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Abstract—With the rapid growth of the machine learning
applications, the workloads of future HPC systems are antici-
pated to be a mix of scientific simulation, big data analytics,
and machine learning applications. Simulation is a great re-
search vehicle to understand the performance implications of
co-running scientific applications with big data and machine
learning workloads on large-scale systems. In this paper, we
present Union, a workload manager that provides an automatic
framework to facilitate hybrid workload simulation in CODES.
Furthermore, we use Union, along with CODES, to investigate
various hybrid workloads composed of traditional simulation
applications and emerging learning applications on two dragonfly
systems. The experiment results show that both message latency
and communication time are important performance metrics to
evaluate network interference. Network interference on HPC
applications is more reflected by the message latency variation,
whereas ML application performance depends more on the
communication time.

Keywords—High-performance computing, interference, hetero-
geneous workloads

I. INTRODUCTION

Recently, high-performance computing (HPC) portfolio has
diversified beyond the traditional simulation focus to include
significant amount of activities employing machine learning
and data analytics techniques. The community is embracing
machine learning (ML) and other artificial intelligence (AI)
techniques for countless pursuits, from driving groundbreaking
scientific discoveries to protecting national security. Extreme-
scale supercomputers have been proven suited to these emerg-
ing applications [1] [2]. The convergence of HPC, AI, and
data analytics is underway to better leverage the investment
of supercomputers. For example, current and up-coming su-
percomputers such as Summit at Oak Ridge, Frontera at
TACC, and Aurora at Argonne are all built for supporting
traditional scientific simulations and emerging AI applications.
Moreover, applying AI and data analytics on HPC systems can
dramatically increase the value and utilization of resources,
hence boosting the productivity of the HPC systems. Together,
HPC and AI will accelerate scientific discoveries that we
haven’t yet dream of.

*Zhiling Lan’s current affiliation is University of Illinois Chicago, and her
current contact is zlan@uic.edu.

‡Misbah Mubarak’s current affiliation is Amazon Web Services, and her
current contact is mimubara@amazon.com.

While there may be drastic behavioral difference between
scientific applications and data analysis applications using ML,
both of them have significant communication requirements.
For example, the gradient aggregation communication for a
deep learning application achieves 1.7 GB/s per node [3], and a
typical HPC application (MILC) issues hundreds of thousands
of nonblocking communication of 10 KB–364 KB messages.
These requirements place a heavy burden on the interconnect
network of supercomputers.

The ever-increasing need for higher bandwidth and higher
message rate has driven the design of low-diameter intercon-
nect topologies like variants of dragonfly (1D [4], 2D [5], D+
[6]). As these hierarchical networks become increasingly dom-
inant, application performance variability becomes a serious
issue [7]–[9]. Unfortunately, Little work has been conducted to
understand performance implications of co-running scientific
applications with big data analysis on dragonfly systems.
We need to study how different interconnect technologies
affect workload performance, and we need to understand how
conventional scientific applications interact with emerging big
data and machine learning applications at the underlying inter-
connect level. Moreover, given the potential diversity of inter-
connect networks in the future, there is an even greater need
for tools enabling extensive what-if analysis when exploring
the design spaces of various application-system configurations.

While real-world experiment is the best way to evaluate
hybrid workloads on a target system, it is unrealistic to
fully rely on experiments for permanence analysis, especially
when researching on various system designs. Modeling and
simulation provides a powerful alternative to experiments for
designing and evaluating system behaviors. Moreover, it is
an indispensable tool for exploring various design alternatives
(e.g., diverse workloads on different system configurations).

There are several well-known system modeling toolkits in
HPC [10]–[13]. CODES is an open-source, community-built
toolkit which provides a set of flit-level HPC interconnect
models for users to simulate different network designs, and
ROSS serves as its underlying event-driven simulation frame-
work [11]. In this study, we will use CODES to analyze
heterogeneous workloads on various dragonfly systems.

Currently, CODES supports both trace-based simulation
and skeleton simulation using SWM [14]. In trace-based
simulation, the application traces are collected by executing
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the application on real system , thus the accuracy of simula-
tion is guaranteed. However, trace-driven simulation has the
drawbacks of limited scalability and huge memory footprint
caused by large trace size and intensive communication traffic.
Moreover, trace-based analysis cannot be easily scaled to a
different number of processors.

Skeleton simulation becomes popular for large-scale sim-
ulation [15] [16]. Skeleton is a curtailed version of the full
application such that expensive computation is replaced with
delay models, which significantly reduce simulation cost with-
out sacrificing simulation accuracy. However, skeleton simu-
lation using SWM is complex and time consuming, requiring
significant efforts to develop skeletons and to integrate them
in CODES.

