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Abstract—Sequence alignments are fundamental to bioinformat-
ics which has resulted in a variety of optimized implementations.
Unfortunately, the vast majority of them are hand-tuned and
specific to certain architectures and execution models. This not
only makes them challenging to understand and extend, but also
difficult to port to other platforms. We present AnySeq—a novel
library for computing different types of pairwise alignments of
DNA sequences. Our approach combines high performance with
an intuitively understandable implementation, which is achieved
through the concept of partial evaluation. Using the AnyDSL
compiler framework, AnySeq enables the compilation of algo-
rithmic variants that are highly optimized for specific usage
scenarios and hardware targets with a single, uniform codebase.
The resulting domain-specific library thus allows the variation of
alignment parameters (such as alignment type, scoring scheme,
and traceback vs. plain score) by simple function composition
rather than metaprogramming techniques which are often hard
to understand. Our implementation supports multithreading and
SIMD vectorization on CPUs, CUDA-enabled GPUs, and FPGAs.
AnySeq is at most 7% slower and in many cases faster (up
to 12%) than state-of-the art manually optimized alignment
libraries on CPUs (SeqAn) and on GPUs (NVBio).

I. INTRODUCTION

Recent years have seen a tremendous increase in the volume
of data generated in the life sciences, especially propelled
by the rapid progress of next-generation sequencing (NGS)
technologies. As a consequence, modern bioinformatics tools
often require highly efficient implementations of core se-
quence analysis algorithms.

Given a pair of genomic sequences, a common operation in
bioinformatics is to identify their similarity under a model
of evolution which allows for certain sequence modifications.
This leads to so-called sequence alignments that map charac-
ters across the sequences in an order-preserving way while po-
tentially inserting gaps such that a mathematical model of their
similarity is maximized. For pairwise alignment computation,
the Smith-Waterman algorithm [1], the Needleman-Wunsch
algorithm [2], and their variants are widely used. These com-
pute an optimal local, global, or semi-global alignment of two
sequences under a given scoring scheme by means of dynamic
programming (DP). However, the associated time complexity
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proportional to the product of sequence lengths makes this ap-
proach a time consuming component of various bioinformatics
workflows. As a consequence, these algorithms have been
optimized on numerous architectures including CPUs [3]–
[5], GPUs [6]–[9], and FPGAs [10]–[12]. Unfortunately, the
majority of implementations are hand-tuned and specific to
certain architectures and execution models. This not only
makes them challenging to understand and extend, but also
difficult to port to other platforms. For a typical bioinformatics
setting it would be more desirable to use a flexible library
that can exploit a variety of modern hardware. This motivates
the design of reusable and extensible sequence alignment
components that can ensure compatibility and performance
while at the same time reducing bioinformatics application
development time. Existing optimized alignment libraries have
so far only targeted specific architectures using either C/C++

for CPUs [13]–[15] or CUDA C++ for GPUs [16].

A. Contributions

We present AnySeq, a novel high-performance library for
computing pairwise alignments of genomic sequences im-
plemented using the AnyDSL compiler [17], [18]. AnyDSL
and our approach is based upon the concept of partial

evaluation [19]–[21], which allows the compilation of dif-
ferent variants of the DP algorithm that are highly optimized
for specific alignment types, scoring schemes, and hardware
targets with a single, uniform codebase (Section II provides
necessary background to understand the rest of the paper). We
show that using AnyDSL, we can design an alignment library
that

• separates computation into two parts (a common part and
an architecture-specific part) using higher-order abstrac-
tions without sacrificing performance (see Section III),

• provides mappings for CPUs using multithreading and
vectorization without resorting to architecture-specific
intrinsics, GPUs, and FPGAs using high-level synthesis
(HLS) (see Section IV),

• allows for the variation of algorithmic parameters (e.g.
type of alignment (global, local, or semi-global), scoring
scheme (substitution matrix, linear or affine gap penal-
ties), calculating only the optimal alignment score or
an actual optimal alignment) by simple function compo-
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sition rather than hard-to-understand metaprogramming
techniques,

• is competitive in terms of performance compared to
state-of-the-art manually optimized sequence alignment
libraries; that is, AnySeq is at most 7% slower and in
many cases (up to 12%) faster than SeqAn on CPUs and
NVBio on GPUs (see Section V). In addition, we demon-
strate that our proof-of-concept FPGA implementation
runs more than 3 times (4 times) more energy efficient
than the corresponding CPU (GPU) implementation.

II. OVERVIEW

A. Motivation

Parallelization of pairwise sequence alignment has been pro-
posed on various architectures ranging from CPUs to GPUs
and FPGAs. However, most implementations are tied to
certain alignment scenarios, specific hardware, and execution
models. This motivates the design of a flexible yet efficient
sequence alignment library that abstracts a generic DP algo-
rithm and specializes only hardware-specific parts for a certain
architecture.

To achieve high performance it is often inevitable to instantiate
the code with different algorithmic variants and parameters
and tailor it towards the target hardware architecture. Ideally,
changing performance-impacting parameters should require
minimum effort and have a negligible impact on size and com-
plexity of the codebase. For example, the two distinct cases of
constructing an actual alignment or just computing the optimal
score, should not require two independent implementations of
the alignment algorithm. Parts that are the same for both cases
should use the same code and avoid duplication.

Existing alignment libraries (such as NVBio [16] for GPUs,
and Parasail [14], SSW [15], and SeqAn [13] for CPUs)
are optimized for a specific architecture. However, while
especially GPU implementations differ greatly from their
CPU counterparts due to the fundamentally different processor
architectures, many parts of the algorithm are in principle
the same for both platforms. When targeting different hard-
ware architectures more than one programming language is
necessary, e. g., C++ for the CPU code, CUDA for GPUs, or
Verilog for FPGAs. This in turn leads to code duplication and
increased code complexity.

