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Abstract— Stencil kernels dominate a range of scientific appli-
cations, including seismic and medical imaging, image processing,
and neural networks. Temporal blocking is a performance
optimization that aims to reduce the required memory bandwidth
of stencil computations by re-using data from the cache for
multiple time steps. It has already been shown to be beneficial
for this class of algorithms. However, applying temporal blocking
to practical applications’ stencils remains challenging. These
computations often consist of sparsely located operators not
aligned with the computational grid (“off-the-grid”). Our work
is motivated by modelling problems in which source injections
result in wavefields that must then be measured at receivers
by interpolation from the grided wavefield. The resulting data
dependencies make the adoption of temporal blocking much
more challenging. We propose a methodology to inspect these
data dependencies and reorder the computation, leading to
performance gains in stencil codes where temporal blocking has
not been applicable. We implement this novel scheme in the
Devito domain-specific compiler toolchain. Devito implements
a domain-specific language embedded in Python to generate
optimized partial differential equation solvers using the finite-
difference method from high-level symbolic problem definitions.
We evaluate our scheme using isotropic acoustic, anisotropic
acoustic, and isotropic elastic wave propagators of industrial
significance. After auto-tuning, performance evaluation shows
that this enables substantial performance improvement through
temporal blocking over highly-optimized vectorized spatially-
blocked code of up to 1.6x.

Index Terms—temporal blocking, stencil computations, code
generation, partial differential equations, seismic imaging,
domain-specific languages, wave-propagation

I. INTRODUCTION

Stencils are commonly encountered in scientific applications
such as image processing [1], convolutional neural networks,
weather forecasting [2], computational fluid dynamics, seismic
[3], [4], and medical imaging [5]. We present a scheme
that enables the application of temporal blocking, a common
technique to enhance cache-locality [6]–[8], to a class of
finite-difference (FD) [9], [10] stencil kernels where this is
challenging. This class consists of additional sparsely-located
in the computational grid (off-the-grid) operators. Typical
stencil kernels are computational patterns that are usually

functions of the nearest neighboring point values. In a more
general context, a stencil defines the iterative computation of
an element in an n-dimensional spatial grid at time t as a
function of neighboring grid elements (space dependencies) at
time t − 1, . . . , t − k (time dependencies). A typical stencil
update in a scientific simulation has a 3-dimensional spatial
iteration space and 1-dimensional temporal iteration space.
Figure 1 illustrates a 1D stencil and its flow dependences.
Each point is updated using values from the previous timestep
and the right and left neighbors. Arrows illustrate the flow
dependencies. Halo points (grey) are used to extend the
computational domain by the stencil radius size. Wider stencils
in 3D and their respective data dependencies are illustrated in
Figure 2.
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Fig. 1: A 1D-3pt Jacobi stencil update. Arrows show the data
flow dependencies, grey points indicate the read-only halo
area.

Fig. 2: A 6th-order (O(1, 8)) 3D-19pt stencil update. A point
(red) at the edge of a block (blue) depends on a four-deep
halo of neighbouring points which extends outside the block.
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In addition to data dependencies of the kind illustrated in
Figure 1, applications such as seismic wave-modeling carry
additional dependencies owing to the interpolation of data not
directly associated with grid points into the model (e.g., source
injection). These positions, that are not aligned with the grid
points are sparsely-distributed off-the-grid [11], [12] positions
as shown in Figure 3a. They may also include receivers
that interpolate neighboring values to take measurements,
as shown in Figure 3b. Sources and receivers are sets of
sparsely-distributed off-the-grid points. We iterate over these
sparsely-located sets through indirections applying their effect
to the grid points after iterating the 3D grid for stencil
updates for each timestep. A loop nest structure illustrating
this computation pattern is shown in Listing 1, where nt is
the number of time steps; nx, ny, nz are the number of grid
points along the x, y, z dimensions respectively, A(t, x, y, z)
is the stencil kernel update and so is the space discretisation
order. The src is of size nt × len(sources) holding the
wavefield for each timestep for every source where sources
is the structure holding the information for modeling source
injection. Variable np accounts for the number of points
affected from a source, and f is the function defining the
type of interpolation (e.g., bilinear, trilinear). An example of
bilinear interpolation is shown in Figure 3, where 4 points are
affected in 2D space. The sources set shown in Listing 1
provides the sparse off-the-grid coordinates for the injection.
We iterate this set of coordinates that determine the affected
neighboring points. The wave amplitude is scattered to these
affected points.