By far, there is no feasible toolkit available in CODES for
us to perform large-scale simulations with intensive hybrid
workloads. In this work, we develop Union, a workload man-
ager to facilitate hybrid workload simulation in CODES. Users
only need to write simple English instructions to describe an
application. Union automatically translates these instructions
into a skeleton and coordinates the skeleton generation in
CODES. Moreover, we use Union, along with CODES, to
investigate hybrid workloads with both ML applications and
traditional scientific applications on two 8,488-node HPC
systems. The experiments results reveal several key findings:

• Message latency is a reliable metric to reflect net-
work interference. Application with intensive commu-
nication patterns suffers less slowdown in message la-
tency than communication non-intensive ones. Placing
communication-intensive application into separate groups
helps confine their messages within the assigned groups,
hence mitigating its interference to other applications.

• The increase in the message latency affects HPC appli-
cations more than ML applications in term of communi-
cation time, implying that the ML application has better
ability to absorb the message delays [17].

• In our system setup, applications achieve better perfor-
mance the on 2D dragonfly system than on the 1D drag-
onfly system because 2D dragonfly system offers more
global and local links to mitigate network congestion.

The remainder of this paper is organized as follows: Sec-
tion II introduces coNCePTuaL and CODES, Section III-IV
describes Union and our methodology, Section V validates
Union, Section VI presents the experimental results and analy-
sis, Section VII discusses related topics, Section VIII presents
the related works, and Section IX draws some conclusions
from the information presented in this paper.

II. BACKGROUND

A. coNCePTuaL

coNCePTuaL (Network Correctness and Performance Test-
ing Language) [18] is a domain-specific specification language
dedicated to help measure the performance and correctness of
networks. coNCePTuaL is featured with primitives that are
frequently used in parallel applications, which can be used to

Fig. 1: A sample coNCePTuaL code for Ping-Pong test.

1 # A ping-pong latency test written in coNCePTuaL
2 Require language version "1.5".
3
4 # Parse command line.
5 reps is "Number of repetitions" and comes from "--

reps" or "-r" with default 1000.
6 msgsize is "Message size of bytes to transmit" and

comes from "--msgsize" or "-m" with default 1024.
7
8 Assert that "the latency test requires at least two

tasks" with num_tasks>=2.
9
10 # Perform the test.
11 For reps repetitions {
12 task 0 resets its counters then
13 task 0 sends a msgsize byte message to task 1 then
14 task 1 sends a msgsize byte message to task 0 then
15 task 0 logs the msgsize as "Bytes" and the median

of elapsed_usecs/2 as "1/2 RTT (usecs)"
16 } then
17 task 0 computes aggregates

not only describe communication behavior but also simulate
computation and I/O.

coNCePTuaL contains two main components: a domain-
specific language (DSL) and a compiler. The domain-specific
language is expressly developed for writing network bench-
marks. coNCePTuaL provides a keyword-heavy syntax that
reads like an English-language description. Figure 1 shows
an example ping-pong benchmark written in coNCePTuaL
language, with keywords shown in bold. A complete bench-
mark includes command-line parsing, execution, timing, and
statistics logging. It emphasizes the communication pattern,
encapsulates other routine activities such as initialization of
messaging libraries, allocation of data structures, variable
declaration, and statistics recording.

The coNCePTuaL compiler contains: a lexer converting
coNCePTuaL source code into a token list; a parser converting
the token list into an abstract syntax tree (AST); and a code
generator converting the AST into low-level code including
calls to a messaging library [19]. The compiler supports a
variety of code generators, the most commonly used is the C
+ MPI generator that produces a C code with calls to an MPI
library for message passing.

A salient feature of coNCePTuaL is its built-in functions
to support various virtual topologies in application communi-
cation such as n-ary trees, meshes, tori, and k-nomial trees.
These functions can significantly reduce the manual effort to
implement complex communication behaviors. Thus, we use
coNCePTuaL instead of common workflow language like C
to write applications for various network performance studies.

B. CODES

CODES (Enabling CO-Design of Exascale Storage Sys-
tems) is a parallel event-driven simulator, which enables
packet-level, high-fidelity simulation to explore the design of
large-scale storage and network architectures [11]. Figure 2
illustrates the main components in the CODES framework
including a workload generator, a network module, and a
storage module. CODES is built upon the Rensselaer Opti-
mistic Simulation System (ROSS), a discrete event simulation



Fig. 2: Overview of CODES

framework that allows simulations to be run in parallel.
Network simulation is one of the key features in CODES.
The network module provides an abstraction layer for various
network topologiy models to plug in, including dragonfly
class, Torus, Fat-Tree, Slim Fly, and many more [20]–[22].