We meet the challenges laid out above with the AnyDSL
framework. It provides the programming language Impala,
which features a partial evaluator. This approach allows for the
design of the library AnySeq with high-level abstractions that
are successively instantiated with parameters and hardware-
dependent code parts using partial evaluation instead of pro-
viding hand-tailored implementations for specific hardware
and parameter sets as opposed to existing libraries. This
way, most code is generic and reusable across different hard-
ware architectures and application scenarios to a substantial
amount.

For example, DP matrices are not directly accessed as a
2D array in AnySeq but through accessor functions that act as
a view on a 2D data space. This decouples the implementation
of the core algorithm from the concrete choice of the data
layout. In conventional settings, programmers would most
likely refrain from such an implementation because it puts
them into the hands of the compiler to succinctly optimize
the runtime overhead of this indirection away. In AnySeq
we reliably direct the partial evaluator to remove any such
overhead at compile time.

B. AnyDSL Compiler Framework

AnySeq is written in Impala, an imperative and functional
language, which is part of the AnyDSL framework [17],
[18].

a) Partial Evaluation: Impala integrates a partial evalu-
ator [22]. Programmers control the partial evaluator via
filters [23]. These are Boolean expressions of the form
@(expr) that annotate function signatures. Each call site
instantiates the callee’s filter with the corresponding argument
list. If the expression evaluates to true, the call will be
specialized. Additionally, the expression ?expr yields true,
if expr is known at compile time; the expression $expr is
never considered constant by the evaluator. For example, the
following @(?n) filter will only specialize calls to pow if n
is statically known at compile time:
fn @(?n) pow(x: int, n: int) -> int { /*...*/ }

Thus, the call pow(x, 5) produces a loop-less sequence
of multiplications, pow(3, 5) evaluates to 243 while
pow(x, $5) remains untouched. This is called polyvari-

ance. As syntactic sugar, @ is available as shorthand for
@(true). This causes the partial evaluator to always spe-
cialize the annotated function. What is more, Impala auto-
matically annotates higher-order parameters for specializa-
tion.

b) Generators: Because iteration is a common pattern, Impala
provides syntactic sugar for invoking certain higher-order
functions. The loop
for var1, ..., varn in iter(arg1, ..., argn) { /*...*/ }

translates to
iter(arg1, ..., argn, |var1, ..., varn| { /*...*/ });

The body of the for-loop and the iteration
variables constitute an anonymous function
|var1, ..., varn| { /*...*/ } that is passed
to iter as the last argument. We call functions that are
invokable like this generators. In particular, programmers
can define their own iteration functions (see below).

c) Intrinsic Generators: Impala exposes several forms of par-
allelism via built-in generators. These do not possess an imple-
mentation in Impala itself but are recognized by the compiler.
The intrinsics used in our implementation are parallel for
spawning threads, vectorize for SIMD vectorization on
the CPU, cuda for generating GPU code, and hls for HLS.



The passed function is executed in a single program, multiple
data (SPMD) context. The following example demonstrates
how to parallelize the outer and vectorize the inner loop in a
2D loop nest:
for y in parallel(/*num threads*/ 4, y_beg, y_end) {

for x in vectorize(/*simd width*/ 8, x_beg, x_end) {

body(x, y)

}

}

Most notably, they are not pragmas but regular functions
that can be captured and passed around like any other func-
tion (see below). The only restriction is that after partial
evaluation, their higher-order arguments have to be function
literals.

d) Custom Generators & Partial Evaluation: Generators are
particularly powerful in combination with partial evalua-
tion.
type Body = fn(int) -> ();

fn @(?a & ?b) unroll(a: int, b: int, body: Body) -> () {

if a < b {

body(a);

unroll(a+1, b, body)

}

}

fn @range(a: int, b: int, body: Body) -> () {

unroll($a, b, body)

}

Both functions are generators and, thus, are amenable to the
for-syntax:
for y in range(y_beg, y_end) {

for x in unroll(0, 4) { body(x, y) }

}

They iterate from a (inclusive) to b (exclusive) while invoking
body each time. The filter of unroll tells the partial
evaluator to completely unroll the recursion if both loop
bounds are statically known at a particular call site (as in the
example above). The function range wraps a call to unroll
but prevents the partial evaluator from unrolling because it
always considers $a as dynamic.

Since generators are ordinary functions, programmers can pass
them around, or combine them to build more sophisticated
patterns. The following example is parametric in an arbitrary
2D generator loop2d.
fn compute(/*...*/, loop2d: Loop2D) -> () {

for x, y in loop2d(/*...*/) { body(x, y) }

}

The function combine creates 2D generators by composing
two 1D generators. This lets us explore various 2D loop nests
that are feedable to compute:
let a = combine(range, range);

let b = combine(range, unroll);

let c = combine(|a, b, body| vectorize(8, a, b, body),

|a, b, body| parallel (4, a, b, body));

let d = tile(64, 32, |a, b, body| vectorize(8, a, b, body),

|a, b, body| parellel (4, a, b, body));

The function tile is a more sophisticated variant of
combine that sets up a tiled 2D loop nest. Note that both
combine and tile are ordinary functions that are imple-
mented as library functions. Partial evaluation will completely

remove all overhead and generate a program that only consists
of the desired loop nest while the function compute is
not tainted with any hardware-specific details. Programming
idioms like this are typical in our code base and showcase
what is possible with AnyDSL’s partial evaluator.

