
FRaZ: A Generic High-Fidelity Fixed-Ratio Lossy
Compression Framework for Scientific

Floating-point Data
Robert Underwood∗†, Sheng Di†, Jon C. Calhoun‡, Franck Cappello†

∗School of Computing Clemson University, Clemson, SC 29634
†Argonne National Laboratory, Lemont, IL 60439

‡Holcolmbe Department of Electrical and Computing Engineering
Clemson University, Clemson, SC 29634

Abstract—With ever-increasing volumes of scientific floating-
point data being produced by high-performance computing
applications, significantly reducing scientific floating-point data
size is critical, and error-controlled lossy compressors have been
developed for years. None of the existing scientific floating-point
lossy data compressors, however, support effective fixed-ratio
lossy compression. Yet fixed-ratio lossy compression for scientific
floating-point data not only compresses to the requested ratio but
also respects a user-specified error bound with higher fidelity. In
this paper, we present FRaZ: a generic fixed-ratio lossy com-
pression framework respecting user-specified error constraints.
The contribution is twofold. (1) We develop an efficient iterative
approach to accurately determine the appropriate error settings
for different lossy compressors based on target compression
ratios. (2) We perform a thorough performance and accuracy
evaluation for our proposed fixed-ratio compression framework
with multiple state-of-the-art error-controlled lossy compressors,
using several real-world scientific floating-point datasets from
different domains. Experiments show that FRaZ effectively iden-
tifies the optimum error setting in the entire error setting space of
any given lossy compressor. While fixed-ratio lossy compression
is slower than fixed-error compression, it provides an important
new lossy compression technique for users of very large scientific
floating-point datasets.

I. INTRODUCTION

Today’s scientific research applications produce volumes of
data too large to be stored, transferred, and analyzed efficiently
because of limited storage space and potential bottlenecks in
I/O systems. Cosmological simulations [1], [2], for example,
may generate more than 20 PB of data when simulating 1
trillion particles over hundreds of snapshots per run. Climate
simulations, such as the Community Earth Simulation Model
(CESM) [3], may produce hundreds of terabytes of data [4]
for each run.

Effective data compression methods have been studied ex-
tensively. Since the major scientific floating-point datasets are
composed of floating-point values, however, lossless compres-
sors [5]–[7]cannot effectively compress such datasets because
of high entropy of the mantissa bits. Therefore, error-bounded
lossy compressors have been widely studied because they
not only significantly reduce the data size but also prevent
data distortion according to a user’s specified error bound.
Most existing lossy compressors consider the error bound

preeminent and endeavor to improve the compression ratio and
performance as much as possible subject to the error bound.

However, many scientific application users have require-
ments for the compression ratio. These requirements are
determined by multiple factors such as the capacity of the
assigned storage space, I/O bandwidth, or desired I/O per-
formance. Hence, these users desire to perform fixed-ratio
lossy compression—that is, compressing data based on the
required compression ratio instead of only strictly respecting
user’s error bound. In this case, the lossy compressor needs
to adjust the error bound to respect the target user-specified
compression ratio, while minimizing the data distortion. The
user can also provide additional constraints regarding the data
distortion (such as maximum error bound) to guarantee the
validity of the results from reconstructed data. While fixed-
ratio compression can be obtained by simply truncating the
mantissa of the floating-point numbers, this approach may
not respect the user’s diverse error constraints. With such
additional constraints, the lossy compressor should make the
compression ratio approach the expected level as closely as
possible, while strictly respecting the data distortion con-
straints.

In this paper, we propose a generic, efficient fixed-ratio
lossy compression framework, FRaZ, that is used to determine
the error settings accurately for various error-controlled lossy
compressors, given the particular target compression ratio with
a specific scientific floating-point dataset. Our design involves
two critical optimization strategies. First, we develop a global
optimum searching method by leveraging Davis King’s global
minimum finding algorithm [8] to determine the most appro-
priate error setting based on the given compression ratio and
dataset in parallel. Second, our parallel algorithm optimizes
the parameter searching performance by splitting the search
range into distinct regions, parallelizing on file, and—in the
offline case—by time-step.

Constructing a generic, high-fidelity framework for fixed-
ratio lossy compression poses many research challenges. First,
as we elaborate in Section V, the relationship between er-
ror bounds and compression ratios is not always monotonic
because of the use of dictionary encoder phases in some

ar
X

iv
:2

00
1.

06
13

9v
1

 [
cs

.D
C

]
 1

7
Ja

n
20

20

compressors such as SZ. Second, since we aim to create
a generic framework such that more compressors can be
included in the future, we cannot utilize properties of the
specific compressors we use to optimize performance as has
been done in prior work [9], [10] and must instead treat
the compression algorithm as a black box. This means that
our algorithm cannot take advantage of properties induced
by block size or expected behavior induced for a particular
data distribution. Third, since we treat the compressors as a
black box, we must carefully study how to modify existing
algorithms to minimize the calls to the underlying compressors
and orchestrate the search in parallel, in order to have a tool
that is useful to users while working around the limitations of
the various current and potential future compressors.

We perform the evaluation for our framework based on the
latest versions of state-of-the-art lossy compressors (including
SZ [11]–[13], ZFP [14], and MGARD [15]), using well-known
real-world scientific floating-point datasets from the public
Scientific Data Reduction Benchmark (SDRBench) [16]. We
perform the parallel performance evaluation on Argonne’s
Bebop supercomputer [17] with up to 416 cores. Experiments
show that our framework can determine the error setting
accurately within the user-tolerable errors based on the target
compression ratios, with very limited time overhead in real-
world cases.

The remainder of the paper is organized as follows. In
Section II, we introduce the background of this research
regarding various state-of-the-art lossy compressors, and we
present several examples about user’s requirement on specific
compression ratios. In Section III, we compare our work
with the related work from fixed-rate compression, image
processing, and signal processing. In Section IV, we present a
formal problem formulation to clarify our research objective.
In Section V, we describe our design and our performance
optimization strategies. In Section VI, we present the evalu-
ation results. In Section VII, we present or conclusions and
end with a vision of future work.

II. BACKGROUND

In this section, we describe the research background, includ-
ing the existing state-of-the-art error-controlled lossy compres-
sors and fixed-ratio use cases.

A. Error-Bounded Lossy Compression

1) SZ: SZ has been widely evaluated in the scientific
floating-point data compression community [18]–[21] , show-
ing that it is one of the best compressors in its class.

SZ is designed based on a blockwise prediction-based com-
pression model. It splits each dataset into many consecutive
non-overlapped blocks (such as 6×6×6 for a 3D dataset) and
performs compression in each block. It includes four key steps:
• Step 1: data prediction. SZ adopts a hybrid data predic-

tion method (either a 1-layer Lorenzo predictor [22] or
linear regression method) to predict each data point by
its neighboring values in the multidimensional space.

• Step 2: linear-scaling quantization. Each floating-
point data value is converted to an integer num-
ber in terms of the formula quantization code =
predicted value−true value

2ε , where ε refers to the user-
specified error bound (i.e., linear-scaling quantization).

• Step 3: entropy encoding. A Huffman encoding algorithm
customized for integer code numbers is then applied to
the quantization codes generated by Step two.

• Step 4: dictionary encoder. A dictionary encoder such as
Gzip [7] or Zstd [6] is used to significantly reduce the
Huffman-encoded bytes generated from Step three.

SZ allows one to set an absolute error bound to control the
data distortion in the compression.