The CODES workload generator supports abstractions that
allow I/O and network workloads from various sources to
drive the underline network and storage models. The sources
of network workloads currently support including synthetic
workloads, application traces, and SWM skeletons [16]. Syn-
thetic network workloads include uniform random traffic and
nearest-neighbor traffic. Application traces are MPI traces
generated by the SST DUMPI library [12]. SWM skeleton
is executed as in situ workloads with the CODES simulation.
Argobots [23], a lightweight threading and tasking tool, is
used for coordinating the execution of the SWM skeleton
and CODES. During simulation, CODES creates a separate
light-weight thread to represent each process in the skeleton
program. Each skeleton thread executes the skeleton code
and issues communication calls. Instead of initiating message
exchange, skeleton threads yield to CODES for processing
the communication events. After proceeding all the events,
CODES then yields to the skeleton threads for more events.
Argobots handles the synchronization of threads.

The workflow to develop a new SWM skeleton is described
as follows: (i) manually transform a full application to a skele-
ton by replacing expensive computation with delay models
for CODES to estimate computation time and eliminating
unnecessary variable assignments to reduce memory footprint,
(ii) manually modify the in situ workload generator in CODES
to register the new SWM skeleton, and (iii) recompile CODES.

In summary, current SWM workflow is cumbersome with
tedious and error-prone human effort. In this work, we develop
Union, an in situ workload manager for CODES, which
handles the aforementioned workflow automatically.

III. UNION DESIGN

A. Union Features

Table I summarizes the comparison between different work-
load generating mechanisms in CODES. Union is considered
as a better solution with the following features:

TABLE I: Comparison between different workload
generating frameworks in CODES

Features Trace Replay SWM Union
Trace collection Yes No No
Memory foodprint Large Small Small
Scaling application size Re-tracing Yes Yes
Automatic Skeletonization N/A No Yes
Integration to CODES Easy Human Automated
Validation w/ new hardware Re-tracing Re-written Easy

• Unification: the applications have unified syntax and
execution flow to support automatic post-processing. A
domain-specific language is well-suited for this purpose.

• Automation: the skeleton is automatically generated from
application, which reduces human effort and avoids hu-
man errors.

• Effortlessness: integrating new applications to simulation
framework takes almost no human effort. Application
programmer does not need to have prior knowledge about
the implementation of the simulator.

• Deployability: validation of simulation results with new
hardware is straightforward by running the full applica-
tion on the new machine, since the skeleton is directly
derived from the full application.

B. System Architecture

Union contains two main components, a translator that
automatically translates coNCePTuaL applications into skele-
tons, and an event generator that emits communication events
from skeletons to CODES as an in situ workloads.

Figure 3 illustrates the high-level architecture of the in
situ simulation framework with Union. The translator takes
applications written in coNCePTuaL language as inputs, col-
laborates with coNCePTuaL compiler to build Union skele-
tons. Figure 5 presents the code snippet of a Union skeleton
generated from the Ping-Pong program shown in Figure 1.
The event generator is an abstraction layer that allows Union
skeletons to be used as pluggable in situ workloads for CODES
simulation framework. The event generator unifies the struc-
ture of Union skeletons, and provides message passing API to
work in conjunction with the workload generator in CODES
for extracting communication events from Union skeletons.

C. Implemetation

Union maintains a list of available skeleton objects defined
in a data structure as shown in Figure 4. A skeleton object
simply contains the name of the program and a declaration of
the main function.

The translator inherits the functions from the general C
backend compiler in coNCePTuaL, which is used to transform
the abstract syntax tree generated from a coNCePTuaL source
code to a Union skeleton. The translator takes three steps to
add a new application into the framework. The first step is
the initialization of a Union skeleton object. The translator
constructs a benchmark object by filling the name and main
function pointers as shown in Figure 5 (line 28-33), and adding
the object to the available skeleton object list. The second
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Fig. 3: Diagram of in situ simulation framework with Union

Fig. 4: Structure that defines a Union skeleton object.

step is skeletonization. The translator changes all communi-
cation buffers to null to reduce memory footprint. In terms
of computation, coNCePTuaL encapsulates the computation
into a tight spin-loop and sleeps for a given length of time,
thus we add a UNION Compute() method that instructs the
simulator to account for the computation delay. The third step
is to intercept communication operations. The translator forces
all communication function calls to use the Union message
passing API. For example, MPI_Send() calls are converted
to UNION_MPI_Send() as shown in Figure 5 (line 6-13).