III. ABSTRACTIONS FOR SEQUENCE ALIGNMENT

AnySeq features a modular design that allows chang-
ing performance-impacting algorithm parameters at compile
time:

• hardware platform: CPU, CPU-SIMD, GPU, or FPGA
• alignment reconstruction needed: yes/no
• substitution function
• gap penalty scheme (linear or affine) and values

AnySeq achieves this via function composition, mostly in the
form of providing behavior-controlling functions as arguments
to higher-order functions (see Section III-B).

A. Pairwise Sequence Alignment

Consider two sequences Q = (q1q2 . . . qn) and S =
(s1s2 . . . sm) of length n and m over the alphabet Σ. Their
optimal alignment can be found in O(n · m) by recursively
solving three smaller subproblems. For each pair (qi, sj) of
characters one has to decide if these characters should be
aligned or if a gap should be inserted. The optimal alignment
score H(i, j) for the prefixes (q1 . . . qi) and (s1 . . . sj) is given
by the recurrence relation

H(i, j) = max



















H(i− 1, j − 1) + σ(qi, sj)

E(i, j)

F (i, j)

ν

(1)

where σ is a substitution function over Σ×Σ that determines
the score of aligning two characters. The parameter ν is
needed to distinguish between local and global alignments
as we will explain below.

In case of a linear gap penalty g we set:

E(i, j) = H(i− 1, j)− g (2)

F (i, j) = H(i, j − 1)− g (3)

For affine gap penalties, a gap of length k is penalized with
Go + k · Ge where Go is the cost of opening a gap and Ge

is the cost of extending a gap. We then need two additional
auxiliary DP matrices to determine the optimal value for E

and F at position (i, j). The following functions determine the
best alignment score for the prefixes (q1 . . . qi) and (s1 . . . sj)
under the constraint that sj (or qi) is aligned to a gap:

E(i, j) = max

{

E(i − 1, j)−Ge

H(i − 1, j)−Go −Ge

(4)

F (i, j) = max

{

F (i, j − 1)−Ge

H(i, j − 1)−Go −Ge.
(5)
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Figure 1: The left image shows the conceptual DP matrix H .
Light gray cells are initialization cells and dark gray indicates
the ancestral subproblems of the currently active cell, which
is shown in black. The right image shows the cells that need
to be stored for score-only computation in dark gray.

Initialization of the first rows and columns of H , E, and F—
as well as in what cell(s) to look for the optimal score—
depends on whether the alignment shall be global, local, or
semi-global. Note that for the following equations holds 1 ≤

i ≤ n, 1 ≤ j ≤ m; the initialized rows and columns have
index 0.

In the case of computing an optimal local alignment, we look
for the best scoring alignment starting at any position (qi, sj)
and ending at any other position (sk, ql) with i ≤ k ≤ n, j ≤

l ≤ m. The parameter ν in Equation 1 has to be set to 0
in order to ensure that scores will always be positive. The
DP matrices are initialized as follows: H(0, 0) = H(i, 0) =
H(0, j) = 0, E(0, 0) = F (0, 0) = F (i, 0) = E(0, j) = −∞,
E(i, 0) = −Go − i ·Ge, and F (0, j) = −Go − j ·Ge.

Global alignments always start at position (0, 0) and end at
position (n,m). Hence, the optimal score lies in cell H(n,m).
In order to model unbounded scores, the parameter ν in
Equation 1 must be −∞. The DP matrices are initialized
as follows: H(0, 0) = 0, E(0, 0) = F (0, 0) = F (i, 0) =
E(0, j) = −∞, H(i, 0) = E(i, 0) = −Go − i · Ge, and
H(0, j) = F (0, j) = −Go − j ·Ge.

For semi-global alignments, gaps at the beginning and at the
end are not penalized. This leads to the same initialization as
for local alignments. The optimal score lies in the last row or
column of H .

Note that score-only computations can be performed in linear
space and quadratic time with respect to the length of the
alignment targets. Actual alignments producing this value can
be constructed by tracing back the predecessor information
in the DP matrices. In order to avoid quadratic space con-
sumption (which is prohibitive for long DNA strings), the
traceback procedure can be implemented in linear space by a
divide-and-conquer approach [24] that recursively determines
optimal midpoints of the DP matrix (at the cost of at most
doubling the amount of computed DP cells).

Each cell of H in Equation 1 depends on three neighboring

cells (see Figure 1) which means that relaxing them in parallel
can be done along minor diagonals. When relaxing all cells in
a submatrix row of H , only the subproblem scores for the row
above and one column left of the current cell are needed. If
we want to compute submatrices in parallel, the first row and
first column of a submatrix must have been computed earlier
and the last row and last column must be kept available for
the computation of subsequent submatrices (to the right of
and below the current one).

B. Data Access Abstractions

Efficient scalar CPU implementations need radically different
iteration and blocking schemes than efficient SIMD-vectorized
CPU implementations or efficient GPU code. This in turn
leads to different data access patterns and data storage re-
quirements (memory alignment, RAM vs. VideoRAM, GPU
shared memory, etc.). A key idea of our design is the usage
of data accessor objects for decoupling data access from the
actual data storage strategy.