(χ, y+δy) (χ+δχ, y+δy)

(χ, y) (χ+δχ, y)

(χs, ys)

(a) An off-the-grid source
injects values to neighboring
grid points.

(χ, y+δy) (χ+δχ, y+δy)

(χ, y) (χ+δχ, y)

(χr, yr)

(b) An off-the-grid receiver
interpolates values from
neighboring grid points.

Fig. 3: A source injection and a receiver measurement inter-
polation at off-the-grid positions in a 2-D FD-grid. We assume
linear interpolation.

A. Problem overview: a running example
Space blocking [13], [14] can be applied in computational

patterns similar to Listing 1, but applying temporal blocking
is challenging as we illustrate with a 1-D example in Figure 4.
Red diamonds indicate off-the-grid coordinates where sparse
operators are applied. Sparse operators are applied after a
time iteration for the whole domain is finished. Consequently,
separating the FD grid into blocks does not violate any data
dependencies.

In contrast to space blocking, temporal blocking cannot be
applied. When a sparse operator is located at an off-the-grid

Listing 1: A typical time-stepping loop nest structure for a stencil update
with source injection. This stencil has one temporal and three spatial
dimensions.

1 for t = 1 to nt do
2 for x = 1 to nx do
3 for y = 1 to ny do
4 for z = 1 to nz do
5 A(t, x, y, z) ≡ u[t, x, y, z] = u[t-1, x, y, z] +

∑r=so/2
r=1 wr

(
u[t-1, x - r, y, z] + u[t-1, x + r, y, z] + u[t-1, x, y - r, z] +
u[t-1, x, y + r, z] + u[t-1, x, y, z - r] + u[t-1, x, y, z + r]

)
;

6 foreach s in sources do // For every source
7 for i = 1 to np do // Get the points affected
8 xs, ys, zs = map(s, i) // through indirection
9 u[t, xs, ys, zs] + = f(src(t, s)) // add their impact

on the field

X

T

(a) Rectangular space blocking. All grid points can be updated
in parallel at a specific time-step. Sparse operators fit within
space blocking as their effect is imposed after all points have
been updated.

X

T

(b) Skewed/Wave-front temporal blocking. Grid points are
updated in waves. During a wave-front update, we compute
grid point values for multiple timesteps. Applying sparse
operators in the space boundary may lead to erroneous updates
since source injection may precede the stencil update for a
particular timestep. We have a data dependency violation.

Fig. 4: Sparse operators do not violate data dependencies in
space blocking, Fig. 4a in contrast to temporal blocking, Fig.
4b.

position, among points that belong to different space blocks,
data dependencies are violated, thus yielding incorrect results.
The violation occurs because updates in space may pause
for a particular time-step, and computation will proceed in
time rather than space. Consequently, a sparse operator update
may be computed, and points that have not yet been updated
through the stencil kernel updates may be affected. Similarly,
a point may be erroneously updated due to a forward move in
time but may miss injection from a neighboring off-the-grid
operator due to space-time block constraint. Data dependencies
are violated, and similar violations are raised in other variants
of temporal blocking, such as wave-front temporal blocking
[15], [16] diamond temporal blocking [17], [18] and others.



We aim to overcome this limitation through our contributions
in this paper.

Because the set of sources is sparse, the loops generated in
Listing 1 by modelling source injection consist of non-affine
accesses as illustrated in Listing 1. While polyhedral tools such
as PLUTO [19], [20], Polly [21], Loopy [22], and CLooG [23]
manage to deal with the first uniform stencil update, they are
not capable of dealing with the non-affine nature of the source
injection loop nests.

The sparse off-the-grid nature of the source operator com-
bined with the non-affine nature of our loop structure illus-
trated in Listing 1 is blocking the application of time-tiling
as described in subsection I-A. The methodology presented in
Section II aims to overcome this limitation.

B. Related work

1) Improving stencil performance: stencils offer good par-
allelisation opportunities, ranging from Instruction Level Par-
allelism (ILP), SIMD register-level parallelism (SSE, AVX)
to shared-memory (OpenMP, OpenACC) and task parallelism.
Furthermore, distributed-memory parallelism is often em-
ployed.