Fig. 5: An example code snippet of a Union skeleton generated
from the Ping-Pong test in Figure 1. Line 23 handles parsing
of command line (line 5-8 of Figure 1) and initialization of
event queues (line 11-17 of Figure 1). Line 24 processes all the
events of the ping-pong application shown in Figure 1. Line 6-
13 intercept and translate the communication operations (line
13 & 14 of Figure 1) to Union message passing interfaces.
Some portions of the code are skipped due to space limit.

The event generator in Union declares message passing
interface in the format of UNION_MPI_X. We add a pluggable
workload module into CODES workload generator to hold
the actual implementation of these operations, such that the
messages from Union skeletons can be emitted as simulation
events in CODES.

Union works in harmony with the concurrent workload
support and the flexible rank-to-node mapping. We can co-
run multiple large-scale skeletons with any predefined rank-
to-node allocation and routing police in one simulation.

IV. EVALUATION METHODOLOGY

In this section, we describe the methodology for the hybrid
workload analysis. We conduct large-scale simulation study of
hybrid HPC and ML workloads on 8,448-node systems.

A. System Configuration

We study two different HPC networks: 1D and 2D drag-
onfly. Dragonfly network has a 2-level hierarchical design.
For both 1D and 2D networks, the system’s compute nodes
are divided into several identical groups, which are all-to-all
connected. Within a group, 1D and 2D dragonfly have different
configurations. In 1D dragonfly, the routers within the same
group are all-to-all connected. This topology is expected to be
used in the upcoming exascale systems. In 2D dragonfly, each
group has 96 routers arranged in a 6× 16 matrix, the routers
share the same row or column are all-to-all connected. This
topology is adopted by Cori at NERSC and Theta at Argonne.
We use 48-ports routers for both networks. The configurations
of the 1D dragonfly and 2D dragonfly are given in Table II.
The terminal, local and global link bandwidth are set to be 16
GiB/s, 4.69 GiB/s and 5.25 GiB/s respectively.

B. Hybrid Workloads

In this study, we investigate three hybrid workloads com-
posed of multiple HPC applications and ML applications. HPC
applications include a synthetic nearest neighbor application
and three SWM skeletons. We build two ML skeleton appli-
cations by using Union. The details are listed below:

Cosmoflow. Distributed machine learning algorithms are
featured with periodic Allreduce calls to gather gradients from
multiple worker nodes and broadcast summation result to
them. This application captures this feature by iteratively issu-
ing Allreduce calls with a predefined compute time interval.
It is configured as a 1,024-rank job that issues 28.15 MiB
Allreduce messages every 129 ms as described in [3].

AlexNet. AlexNet is the name of a convolutional neural
network, designed by Alex Krizhevsky. We collect the commu-
nication traces from a 512-node execution of AlexNet. Since
Horovod [24] is used as the distributed training framework,
we observe lots of small 4-byte and 25-byte negotiation
messages before each gradient update. Each gradient update
contains several Allreduce calls transmitting a total of 235



TABLE II: Configuration of two HPC systems.

Topology Radix #Groups #Routers/Group #Nodes/Router #Nodes/Group #Global Channel/Router System Size
1D dragonfly 48 33 32 8 256 4 8448
2D dragonfly 48 22 96 4 384 7 8448

MiB messages. We model the traced communication patterns
as well as the computation interval, and create this application
to represent the communication behavior in AlexNet.

Nearest Neighbor (NN). This synthetic pattern represents
a common kernel in multiple scientific applications including
algebraic multiGrid solver (AMG), Hardware Accelerated
Cosmology Code (HACC), etc. The processes are formed
into a 3D Cartesian grid. In each iteration, every process
communicates with neighbors in each dimension. In this study,
it is configured with 512 ranks, transmitting 128 KiB messages
with nonblocking send and receive.

MILC. MILC is developed by the MIMD Lattice Com-
putation (MILC) collaboration to study quantum chromody-
namics (QCD). It performs simulations of four dimensional
SU(3) lattice gauge theory. The SWM of MILC extracts the
communication pattern of MILC. It is configured with 4,096
ranks, each rank issues nonblocking send and receive messages
of size 486 KiB to communicate with neighbors.

Nekbone. Nekbone is a mini-app derived from the com-
putational fluid dynamics code Nek5000. Nekbone solves a
standard Poisson equation using a conjugate gradient itera-
tion with a simple preconditioner. The SWM of Nekbone is
configured with 2,197 ranks and performs a large number
of MPI collective operations with small 8-byte messages. It
uses nonblocking send and receive to transmit messages with
various sizes from 8 bytes to 165 KiB.