For example, while the resulting data indexing schemes may
differ, the underlying relaxation equations (1), (4), (5) stay the
same. It is therefore desirable to decouple these two aspects of
the algorithm. AnySeq encodes the basic recurrence relation
for one DP matrix cell update in one function. The following
example showcases this for global alignments:
fn relax_global(

scoring: Scoring, // scoring scheme, may access E and F

prev: PrevScores, // accessor to previous scores

next: CharPair // accessor to sequence letter pair

) -> NextStep // optimum score and predecessor

{

let mut res = NextStep { // no gaps

score: scoring.subst(prev, next),

predc: PRED_NO_GAP

};

let sgap = scoring.gap_s(prev, next); // subject gap

if sgap > res.score {

res.score = sgap;

res.predc = PRED_SKIP_S;

}

let qgap = scoring.gap_q(prev, next); // query gap

if qgap > res.score {

res.score = qgap;

res.predc = PRED_SKIP_Q;

}

res // return maximum over all three choices

}

Member functions of type PrevScores are used to access
scoring information of the three ancestral subproblems. If no
gap should be introduced, the scoring substitution function
is used to determine the cost. In case of affine gap penalties
the functions gap_s and gap_q will access the auxiliary
matrix elements from E and F , for linear penalties they return
a constant. Objects of type NextStep store the maximum
score for the current cell and what previous subproblem
was chosen as ancestor. The ancestor information encoded in
res.predc is sometimes needed for the innermost level of
the traceback since recursion on subsequences is only done if
the subsequence sizes exceed a hardware-specific threshold.
Whether any of the functions access main memory, GPU



memory, or simply returns a constant is determined based on
the algorithm parameterization at compile time. The relaxation
order (which for the recursive traceback is reversed for half
of the DP matrix) and subproblem sizes are also determined
based on algorithmic parameters and the target hardware
platform.

Accesses to the values of previously computed subproblems
as well as to the input sequence characters are also abstracted
by function calls. This makes it possible to vary intermedi-
ate result storage strategies, indexing, and blocking schemes
independently of other parts of the algorithm:
// read-only access to a sequence of characters

struct Sequence {

len: fn() -> Index,

at: fn(Index) -> Char,

release: fn() -> ()

}

// read/write access to a sequence of characters

struct MutableSequence {

len: fn() -> Index,

at: fn(Index) -> Char,

write: fn(Index, Char) -> (),

release: fn() -> ()

}

// access to alignment scores

struct Scores {

prev: fn() -> PrevScores,

at: fn(IndexPair) -> Score,

update: fn(IndexPair, Score) -> (),

release: fn() -> ()

}

AnySeq resorts to generators to define indexing/blocking
schemes. These are used in CPU as well as in GPU code.
This is explained in more detail in the following subsec-
tions.

Since AnyDSL supports partial evaluation and the function
call hierarchy is known at compile time, AnySeq can use sev-
eral layers of indirection without impacting performance. This
allows us to isolate hardware-specific parts from architecture-
independent code such as the relaxation function in a way that
is much easier to write, understand, and reason about than for
C++ templates.

C. Interface & Data Flow

The outermost interface functions build accessor objects to
the sequence storage and combine different initialization,
relaxation, and matrix traversal/blocking functions to realize
different alignment schemes. To make interfacing with other
languages easier, AnySeq provides C wrapper functions as
entry points to the different algorithmic parameterization
scenarios:
extern fn construct_global_alignment(

query: &[u8], subj: &[u8], // sequence input

qAlign: &mut [u8], // alignment output

sAlign: &mut [u8]

) -> Score // optimum score

{ // yields data accessor objects to input and output

let input = input_view(query, subj);

let output = output_view(qAlign, sAlign);

// yields a struct with functions to control algo behavior

let scheme = global_scheme(

linear_gap_scoring(simple_subst_scoring(2,-1), -1));

construct_alignment(scheme, input, output)

}

In order to use it in C++, it just needs to be declared:
extern "C" { // C linkage

score_t construct_global_alignment(const char* query,

const char* subj, char* qAlign, char* sAlign);

}

Algorithmic variants can be obtained by exchanging param-
eters of higher-order functions. Scoring schemes, memory
access, and iteration strategies are all encapsulated in func-
tions that can be interchanged. Most of the time programmers
need to exchange several functions in order to get the desired
behavior. Thus, functions are often grouped into descriptively
named structs to make parameterization more convenient and
the resulting code more expressive.

Because all accesses to actual data are abstracted through
function calls we can simply exchange the order in which
memory is accessed. If, for example, parts of the input
sequences need to be reversed (this is the case for the
divide-and-conquer traceback) we reverse the indexing in the
sequence accessor function.

The following code example shows accessors that decouple
memory access patterns. A MatrixView instance provides
an interface for reading and writing data addressed by two
indices. Functions like view_matrix_coal_offset cre-
ate accessors that are optimized for a specific hardware
architecture or algorithmic stage.
type MatrixReadFn = fn(Index, Index) -> Score32;

type MatrixWriteFn = fn(Index, Index, Score32);

struct MatrixView {

read: MatrixReadFn,

write: MatrixWriteFn

}

// coalescled access pattern for GPUs

fn view_matrix_coal_offset(matrix: Matrix,

read: MatrixReadFn, write: MatrixWriteFn,

oi: Index, oj: Index) -> MatrixView

{

let coalesced_pos = |i: Index, j: Index| -> Index {

((i + oi + j + oj + 2) % matrix.mem_height)

* matrix.mem_width + j + oj

};

MatrixView {

read: |i, j| read(coalesced_pos(i, j)),

write: |i, j, value| write(coalesced_pos(i, j), value)

}

}

Scoring schemes are built by combining a gap scoring
strategy with a substitution function (see the listing in
Section III-C). The substitution function takes an accessor
to the scores of the ancestral problems and the next char-
acter pair. We obtain a simple scoring function with a
match score of 2 and a mismatch score of −1 by calling
simple_subst_scoring(2, -1). It returns the corre-
sponding substitution function.
// signature of a scoring function

type ScoringFn = fn(PreviousScores, CharPair) -> Score;

// make scoring function for a simple scheme

fn simple_subst_scoring(same: Score, mismatch: Score)

-> ScoringFn {

// this lambda expression returns a function

|prev, chars| {

prev.no_gap +

if chars.q == chars.s { same } else { mismatch }

}

}



This example also demonstrates how the ability to return
functions makes parameterizations easier to use at the call
site. To obtain a matrix substitution scheme, the programmer
simply has to pass a substitution function that reads scores
from a lookup table. AnySeq implements gap scoring func-
tions similarly.