In most applications of interest, stencil kernels have low
operational intensity, having few floating-point operations per
byte of data accessed, and are therefore memory bandwidth-
bound. Considerable effort has been put into caches for im-
proving stencil performance. Rescheduling the order of com-
putations towards increased cached memory reuse can increase
throughput by alleviating memory bandwidth boundedness
issues.

a) Spatial cache blocking: as illustrated in [13], [14],
[24]–[30] FD grids can easily be decomposed into tiles and
benefit from cache blocking. The same idea is applicable to
unstructured grids, though this requires more sophisticated
algorithms to create efficient schedules [31]. Space tiling
techniques have also been implemented for execution on
GPUs. Related work includes automated split tiling with trape-
zoids [32], hybrid hexagonal tiling [33] and automated HPC
GPU code [34], [35], [36] as well as hybrid spatial/temporal
blocking on FPGAs [37].

b) Temporal cache blocking: extending cache reuse in
the time dimension led to the development of temporal block-
ing algorithms. To further reduce cache misses, we utilize
computed values in a block to update values in the next
timestep where possible. While one or more timesteps for
a given block’s values are stored in the cache, we start
computing the next time step for this block, not depending
on the requirement to compute all the blocks of a given
grid for previous timesteps. Spatial and temporal reuse are
often fused into hybrid models (equidistant locality) to harness
the advantages of both methods [37]. Plenty of research has
been conducted in designing and evaluating temporal blocking
schemes ranging from simple skewing [6]–[8], [16], [38], [39]
and wave-front [15] to more sophisticated such as diamond
[17], [18], [40]–[43]. The technique presented in this paper

enables such schedules to be used in applications with off-the-
grid operators. While narrow stencil kernels exhibit good tem-
poral locality, temporal blocking gains decrease when space-
order increases. Higher space order problems limit temporal
locality as more space updates are required to update one value
in time.

2) Domain Specific Languages: improving performance is
essential but usually comes with the price of error-prone hand-
optimization. Finding ways to automate HPC code generation
led to the birth of several domain-specific Languages (DSLs)
like Devito [3], [4], which is used in this paper. Several
DSL/compiler frameworks are working towards the automated
generation of PDE solvers, such as FEniCS [44], and Firedrake
[45]. Halide [1], implemented as an internal DSL in C++.
OpenSBLI [46] is another framework that generated C code
from Python-based high-level abstractions targetting equations
written in Einstein notation. Halide is a language targeting
code generation for digital image processing featuring memory
locality and vectorized computation optimizations and ported
to multi-core CPUs and GPUs.

Other automatic code-generation frameworks are OPS [47]
for GPU code generation and YASK [48], a DSL to create
high-performance FD-stencil code. Lift [49], achieves per-
formance portability on parallel accelerators by combining
high-level functional data-parallel language with rewrite rules
which encode algorithmic and hardware-specific optimization
choices. Stella [2] and GridTools [50] are DSLs embedded in
C++, focusing on weather and climate HPC simulations.

C. Contributions

Our contributions are:
• We propose a scheme that precomputes the off-the-

grid sparse operators’ effect, allowing to reorder the
computations for FD wave propagators, thus enabling
the application of temporal blocking to stencil codes
consisting of sparse operators such as source injection and
measurement interpolation. Our scheme is cost-efficient,
adding a negligible overhead compared to the measured
gains.

• We implement the algorithm directly on top of the Devito
DSL, harnessing the power of automated code generation,
thus providing a pathway to express any similar operator
in a form that exploits the benefits of time tiling with
only minimal coding effort.

• We evaluate our scheme using 3D stencils encountered
in wave propagation applications (isotropic acoustic,
isotropic elastic, and anisotropic acoustic (TTI)), each
having different memory and compute requirements.

• We achieve performance gains ranging from 15% to 60%
for space order 4 and 8 for isotropic acoustic and elastic
and anisotropic acoustic as well as 5% to 10% gains for
elastic and TTI cases at space order 12.

Our work is mainly motivated by the need to enable
and automate these optimizations for a class of seismic and
medical imaging problems. Characteristic examples of such
applications include full-waveform inversion (FWI) [51] and



reverse time migration (RTM) [52]. As future work, we aim
to deliver these optimizations as a fully automated workflow.

The rest of the paper is organized as follows: Section II
presents the approach followed to solve our problem. Section
III introduces the wave-propagation kernels to be evaluated,
and Section IV presents an experimental evaluation of the
applicability and impact of the approach. Finally, in Section
V, we discuss and summarise our work and briefly refer to
our plans for future work.