LAMMPS. LAMMPS is a classical molecular dynamics
simulation code designed to run efficiently on parallel com-
puters. The SWM version of LAMMPS is configured with
2,048 ranks. It uses Allreduce calls with small messages, and
blocking send and nonblocking receive with various message
sizes from 4 bytes to 135 KiB.

Table III lists the hybrid workloads analyzed in this study. In
Workload1, uniform random (UR) synthetic background traffic
is configured with 4,096 ranks, each rank sending 10 KiB
message at 1 ms interval.

We first collect the performance data of baseline cases that
each application is independently simulated with no other jobs
sharing the network. Then we simulate the three mixed work-
loads, collect performance metrics of each application, and
compare them with the baseline cases. Each aforementioned
simulation is conducted with 6 different combinations of job
placement policies and routing mechanisms.

TABLE III: Hybrid HPC and ML workloads

Workload ML Skeletons SWM Skeletons Synthetic
Workload1 Cosmoflow, AlexNet LAMMPS, NN UR
Workload2 Cosmoflow, AlexNet LAMMPS, MILC, NN
Workload3 Cosmoflow, AlexNet Nekbone, MILC, NN

C. Job Placement and Routing

In this study, we investigate three job placement policies.
• Random Nodes (RN) selects compute nodes for each job

completely randomly from the entire system. Compute
nodes that connect to the same router tend to be assigned
to different jobs.

• Random Routers (RR) assigns each job a random selec-
tion of routers, compute nodes connected to that router
are assigned consecutively. This scheme helps prevent
contention within a router among different jobs.

• Random Group (RG) assigns each job a random selec-
tion of groups, nodes in the groups are assigned consec-
utively. This method tends to place different application
processes into different groups.

We study two commonly used routing algorithms.
• Minimal Routing (MIN) routes a packet along the

minimal path from source to destination. Minimal routing
can guarantee the minimum hops a packet traverses.

• Adaptive Routing (ADP) selects the path taken by a
packet based on the congestion situation on minimal and
non-minimal paths. When a non-minimal path is chosen,
the packet will be minimally routed to a random interme-
diate router, then minimally forwarded to its destination.
Adaptive routing is designed to avoid hotspots and to
balance network traffic.

D. Performance Metrics

The performance metrics we analyze including communica-
tion time, message latency, and message amount on routers.
Communication time is defined as the portion of process
runtime used for sending and receiving messages. Message
latency is the time that each message spends to reach its
destination from the source. The communication time and
message latency are used to quantify network interference.
Each process records minimal, average and maximum message
latency among all the messages they receive. We implement
a packet counter for each application in the router module of
CODES. On each router, this counter records the total packets
it receives for each application during a configurable time
window. Knowing the packet size and the time window size,
we can easily calculate the data arrival rate on this router. All
following experiments in this study use a 0.5 ms time window.

The experiments are conducted on the Bebop machine at
Argonne National Laboratory [25]. Bebop is equipped with
1,024 nodes, including 664 Intel Broadwell nodes and 352
Knights Landing nodes. Each Broadwell nodes contains a 36-
core processor with 128 GB of DDR4 RAM. All of our experi-
ments use the optimistic parallel model in CODES/ROSS, and
are executed on 4 Broadwell nodes. The average simulation
runtime is approximately 5 hours.



MPI_Init while (i<1092) MPI_Bcast while (i<856)

MPI_Allreduce MPI_Bcast

MPI_Finalize

MPI_Allreduce MPI_Bcast

while (i<5)

MPI_Allreduce MPI_Bcast

True

False

True True

False False

Fig. 6: Control flow graph of AlexNet. Both the application and the skeleton follow the exact control flow.

The simulation replays the hybrid workloads composed of
ML and HPC skeletons, both are communication intensive.
The observed peak message injection rate during simulation is
160 TiB/s. Without the in situ workload generation framework
using Union, such large-scale simulations can not completed
within a reasonable time.

TABLE IV: AlexNet - MPI event count

Function Application Union Skeleton
MPI_Init 512 512
MPI_Bcast 1969 1969
MPI_Allreduce 1958 1958
MPI_Finalize 512 512

TABLE V: AlexNet - Bytes transmitted by each rank

Rank Application Union Skeleton
0 6.33e11 6.33e11
1 to 511 2.47e8 + 6.33e11 2.47e8 + 6.33e11

V. UNION VALIDATION

Skeleton correctness is of utmost importance when applying
skeleton-driven approach. In order to use a skeleton in place
of an application, the runtime behavior of the skeleton has to
match the application’s behavior both in terms of control flow
and communication pattern. Here, control flow indicates the
order in which instructions and function calls of a program are
executed. With respect to communication pattern, we mainly
focus on matching the data transmitted per MPI rank.

