodes, we can treat it similarly to IREDUCE or
IBROADCAST). The initial call completes in O(1) steps.
Monitoring the transition incurs O(T) operations per call.

• CHECKTRANSITION(e). Must only be called by t 6= 0
in epoch e. If FORCETRANSITION(e) has already been
called by thread zero, CHECKTRANSITION causes thread
t to participate in the current epoch transition. In this
case, thread t advances to epoch (e+ 1) and the function
returns true. Otherwise, this function does nothing and
returns false. Completes in O(1) operations.

Once an epoch transition is initiated by a call to FORCE-
TRANSITION in thread zero, it remains in progress until all
other threads perform a CHECKTRANSITION call. This inter-
action between the two functions is depicted in Figure 1. Note
that even during the transition (marked interval in Figure 1), all
threads (including thread zero) can perform overlapping com-
putation. We remark that the epoch mechanism cannot easily
be simulated by a single generic (blocking or non-blocking)
barrier since it is asymmetric: calls to CHECKTRANSITION(e)
before the corresponding FORCETRANSITION(e) have no ef-
fect – the calling threads do not enter an epoch transition.

5

C. Epoch-based MPI Parallelization

We now describe how we combine the MPI-based approach
of Algorithm 1 and our epoch-based framework. The main
idea is that we use the epoch-based framework to aggregate
state frames from different threads inside the same process,
while we use the MPI-based approach of Algorithm 1 to
aggregate state frames among different processes. This allows
us to overlap sampling and communication both for in-process
and for inter-process communication. Algorithm 2 shows the
pseudocode of the combined algorithm. The main difference
compared to Algorithm 1 is that we now have to consider mul-
tiple threads. In each process, all threads except for thread zero
iteratively compute samples. They need to check for epoch
transitions and termination (lines 8 and 6) but they are not
involved in any communication or aggregation. Thread t = 0
of each process proceeds in a way similar to Algorithm 1;
however, it also has to command all other threads to perform
an epoch transition (line 14). After the transition is done, the
state frames for the completed epoch e are aggregated locally.
The result is then aggregated using MPI. Note that after the
epoch transition is initiated, thread t = 0 stores additional
samples to the state frame for the next epoch (e+1) (lines 15,
21 and 27), so that they are properly taken into account in the
next communication round.

Note that in Algorithm 1, we do not synchronize the end
of each epoch across processes: thread t = 0 of each process
decides when to end epochs in its process independently from
all other processes. Nevertheless, because the MPI reduction
acts as a non-blocking barrier, the epoch numbers in differ-
ent processes cannot differ by more than one. Due to the
construction of the algorithm, it is guaranteed that no thread
accesses state frames of epoch e− 2 anymore (i. e., not even
thread zero). Hence, those state frames can be reused and the
algorithm only allocates two state frames per thread.

D. Length of Epochs

The parameter n0 in Algorithm 2 can be tuned to manipulate
the length of an epoch. This effectively also determines how
often the stopping condition is checked. As mentioned in
the beginning of Section IV, care must be taken to check
the stopping condition neither too rarely (to avoid a high
latency until the algorithm terminates) nor too often (to avoid
unnecessary computation). As adding more processes to our
algorithm increases the number of samples per epoch, we
want to decrease the length of an epoch with the number
of processes. This was already observed in Ref. [24] – in
that paper, we suggest to pick n0 = 1000

T 1.33 for a shared-
memory algorithm with T threads. Both the base constant of
1000 samples per epoch and the exponent were determined by
parameter tuning. As our MPI parallelization runs on (PT)
threads in total, we adapt this number to n0 = 1000

(PT)1.33 .

E. Accelerating Sampling on NUMA Architectures

In preliminary experiments, we discovered that if the com-
pute nodes’ architecture exhibits non-uniform memory access
(NUMA), it is considerably better to launch one MPI process

per socket (i. e., NUMA node) instead of launching one
process per compute node. Depending on the input graph,
this strategy gave a speedup of 20-30% on a single compute
node. This effect is due to the fact that during sampling, the
algorithm performs a significant number of random accesses
to the graph data structure (recall that each sample requires
a BFS through the graph). Launching one MPI process per
NUMA node forces the graph data structure to be allocated in
memory that is close to the NUMA node; this decreases the
latency of cache misses to the graph significantly.5 Note that
launching more than one process per compute node obviously
reduces the memory available per process (as discussed in the
beginning of Section IV). Nevertheless, the compute nodes
used in our experiments have two sockets (=̂ NUMA nodes)
and 96 GiB of memory per NUMA node; even if we launch
two processes on our nodes, we can fit graphs with billions of
edges into their memory (including all graphs from SNAP [14]
and KONECT [13]).