2) ZFP: ZFP [14] is another outstanding error-controlled
lossy compressor and is also broadly assessed and used in
the scientific floating-point data compression community. ZFP
transforms floating-point data to fixed-point values block by
block (block size is 4×4×4 for 3D datasets) and adopts an
embedded coding to encode the generated coefficients.

ZFP also provides an absolute error bound to control the
data distortion. Although ZFP provides another fixed-rate
compression mode, allowing users to do the data compression
based on a given compression ratio, the compression quality
is significantly worse than the absolute error-bound mode. We
demonstrate this in Section VI-B4. Thus, how to efficiently
fix compression ratio based on absolute error-bound mode is
critical to ZFP.

3) MGARD: MultiGrid Adaptive Reduction of Data
(MGARD) [15] is an error-controlled lossy compressor sup-
porting multilevel lossy reduction of scientific floating-point
data. MultiGrid is designed based on the theory of multigrid
methods [23], [24]. An important feature of MGARD is
providing guaranteed, computable bounds on the loss incurred
by the data reduction. MGARD provides different types of
norms, such as infinity norm and L2 norm, to control the data
distortion. The infinity norm is equivalent to the absolute error
bound, and the L2 norm mode can be used to control the mean
squared error (MSE) during the lossy compression.

Although SZ, ZFP, and MGARD provide advanced features
to control the distortion of lossy compression, none of them
provide high-fidelity fixed-ratio compression.

Accuracy of EBLC is dictated at compression time by
selection of an error bound and error bounding type — e.g.,
absolute, relative, number of bits and are selected to minimize
impact on quantities of interest in scientific simulations. For
use cases that preform data analytics on lossy compressed data,
trial-and-error is often used to identify acceptable compression
tolerances [25]. The trial-and-error is often done offline to
ensure that the selected error bound is robust for multiple time-
steps and does diminish the quality of the analysis. However,
if the lossy compressed data is used to advance the simulation
the simulation trial-and-error is possible [26], but recent works
have explored the relation of compression error to numerical
errors present in the simulation and provide strategies on error
tolerance selection [21], [27]–[29].

B. Fixed-Ratio Use Cases

In this subsection, we describe several fixed-ratio use cases
to demonstrate the practical demands on the fixed-ratio com-
pression by real-world application users.

The first use case is significant reduction of storage foot-
print. On the ORNL Summit system, for example, the capacity
of the storage space is limited to 50 TB for each project
by default. Many scientific floating-point simulations (such
as the CESM climate simulation and HACC cosmological
simulation) may produce hundreds of terabytes of data in each
run (or even over 1 PB of data), such that the compression
ratio has to be 10:1 or higher to avoid execution crash due
to no space being left on storage. Even if a larger storage
allocation is awarded or purchased at considerable financial
cost, projects generating extreme volumes often face the need
to reduce their storage footprint in order to make room for their
next executions. Fixed-rate compression provides the ability
to store multiple simulations given a fixed amount of storage
but suffers from large inaccuracies in the data which high
compression ratios are required (see Figure 10).

The second practical use case explores best-fit lossy com-
pression solutions based on the user’s post-analysis require-
ment (such as visual quality or specific analysis property) by
at fixed compressed sizes. None of the existing error-controlled
lossy compressors provide the fixed-ratio compression mode,
however, and therefore users have to seek the best-fit choice by
conducting inefficient trial-and-error strategies with different
error settings for each compressor to achieve a target com-
pression ratio. Furthermore, there is no universal model that
accurately predicts compression ratio based on compressor
configuration for a variety of input data.

The third practical use case involves the matching of I/O
bandwidth constraints and accelerating the I/O performance.
Advanced light-source instruments, such as the Advanced
Photon Source and Linac Coherent Light Source (LCLS-II),
may generate image data at an extremely high acquisition
rate, such that the raw data cannot be stored efficiently for
post-analysis because of limited I/O bandwidth. Specifically,
LCLS-II is producing instrument data with up to 250 GB/s
while the corresponding storage bandwidth is only 25 GB/s.
Thus the designers of LCLS-II expect to reduce the data size
with a compression ratio of 10 or higher [30]. Spring8 [31]
researchers also indicate that their data could be generated
with 2 TB/s, which is expected to be reduced to 200 GB/s
after data compression.

We note that users often require random-access decompres-
sion across time steps, which means that they prefer to be able
to decompress the data individually at each time-step because
decompressing the whole dataset with all time-steps requires a
significant amount of time or is impossible because of memory
allocation limits.

III. RELATED WORK

In the compression community, the similar type of com-
pression is called “fixed-rate compression,” where the rate
here refers to the bit rate, which is defined as the number of

bits used to represent one symbol (or data point) on average
after compression. The lower the bit rate, the higher the
compression ratio. Hence, fixing the bit rate means fixing
the compression ratio. In the remainder of this section, we
compare our work with prior work in these areas.

In addition to the fixed-accuracy modes (i.e., accuracy and
precision error-bounding modes), ZFP offers a fixed-rate mode
[14]. The fixed-rate mode of ZFP offers precise control over
the number of bits per symbol in the input data. It operates by
transforming the data into a highly compressible domain and
truncating each symbol to reach the appropriate rate. However,
the fixed rate mode of ZFP is not error bounded, and it
suffers from significantly lower compression quality than does
the fixed-accuracy mode of ZFP. Figure 1 (b) demonstrates
the compression quality of ZFP using fixed-accuracy mode
and fixed-rate mode, respectively. One can clearly see that
the latter exhibits much worse rate distortion than does the
former (up to 30 dB difference with the same bit-rate in most
cases). Rate distortion is an important indicator to assess the
compression quality. Its detailed definition can be found in
Section VI-B (4). Figures 1 (c) and (d) clearly show that
the fixed-rate mode results in much lower visual quality (e.g.,
more data loss) than the fixed-accuracy mode with the same
compression ratio, 50:1 in this example. In absolute terms,
the fixed-accuracy mode leads to much higher peak signal-to-
noise ratios (PSNR) and lower auto-correlation of compression
errors (ACF(error)), which means better compression quality
than the fixed-rate mode. In ZFP’s website and user guide, the
developer of ZFP also points out that the fixed rate mode is
not recommended unless one needs “to bound the compressed
size or need random access to blocks” [14].

In contrast, not only does our framework fix the compres-
sion ratio but it also achieves higher compression quality for
different compressors (such as SZ, ZFP, and MGARD) based
on their error-bounding mode. Additionally, it can provide
random access to the same level as can ZFP’s fixed rate
mode when supported by the underlying compressor. Since our
framework utilizes a control loop to bound the compression
ratio, it may suffer a lower bandwidth than ZFP’s fixed-
rate mode to a certain extent. The tradeoff for this lower
bandwidth is compressed data of far higher quality for the
same compression ratio, which we demonstrate in detail in
the evaluation section.

The literature also includes studies investigating the use
of fixed-ratio compressors for images. One such work [32]
is JPEG-LS, a fixed-ratio compressor for images. This work
adopts a combination of a prediction system for data values
and two runs of Golumb-Rice encoding to encode RGB values
for images. The first run of the Golumb-Rice encoding is used
to estimate the quantization level used in the the second run
of the encoder. Golumb-Rice assumes integer inputs, whereas
our work is applicable on all numeric inputs.