Here, we present the validation result of AlexNet listed in
Section IV-B. Figure 6 presents the control flow of AlexNet
extracted from both the application and the skeleton. We
calculate the number of times an MPI event occurs during
the executions of the application and the skeleton, as shown
in Table IV. The MPI events are grouped by the function
name and the count is shown for each function. For each MPI
function call in Table IV, we observe that the number of events
extracted from the application and the skeleton are equal. This
demonstrates that the skeleton has correct control flow.

In addition, we also assess the communication pattern by
checking whether the data transmitted by each MPI rank
match. Table V shows the data transmitted in bytes by each
rank for both the skeleton and the application. The result
demonstrates that the skeleton exhibits the same communi-
cation pattern to the corresponding application with each rank
transmitting the same amount of bytes.

Together, the above results indicate that the Union skeleton
exhibits the same communication behaviors as the correspond-
ing coNCePTuaL application.

VI. HYBRID WORKLOAD ANALYSIS

A. At Message Level

Figure 7 compares the maximum message latency distri-
butions for each application as shown in Table III, with
different placement and routing combinations on two dragonfly
systems. The distributions of message latency are shown as
boxplots. The baseline results shown in grey boxes indicate
the ideal communication performance of the application when
it has exclusive access to the system. We find that most
applications have lower message latency with the random node
placement than with other placement methods. Comparing
different workloads with baseline performance under the same
placement and routing configurations, we observe a maximum
of 63x and 28x average latency slowdown for LAMMPS on
1D and 2D systems respectively. For LAMMPS and Nekbone,
the average message latency increases dramatically with the
increase of workloads’ communication intensity. For MILC,
the average latency delays are less than 11% except 1.3x
slowdown for 1D dragonfly system using adaptive routing.
For AlexNet and Cosmoflow, random router placement works
better on 2D dragonfly than on 1D dragonfly. The average
message latency delays with random router placement are
within 2% for all workloads on 2D dragonfly. Random node
placement, on the other hand, causes more slowdown on both
networks, with a maximum of 2x average latency delay on
1D dragonfly and a maximum of 24% delay on 2D dragonfly,
compared with the baseline cases.

Overall, we observe that the average message latency
increases with the increase of the workloads’ communica-
tion intensity. Communication intensive applications such as
AlexNet and MILC, suffer less message latency delay than
communication non-intensive applications such as LAMMPS
and Nekbone. Across all workloads and placement/routing
combinations, the maximum message latency delays are al-
ways observed with the random node placement, indicating
that communication intensive jobs exacerbate the message
latency of communication non-intensive jobs if they share the
same network groups. Confining messages within groups using
random group placement helps reduce the network interference
for both 1D and 2D dragonfly networks.

From the previous analysis, we observe that random group
placement results in the smallest message latency delays for
most of the cases. An explanation is that with random group
placement, a job’s messages are mostly confined within the
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Fig. 7: Message Latency of each application with different configurations on 1D and 2D dragonfly systems. Different colors
represent different workloads including baseline. Each box represents the minimum, first quartile, median, third quartile, and
maximum, from bottom to top. The averages are shown in red squares.
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Fig. 8: The sum of messages received by all the routers that serve for AlexNet in Workload3 on 1D dragonfly network.
Different colors represent different applications.

assigned groups and could not easily interfere other jobs in
different groups. To prove this point, we collect the time
series data for messages on routers, and cluster the routers into
different sets. Routers that connect to the nodes belong to the
same job are grouped into one set. Therefore, by comparing
the link traffic, we observe the amount of traffic each job’s
routers handled for other jobs.

Figure 8 presents the total received messages on routers
that serve AlexNet in Workload3 under random group and
random router placement using adaptive routing. Messages
from different applications are shown in different colors. The
random node placement is omitted because one router may
serve multiple jobs, which makes the per-router traffic data
meaningless. The AlexNet routers handle an peak of 1800 MB
messages from MILC, Nekbone and NN under the random
router placement, whereas receiving only 800 MB messages

from them under the random group placement. As a result, the
AlexNet messages are received by its routers with a lower rate
under the random router placement compared with that under
the random group placement. This explains the phenomenon
that AlexNet suffers from great message latency delays the
under random router placement. When jobs are allocated
randomly at router level, sharing groups with communication
intensive applications leads to link congestion and slows down
their message arrival rate on the routers. Separating jobs with
random group placement helps reduce the messages from other
job, and thus maintain a stable message arrival rate. Similar
observations are found in other applications.