To take further advantage of this phenomenon, at each
compute node, we split the initial MPI communicator (i. e.,
MPI_COMM_WORLD) into a local communicator consisting of
all processes on that node. We also create a global communi-
cator consisting of the first process on each node. We perform
the MPI-based aggregation (i. e., MPI_Ireduce) only on the
global communicator. Before this aggregation, we aggregate
over the local communicator of each node. We perform the
local aggregation via shared memory using MPI’s remote
memory access functionality (in particular, passive target one-
sided communication).

F. Implementation Details

Our algorithm is implemented in C++. We use the graph
data structure of NetworKit [23], a C++/Python framework
for large-scale network analysis.6 In our experiments, Net-
worKit is configured to use 32-bit vertex IDs. We remark
that NetworKit stores both the graph and its reverse/transpose
to be able to efficiently compute a bidirectional BFS. For
the epoch-based framework, we use the open-source code
available from Ref. [24]. Regarding MPI, since only thread
t = 0 performs any MPI operations, we set MPI’s threading
mode to MPI_THREAD_FUNNELED.

Recall that KADABRA requires the precomputation of the
diameter as well as an initial fixed number of samples to
calibrate the algorithm. We compute the diameter of the graph
using a sequential algorithm [6] – especially for accuracies
ε < 0.01, this phase of the algorithm only becomes signifi-
cant for higher numbers of compute nodes (see Section V).
Parallelizing the computation of the initial fixed number of
samples is straightforward: we sample in all threads in parallel,
followed by a blocking aggregation (i. e., MPI_Reduce).

5An alternative that also benefits from better NUMA locality would involve
the duplication of the graph data structure inside each process. We chose not to
implement this solution due to higher implementation complexity; we expect
that the difference in performance between the two alternatives is minimal.

6After this paper is published, we will make our code available on GitHub.

6

In preliminary experiments on the adaptive sampling phase,
we discovered that MPI_Ireduce often progresses much
slowlier than MPI_Reduce in common MPI implementa-
tions. Hence, instead of using MPI_Ireduce, we first per-
form a non-blocking barrier (i. e., MPI_Ibarrier) followed
by a blocking MPI_Reduce. This strategy resulted in a
considerable speedup of the aggregation, especially when the
number of processes is increased. We remark that switching to
a fully blocking approach (i. e., dropping the MPI_Ibarrier
and performing a blocking reduction after each epoch) was
again detrimental to performance.

V. EXPERIMENTAL EVALUATION

To demonstrate the effectiveness of our algorithm, we
evaluate its performance empirically on various real-world and
synthetic graphs. In all experiments, we pick δ = 0.1 for the
failure probability (as in the original paper by Borassi and
Natale [7]). For the approximation error, we pick ε = 0.001.
This setting of ε is an order of magnitude more accurate than
what was used in [24] – as detailed in the introduction picking
a small epsilon is necessary to discover a larger fraction of
the vertices with highest betweenness centrality. Note that a
higher accurracy generally improves the parallel scalability
of the algorithm (and its shared-memory competitor) due to
Amdahl’s law: the sequential parts of the algorithm (diameter
computation and calibration) are less affected by the choice of
ε than the adaptive sampling phase. We run all algorithms on
a small cluster consisting of 16 compute nodes equipped with
dual-socket Intel Xeon Gold 6126 CPUs with 12 cores per
socket. We always launch our codes on all available cores per
compute node (with one application thread per core), resulting
in between 24 and 384 application threads in each experiment.
Each compute node has 192 GiB of RAM available. Intel
OmniPath is used as interconnect. The cluster runs CentOS
7.6; we use MPICH 3.2 as MPI library.

A. Instance Selection

As real-world instances, we select the largest non-bipartite
instances from the popular KONECT [13] repository (which
includes instances from SNAP [14] as well as the 9th and
10th DIMACS Challenges [4], [10]).7 These graphs are all
complex networks (specifically, they are either social networks
or hyperlink networks). We also include some smaller road
networks that proved to be challenging for betweenness ap-
proximation in shared-memory [24] due to their high diameter
(in particular, the largest of those networks requires 14 hours
of running time on a single node at ε = 0.001). To simplify
the comparison, all graphs were read as undirected and un-
weighted. For disconnected graphs, we consider the largest
connected component. The resulting instances and their basic
properties are listed in Table I.

As synthetic graphs, we consider R-MAT graphs with
(a, b, c, d) chosen as (0.57, 0.19, 0.19, 0.05) (i. e., matching the

7We expect our algorithm to perform similarly well on bipartite graphs.
Nevertheless, practitioners are probably more interested in centrality measures
on graphs with identical semantics for all vertices.