Since partial evaluation ensures that no machine code is
generated for calls to functions that either do not contain
instructions or return a compile-time constant, we can im-
plement most algorithmic details in their most general form
and rely on partial evaluation to eliminate such calls. For
example, if the predecessor information or affine gap storage
is not needed in a concrete algorithmic variant, the functions
in the specialized accessor objects do either nothing or return
compile-time constant values. The same holds for writing
score data. For local and semi-global alignment computation
the algorithm must also keep track of the current maximum
score while this is not necessary for global alignments. For
this, we just have to swap out one variant of the Scores

accessor’s member function update (see Section III-B) for
a different (more efficient) one at compile time.

The resulting control flow for computing an alignment is
as follows: 1) allocate memory for the input data, 2) read
and store input data, 3) allocate storage needed for the
output, 4) build accessors to input and output data stor-
age, 5) allocate temporary storage for the alignment algorithm
(RAM, GPU global and/or shared memory), 6) build accessors
to the temporary storage(s), 7) run relaxation procedure for
computing the DP matrix cells, 8) look up optimal score, 9) if
needed, build alignment strings, 10) output results.

IV. MAPPINGS TO CPUS, GPUS, AND FPGAS

If high performance is desired, it becomes inevitable that some
parts of an algorithm need to be specialized for different
acceleration technologies. One way of supporting different
hardware platforms, is to choose one of several implementa-
tions of the same struct or function, i. e., by writing different,
specialized variants with the same name or signature, respec-
tively. As an example, consider the following CPU version
of a function inplace_map that transforms the array data
within the range a to b by applying a function f:
fn inplace_map(a: int, b: int, data: &mut [float],

f: fn(float) -> float) -> () {

for i in range(a, b) {

data(i) = f(data(i)); // apply f to array value i

}

}

A GPU implementation (that does not use shared memory) of
the same function looks like this:
fn inplace_map(/*as above*/) -> () {

// determine optimum block and grid dimensions

let block_width = opt_block_width(a, b);

let block = (block_width, 1, 1);

let grid = (opt_num_blocks(a, b) * block_width, 1, 1);

with cuda(grid, block) { // run kernel

let i = cuda_gidx(); // get global id

data(i) = f(data(i)); // apply transformation

}

}

The corresponding FPGA implementation uses a pipelined
execution:
fn inplace_map(/*as above*/) -> () {

with hls() {

for i in pipelined(a, b) {

data(i) = f(data(i));

}

}

}

The interface of inplace_map can be made more generic
by using data accessor functions instead of pointers to ar-
rays.

We have used hardware-specific generator functions to encap-
sulate iteration and blocking strategies and data accessors to
encapsulate memory access patterns. Therefore, supporting a
new hardware platform means replacing only those iteration
and data access abstractions for which benchmarks have
shown that they perform sub-optimally on that platform. A
breakdown of our code base—excluding supporting code like
benchmarking functions, I/O, and C interfacing functions and
also the FPGA-specific parts—reveals that approximately 23%
of all lines of code are specifically written for the GPU,
14% are specific to CPU vectorization and less than 11% are
only needed for the non-vectorized CPU version while the
remaining 52% are shared among all three variants.

A. CPU Parallelization

We compute the values of different DP submatrices concur-
rently using CPU threads. As mentioned before, relaxing DP
matrix cells in parallel can be done along (minor) diagonals.
In the non-vectorized version, cells within a submatrix will
be relaxed in row-major order.

Zero-overhead data access abstractions allow for the conve-
nient separation of iteration logic and memory layout. Note
that scores must be accessed following a row-major order
within a tile. This is because if we want to compute the value
at local position (i, j) an intra-tile cyclic buffer must always
contain the previously computed values at local positions
(i−1, j−1) through (i−1,m) and (i, 0) through (i, j−1) (see
the right image in Figure 1). Furthermore, the values of the
rightmost and bottommost border cells of a submatrix need
to be kept as long as neighboring submatrices that depend
on these values have not been computed yet (see Figure 2).
Again, data accessors help to hide the fact that not the entire
DP matrix is stored, but only such border stripes.

In our preliminary version of AnySeq [18] we used a static
wavefront schedule along diagonals of submatrices and vec-
torization was done by computing consecutive rows within
a submatrix while substitution scores were looked up from
a precomputed auxiliary array. This approach did not yield
satisfactory performance (see red line in Figure 6).

Instead of a static schedule we now use a dynamic wavefront
approach where submatrices are scheduled in a thread-safe
queue which allows threads to add and extract work items
concurrently. Not only does this eliminate load imbalances due
to a mismatch between the number of available threads and



the number of submatrices that can be relaxed in parallel, this
approach also leads to better load-balancing when computing
several alignments of different sizes concurrently.

Vectorization is done over blocks that consist of rows from
independent submatrices which also obviates the need for
an auxiliary data structure for score lookup. The number of
rows in each block corresponds to the number of available
vector lanes l which is determined by the SIMD instruction
set and the width of the data type used for computing score
values.