B. At Application Level

Figure 9 shows the comparisons of the maximum commu-
nication time for each application with different job placement
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Fig. 9: Communication times of for each application with different configurations on 1D and 2D dargonfly systems. Different
colors represent different workloads including baseline.

and routing configurations on 1D and 2D dragonfly systems.
Different colors represent different workloads.

For HPC applications, the baseline results show that all
of them achieve better performance with random router/node
placement. When the network is shared by multiple applica-
tions, random group placement helps reduce the network inter-
ference by confining most application traffic within the groups.
Random group placement works better on 2D dragonfly than
on 1D dragonfly. LAMMPS and Nekbone that communicate
with small or middle size messages are more sensitive to
network interference, whereas MILC experiences less com-
munication slowdown. Overall, the delays in message latency
are reflected in the observed communication slowdowns for all
three applications. MILC is resistant to network interference,
with the fact that it has a higher communication intensity
compared with the other applications in the hybrid workloads.

For ML applications, the baseline results show that changing
job placement and routing does not have significant effect
in communication time for both AlexNet and Cosmoflow on
1D dragonfly. On 2D dragonfly, minimal routing leads to
15% and 19% communication time slowdown for AlexNet
and Cosmoflow respectively, compared with adaptive routing.
Comparing between different networks, both AlexNet and
Cosmoflow take longer time for communication on 2D dragon-
fly with minimal routing. For Cosmoflow, the communication
time on 2D dragonfly can be 18.9% greater than that on 1D
dragonfly. Comparing between different workloads, however,
we can not observe obvious communication slowdown for both
applications. The significant delays in the message latency
does not imply huge delays in the overall communication
time. For example, the observed massage latency delays of
AlexNet is 200% in the random node placement with adaptive
routing on 1D dragonfly, but the corresponding communication
time slowndown is only 6.88%. And there is no obvious

difference in communication time for Cosmoflow between
different workloads on both networks, though the maximum
message latency delay reaches up to 24%.

Overall, the communication performance is not always
consistent with the message latency performance. The increase
in the message latency affects HPC applications more than ML
applications. This indicates that ML applications can absorb
the message latency variation better since they are featured
with super-intensive blocking Allreduces.

TABLE VI: Global and Local Link Load (Glink stands for
global link, Llink stands for local link)

Dragonfly
Glink
Load (TB)

Llink
Load (TB)

Glink Load
per link (MB)

Llink Load
per link (MB)

1D 1.26 5.33 313.23 5639.26
2D 0.92 10.01 65.39 3214.65

C. At System Level

In theory, 3-hop 1D dragonfly should give a better network
performance than 5-hop 2D dragonfly due to a smaller network
diameter. Because in a 2D dragonfly group, routers in different
rows or columns don’t have direct links between each other,
packets need to traverse more hops to change dimensions
compared with the all-to-all intra-group connected 1D drag-
onfly. However, in previous analysis, all HPC applications
achieve smaller message latency and communication time on
2D dragonfly than on 1D dragonfly.

As shown in Table II, the difference in group size and
group number with different number of local and global links
makes 2D dragonfly perform better than 1D dragonfly in this
study. To illustrate this, we collect the end-of-simulation traffic
information for each router port from Workload3 with random
group placement and adaptive routing. We then calculate the



sum of traffic on local links and global links of the whole
system, and compute the average link load by dividing with
the total number of links. The results are shown in Table VI.

1D dragonfly has smaller group size than 2D dragonfly,
thus more traffic will be routed through global links. On 1D
dragonfly, 19% of the total traffic are routed through global
links, compared with 8% of that on 2D dragonfly. On the
1D dragonfly system, on average, each local and global link
transmits more data than on the 2D dragonfly, hence being
more saturated and resulting in a higher message latency and
a greater communication time as observed in previous analysis.

D. Summary

Application communication performance depends on many
factors, including communication pattern, job placement, rout-
ing, and traffic on the shared network. On a shared network,
different job placement and routing mechanisms can lead to
different traffic distributions. Bandwidth contention happens at
the hot-spots, which leads to prolonged message latency. By
carefully selecting job placement and routing mechanisms, we
may achieve better application performance against network
interference on a shared network like dragonfly.

In summary, we have made several key findings. First,
the results show that adaptive routing performs better than
minimal routing under the same placement method, which is
expected since adaptive routing is designed to avoid hot-spots
and balance network traffic.