1 2 4 8 16
compute nodes

1

2

4

8

16

sp
ee

du
p

Overall

(a) Parallel speedup of epoch-
based MPI algorithm over state-
of-the-art shared-memory algo-
rithm.

1 2 4 8 16
compute nodes

0.00

0.25

0.50

0.75

1.00

(b) Breakdown of running time.
From bottom to top: diameter
(blue), calibration (orange),
epoch transition (green), non-
blocking IBARRIER (red),
blocking MPI reduction (violet),
check of stopping condition
(brown).

Fig. 2: Parallel scalability on real-world graphs

1 2 4 8 16
compute nodes

1

2

4

8

16

sp
ee

du
p

(p
er

 p
ha

se
)

ADS
Calib.

(a) Parallel speedup of epoch-
based MPI algorithm over state-
of-the-art shared-memory algo-
rithm in adaptive sampling and
calibration phases.

1 2 4 8 16
compute nodes

600

800

1000

Sa
m

pl
es

/(t
im

e
* P

)

ADS

(b) Parallel scalability of epoch-
based MPI algorithm in terms of
samples per time and compute
node.

Fig. 3: Performance characteristics on real-world-graphs

Graph5008 benchmarks) as well as random hyperbolic graphs
with power law exponent 3. Both models yield a power-law
degree distribution. We pick the density parameters of the
models such that |E| = 30 |V |, which results in a density
similar to that of our real-world complex networks.

TABLE I: Real-world instances

Instance |V | |E| Diameter

roadNet-PA 1,087,562 1,541,514 794
roadNet-CA 1,957,027 2,760,388 865
dimacs9-NE 1,524,453 3,868,020 2,098
orkut-links 3,072,441 117,184,899 10
dbpedia-link 18,265,512 136,535,446 12
dimacs10-uk-2002 18,459,128 261,556,721 45
wikipedia link en 13,591,759 437,266,152 10
twitter 41,652,230 1,468,365,480 23
friendster 67,492,106 2,585,071,391 38
dimacs10-uk-2007-05 104,288,749 3,293,805,080 112

7

TABLE II: Per-instance statistics on 16 compute nodes, includ-
ing number of epochs (Ep.), samples taken by the algorithm
before termination, seconds spent in non-blocking IBARRIER

(B), total communication volume in MiB per epoch (Com.),
seconds spent in adaptive sampling (Time).

Instance Ep. Samples B Com. Time

roadNet-PA 496 3,943,308 0.2 265.5 301
roadNet-CA 638 5,269,664 0.5 477.8 820
dimacs9-NE 79 669,664 0.4 372.2 79
orkut-links 15 829,292 0.2 750.1 13
dbpedia-link 11 1,409,462 0.3 4,459.4 43
dimacs10-uk-2002 2 3,182,023 8.4 4,506.6 24
wikipedia link en 23 1,129,507 1.2 3,318.3 93
twitter 26 1,126,219 3.3 10,169.0 340
friendster 2 1,186,097 11.1 16,477.6 50
dimacs10-uk-2007-05 2 1,631,671 68.9 25,461.1 184

B. Parallel Scalability on Real-World Graphs

In a first experiment, we evaluate the performance of our
epoch-based MPI parallelization for betweenness approxima-
tion on the real-world instances of Table I. In absence of
prior MPI-parallel approximation algorithms for betweenness,
we compare our MPI-parallel code with the state-of-the-art
shared-memory algorithm from Ref. [24]. Figure 2a depicts the
speedup over this competitor. Our MPI parallelization achives
an almost linear speedup for P ≤ 8. For higher numbers of
compute nodes, the sequential part of the computation takes a
non-negligible fraction of the running time. This can be seen
from Figure 2b, which breaks down the fraction of time spent
in different phases of the algorithm: indeed, the sequential
diameter computation and sequential parts of the calibration
phase become more signifiant for P ≥ 8 (blue + orange bars).
Note that the epoch transition and non-blocking barrier (green
+ red bars) are overlapped communication and computation,
while the aggregation (violet bar) is the only non-overlapped
communication done by the algorithm.

In Figure 3a, we present the speedup during the adaptive
sampling and calibration phases individually. Indeed, if we
only consider the adaptive sampling phase, the algorithm
scales well to all 16 compute nodes. While the sampling part
of the calibration phase is pleasingly parrallel, for higher num-
bers of compute nodes, the sequential computations required
for calibration dominate the running time of the calibration
phase. Figure 3b analyzes the behavior during the adaptive
sampling phase in more detail. This figure demonstrates that
the sampling performance scales linearly during the adaptive
sampling phase, regardless of the number of compute nodes.
This is made possible by the fact that almost all communcation
is overlapped by sampling.