Some work also has been done on fixed-ratio compression
in digital signal processing [33] In this domain, adaptive
sampling techniques are used to maintain a budget for how
many points to transmit. When a point is determined to provide

(a) original raw data

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14 16

P
S

N
R

 (
d

B
)

Bit Rate

ZFP(fixed-accuracy)
ZFP(fixed-rate)

(b) Rate Distortion

(c) ZFP(fixed-accuracy) (d) ZFP(fixed-rate)

Fig. 1. Data distortion of ZFP in fixed-accuracy mode and fixed-rate mode
(Hurricane TCf field) with CR=50:1; (ZFP.fixed-accuracy: PSNR=55.3, max
error=4.2, SSIM=0.94, ACF(error)=0.67; ZFP.fixed-rate: PSNR=45.4, max
error=33.7, SSIM=0.94, ACF(error)=0.72)

new information (using a predictor, interpolation scheme,
or some other method), it is transmitted and the budget is
expended as long as there is remaining budget. If the budget
is spent, then no points are transmitted until the budget is
refilled. Over time, the budget is increased to keep the rate
constant. In contrast, our work does not rely on a control loop
to maintain the error budget, so can look at the data holistically
to decide where to place the loss in our signal, allowing for
more accurate reconstructions.

IV. PROBLEM FORMULATION

In this section, we formulate the research problem, by
clarifying the inputs, constraints, and the target of our research.

Before describing the problem formulation, however, we
introduce some related notations as follows. Given a specific
field f at time-step t of an application, we denote the dataset
by Df,t = {d1, d2, . . . , dn}, where di refers to the original
value of data point i in the dataset and n is the number of
elements. We denote its corresponding decompressed dataset
by D′f,t= {d′1, d′2, · · · , d′n}, where d′i refers to the recon-
structed value after the decompression. We denote the original
data size and compressed data size by s(Df,t) and s(D′f,t),
respectively. The compression ratio (denoted by ρ) then can be
written as ρ(Df,t) = s(Df,t)

s(D′
f,t)

. Moreover, we denote the target
compression ratio specified by the users as ρt(Df,t), and the
real compression ratio after the compression as ρr(Df,t, e).

The fixed-ratio lossy compression problem is formulated
as follows, based on whether it is subject to an error-control
constraint or not.

• Nonconstrained fixed-ratio compression: The objective of
the nonconstrained fixed-ratio lossy compression is to
confine the real compression ratio to be around the target
compression ratio within a user-specified tolerable error
(denoted by ε), as shown below.

ρt(Df,t)− ε ≤ ρr(Df,t) ≤ ρt(Df,t) + ε (1)
• Error-control-based fixed-ratio compression: The objec-

tive of the error-control-based fixed-ratio compression is
to tune the compression ratio to be within the acceptable
range [ρt(D)−ε,ρt(D)+ε], while respecting the user-
specified error bound (denoted by e), as shown below.

ρt(Df,t)− ε ≤ ρr(Df,t, e) ≤ ρt(Df,t) + ε
s.t. Π(Df,t, D

′
f,t) ≤ e,

(2)

where Π(Df,t, D
′
f,t) is a function of error control. For in-

stance, Π(Df,t, D
′
f,t)=maxi |di−d′i| for the absolute error

bound, and Π(Df,t, D
′
f,t)=

∑
di∈Df,t,d′i∈D′

f,t
(di − d′i)2

for the mean squared error bound.
We summarize the key notation in Table I.

TABLE I
TABLE OF KEY NOTATION

Notation Description
D original data set for all time-steps and fields
Df original data set for all time-steps of a particular field
Df,t original data set for a particular field and time-step
D′f,t decompressed data set for a particular field and time-step
ρt target compression ratio
ρr real compression ratio
ε acceptable error for ρt
e error bound for compression
γ maximum value of the loss function
θ fixed parameters of the compressor
N the number of dimensions
n the total number of data points
T the number of time-steps
α the degree overlap between error-bound search ranges
U maximum allowed compression error

V. DESIGN AND OPTIMIZATION

In this section, we present the design of our fixed-ratio lossy
compression framework and optimization strategies.

A. Design Overview
Figure 2 shows the design overview with highlighted boxes

indicating our major contributions in this paper and the rela-
tionship among different modules in the framework. As shown
in the figure, our FraZ framework is composed of five modules,
and the optimizing autotuner and parallel orchestrator are the
core modules. They are, respectively, in charge of (1) searching
for the optimal error setting based on the target compression
ratio with few iterations and (2) parallelizing the overall tuning
job involving different searching spaces for each field and
different time-steps and across various fields. We develop an
easy-to-use library (called Libpressio [34]) to build a middle
layer for abstracting the discrepancies of the APIs of different
compressors.

We list our major contributions as follows:
1) Formulated fixed-ratio compression as an optimization

problem in a way that converges quickly without resort-
ing to multiobjective optimization

Modified to include

early termination

Users

FRaZ

Compressors

HACC Hurricane EXAALT CESM

FRaZ: Parallel Orchestator

MPI4py

FRaZ: Auto-tuner Optimization

Dlib

Libpressio

SZ ZFP MGARD

Legend

C t ib ti

Fig. 2. Design overview and summary of our contributions

2) Evaluated several different optimization algorithms to
find one that works on all of our test cases, and then
modified it to improve performance for our FRaZ

3) Implemented and ran parallel search to improve the
throughput of the technique

B. Autotuning Optimization

In this subsection, we describe our autotuning solution in
detail, which includes three critical parts: (1) exploration of
the initial optimization methods, (2) construction of a loss
function, and (3) improvements to the optimization algorithm
that involves how to deal with infeasible target compression
ratio requirement and determines the exact error-bound setting.

1) Exploration of Initial Optimization Methods: In this
subsection we describe how we choose which optimization
method to use as a starting point for later refinement.

Before detailing FRaZ’s optimizing autotuning method, we
first analyze why the straightforward binary search is not
suitable for our case. On the one hand, the application datasets
may exhibit a non-monotonic compression ratio increase with
error bounds. We present a typical example in Figure 3, which
uses SZ to compress the QCLOUDf field of the hurricane
simulation dataset. We can clearly see that the compression
ratios may decrease significantly with larger error bounds in
some cases. We also observe the spiky changes in the com-
pression ratios with increasing error bounds on other datasets
(not presented here due to space limit). The reason is that SZ
needs to use decompressed data to do the prediction during the
compression, which may cause unstable prediction accuracy.
Moreover, SZ’s fourth stage (dictionary encoder) may find
various repeated occurrences of bytes based on output of
the third stage, because a tiny change to the error bound
may largely affect the Huffman tree constructed in the third
phase of SZ. By comparison, our autotuning search algorithm
is a general-purpose optimizer and takes into account the
irregular relationship between compression ratios and error
bounds. On the other hand, even on the datasets where
monotonicity holds, binary search may still be slower than
FRaZ’s optimizing autotuner. For example, when searching for
the target compression ratio 8:1 at the 48th time-step on the

Hurriane-CLOUD field, our method requires only 6 iterations
to converge to an acceptable solution, whereas binary search
needs 39 iterations. The reason is that binary search may spend
substantial time searching small error bounds, which would
not result in an acceptable solution because it climbs from
the minimum possible error bound to the user-specified upper
limit.