II. METHODOLOGY AND IMPLEMENTATION

In this section, we describe our approach that enables
temporal blocking for wave-propagators with sparse operators.
We describe the individual steps and present the details of our
implementation. The whole precomputation workflow benefits
from the power of the Devito DSL [3], [4] to automatically
generate code and the data structures required by our scheme
in its DSL. Afterward, we manually transform the generated
loops to implement wave-front temporal blocking (WTB) [8],
[53], [54], a representative temporal blocking schedule.

A. Source injection precomputation
The source injection modeling consists of the following

parameters: the number of sources, their coordinates, and their
wavelet time-series. This data is enough to precompute their
effect on an empty grid. We assume that the sources’ coor-
dinates are constant across our models’ time-domain though
this may not always be the case. However, Devito’s API
can support the moving sources’ case, and our algorithm is
independent of it.

1) Iterate sources’ coordinates and store indices of affected
points: initially, we iterate over each source and inject to an
empty grid for one timestep, assuming the wavefield is not
zero at the first timestep. If the wavefield is zero at the first
timestep, we may inject for more timesteps. Our experiments
use wavefields with non-zero values at the first timesteps. The
pseudocode is illustrated in 2. We use Devito to automatically
generate code for this step. Our scheme is independent of
the injection and interpolation type (e.g., non-linear injection).
Then, we store the non-zero grid point coordinates.

Listing 2: Source injection over an empty grid. No PDE stencil update
is happening.

1 for t = 1 to 2 do
2 foreach s in sources do
3 for i = 1 to np do
4 xs, ys, zs = map(s, i);
5 u[t, xs, ys, zs] + = f(src(t, s))

2) Generate sparse binary mask and unique IDs: using the
nonzero indices, we populate two arrays. The first array (Fig.
5b) is a binary integer mask of our grid with 1s at indices
where u is nonzero. Ones are shown as filled bullet circles,
with a green background, Fig. 5b. The second one (Fig.5c) has
the same shape and is populated with unique ascending values
for each unique point affected. It is quite common to encounter
points being affected by more than one source. Figures show
an x-y plane (z-slice) of the 3D grid.

X

Y

(a) Sparsely located sources
at off-the-grid positions.

X

Y

(b) Identify unique points af-
fected (SM).

1 2 3

4 5

6 7 ...

npts

X

Y

(c) Assign a unique ID to
each of the npts affected
points (SID).

X

Y

(d) npts sources are now
aligned with grid point co-
ordinates.

Fig. 5: Illustration of the four steps through which source
impact is aligned to the computational grid. The figures show
an x-y plane slice of the 3D grid.

3) Decompose wavefields: knowing the unique positions
affected and their coordinates, we now use Devito’s source
injection mechanism to decompose the off-the-grid positioned
wavefields to grid-aligned point wavefields. Using the SID
structure, we perform an indirection and decomposition of
the sources’ wavefields to per-affected-point wavefields. The
pseudocode for that workflow is presented in Listing 3.
src_dcmp now replaces src in our source injection com-
putations. Instead of having sources at off-the-grid positions
(Fig.5a), we now have decomposed, aligned to the grid point
sources (Fig.5d).

Listing 3: Decomposing the source injection wavefields.

1 for t = 1 to nt do
2 foreach s in sources do
3 for i = 1 to np do
4 xs, ys, zs = map(s, i);
5 src dcmp[t, SID[xs, ys, zs]] + = f(src(t, s);

4) Fuse iteration spaces: using the aligned structure
src_dcmp, we can now fuse the source injection loop inside
the kernel update iteration space. There is no sources loop
as sparse data can be expressed in 3D coordinates. We fuse
the source injection loop at the same loop level as the stencil
update z loop. The source mask SM acts as a binary mask and
is used to add (if 1) or not (if 0) the source impact while SID
is used to access the impact values indirectly as we iterate over

https://github.com/devitocodes/devito
https://github.com/devitocodes/devito


the grid dimensions. The resulting loop structure is illustrated
in the following pseudocode in Listing 4 and also offers SIMD
vectorization opportunities over the z2 loop.

Listing 4: Stencil kernel update with fused source injection.