Finally, in Table II, we report per-instance statistics of the
algorithm when all 16 compute nodes are used. The road
networks require the highest amount of samples but the lowest
amount communication per epoch (due to their small size).
The algorithm consequently iterates through many epochs
to solve the instance. The largest instances (in particular

8https://graph500.org/

23 24 25 26
\log_2 |V|

4

6

8

10

tim
e/

|V
| (

m
s)

ADS

(a) R-MAT graphs

23 24 25 26
\log_2 |V|

1.5

2.0

2.5

tim
e/

|V
| (

m
s)

ADS

(b) Random hyperbolic graphs

Fig. 4: Adaptive sampling time in relation to graph size on
synthetic graphs

friendster and dimacs10-uk-2007-05) are solved
within only two epochs since the samples collected during
the first global BARRIER and aggregation are enough for
KADABRA to terminate. Again, overlapping the communi-
cation and computation indeed allows the algorithm to be
efficient even for large communication volumes per epoch.

C. Scalability w. r. t. Graph Size

In the next experiment, we evaluate the epoch-based MPI
algorithm’s ability to scale with the graph size. This experi-
ment is performed on synthetic R-MAT and random hyperbolic
graphs. We vary the number of vertices between 223 and
226 (resulting in between 250 million and 2 billion edges).
Figure 4 reports the results in terms of time required for the
adaptive sampling phase in relation to the graph size. On
R-MAT graphs, the algorithm’s running time grows slightly
superlinearly: the largest graphs require 1.85× more time per
vertex than the smaller graphs. On hyperbolic graphs, the
performance is mostly unaffected by the graph size, so that
we conclude that the algorithm scales linearly with the size of
these graphs.

VI. CONCLUSIONS

In this paper, we presented the first MPI-based paral-
lelization of the state-of-the-art betweenness approximation
algorithm KADABRA. Our parallelization is based on the
epoch-based framework and non-blocking MPI collectives.
Both techniques allow us to efficiently overlap communication
and computation, which is the key challenge for parallelizing
adaptive sampling algorithms. As a result, our algorithm is the
first to allow the approximation of betweenness on complex
networks with multiple billions of edges in less than ten
minutes at an accuracy of ε = 0.001.

In future work, we would like to apply our method to other
adaptive sampling algorithms. As mentioned before, we expect
the necessary changes to be small.

8

https://graph500.org/

REFERENCES

[1] Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams.
Subcubic equivalences between graph centrality problems, APSP and
diameter. In SODA, pages 1681–1697. SIAM, 2015.

[2] Ziyad AlGhamdi, Fuad Jamour, Spiros Skiadopoulos, and Panos Kalnis.
A benchmark for betweenness centrality approximation algorithms on
large graphs. In Proceedings of the 29th International Conference on
Scientific and Statistical Database Management, SSDBM ’17, pages
6:1–6:12, New York, NY, USA, 2017. ACM.

[3] David A Bader, Shiva Kintali, Kamesh Madduri, and Milena Mihail.
Approximating betweenness centrality. In International Workshop on
Algorithms and Models for the Web-Graph, pages 124–137. Springer,
2007.

[4] David A. Bader, Henning Meyerhenke, Peter Sanders, and Dorothea
Wagner, editors. Graph Partitioning and Graph Clustering, 10th
DIMACS Implementation Challenge Workshop, Georgia Institute of
Technology, Atlanta, GA, USA, February 13-14, 2012. Proceedings,
volume 588 of Contemporary Mathematics. American Mathematical
Society, 2013.

[5] Massimo Bernaschi, Giancarlo Carbone, and Flavio Vella. Scalable
betweenness centrality on multi-gpu systems. In Proceedings of the
ACM International Conference on Computing Frontiers, CF ’16, pages
29–36, New York, NY, USA, 2016. ACM.

[6] Michele Borassi, Pierluigi Crescenzi, Michel Habib, Walter A. Kosters,
Andrea Marino, and Frank W. Takes. Fast diameter and radius bfs-
based computation in (weakly connected) real-world graphs: With an
application to the six degrees of separation games. Theor. Comput. Sci.,
586:59–80, 2015.

[7] Michele Borassi and Emanuele Natale. KADABRA is an adaptive algo-
rithm for betweenness via random approximation. In ESA, volume 57
of LIPIcs, pages 20:1–20:18. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2016.

[8] Ulrik Brandes. A faster algorithm for betweenness centrality. The
Journal of Mathematical Sociology, 25(2):163–177, 2001.