Second, the message latency is a reliable metric to reflect
network interference. Application with intensive communi-
cation patterns suffers less message latency slowdown than
communication non-intensive ones. Placing communication-
intensive applications into separate groups helps confine their
messages within the assigned groups, hence mitigating its
interference to other applications.

Third, the application communication performance is not
always consistent with the message latency variation. The
increase in the message latency affects HPC applications
more than ML applications in term of communication time,
implying that the ML application has a better ability to absorb
the message delays.

Finally, in our system setup, applications achieve better per-
formance on 2D dragonfly than on 1D dragonfly because 2D
dragonfly offers more global and local links. With fewer links,
1D dragonfly has to handle higher traffic load per link, which
makes the applications congest network more easily, resulting
in delay of messages and slowdown of communication.

VII. DISCUSSION

In this study, we have focused on investigating the commu-
nication performance of co-running HPC and ML workloads
on large-scale systems. However, the convergence of ML
workloads brings new challenges to the system design such
as storage. ML applications usually require read-intensive I/O
of a larger number of small files that need to be accessed
in real-time during the training phases, putting large pressure
on the storage system. We expect two major changes are

needed in terms of introducing storage and I/O. First is at
the application level where coNCePTuaL and Union will be
enhanced to support I/O operations. Second is at the simulation
level. We will leverage and extend the existing CODES storage
module for concurrently simulating both communication and
I/O traffics. Building storage and I/O models for hybrid
workload analysis is part of our future research.

Modeling and simulating hybrid workloads rely on applica-
tion tracing that captures computation, communication, and
I/O information. Many performance tools are available for
such a purpose. For instance, we can use the open source
DUMPI toolkit to collect MPI communication traces [26],
Darshan to capture the I/O access pattern for each process
and file access pattern [27], and a PIN-based tracing tool to
trace memory operations [28].

This study aims to provide insights about how to optimize
communication performance for different types of applica-
tions, by choosing appropriate job placement and routing
mechanisms. For instance, the job placement findings pre-
sented in Section VI could be used by batch schedulers for
selecting appropriate job allocation, whereas the routing results
could be used by a runtime system for changing message
routes to mitigate network interference.

VIII. RELATED WORK

One promising approach to build cost-efficient large-scale
simulation frameworks is to skeletonize or abstract appli-
cations so that only the execution flows remain but kernel
computations are omitted for reducing the execution time. Jain
et al. [15] use proxy applications as a simplified version of
the original applications to evaluate HPC networks via parallel
workload simulation. However, the development of new proxy
applications is not easy. Semi-automatic approaches [29] are
proposed for extracting program skeletons based on compiler
program analysis with the aid of user-provided annotations.
This approach can be extended to large-scale simulations,
but requires users to know where and how to annotate the
original applications. Our work, Union, helps make the large-
scale parallel workload studies more convenient: i) simple
and easy development of new applications by leveraging
coNCepPTuaL, ii) automatic generation of skeletons, and iii)
seamlessly integration with simulator.

Many studies have been conducted to explore the network
interference in a multi-application environment on dragonfly
topology. Chunduri et al. [7] unveil the run-to-run job perfor-
mance variation due to network interference on a production
system. Studies in [30], [20] explore the inter-application
interference and suggest mitigating approaches. De Sensi et al.
[17] extract the performance counter information for network
interference estimation and proposed an application-aware
routing approach to improve performance.

To our knowledge, this is the first study for understanding
performance implications of co-running scientific applications
with machine learning applications on dragonfly systems. We
believe the key findings from hybrid workload analysis provide
valuable insights for the HPC community.



IX. CONCLUSION

We are heading towards the exascale computing era coupled
with big data analytics using machine learning, understanding
the performance implications of co-running scientific applica-
tions with big data and learning applications on extreme-scale
systems are crucial for both system and application design.

In this paper, we have presented Union as a workload
manager that provides an automatic framework for generating
in situ workloads and integrating these workloads in the
network modeling toolkit CODES. Union provides a unified
and scalable workload management for large-scale network
simulation. It significantly accelerates simulation by co-runing
light-weight skeleton applications instead of traces. Union is
available to the community as an open-source tool [31].

By using Union, we are able to conduct large-scale sim-
ulation studies of various hybrid workloads composed of
traditional HPC applications and emerging ML applications.
Our key findings show that the communication performance is
not always consistent with the message latency performance.
Network interference on HPC applications is more reflected
by the message latency variation, whereas ML application has
a better ability to absorb the message latency variation.
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