1 for t = 1 to nt do
2 for x = 1 to nx do
3 for y = 1 to ny do
4 for z = 1 to nz do
5 A(t, x, y, z, s);
6 for z2 = 1 to nz do
7 u[t, x, y, z2] + = SM[x, y, z2] * src dcmp[t, SID[x, y, z2]];

5) Reducing the iteration space size: the 3D structures that
are used to iterate through sources (SM and SID) in the z2
loop are, in the general case, massively sparse. Multiplica-
tions by zero are dominant. Only the necessary iterations in
z dimension need to be performed to alleviate this issue.
We aggregate nonzero occurrences along the z-axis of SM
recording them in a structure named nnz_mask. We reduce
the size of SID cutting off z-slices where all elements are
zero. For naming convention, we use Sp_SID for the new
structure. These structures reduce the iteration space size of
z2 to perform the necessary computation. Pseudocode for the
new structure is illustrated in Listing 5. The opportunity to
reduce the iteration space generally applies to the majority of
problems in seismic. However, we show that benefits are not
limited in cases where the reduction is small (see subsection
IV-E).

Z

Y X

11 11
1 11

85 76
1 32

MASK

ID

(a) SID and SM
are very sparse in
the general case.

22 22

Y X

(b) nnz_mask
Aggregating
non-zero values
along z-axis.

85 76
1 32
Y X

(c) Sp_SID,
a reduced size
SID.

Fig. 6: We aggregate nonzero occurrences along the z-axis,
keeping count of them. The size of SID is reduced by cutting
off z-slices where all elements are zero.

Listing 5: Stencil kernel update with reduced size iteration space for
source injection.

1 for t = 1 to nt do
2 for x = 1 to nx do
3 for y = 1 to ny do
4 for z = 1 to nz do
5 A(t, x, y, z, s);
6 for z2 = 1 to nnz_mask[x][y] do
7 I(t, x, y, z) ≡{ zind = Sp SID[x, y, z2];
8 u[t, x, y, z2] += src dcmp[t, SID[x, y, zind]]; }

Finally, we present a methodology that aligns the source in-
jection impact to the grid points, thus enabling the application
of TB to stencil operators with sparse off-the-grid points.

B. Applying wave-front temporal blocking

We present the loop transformations to apply WTB to the
loop structure in Listing 5. In temporal blocking, we extend
space blocking so that multiple timesteps are evaluated in a
subset of the overall problem domain. In WTB space-time,
wave-fronts traverse our domain computing grid point values.
For naming convention, as used in [15], we are going to use
the term “block” for spatial-only grouping and “tile” when
multiple temporal updates are allowed. Fig. 7 shows grid point
updates as they happen in WTB. The green point is updated
using orange values. This stencil kernel has a radius of size
two. Thus a margin of 2 points is required to preserve data
dependencies. Only two timesteps are kept in memory (for
time order one problems), so the green value substitutes the
yellow one in the buffer. The stencil radius affects the wave-
front angle (the ratio of spatial indices needed to update one
point in the next time step). The angle gets steeper with a
higher stencil radius. WTB can also be applied to staggered
grids. In this case, two or more grids may be updated,
often having inter-dependencies [15]. It is then necessary to
shift the wave-front angle (allow more margin to preserve
dependencies) by an amount, depending on the stencil radius
of data dependencies in each loop as shown in Figure 8b.

t=0

t=1

t=2

t=3

t=4

X

T

Legend
Value already known

Value not yet known 

Known value used as input

Value being computed 

Value replaced in buffer

Highest x-value that may be computed for
t=4 due to the dependencies on t=3 values

Tile ends here for t=0

Only two buffered values for each point are
kept in memory, yellow value (t-1) is being

replaced by green (t+1)

Fig. 7: Illustration of stencil kernel update in WTB. The green
point is updated using the orange values. This stencil kernel
has a space order of 4, thus allowing a margin of 2 points on
the right in order not to violate data dependencies. Only two
timesteps are kept in memory (for time order one problems),
so the green value substitutes the yellow one. Figure partially
adapted from [15].

After precomputing source injection, data dependencies are
now aligned with the computational grid points. Applying
temporal blocking is now feasible. We split the time-space it-
eration space into tiles as shown in Figure 8a. Each tile is then
partitioned into space blocks. By applying the transformations
required from wave-front temporal blocking to Listing 4 we
now have the loop structure 6. This structure is a time-tiled
wave-front scheme over a stencil kernel update with source
injection.

The next section provides details about the evaluated ker-
nels, their data dependencies, and their inherent loop structure.



t=0

t=1

t=2

t=3

t=4

X

T

Tile 3

Tile 2

Tile 1

(a) The figure shows multiple wave-front tiles evaluated se-
quentially, partially adapted from [15].

t_p=0

t_v=0

t_p=1

t_v=1

t_p=2

X

T

Tile 3

Tile 2
Tile 1

(b) The figure shows multiple wave-front tiles evaluated se-
quentially in multigrid stencil codes.