Impala provides the generator vectorize that triggers
CPU vector code generation which in turn relies on the
Region Vectorizer [25]. Within the body of vectorize

memory reads and writes as well as arithmetic operations are
transformed into the corresponding vector instructions. Most
existing vectorized alignment implementations [3]–[5], [14],
[15] are based on intrinsics specific to certain architectures.
A major advantage of our approach is that the vectorize

generator supports several SIMD instruction sets.

Since only differences to the global score are relevant, we
use smaller data types (e.g. 16 bits for our use cases) for
scores within a block. Whether this is feasible without over-
or underflow, depends on the block size and the scoring
scheme. The largest possible differential score value occurs if
all characters in the corresponding subalignment match. The
smallest possible differential score is obtained if no pair of
characters in both sequences matches and either the largest
possible mismatch penalty (along the alignment diagonal) or
the largest possible gap penalty (along the first row or first
column) is subtracted.

A thread only computes a vectorized block, if l work items
are enqueued. This means that the preconditions of l inde-
pendent alignment submatrices already hold. Depending on
the workload, e.g., when computing alignments of several
sequence pairs in parallel, or when starting new alignments,
there might be less than l submatrices available per thread. In
these cases threads will compute single submatrices using the
scalar method (see Figure 3). After computation of a block
has finished, all of the l associated alignment submatrices are
marked as finished by the current thread. Next, for each of
the completed submatrices, their neighboring submatrices are
enqueued if they have neither been computed nor been en-
queued yet and their preconditions have already been fulfilled,
i. e., their predecessor submatrices have been computed. The
completion and queuing status of all submatrices is tracked
using preallocated arrays of atomic flags.

B. GPU Parallelization

Similar to the CPU code we iterate over matrix tiles in a
diagonal fashion. This is done in host code that starts a
GPU kernel for each diagonal. The GPU kernel uses a one-
dimensional grid of thread-blocks where each block computes
one matrix tile. Each tile is further divided into stripes
which are computed in sequence by a thread-block. Within
a stripe, threads compute diagonals in parallel (see Figure 4).

Figure 2: Data dependencies for submatrix relaxation. Here
hatched submatrices have already been computed. Border cells
marked light gray need to be communicated to the currently
active, black submatrix. Dark gray cells need to be stored for
the submatrices that depend on the current one.
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Figure 3: Submatrix scheduling example: four alignments of
different sizes are computed simultanously by distributing
independent subalignments over several threads. Subalign-
ments that are already finished are shown in grey, currently
active ones are shown in black. Each of threads A, B, and C
computes four independent subalignments using vectorization
(l=4) while thread D computes one subalignment using the
scalar method.

Computation of one stripe is divided into three parts in order
to avoid branch divergence. This division is due to the fact
that full diagonals are only computed in the middle part of a
stripe but not at the start or the end.

Again, data accessors are used to manage memory buffers that
can now point to global or block-local shared GPU memory.
In order to enable coalesced memory access we have to
use memory access patterns different from the CPU code.
Since memory access is abstracted by functions, it is easy
to exchange access schemes for the CPU and the GPU code.
Device-independent code, like the core relaxation function,
remain the same, because it only calls those memory access
functions to read and write values.

Before starting a block of threads, the segments of the input
sequences that are needed for the current tile are stored in
block-local shared memory. The values of the row immedi-
ately above the current stripe are needed to access ancestral
problems. Also the values in the bottom-most row of the
current stripe will be needed by the next stripe. Since we are
relaxing in diagonals along the stripe, we re-use the memory
cells with the values of the uppermost row that are no longer
needed and store the results of the last row to them. The buffer
needed for this does also reside in shared memory. This way,
we compute all stripes within a tile in succession without
starting a new kernel. The last row and column of the current
tile are always written back to global memory (indicated by
circles in Figure 4).



stripe 1

stripe  2

Figure 4: Striped computation of a tile on the GPU. Values
of the cells shown in gray and hatched cells are located in
shared memory. Light gray indicates values still needed for
the current tile. Dark gray indicates values needed for the next
stripe (re-use memory previously claimed by initialization
cells that are no longer needed). The circles indicate values
that need to be written to global memory after the current tile
has been completed.

C. FPGA Parallelization

The FPGA implementation iterates over matrix tiles in a
diagonal fashion, too. We use several processing elements for
this that all compute a single DP cell per clock cycle. The
iteration in diagonal fashion happens in stripes of width KPE,
i. e., the number of processing elements. In turn, for each clock
cycle we have KPE updates in parallel, which renders KPE and
the frequency crucial for performance. The shorter sequence
is divided into blocks of maximum size KPE which are used
to initialize the processing elements. Characters of the longer
sequence are streamed one-by-one through the linear array of
processing elements; that is, processing elements perform the
relaxation and pass the character and their results to the next
processing element. The last element emits the score to the
host system.

In case the shorter sequence is longer than KPE, we buffer the
rightmost DP column of a stripe with the help of a predefined
hardware component in DDR memory of the host system. This
component is necessary to store the results in parallel to the
ongoing computation. We have similar components to stream
the characters and for fetching the previously stored values
from DDR.

V. PERFORMANCE EVALUATION

Experiments were run on a system with two Intel Xeon
Gold 6130 (Skylake) CPUs with 192 GB of DDR4 RAM and
L1, L2, and L3 caches sizes of 1 MB, 16 MB, and 22 MB
respectively. Each CPU has 16 physical cores and all CPU
algorithms were run with 32 threads. The operating system
used was CentOS Linux release 7.6.1810. The vectorized
variants were compiled for the AVX2 and AVX512 instruction
sets and use 16 bit scores within a SIMD lane. The GPU
experiments were performed on a Titan V.