 60

 70

 80

 90

 100

 110

 120

 130

 140

 0 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

C
o

m
p

re
s
s
io

n
 R

a
ti
o

Error Bounds

 65

 70

 75

 80

 85

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 118

 120

 122

 124

 126

 128

 0.35

 0.36

 0.37

 0.38

 0.39

 0.4

Fig. 3. Example based on the hurricane simulation dataset (field:
QCLOUDf.log10) showing that the relationship between error bounds and
compression ratios is not always monotonic

When developing FRaZ’s optimizing autotuner, we consid-
ered a number of different techniques to perform the tuning.
Since we are developing a generic method, we cannot con-
struct a general derivative function that relates the change in
error bound to the change in compression ratio. Therefore, we
need to decide between methods that use numerical derivatives
and derivative-free optimization because the derivative of the
compression ratio with respect to the error bound is unknown.
The methods using numerical derivatives approximate the
slope of the objective function by sampling nearby points.
Some methods that fall in this category are gradient descent
(i.e., Newton-like methods such as [35] and ADAM [36]).
However, when evaluating an error bound to determine the
compression ratio, we must run the compressor since we are
using the compressors as black boxes, which may take a sub-
stantial amount of compared with the optimization problem. In
this sense, numerical derivative-based methods are too slow.

We therefore turned our consideration to derivative-free
optimization. We considered methods such as BOBYQA [37],
but they do not handle a large number of local optimums. This
ability is essential for developing a robust tuning framework
for lossy compression because many of the functions that
relate error bounds to compression ratios look like the plot
on the left of Figure 4: a step-like function with perhaps a
slight upward slope on each step. In practice, we noted that it
is easily able to escape the local optima in these functions.

We also took into account a variety of implementations
of these algorithms, such as the ones in [8], [38], [39].
We decided between these libraries using three criteria: (1)
correctness of the result, (2) time to solution, and (3) modi-
fiability and readability of code. Ultimately we started with a
black-box optimization function called find_global_min
from the commonly used Dlib library from which we make

0 20
Error Bound

5

10

15

20

C
om

pr
es

io
n

R
at

io
 (

r)

0 20
Error Bound

0

20

40

60

80

100

D
is

ta
nc

e
Fr

om
 O

bj
ec

ti
ve

Objective Acceptable Region

Fig. 4. Illustration of autotuning optimization function: On the left is a
hypothetical relationship between an error-bound level and compression ratio
for some compressor and dataset. The target compression ratio is marked
as a red line, and the acceptable region is colored green. On the right is the
corresponding loss function using our method. The green area above the target
compression ratio refers to the acceptable region. In this case, where there
are blue points in the acceptable region, we call the result feasible. If the
acceptable region was below the blue points, we would call it infeasible.

our modifications [8]. The global-minimum-finding algorithm
designed by Davis King that combines the works of [40] and
[41]. It requires a deterministic function that maps from a
vector to a scalar, a vector of lower bounds, and a vector of
upper bounds as inputs. At a high level the algorithm works as
follows. It begins with a randomly chosen point between the
upper and lower bounds. Then, it alternates between a point
chosen by the model in [40], which approximates the function
by using a series of piecewise linear functions and chooses the
global minimum of this function, and the model in [41], which
does a quadratic refinement of the lowest valley in the model.
According to [8], this method performs well on functions with
a large number of local optimums, and this performance was
confirmed by our experience.

2) Construction of Loss Function: Now that we have an
optimizer framework, we need to construct a loss function.
First, we created a closure for each compressor, ρr(Df,t, e)
that transformed its interface including a dataset D and pa-
rameters θ in a function accepting only the error bound e. To
create the closure, we developed libpressio [34]—a generic
interface for lossy compressors that abstracts between their
differences so that we could write one implementation of the
framework for SZ, ZFP, and MGRAD.

To convert this to a loss function, we chose the distance
between the measured compression ratio and target com-
pression ratio ρr(Df,t, e) − ρt(Df,t). Now, the function that
relates an error bound to a compression ratio is an arbitrary
function that may or may not have a global or local opti-
mum. Therefore, we transformed the function by applying a
clamped square function (i.e. min

(
x2, γ

)
, where γ is equal

to 80% of the maximum representable double using IEEE
754 floating-point notation). This maps the possible range
of the input function from the range (−∞,∞) to the range
[0, γ]. The benefits of this are twofold. First, the function now
has a lowest possible global minimum we can optimize for.
Second, the function now has a highest possible value that
avoids a bug in the Dlib find_global_min function that
causes a segmentation fault. We also considered the function

min (|x|, γ), but found that the quadratic version converged
faster. This leaves us with the final optimization function
l(e) = min

(
(ρr(Df,t, e)− ρt(Df,t)))

2
, γ
)

.
3) Development of Worker Task Algorithm: Our next in-

sight was that often the exact match of the compression ratio
is not always feasible and is neither desired nor required. It
may not always be feasible because for some compressors, for
example ZFP’s accuracy mode, the function that maps from
the error bound to the compression ratio is a step function,
such that not all compression ratios are feasible. In addition,
it may not always be desired or required because the user
might accept a range of compression ratios and prefer finding
a match quickly rather than waiting for a more precise match.

Looking again at Figure 4, we see a typical relationship
between an error bound and the compression ratio. If the user
asks for a compression ratio of 15, no error bound would
satisfy that request using this compressor. In contrast, FRaZ
will return the closest point that it observes to the target; in the
case of Figure 4 it would report an error bound that results in
a compression ratio near 17.5. Depending on the user’s global
error tolerance, this value near 17.5 may or may not be within
the user’s acceptable region, meaning it may or may not be a
feasible solution.

Another case that the solution may be infeasible is when
needed error bound required to meet the objective is above
the user’s specified upper error bound, U . In this case, FRaZ
will report the error bound that resulted in the closest that
it observed to the target compression ratio, and the user can
run FRaZ again with the default upper bound, which is equal
to the maximum allowed level of an error bound by the
compressor. If FRaZ identifies a solution in this case, the user
can evaluate whether to relax the perhaps overly strict error
tolerance to meet the objective or decide that the fidelity of
the results is more important and that the bound cannot be
relaxed. Alternatively, the user can try a different compressor
backend that implements the same error bound.

In fact, determining the exact error bound that produces a
specified compression ratio may not be desired or required.
The reason is that a large number of iterations may be needed
in order to converge to an error bound, and the user would
rather trade time for accuracy. Therefore, we implemented
a version of Dlib’s find_global_min that implements a
global cutoff parameter ε ∈ [0, 1]. Specifically, we allow the
algorithm to terminate if the result of the optimization function
results in a value in the range: [0, ε2ρt(Df,t)

2]. This has a
substantial impact on the performance on the typical case.

We combine these insights into our worker task algorithm,
as shown in Algorithm 1.

C. Parallelism Scheme

After optimizing the serial performance via the design of
the optimization algorithm, we develop a parallel optimization
method using Dlib’s built-in multithreaded optimization mode.
Some compressors (such as SZ and MGARD) do not support
being run with different settings in a multithreaded context
because of the use of global variables. In this situation, we

Algorithm 1 WORKER TASK

Input: target ratio (ρt(Df,t)), acceptable error ε, dataset Df,t, prediction p,
region’s lower bound l, region’s upper bound u
Output: real compression ratio ρr(Df,t, e), recommended error bound
setting e
1: if p 6= 0 then
2: ρr(Df,t, e) ← compress(Df,t, p) /*If a prediction was provided,

try it first.*/
3: end if
4: if (1− ε) ∗ ρt(Df,t) ≤ ρr(Df,t, e)) ≤ (1 + ε) ∗ ρt(Df,t) then
5: return ρr(Df,t), p /*terminate if ρr(Df,t, e) meets requirement.*/
6: end if
7: ρr(Df,t, e), e← train with cutoff(Df,t, l, u, ρt(Df,t), ε)
8: return ρr(Df,t, e), e

Lower bound Upper bound
Adjacent regions overlap

E1 E2

……

E3 Ek-1 Ek

Fig. 5. Illustration of error bound ranges. We divide the range from lower
bound to upper bound into K slightly overlapping regions (E1, E2, . . . EK).
The overlap is a small fixed percentage of the width of the regions (i.e., 10%).
Each region (E1, E2, . . . , EK) is then passed from the parallel orchestrator
to the autotuning optimizer. Note that the ends E1 and EK are slightly smaller
to preserve the error bound range.

can only treat each compression as a non-multithreaded task
because we are developing a generic framework.