[9] Ulrik Brandes and Christian Pich. Centrality estimation in large
networks. International Journal of Bifurcation and Chaos, 17(07):2303–
2318, 2007.

[10] Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson, editors.
The Shortest Path Problem, Proceedings of a DIMACS Workshop,
Piscataway, New Jersey, USA, November 13-14, 2006, volume 74 of
DIMACS Series in Discrete Mathematics and Theoretical Computer
Science. DIMACS/AMS, 2009.

[11] Robert Geisberger, Peter Sanders, and Dominik Schultes. Better ap-
proximation of betweenness centrality. In Proceedings of the Meeting
on Algorithm Engineering & Expermiments, pages 90–100. Society for
Industrial and Applied Mathematics, 2008.

[12] Loc Hoang, Matteo Pontecorvi, Roshan Dathathri, Gurbinder Gill, Bozhi
You, Keshav Pingali, and Vijaya Ramachandran. A round-efficient
distributed betweenness centrality algorithm. In PPoPP, pages 272–286,
2019.

[13] Jérôme Kunegis. KONECT: the koblenz network collection. In WWW
(Companion Volume), pages 1343–1350. International World Wide Web
Conferences Steering Committee / ACM, 2013.

[14] Jure Leskovec and Rok Sosic. SNAP: A general-purpose network
analysis and graph-mining library. ACM TIST, 8(1):1:1–1:20, 2016.

[15] Kamesh Madduri, David Ediger, Karl Jiang, David A. Bader, and
Daniel G. Chavarrı́a-Miranda. A faster parallel algorithm and efficient
multithreaded implementations for evaluating betweenness centrality on
massive datasets. In 23rd IEEE International Symposium on Parallel
and Distributed Processing, IPDPS 2009, Rome, Italy, May 23-29, 2009,
pages 1–8. IEEE, 2009.

[16] John Matta, Gunes Ercal, and Koushik Sinha. Comparing the speed
and accuracy of approaches to betweenness centrality approximation.
Computational Social Networks, 6(1):2, Feb 2019.

[17] Adam McLaughlin and David A. Bader. Accelerating gpu betweenness
centrality. Commun. ACM, 61(8):85–92, July 2018.

[18] Matteo Riondato and Evgenios M Kornaropoulos. Fast approximation of
betweenness centrality through sampling. Data Mining and Knowledge
Discovery, 30(2):438–475, 2016.

[19] Matteo Riondato and Eli Upfal. Abra: Approximating betweenness
centrality in static and dynamic graphs with rademacher averages. ACM
Transactions on Knowledge Discovery from Data (TKDD), 12(5):61,
2018.

[20] Ahmet Erdem Sariyüce, Kamer Kaya, Erik Saule, and Ümit V.
Çatalyürek. Graph manipulations for fast centrality computation. TKDD,
11(3):26:1–26:25, 2017.

[21] Ahmet Erdem Sariyüce, Kamer Kaya, Erik Saule, and Ümit V.
Çatalyürek. Betweenness centrality on gpus and heterogeneous architec-
tures. In Proceedings of the 6th Workshop on General Purpose Processor
Using Graphics Processing Units, GPGPU-6, pages 76–85, New York,
NY, USA, 2013. ACM.

[22] Edgar Solomonik, Maciej Besta, Flavio Vella, and Torsten Hoefler.
Scaling betweenness centrality using communication-efficient sparse
matrix multiplication. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
SC ’17, pages 47:1–47:14, New York, NY, USA, 2017. ACM.

[23] Christian L. Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. Net-
workit: A tool suite for large-scale complex network analysis. Network
Science, 4(4):508–530, 2016.

[24] Alexander van der Grinten, Eugenio Angriman, and Henning Meyer-
henke. Parallel adaptive sampling with almost no synchronization. In
Euro-Par, volume 11725 of Lecture Notes in Computer Science, pages
434–447. Springer, 2019.

9

	I Introduction
	I-A Scope and Challenges
	I-B Our Capabilities

	II Related Work
	III Preliminaries
	III-A The KADABRA Algorithm
	III-B Parallelization of Adaptive Sampling Algorithms

	IV MPI-based Adaptive Sampling
	IV-A The Epoch-based Framework
	IV-B The Epoch Mechanism as a Barrier
	IV-C Epoch-based MPI Parallelization
	IV-D Length of Epochs
	IV-E Accelerating Sampling on NUMA Architectures
	IV-F Implementation Details

	V Experimental Evaluation
	V-A Instance Selection
	V-B Parallel Scalability on Real-World Graphs
	V-C Scalability w.r.t. Graph Size

	VI Conclusions
	References