We compared AnySeq to the well-established sequence align-
ment libraries SeqAn 2.4.0, Parasail 2.0, and NVBio 1.1. Any-
Seq was compiled with the AnyDSL version from July 2019
and libraries were compiled with gcc 7.3.0. AnyDSL is based

Accession No. Length Genome Definition

NC_000962.3 4,411,532 Mycobacterium tuberculosis H37Rv
NC_000913.3 4,641,652 Escherichia coli K12 MG1655
NT_033779.4 23,011,544 Drosophila melanogaster chr. 2L
BA000046.3 32,799,110 Pan troglodytes DNA chr. 22
NC_019481.1 42,034,648 Ovis aries breed Texel chr. 24
NC_019478.1 50,073,674 Ovis aries breed Texel chr. 21

Table I: Long genomic sequences used for benchmarking

on LLVM 8 and links against CUDA 10.1. After some mod-
ifications, NVBio could be compiled with CUDA 8.

We have evaluated performance for two common use cases:
(i) pairwise alignment for long DNA sequences and (ii)
comparisons of large amounts of short Illumina reads. We
mostly computed global alignments using a simple scoring
scheme with +2 for a match, −1 for a mismatch and a linear
gap penalty of −1 and in addition global alignments with an
affine gap scoring scheme using Go = −2 and Ge = −1
if supported. Parasail does not explicitly specialize the case
of linear gap penalties which means that it effectively always
computes affine gaps, even if Go = 0.

For the first use case we aligned three pairs of long genomic
sequences of roughly similar length listed in Table I, which
have been used as a benchmark before [3], [26]. Part a) of
Figure 5 shows the median performance in terms of giga cell
updates per second (GCUPS) on the tested CPU and GPUs
for both score-only computation and traceback. For score-only
computation AnySeq is faster than both SeqAn and Parasail
for the multithreaded, non-vectorized version, and for the
AVX2 version while for the AVX512 version SeqAn is faster.
For the traceback, AnySeq and SeqAn have roughly the same
speed for all versions—both outperforming Parasail. On the
tested GPU, AnySeq outperforms NVBio for both score-only
computation and alignment reconstruction by a factor of up
to 1.1. Using affine gap penalties does generally not change
the relative performances of the tested libraries, although it
is always slower than using linear gap penalties due to an
increased amount of memory reads and writes. Note that
alignment computation on the GPU relies on 32-bit integer
arithmetic due to the lack of native support for shorter integer
data types (as used by our AVX vectorization).

For the second use case we performed 12.5 million pairwise
alignments of Illumina reads of length 150 base-pairs each.
The set of reads was simulated with Mason using chromosome
10 of GRCH38 as reference. Part b) of Figure 5 shows the
achieved performance in GCUPS on the tested CPU and
GPU for both score-only computation and traceback. For
score-only computation on the CPU, AnySeq outperforms
both SeqAn and Parasail for the AVX2 version, while for
the AVX512 version SeqAn is slightly faster. On the GPU,
AnySeq consistently outperforms NVBio with a factor of up
to 1.12.

We have also compared the CPU thread scalability of the
proposed dynamic wavefront approach with a purely static
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Figure 5: Median performance in GCUPS (giga cell updates per second, higher is better) for aligning
a) pairs of long DNA sequences, b) 12.5 million pairs of short Illumina reads.
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Figure 6: Thread scalability comparison on a CPU between
dynamic wavefront and static wavefront parallelization for
aligning a pair of long DNA strings using AVX2.

wavefront along diagonals in Figure 6. Our preliminary ver-
sion [18] and Parasail rely on the latter strategy. This also
explains the low Parasail performance in Figure 5 part a). The
dynamic approach achieves an efficiency of 75% and 65%
for 16 and 32 threads, respectively, while the corresponding
efficiencies of the static approach are merely 15% and 8%.
SeqAn is also based upon a dynamic wavefront approach
but relies on low-level intrinsics for vectorization to support
various instructions sets. This makes this code not only hard
to port to different SIMD architectures but also requires
to emulate control flow constructs such as if, while, or
break with masked data flow—a time-consuming and error-
prone process.

AnySeq slightly outperforms SeqAn and NVBio in several use
cases due to different implementation details like the internals
of the concurrent queue used for scheduling tiles or different

Device Watt Gap GCUPS/watt

Intel Xeon Gold 6130 125 a) linear 1.024
affine 0.968

Titan V 250 a) linear 0.757
affine 0.696

ZCU104 6.181b) linear 3.187
affine 3.187

a) according to specification
b) according to hardware synthesis report

Table II: Energy efficiency in terms of GCUPS/watt (higher
is better) of AnySeq for all tested devices (scores only, long
genomes). Baseline forms the fastest corresponding AnySeq
variant from Figure 5 for that device.

parameter choices for recursion cutoff points or tile sizes. That
being said it is hard to pinpoint the exact reason that attributes
to performance differences of about 5%: The code bases are
very different and even slight differences in the generated code
can easily impact performance.

FPGA Performance

Our FPGA implementation is not as mature as the CPU or
GPU one and—at the time of writing—only supports score-
only long genome alignment. We chose the Xilinx Zynq Ultra-
Scale+ MPSoC ZCU104 Evaluation Kit for our experiments.
AnySeq runs with a frequency of 187.5 MHz and achieves a
median performance of about 20 GCUPS on the ZCU104 (see
Figure 5; long genomes, scores only).

The runtime is not affected by the gap penalty scheme as
the computation happens in a single clock-cycle nonetheless.
Moreover, without modifying the data transfer methodology,



a no-operation hardware module is as fast as our alignment
core. This indicates that our implementation only improves if
the data transfer rate increases.