We use multiple processes based on MPI to parallelize the
search by error bound range. Figure 5 provides an overview
of our method. Rather than a serial search over the entire
lower to upper bound range, we divide the range into k
overlapping regions. We then give each of the k regions to
separate MPI processes, and use Algorithm 2 to process them.
As the processes complete, we test whether we have satisfied
our objective subject to our global threshold ε (line 7–9). If
so, we terminate all tasks that have not yet begun to execute
(line 10–14). If a particular task finishes and we have not
satisfied our objective, we do nothing. If all the tasks finish
and we still have not met our objective, we conclude that the
requested compression ratio is infeasible (line 18–25).

So why do we overlap the error bound regions? Overlapping
the regions avoids extremely-long worst-case search time in
the optimization algorithm. Since we terminate early once
a solution is found, FRaZs runtime depends on the region
containing the target. Without small overlapping, if the target
error-bound coincides a border, its MPI rank iterates longer
lacking stationary-points for quadratic refinement.

To limit the effects of waiting on wrong guesses, we
constrain the number of iterations to a maximum value. We
considered limiting by time instead, but we were unable to find
a heuristic that worked well across multiple datasets, fields,
and time-steps. This is because the compression time is a
function of the dataset size, the entropy of the data contained
within, and properties of each compressor.

Limiting the amount of wasted computational resources is
desirable. Since we are dividing on error-bound range, a small
number of the searches (typically one) are expected to return
successfully if the requested ratio is feasible. Additionally,
there seems to be a floor for how many iterations are required

Algorithm 2 TRAINING

Input: target compression ratio ρt(Df,t), acceptable error ε, dataset Dt, max
allowed compression error U
Output: real compression ratio ρr(Df,t, e), recommended error bound
setting e
1: tasks[N]
2: done← false
3: for (i, (l, u)) ∈ make error bounds(U) do
4: tasks[i]← launch task(Dt, l, u, ρt(Df,t), ε, h)
5: end for
6: while notdone do
7: last task ← next completed(tasks)
8: candiate← compression ratio(last task)
9: if ρt(Df,t)(1− ε) ≤ candidate ≤ ρt(Df,t)(1 + ε) then

10: done← true
11: for task ∈ tasks do
12: cancel if not finished(task)
13: end for
14: end if
15: done← has next(completed)
16: end while
17: ρr(Df,t, e) =∞
18: for task ∈ tasks do
19: if finished(task) then
20: ρ← compression ratio(task)
21: if (ρr − ρ)2 < (ρt − ρ)2 then
22: ρr = ρ
23: end if
24: end if
25: end for
26: return ρr(Df,t, e), error bound(task)

to converge for a particular mode of a compressors. Hence,
there is limited benefit to splitting into more than a few
ranges, and cores could perhaps be more efficiently used for
other fields. Preliminary experiments found that 12 tasks per a
particular field and time-step dataset offered an ideal tradeoff
between efficiency and runtime, and we set it as the default.
The user can choose to use more tasks, however.

One can also perform additional optimization of multiple
time-step data. Often, subsequent iterations in a large simula-
tion do not differ substantially and have similar compression
properties. Therefore we ran the first time-step as before,
but then we assumed that the error bound found by the
previous iteration was correct for the next full dataset. If
our assumption proved correct, we continued on and skipped
training. Otherwise, we reran the training and adopted the new
trained solution for the next step. We then repeated this process
over the remaining datasets. In practice, we retrained only a
small percentage of the time. On the hurricane dataset, for
example, we retrained only 4 times on the CLOUD field.

We also take advantage of the embarrassingly parallel nature
of parallelizing by fields, as shown in Algorithm 3. The results
show some additional speedup.

VI. PERFORMANCE AND QUALITY EVALUATION

In this section, we first describe our experimental setup, in-
cluding hardware, software, and datasets. We then describe our
evaluation metrics and results using five real-world scientific
floating-point datasets on Argonne’s Bebop supercomputer
[17].

Algorithm 3 PARALLEL BY FIELD

Input: target ratio ρt(Df,t), ε, dataset D, max allowed compression error U
Output: real compression ratio ρr(Df,t, e), recommended error bound
setting e
1: for Df ∈ D /*in parallel*/ do
2: p← 0
3: for Df,t ∈ Df do
4: ρr(Df,t, e), e← parallel error bound(Dt, ε, U)
5: if (1− ε) ∗ ρt(Df,t) ≤ ρr(Df,t, e) ≤ (1 + ε) ∗ ρt(Df,t) then
6: p← e
7: end if
8: end for
9: end for

A. Experimental Setup

1) Hardware and Software Used for Evaluation: The hard-
ware and software versions we used on the Bebop supercom-
puter [17] are given in Table II.

TABLE II
HARDWARE AND SOFTWARE VERSIONS USED

Hardware Description
CPU 36 Core Intel Xeon E5-2695v4
MEM 128GB DDR4 Ram
NIC Intel Omni-Path HFI Silicon 100 Series
Software Description Software Description
OS CentOS 7 SZ 2.1.7
CC/CXX gcc/g++ 8.3.1 ZFP 0.5.5
MPI OpenMPI 2.1.1 MGARD 0.0.0.2
Dlib 2.28 Singularity 3.0.2

We have packaged our software as a Singularity container
for reproducibility.

2) Datasets used for Experiments: In our experiments,
we evaluated our designed fixed-ratio lossy compression
framework based on all three state-of-the-art compressors de-
scribed in Section II, using five real-world scientific simulation
datasets downloaded from scientific data reduction benchmark
[16]. The raw data are all stored in the form of single-
precision data type (32-bit floating point). We describe the
five application datasets in Table III.

TABLE III
DATASET DESCRIPTIONS

Name Domain # Time-steps Dim. # Fields Total size
Hurricane Meteorology 48 3 13 59 GB
HACC Cosmology 101 1 6 11 GB
CESM Climate 62 2 6∗ 48 GB
Exaalt Moledular Dyn. 82 1 3 1.1 GB
NYX Cosmology 8 3 5 35 GB
* A limited number of fields had multi-time step data. Only fields for which

multiple time step data were included.
We chose these datasets for a few reasons: First, they

offer results over multiple time-steps, which matches well
user’s practical post-analysis with a certain simulation period.
Second, the datasets use floating-point data which are often
not served well by traditional lossless compressors. Third, the
datasets are commensurate with the use cases of fixed-ratio
compression described in Section II.

In some cases, we are not able to use all the datasets with all
compressors. We run all the experiments for all datasets and
compressors when possible. MGARD supports only 2d and
3d data so it is not tested on the HACC and Exaalt datasets.
We adopt 6 typical fields for CESM application because other
fields exhibit similar results with one of them (CLDHGH

CLDLOW, CLOUD, FLDSC, FREQSH, PHIS). We generally
noted similar results for each dataset and compressor.