Fig. 8: Wave-front updates for single- and multi-grid stencil
updates.

Listing 6: The figure shows the loop structure after applying our proposed
scheme.

1 for t_tile in time_tiles do
2 for xtile in xtiles do
3 for ytile in ytiles do
4 for t in t_tile do
5 OpenMP parallelism
6 for xblk in xtile do
7 for yblk in ytile do
8 for x in xblk do
9 for y in yblk do

10 SIMD vectorization
11 for z = 1 to nz do
12 A(t, x− time, y − time, z);
13 for z2 = 1 to nnz_mask[x][y] do
14 I(t, x− time, y − time, z2);

III. STRUCTURE OF WAVE-PROPAGATION KERNELS

To illustrate our technique, we selected three represen-
tative kernels implementing explicit FD methods for wave
propagation. The chosen kernels significantly differ in the
operational intensity and working set size [55]. The kernels
are implemented and validated in the Devito framework. The
Devito compiler generates a C implementation for each kernel
given a symbolic specification expressed with the Devito DSL.

A. Isotropic acoustic

The first equation we consider is the most straightforward
and generally known wave-equation in an anisotropic acoustic
medium. This equation is a single scalar PDE with a Jacobi-
like stencil. The acoustic wave equation for the square slow-
ness m, defined as m = 1

c2 , where c is the speed of sound in
the given physical media, and a source q is given by:

m(x)∂2u(t,x)
∂t2 −∆u(t, x) = δ(xs)q(t)

u(0, .) = ∂u(t,x)
∂t (0, .) = 0

d(t, .) = u(t, xr).

(1)

where u(t, x) is the pressure wavefield, xs is the point
source position, q(t) is the source time signature, d(t, .) is
the measured data at positions xr and m(x) is the squared
slowness. This equation writes in few lines with the Devito
symbolic API as follows:

from devito import solve, Eq, Operator

eq = m * u.dt2 − u.laplace
update = Eq(u.forward, solve(eq, u.forward))

src eqns = s.inject(u.forward, expr=s*dt**2/m)
d eqns = d.interpolate(u)

Listing 1: Wave-equation symbolic definition

The discretized acoustic wave-equation is generally
memory-bound due to the low computational count of the
standard Laplacian [55], [56].

B. Anistropic acoustic

The second wave-equation kernel we consider is the most
commonly used in industrial applications for subsurface imag-
ing (RTM, FWI) [57]–[61]. This equation is a pseudo-acoustic
anisotropic equation that consists of a coupled system of
two scalar PDEs. Unlike the most simple acoustic isotropic
equation, this formulation considers direction-dependent prop-
agation speeds that translate into the discretized equation
into a rotated anisotropic laplacian. Such a kernel increases
the operation count drastically [55]. For example, the first
dimension x component of the Laplacian is defined as:

Gx̄x̄ = DT
x̄Dx̄

Dx̄ = cos(θ) cos(φ)
∂

∂x
+ cos(θ) sin(φ)

∂

∂y
− sin(θ)

∂

∂z
.

(2)
where θ is the (spatially dependent) tilt angle (rotation

around z), φ is the (spatially dependent) azimuth angle (ro-
tation around y). A more detailed description of the physics
and discretization can be found in [57], [58].

C. Isotropic elastic

Finally, we consider the isotropic elastic equation. Unlike
the two previous acoustic approximations, this equation has
two significant properties. First, this is a first-order system
in time, which allows us to extend our work to a smaller
range of local data dependency over time. Consequently,
we demonstrate that the benefits of time-blocking and our
implementation of it are not limited to a single pattern along
the time dimension. Second, this equation is a coupled system
of a vectorial and a tensorial PDE, which increases the data
movement drastically (one or two versus nine state param-
eters) on the wavefield and contains non-scalar expressions
of the source and receiver expressions that involve multiple
wavefields.

https://github.com/devitocodes/devito
https://github.com/devitocodes/devito
https://github.com/devitocodes/devito
https://github.com/devitocodes/devito


The isotropic elastic wave-equation, parametrized by the
Lamé parameters λ, µ and the density ρ, is defined as [62]:

1

ρ

∂v

∂t
= ∇.τ

∂τ

∂t
= λtr(∇v)I + µ(∇v + (∇v)T )

(3)

where v is a vector-valued function with one component per
cartesian direction, and the stress τ is a symmetric second-
order tensor-valued function.