Even though the total GCUPS of the ZCU104 are not competi-
tive to the tested high-end CPU/GPU systems, low-end FPGAs
consume significantly less power. Table II compares the power
efficiency for each tested device in terms of achieved GCUPS
per watt. The ZCU104 is more than 3 times more energy
efficient than the corresponding CPU implementations and
4.2–4.5 times more energy efficient than the corresponding
GPU implementations.

VI. RELATED WORK

Parallelization of genomic sequence alignment has been in-
vestigated mainly in the context of two types of application
scenarios: (i) pairwise alignment for long DNA sequences,
and (ii) comparison of large amounts NGS reads. Existing
monolithic implementations and libraries have been optimized
for specific architectures including CPUs, GPUs, and FP-
GAs. Two widely adopted parallelization schemes are inter-

sequence (computes DP matrix cells of a number of indepen-
dent alignment tasks in parallel) and intra-sequence (computes
DP matrix cells of a single alignment in parallel).

FPGA solutions using systolic arrays [10], early approaches
using SIMD registers of standard CPUs [27], and a number
of GPU approaches [7] are based on the intra-sequence
method vectorizing over minor diagonals of the DP matrix.
Farrar’s approach [28] is a popular intra-sequence method
using a striped layout for SIMD registers. Unfortunately,
its performance relies on efficient branch prediction units
which are often inefficient on modern many-core architectures.
Both multithreading and vectorization have been effectively
employed on CPUs for the inter-sequence approach if a
large number of alignments need to be computed in parallel
[5]. This is typically the case when processing large-scale
NGS datasets. However, for the alignment of a pair of long
genomic sequences, most approaches employ a wavefront
pattern for intra-sequence parallelization [3], [4], [6], [8],
[12]. An additional level of coarse-grained parallelism (e.g. on
CPU/GPU clusters) has been proposed based on speculative
execution [9], [29].

These approaches have in common that they are based on a
highly optimized architecture-specific kernel but are often not
flexible enough to support different alignment scenarios and
are not compatible to different architectures. Consequently,
libraries have been introduced that expose alignment algo-
rithms as reusable components. Among them SeqAn [13]
and NVBio [16] provide the highest flexibility on CPUs
and GPUs, respectively. A recent paper [26] has shown that
the performance of SeqAn is superior to other CPU-based
libraries including Parasail [14] and SSW [15]. Unfortunately,
existing approaches are specific to certain architectures and
execution models and are therefore not able to support a
variety of modern hardware required for modern bioinformat-
ics pipelines that need to deal with fast-growing biological

sequence databases. AnySeq demonstrates that using partial
evaluation it is possible to build an alignment library based
on higher-order abstractions that can specialize on a variety
of architectures (CPUs, GPUs, and FPGAs) with comparable
performance to state-of-the-art libraries for two application
scenarios (long sequence alignment and NGS read compari-
son) that are hand-optimized for a specific architecture (e.g.
NVBio on GPUs, SeqAn on CPUs).

Both SeqAn and NVBio use C++ metaprogramming in order to
specialize algorithmic variants at compile time. Some projects
even use scripts (e.g. written in Python or Ruby) that generate
other programs (e.g. in C/C++ or CUDA). However, metapro-
gramming entails severe drawbacks in terms of programmer
productivity: First, the meta language is different than the core
language and/or intrusively pervades the program with quoted
code snippets of the program to be generated (C++ template
language vs. C++ core). For this reason, metaprograms are hard
to read, write, and understand. What is more, programmers
cannot easily move code between the core and the metapro-
gram. Thus, they must manually implement all needed ver-
sions like pow(a, b) vs. pow<b>(a) vs. pow<a, b>().
In addition, C++ templates do not accept lambda expressions
as arguments. Finally, running the metaprogram does not
guarantee the well-typedness of the generated program. This
leads to the infamous, difficult to understand error messages
after C++ template instantiation.

AnyDSL on the other hand uses partial evaluation and does
not suffer from any of these problems. The only annotations
required are filters that determine whether the evaluator should
specialize a particular call site. This allows in contrast to
metaprogramming for polyvariance and avoids the need to
implement several variants of the very same function (see
Section II-B). This paper displays in several examples that we
pass functions with free variables (lambda expressions in C++

terminology) around and later specialize these calls via partial
evaluation. This is not possible with C++. Finally, the partial
evaluator runs in contrast to template instantiation on a well-
typed program and, hence, will not produce an ill-typed one.
Please refer to Leißa et. al. [18, §3] for a thorough discussion
of metaprogramming and partial evaluation.

VII. CONCLUSION

The continually increasing volume of genomic sequencing
data poses severe challenges when developing bioinformatics
methods of practical relevance. To achieve sufficient per-
formance frequently requires the use of modern hardware
architectures. One way to separate the concerns of bioin-
formatics method development and low-level parallelization
and optimization is the use of sequence alignment libraries.
Unfortunately, existing approaches such as SeqAn, Parasail, or
NVBio only provide optimized implementations for a single
architecture and add significant code complexity through
template metaprogramming.

We have presented a new approach for designing a high
performance library for genomic sequence alignment based



on partial evaluation. By using higher-order abstractions,
AnySeq separates the computation into common parts imple-
mented in a generic way and parts allowing for architecture-
specific optimization. Implementations of different alignment
variants by simple function composition and mappings for
CPU, GPU, and FPGA-based hardware targets have been
presented. Through the use of recent compiler technology
that incorporates partial evaluation any overhead incurred
by the utilized higher level abstractions can be effectively
eliminated. As a result AnySeq achieves highly competi-
tive performance comparable to a number of state-of-the-
art, hand-optimized alignment libraries on various platforms.
AnySeq is open source software and can be downloaded at
https://github.com/AnyDSL/anyseq.
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