B. Experimental Results

Over the course of our experiments, we evaluated four
properties of FRaZ using the datasets from SDRBench [16]:

1) How close do we get to the target compression ratio
when it is feasible?

2) How long does it take to find the target compression
ratio or determine that it is infeasible?

3) How does the runtime of the algorithm scale as the
number of cores increase?

4) How does FraZ compare with existing fixed-rate meth-
ods in terms of rate distortion and visual quality?

1) How close do we get to the target compression ratio?:
How close we get to the target compression ratio depends
heavily on whether the requested compression ratio is feasible
for the underlying compressor used. Figure 6 (a) and Figure
6 (b) show a bad case and a good case, respectively.

0 10 20 30 40 0 10 20 30 40
Time Step Time Step

10

12

14

16

18

6

7

8

9

(a) Bad Convergence Case (b) Good Convergence Case

Fig. 6. Demonstration of two types of convergence cases (Hurricane-CLOUD)

In Figure 6 (a), we see an example of where ρt(Df,t) is
infeasible for most time-steps for the CLOUD field. The early
time-steps compress within the acceptable range, but by time-
step ten the ρt(Df,t) = 15 is no longer feasible. The reason
is that as the time-steps progress, the properties of the dataset
change, affecting the ability of compressor to compresses it
at this level. As a result, we oscillate between a compression
ratio that is larger and a compression ratio that is smaller.
However, a larger tolerance (i.e., ε = .2) would have allowed
even this case to converge for all time-steps.

In Figure 6 (b), we see an example of where the algorithm
converges on over 90% of the time-steps. In this case, we
quickly converge to the acceptable range and are able to often
reuse the previous time steps error bound for future iterations.
In this particular case, we have to retrain only four times over
the course of the simulation on iterations: 0, 8, 15, 29. Thus,
the algorithm can quickly process many time-steps.

2) How long does it take to reach the target compression
ratio?: When evaluating the algorithm, we wanted to consider
how long the algorithm takes to find the target compression ra-
tio. This again depends greatly on whether ρt(Df,t) is feasible
or not. Therefore, we considered a large number of possible
ρt(Df,t)’s for different datasets. The results of this search are
shown in Figure 7. We can see that some compression ratios
require far longer total times. Figures 6 (a) and (b) show a
zoomed in view of ρt(Df,t) = 8 and ρt(Df,t) = 15. The
difference in runtime is explained by the difference in the

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Target Compression Ratio (t)

0

200

400

600

800

1000

1200

Ti
m

e
(s

)
Sensitivity to the Target Objective

Total Time Compression Time

Fig. 7. Sensitivity of FRaZ to the choice of ρt(Df,t): This is because not all
values of ρt(Df,t) are elements of the co-domain of the function that relates
ρ and e.

number of time-steps that converge. In the case shown in
Figure 6 (a) relatively few time-steps converged because the
objective was infeasible with the specified compressor; in the
case shown in Figure 6 (b) almost all time-steps converged
because the objective was feasible. This resulted in about a
10x difference in performance between the two cases.

Why do low target compression ratios have long runtimes?
Many of the lossy compressors have an effective lower bound
for the compression ratio. In Figure 7, it is about 7.5. This
effective lower bound on the compression ratio, means that
FRaZ will never meet its objective and spends the remainder
of the time searching until it hits its timeout.

How does this change across datasets? In general, the more
feasible compression ratios near the target, the better FRaZ
preformed. Each dataset had a compressor which was able to
more accurately compress and decompress the data.

How does this change between compressors? Generally SZ
took less time than ZFP or MGARD even though ZFP may
take less time for each compression. This is because ZFP
typically had fewer viable compression ratios than SZ due
to limitations of ZFP’s transform based approach. As a result,
FRaZ took more time-steps which took the maximum number
of iterations lengthening the total runtime. The difference in
runtime between SZ and ZFP for a representative dataset can
be seen in Figure 8 below.

3) How does the algorithm scale?: To evaluate how well
the algorithm scales, we considered the runtime of the algo-
rithm as it scales over multiple cores on ANL Bebop [17].

Figure 8 shows the strong scalability of the algorithm. We
see that the algorithm scales by time-step and field levels for
the first 180–216 cores with steep decreases in runtime due to
parallelism at early levels and then less additional parallelism
after that. This is because the runtime of the algorithm is lower
bounded by the longest running worker task. All of the datasets
we tested has at least one fields that takes substantially longer
to compress than others. And the scalability of this algorithm
is limited by the longest of these. In the case of the Hurricane
dataset using the error-bounded compressor SZ, the QCLOUD
field took 1022 seconds to compress while the 75 percentile
is less than 500 and the 50 percentile is less than 325.

36 72 10
8

14
4

18
0

21
6

25
2

Cores

0

5000

10000

R
un

ti
m

e
(s

ec
)

Scalability

sz:abs
zfp:accuracy

Fig. 8. Scalability: our solution reaches the optimal performance at 180–216
cores, in that the total time is equal to the longest task’s wallclock time at
this scale.

What accounts for the substantial difference between the
scalability of FRaZ using ZFP and SZ? Those familiar with
ZFP likely know that it is typically faster than SZ, but this
seems to contradict the result in Figure 8. This result is
explained by considering the individual fields rather than the
overall scalability. For the cases in which ZFP finds an error
bound that satisfies the target compression ratio, it is much
faster. However ZFP often expresses fewer compression ratios
for the same error bound range, resulting in more infeasible
compression ratios and thus increasing the runtime. ZFP
expresses few compression ratios because it uses a flooring
function in the minimum exponent calculation used in fixed-
accuracy mode.

Fields may take longer for a variety of reasons: (1) the
ρt(Df,t) may not be feasible for one or more of the time-
steps, (2) the dataset may have higher entropy resulting in a
longer encoding stage for algorithms such as SZ, or (3) the
fields may be of different sizes, and larger fields take longer.

4) How does FRaZ compare with the existing fixed-rate
compression methods in terms of rate distortion and visual
quality?: We present the rate distortion in Figure 9, which
shows the bit rate (the number of bits used per data point
after the compression) versus the data distortion. Peak signal-
to-noise ratio (PSNR) is a common indicator to assess the
data distortion in the community. PSNR is defined as 20 ·
log10(dmax−dmin

rmse) where rmse =
√

1
N

∑N
i=1(di − d′i)2, and

dmax and dmin refer to the max and min value, respectively.
In general, the higher the PSNR, the higher the quality of
decompressed data.

In this figure, one can clearly see that ZFP (FRaZ) provides
consistently better rate distortion than does ZFP (fixed-rate)
across bit-rates (i.e., across compression ratios). Moreover,
SZ (FRaZ) exhibits the best rate distortion in most cases,
which is consistent with the high compression quality of
SZ as presented in our prior work [13]. That being said,
FRaZ can maintain the high fidelity of the data very well
during the compression, by leveraging the error-bounded lossy
compression mode for different compressors.