In the following section, we consider these three wave-
equations for varying spatial discretization orders to verify and
analyze our temporal blocking method.

IV. EXPERIMENTAL EVALUATION

We outline in subsection IV-A the experimental setup fol-
lowed for performance evaluation. We aim to demonstrate the
performance improvement achieved by our approach, illustrate
its potential for impact on key applications, and probe its
applicability limits.

A. Compiler and system setup

To evaluate our scheme, we used Virtual Machines in
Azure with two architectures: Intel® Xeon® Processor E5
v4 Family (formerly called Broadwell) and Intel® Xeon®
Scalable Processors (formerly called Skylake 8171M). For
our experiments, access was granted on VMs (on Microsoft
Azure) called Standard E16s v3 and Standard E32s v3, run-
ning Ubuntu 18.04.4. The first system, E16s v3, has a single
socket 8-core Intel Broadwell E5-2673 v4 CPUs with AVX2
support. Each Intel Broadwell CPU has three cache levels:
L1 (32KB) and L2 (256KB) caches private to each core
and a 50MB L3 cache shared per socket. The second sys-
tem has single-socket 16-core IntelSkylake Platinum 8171M
CPUs with AVX512 support. Each Intel Skylake CPU has
three cache levels: L1 (32KB) and L2 (1MB) caches private
to each core and a 35.75MB L3 cache shared per socket.
Compilers used were GCC 7.5.0* and ICC 2021.1. We used
OpenMP shared-memory parallelism with dynamic scheduling
and SIMD vectorization. Thread pinning was enabled using
the environment variables OMP PROC BIND (for GCC) and
KMP AFFINITY (for ICC). Experiments were built with De-
vito v.4.2.3. The experimentation framework and instructions
on reproducibility are available in subsection V-A.

B. Test case setup

We evaluate the performance of operators relevant to seis-
mic imaging. We model the propagation of waves for three
different models: isotropic acoustic, anisotropic acoustic
(TTI) and isotropic elastic. The isotropic acoustic and TTI
wave equations are discretized with second order in time
while isotropic elastic with first-order, and we study varying
space orders of 4, 8, 12. For all test cases, we use zero
initial conditions and damping fields with absorbing boundary
layers. Waves are injected using one time-dependent, spatially
localized seismic source wavelet into the subsurface model.
We benchmark velocity models of 5123 grid points, with

a grid spacing of 10 for isotropic and elastic and 20 for
TTI. Wave propagation is modeled in single precision for
512ms, resulting in 228 time-steps for isotropic acoustic,
436 for isotropic elastic, and 587 for anisotropic acoustic.
The time-stepping interval is selected regarding the Courant-
Friedrichs-Lewy (CFL) condition [63], ensuring the explicit
time-stepping scheme’s stability determined by the highest
velocity of the subsurface model and the grid spacing.

C. Autotuning temporally blocked code

It should be noted that the parameter space for temporal
blocking schemes is extensive. We report results obtained from
guidance and experience from the state-of-the-art codes and
literature [64]. Simulation codes are hard to generalize in terms
of performance as multiple configurations may be used from
case to case. An operator’s performance depends upon many
factors, such as grid shape, discretization space order, tile and
block shapes, number of other fields, number of timesteps,
platforms, and others. To tune our C code for the underlying
hardware, we swept over the whole parameter space to find
the global performance maxima. We executed our experiments
using the best-performing tile and block sizes, ensuring a
fair comparison versus Devito ’s aggressively tuned optimized
spatially-blocked and vectorized code. The best performing
tile sizes for temporal blocking are reported in Table I. Figure
9 illustrates the throughput (GPoints/s) speedup achieved for
each evaluated model for space order discretizations of 4, 8,
and 12.

tilex, tiley , blockx, blocky
Problem Broadwell Skylake

Acoustic O(2,4) 32, 32, 8, 8 64, 64, 8, 8
Acoustic O(2,8) 64, 64, 8, 8 64, 64, 8, 8
Acoustic O(2,12) 256, 256, 8, 8 128, 128, 8, 8
Elastic O(1,4) 32, 32, 8, 8 32, 32, 8, 8
Elastic O(1,8) 32, 32, 8, 8 64, 56, 8, 12
Elastic O(1,12) 256, 256, 8, 8 256, 256, 8, 8
TTI O(2,4) 40, 32, 4, 4 48, 48, 8, 8
TTI O(2,8) 32, 32, 8, 8 64, 64, 8, 8
TTI O(2,12) 256, 256, 8, 8 256, 256, 8, 8