In addition to the rate distortion, we present in Figure 10
visualization images based on the same target compression
ratio, to show fixed-ratio compression approach preserves
visual quality. We wanted to set compression ratio of 100:1,

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14 16

P
S

N
R

 (
d
B

)

Bit Rate

SZ(FraZ)
ZFP(FraZ)

ZFP(fixed-rate)
MGARD(FraZ)

(a) Hurricane(TCf48)

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12

P
S

N
R

 (
d
B

)

Bit Rate

SZ(FraZ)
ZFP(FraZ)

ZFP(fixed-rate)
MGARD(FraZ)

(b) NYX(temperature)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14 16 18 20

P
S

N
R

 (
d
B

)

Bit Rate

SZ(FraZ)
ZFP(FraZ)

ZFP(fixed-rate)
MGARD(FraZ)

(c) CESM-ATM(CLDHGH)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14 16 18

P
S

N
R

 (
d
B

)

Bit Rate

SZ(FraZ)
ZFP(FraZ)

ZFP(fixed-rate)

(d) HACC(x,y,z)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0 2 4 6 8 10 12 14

P
S

N
R

 (
d
B

)

Bit Rate

SZ(FraZ)
ZFP(FraZ)

ZFP(fixed-rate)

(e) EXAALT(x,y,z)

Fig. 9. Rate distortion of lossy compression (MGARD is missing in (d) and
(e) because it does not support 1D dataset)

but the closest fesible compression ratio for ZFP is ∼85:1 (see
Section VI-B). Hence, we set the target compression ratio
to be 85:1 for all compressors. Because of the space limit,
we present the results only for NYX-temperature field; other
fields/applications exhibit similar results. All the results are
generated by FRaZ except for the ZFP(fixed-rate). ZFP(FRaZ)
exhibits a much higher visual quality than does ZFP(fixed-
rate) (see Figure 10 (b) vs. Figure 10 (c)), because FRaZ
tunes the error bound based on fixed-accuracy mode, which
has a higher compression quality than ZFP’s built-in fixed-rate
mode. ZFP(FraZ) exhibits higher PSNR than does ZFP(fixed-
rate), which means higher visual quality. We also present the
structural similarity index (SSIM) [42] for the slice images
shown in the figure. SSIM indicates similarity in luminance,
contrast, and structure between two images; the higher SSIM,
the better. Our evaluation shows that ZFP(fixed-rate) has lower
SSIM than ZFP(FRaZ) – i.e. better quality. From among all
the compressors here, MGARD(FRaZ) leads to the lowest
visual quality (as well as lowest PSNR and SSIM), because
of inferior compression quality of MGARD on this dataset.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a functional, parallel, black-box auto-
tuning framework that can produce fixed-ratio error-controlled
lossy compression for scientific floating-point HPC datasets.
Our work offers improvements over existing fixed-rate meth-

(a) original raw data

(b) ZFP (FRaZ) (PSNR=76,
SSIM=0.997, ACF(error)=0.516)

(c) ZFP (fixed-rate) (PSNR=56,
SSIM=0.986, ACF(error)=0.383)

(d) SZ (FraZ) (PSNR=80.4,
SSIM=0.999, ACF(error)=0.344)

(e) MGARD (FraZ) (PSNR=70,
SSIM=0.977, ACF(error)=0.92)

Fig. 10. Visualization of NYX (temperature:slice 256) with CR ≈ 85:1 (CR
of ZFP(FRaZ) = 84, CR of ZFP(fixed-rate) = 85.3, CR of SZ(FRaZ) = 86,
CR of MGARD(FRaZ) = 85.7)

ods by better preserving the data quality for equivalent com-
pression ratios. We showed that FRaZ works well for a
variety of datasets and compressors. We discovered that FRaZ
generally has lower runtime for dataset and compressor com-
binations that produce large numbers of feasible compression
ratios.

A number of areas for potential improvement exist. First,
we would like to consider arbitrary user error bounds. By user
error bounds, we mean error bounds that correspond with
the quality of a scientist’s analysis result relative to that on
noncompressed data, such as [25] which identifies a particular
SSIM in lossy compressed data required for valid results in
their field. Second, we would like to develop an online version
of this algorithm to provide in situ fixed-ratio compression
for simulation and instrument data. Third, we would like to
further improve the convergence rate of our algorithm to make
it applicable for more use cases.

ACKNOWLEDGMENT
This research was supported by the Exascale Computing Project (ECP),

Project Number: 17-SC-20-SC, a collaborative effort of two DOE organiza-
tions - the Office of Science and the National Nuclear Security Administration,
responsible for the planning and preparation of a capable exascale ecosystem,

including software, applications, hardware, advanced system engineering and
early testbed platforms, to support the nation’s exascale computing imperative.

The material was supported by the U.S. Department of Energy, Office of
Science, under contract DE-AC02-06CH11357, and supported by the National
Science Foundation under Grant No. 1619253 and 1910197.

We acknowledge the computing resources provided on Bebop, which is
operated by the Laboratory Computing Resource Center at Argonne National
Laboratory.

This material is also based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Workforce Development for Teachers and
Scientists, Office of Science Graduate Student Research (SCGSR) program.
The SCGSR program is administered by the Oak Ridge Institute for Science
and Education (ORISE) for the DOE. ORISE is managed by ORAU under
contract number DE-SC0014664. All opinions expressed in this paper are the
authors and do not necessarily reflect the policies and views of DOE, ORAU,
or ORISE.

REFERENCES

[1] S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, K. Heitmann,
K. Kumaran, V. Vishwanath, T. Peterka, J. Insley et al., “HACC: extreme
scaling and performance across diverse architectures,” Communications
of the ACM, vol. 60, no. 1, pp. 97–104, 2016.

[2] NYX simulation, https://amrex-astro.github.io/Nyx, online.
[3] J. Kay, C. Deser, A. Phillips, A. Mai, C. Hannay, G. Strand, J. Arblaster,

S. Bates, G. Danabasoglu, J. Edwards et al., “The community earth sys-
tem model (CESM), large ensemble project: A community resource for
studying climate change in the presence of internal climate variability,”
Bulletin of the American Meteorological Society, vol. 96, no. 8, pp.
1333–1349, 2015.

[4] I. Foster, M. Ainsworth, B. Allen, J. Bessac, F. Cappello, J. Y. Choi,
E. Constantinescu, P. E. Davis, S. Di, W. Di et al., “Computing just
what you need: online data analysis and reduction at extreme scales,”
in European Conference on Parallel Processing, 2017, pp. 3–19.

[5] P. Lindstrom and M. Isenburg, “Fast and efficient compression of
floating-point data,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, no. 5, pp. 1245–1250, 2006.

[6] Zstd, https://github.com/facebook/zstd/releases, online.
[7] Gzip, https://www.gzip.org/, online.
[8] D. King. Dlib C++ Library - Optimization. [Online]. Available:

http://dlib.net/optimization.html#global function search
[9] X. Liang, S. Di, D. Tao, Z. Chen, and F. Cappello, “An efficient

transformation scheme for lossy data compression with point-wise
relative error bound,” in 2018 IEEE International Conference on Cluster
Computing (CLUSTER), Sept. 2018, pp. 179–189.

[10] D. Tao, S. Di, X. Liang, Z. Chen, and F. Cappello, “Optimizing Lossy
Compression Rate-Distortion from Automatic Online Selection between
SZ and ZFP,” IEEE Transactions on Parallel and Distributed Systems,
vol. 30, no. 8, pp. 1857–1871, 2019.

[11] S. Di and F. Cappello, “Fast error-bounded lossy HPC data compression
with SZ,” in IEEE International Parallel and Distributed Processing
Symposium (IEEE IPDPS). IEEE, 2016, pp. 730–739.

[12] D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving lossy
compression for scientific data sets based on multidimensional prediction
and error-controlled quantization,” in IEEE International Parallel and
Distributed Processing Symposium (IEEE IPDPS). IEEE, 2017, pp.
1129–1139.

[13] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello,
“Error-controlled lossy compression optimized for high compression
ratios of scientific datasets,” 2018 IEEE International Conference on
Big Data (Big Data), pp. 438–447, 2018.

[14] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE trans-
actions on visualization and computer graphics, vol. 20, no. 12, pp.
2674–2683, 2014.

[15] M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky, “Multilevel tech-
niques for compression and reduction of scientific data—the univariate
case,” Computing and Visualization in Science, vol. 19, no. 5, pp. 65–76,
Dec 2018.

[16] Scientific Data Reduction Benchmark, https://sdrbench.github.io/, on-
line.

[17] Bebop, https://www.lcrc.anl.gov/systems/resources/bebop, online.
[18] A. H. Baker, H. Xu, D. M. Hammerling, S. Li, and J. P. Clyne, “Toward

a multi-method approach: Lossy data compression for climate simulation
data,” in High Performance Computing. Cham: Springer International
Publishing, 2017, pp. 30–42.

[19] S. Li, S. Di, X. Liang, Z. Chen, and F. Cappello, “Optimizing lossy
compression with adjacent snapshots for n-body simulation data,” in
2018 IEEE International Conference on Big Data (Big Data), Dec 2018,
pp. 428–437.

[20] X.-C. Wu, S. Di, E. M. Dasgupta, F. Cappello, Y. Alexeev, H. Finkel,
and F. T. Chong, “Full state quantum circuit simulation by using data
compression,” in IEEE/ACM 30th The International Conference for High
Performance computing, Networking, Storage and Analysis (IEEE/ACM
SC2019), 2019, pp. 1–12.

[21] P. Lindstrom, “Error distributions of lossy floating-point compressors,”
in Joint Statistical Meetings, 2017, pp. 2574–2589.

[22] L. Ibarria, P. Lindstrom, J. Rossignac, and A. Szymczak, “Out-of-core
compression and decompression of large n-dimensional scalar fields,”
in Computer Graphics Forum, vol. 22, no. 3. Wiley Online Library,
2003, pp. 343–348.

[23] U. Trottenberg and A. Schuller, Multigrid. Orlando, FL: Academic
Press, Inc., 2001.

[24] J. W. Ruge and K. Stüben, “Algebraic multigrid,” in Multigrid methods,
ser. Frontiers in Applied Mathematics. Philadelphia, PA: SIAM, 1987,
vol. 3, pp. 73–130.

[25] A. H. Baker, D. M. Hammerling, and T. L. Turton, “Evaluating
image quality measures to assess the impact of lossy data
compression applied to climate simulation data,” Computer Graphics
Forum, vol. 38, no. 3, pp. 517–528, 2019. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13707

[26] N. Sasaki, K. Sato, T. Endo, and S. Matsuoka, “Exploration
of lossy compression for application-level checkpoint/restart,” in
Proceedings of the 2015 IEEE International Parallel and Distributed
Processing Symposium, ser. IPDPS ’15. Washington, DC, USA:
IEEE Computer Society, 2015, pp. 914–922. [Online]. Available:
http://dx.doi.org/10.1109/IPDPS.2015.67

[27] J. Calhoun, F. Cappello, L. N. Olson, M. Snir, and W. D. Gropp,
“Exploring the feasibility of lossy compression for pde simulations,”
The International Journal of High Performance Computing Applications,
vol. 33, no. 2, pp. 397–410, 2019.

[28] J. Diffenderfer, A. Fox, J. Hittinger, G. Sanders, and P. Lindstrom, “Error
analysis of zfp compression for floating-point data,” SIAM Journal on
Scientific Computing, 02 2019.

[29] P. Triantafyllides, T. Reza, and J. C. Calhoun, “Analyzing the impact
of lossy compressor variability on checkpointing scientific simulations,”
in In the Proceedings of the 2019 IEEE International Conference on
Cluster Computing, ser. Cluster’19. Washington, DC, USA: IEEE
Computer Society, 2019.

[30] F. Cappello, S. Di, and et al., “Use cases of lossy compression for
floating-point data in scientific data sets,” The International Journal of
High Performance Computing Applications, vol. 33, no. 6, pp. 1201–
1220, 2019.

[31] Spring8, http://www.spring8.or.jp/en/, 2019, online.
[32] S. Kim, M. Kim, J. Kim, and H. Lee, “Fixed-Ratio Compression of

an RGBW Image and Its Hardware Implementation,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, vol. 6, no. 4, pp.
484–496, 2016.

[33] C. A. Andrews, J. M. Davies, and G. R. Schwarz, “Adaptive data
compression,” Proceedings of the IEEE, vol. 55, no. 3, pp. 267–277,
1967.

[34] “Libpressio,” Codesign Center for Online Data Analysis and Reduction.
[Online]. Available: https://github.com/CODARcode/libpressio

[35] A. Fischer, “A special Newton-type optimization method,” Optimization,
vol. 24, no. 3-4, pp. 269–284, 1992.

[36] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[37] M. J. Powell, “The BOBYQA algorithm for bound constrained optimiza-
tion without derivatives,” Cambridge NA Report NA2009/06, University
of Cambridge, Cambridge, pp. 26–46, 2009.

[38] M. J. Saltzman, “COIN-OR: an open-source library for optimization,” in
Programming languages and systems in computational economics and
finance. Springer, 2002, pp. 3–32.

[39] G. Gabriele and K. Ragsdell, “OPTLIB: An optimization program
library,” Mechanical Engineering Modern Design Series, vol. 4, 1977.

[40] C. Malherbe and N. Vayatis, “Global optimization of Lipschitz
functions.” [Online]. Available: http://arxiv.org/abs/1703.02628

[41] M. J. D. Powell, “The NEWUOA software for unconstrained
optimization without derivatives,” in Large-Scale Nonlinear
Optimization, G. Di Pillo and M. Roma, Eds. Springer

https://amrex-astro.github.io/Nyx
https://github.com/facebook/zstd/releases
https://www.gzip.org/
http://dlib.net/optimization.html#global_function_search
https://sdrbench.github.io/
https://www.lcrc.anl.gov/systems/resources/bebop
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13707
http://dx.doi.org/10.1109/IPDPS.2015.67
http://www.spring8.or.jp/en/
https://github.com/CODARcode/libpressio
http://arxiv.org/abs/1703.02628

US, 2006, vol. 83, pp. 255–297. [Online]. Available:
http://link.springer.com/10.1007/0-387-30065-1 16

[42] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, April
2004.

http://link.springer.com/10.1007/0-387-30065-1_16

	I Introduction
	II Background
	II-A Error-Bounded Lossy Compression
	II-A1 SZ
	II-A2 ZFP
	II-A3 MGARD

	II-B Fixed-Ratio Use Cases

	III Related Work
	IV Problem Formulation
	V Design and Optimization
	V-A Design Overview
	V-B Autotuning Optimization
	V-B1 Exploration of Initial Optimization Methods
	V-B2 Construction of Loss Function
	V-B3 Development of Worker Task Algorithm

	V-C Parallelism Scheme

	VI Performance and Quality Evaluation
	VI-A Experimental Setup
	VI-A1 Hardware and Software Used for Evaluation
	VI-A2 Datasets used for Experiments

	VI-B Experimental Results
	VI-B1 How close do we get to the target compression ratio?
	VI-B2 How long does it take to reach the target compression ratio?
	VI-B3 How does the algorithm scale?
	VI-B4 How does FRaZ compare with the existing fixed-rate compression methods in terms of rate distortion and visual quality?

	VII Conclusions and Future Work
	References