TABLE I: Optimal tile-block shapes after tuning WTB

D. Results discussion

Figure 9 illustrates the speedup achieved for each of our
wave propagation models. All of our models show speedup
for space order four discretization on both platforms. Acoustic
benefits the most with around 1.6x and TTI follows with
around 1.44x. Elastic wave propagation is accelerated by 1.3x
on Broadwell and 1.22x on Skylake. Concerning space order
8, a commonly used practice, we observe speedups of 1.13x
or more for acoustic, elastic on Broadwell and acoustic, TTI
on Skylake. No significant performance gains are observed
for space order 12, excluding some gains of around 5% on
Broadwell with isotropic elastic and TTI. Figure 11 shows the
isotropic acoustic kernels’ roofline performance for the Broad-
well microarchitecture. The roofline is a cache-aware roofline

https://github.com/devitocodes/devito
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Fig. 9: Throughput speed-up of temporal blocking kernels versus highly-optimised vectorized spatially-blocked code in Intel
Xeon architectures, Broadwell and Skylake.

model representing cumulative (L1+L2+LLC+DRAM) traffic-
based Arithmetic Intensity for application kernels 1. We show-
case improvement for the acoustic model breaking the ceiling
of the L3 cache.

E. Corner cases

Although our test cases use a single source, it is interesting
to explore how our model performs with the presence of
more off-the-grid operators. Each source is decomposed into
its surrounding grid points, so the overhead increases due to
the number of initial sources and the number of grid points
affected. We evaluate the overhead induced for two cases a) an
increasing number of sparsely located sources: in this case, we
have an increasing number of sources located at an x-y plane
slice of the 3D grid, a scenario which can be of practical
interest and b) an increasing number of sources densely and
uniformly located all over the 3D grid. Figure 10 shows that
for isotropic acoustic wave propagation, the increasing number
of sources is not affecting performance gains except with
really densely located sources where our scheme is not taking
advantage of the structure sparsity. Still, though, we observe
gains of around 1.4x compared to 1.55x previously.

V. CONCLUSIONS

This paper introduced a mechanism to enable temporal
blocking in stencil computations involving sparse off-the-
grid operators as encountered, for example, with sources and
receivers in seismic inversion problems. We applied wave-
front temporal blocking to wave-propagators ranging from
isotropic acoustic to more advanced, such as isotropic elastic
and anisotropic acoustic (TTI). Experimental evaluation of the
improved kernels on Broadwell and Skylake microarchitec-
tures showed compelling evidence of substantial acceleration

1https://software.intel.com/content/www/us/en/develop/articles/integrated-
roofline-model-with-intel-advisor.html
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Fig. 10: Throughput speed-up for an isotropic acoustic oper-
ator for space order 4 over an increasing number of sources,
sparsely and densely located.

of at least 1.5x for low and at least 1.1x for medium space
order wave-propagation kernels.

A. Code availability

An implementation of the methods described in this pa-
per is available in a Devito fork repository under the MIT
open-source license at georgebisbas/devito v0.9-alpha. See the
README.md for instructions on how to reproduce the results
in the paper.

B. Future work

Achieving performance improvement with high-space order
kernels requires further research work. Methods like stencil
retiming [65] have shown promise in alleviating this perfor-
mance bottleneck, and a possible combination with temporal
blocking may be promising. Another possible solution can

https://github.com/devitocodes/devito
https://github.com/georgebisbas/devito/releases/tag/v0.9-alpha
https://github.com/georgebisbas/devito/blob/v0.9-alpha/README.md


Fig. 11: Cache-aware roofline model on Broadwell for
isotropic acoustic model space order 4 (triangles), 8 (circles),
and 12 (squares). Red markers show the performance of
spatially blocked vectorized kernels, while yellow ones show
our temporal blocking scheme’s performance.

be data layout transformations [48]. Near-term plans include
evaluating our scheme on more diverse architectures (e.g.,
ARM) and accelerators (e.g., GPUs). The next step is the
full automation and integration in the Devito DSL [3]. We
aim to deliver automated, scalable optimizations on generated
code beyond our kernels’ current roofline performance limit.
This paper’s evaluation results are mainly motivated by the
seismic imaging domain; however, the target applications are
not limited to this scope.
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