
Accelerating Multigrid-based Hierarchical Scientific
Data Refactoring on GPUs

Jieyang Chen, Lipeng Wan, Xin Liang∗, Ben Whitney, Qing Liu†, David Pugmire, Nicholas Thompson,
Jong Youl Choi, Matthew Wolf, Todd Munson‡, Ian Foster‡§, Scott Klasky

Oak Ridge National Laboratory, Oak Ridge, TN, USA
∗ Missouri University of Science and Technology, Rolla, MO, USA

† New Jersey Institute of Technology, Newark, NJ, USA
‡ Argonne National Laboratory, Lemont, IL, USA
§ University of Chicago, Chicago, IL, USA

{chenj3, wanl, whitneybe, pugmire, thompsonna, choij, wolfmd, klasky}@ornl.gov
xlang@mst.edu qliu@njit.edu {tmunson, foster}@anl.gov

Abstract—Rapid growth in scientific data and a widening
gap between computational speed and I/O bandwidth make it
increasingly infeasible to store and share all data produced by
scientific simulations. Instead, we need methods for reducing
data volumes: ideally, methods that can scale data volumes
adaptively so as to enable negotiation of performance and fidelity
tradeoffs in different situations. Multigrid-based hierarchical
data representations hold promise as a solution to this problem,
allowing for flexible conversion between different fidelities so
that, for example, data can be created at high fidelity and then
transferred or stored at lower fidelity via logically simple and
mathematically sound operations. However, the effective use of
such representations has been hindered until now by the relatively
high costs of creating, accessing, reducing, and otherwise operat-
ing on such representations. We describe here highly optimized
data refactoring kernels for GPU accelerators that enable efficient
creation and manipulation of data in multigrid-based hierarchical
forms. We demonstrate that our optimized design can achieve
up to 250 TB/s aggregated data refactoring throughput—83% of
theoretical peak—on 1024 nodes of the Summit supercomputer.
We showcase our optimized design by applying it to a large-
scale scientific visualization workflow and the MGARD lossy
compression software.

Index Terms—Multigrid, Data refactoring, GPU

I. INTRODUCTION

With the dawn of the big data era, managing the massive
volume of data generated by data-intensive applications be-
comes extremely challenging, particularly for scientific sim-
ulations [1, 2] running on leadership-class high-performance
computing (HPC) systems and experiments running on feder-
ated instruments and sensor platforms. For instance, the XGC
dynamic fusion simulation code [3, 4] from the Department
of Energy (DOE)’s Princeton Plasma Physics Laboratory can
generate 1 PB every 24 hours when running on the DOE’s
fastest supercomputers, and may soon generate 10 PB per day.
The Square Kilometer Array (SKA) [5] plans to generate data
at 1 PB/s within 10–20 years. Few storage systems can keep
up with such data rates. Moreover, even if all data could be
stored, the high costs of processing them with standard multi-
pass analysis routines often lead to significant degradation in
overall scientific productivity [6, 7].

There are no universal solutions to the many technical and
domain-specific challenges of managing the overwhelming

amount of complex and heterogeneous scientific data, and
current approaches are usually passive and based on rules
of thumb. For instance, scientists may decimate in time by
reducing output data frequency by some arbitrary factor (e.g.,
writing one of every 1000 simulation steps). Although such
approaches can effectively reduce the amount of data written
to storage, they increase the risk of missing novel scientific
discoveries, as discarded data may contain important features.
Moreover, the limited capacity of fast storage such as parallel
file systems means that data are eventually moved to slower
storage, such as archival storage systems. For example, on Oak
Ridge National Laboratory (ORNL)’s Summit supercomputer,
data can only be kept on the parallel file system for 90 days
before it is either moved to archival storage systems such as
HPSS [8] or permanently deleted. Once moved to archival
storage, it can take weeks or longer to retrieve for analysis.

In plotting a course to address these data management chal-
lenges, it is important to remember the perspective of the end
user, the domain scientist, for whom a dataset is valued not for
its size in bytes but for the scientific information it contains.
A dataset need not be especially large to capture some feature
of interest, and in fact the most valuable insights often come
from just a small portion of the original data. A domain
scientist seeking to answer a question using a dataset would
ideally be able to retrieve only the smallest subset or reduced
representation of the data necessary to answer the question to
the desired level of accuracy. It is challenging to support this
workflow with existing data compression techniques given the
great variety of analyses a scientist might need to run, since
the data would need to be compressed and stored separately
for each analysis and each level of accuracy required, resulting
in high computational and storage costs.

Data refactoring is the capability of building a data rep-
resentation in a hierarchical form such that a reader can
easily, efficiently, and transparently access data at varying
degrees of fidelity. To enable this capability, new algorithms
such as multigrid-based hierarchical data refactoring [9–11]
have recently been developed by the applied mathematics
community. That data refactoring approach models a dataset
with a series of hierarchically organized coefficient classes,

ar
X

iv
:2

00
7.

04
45

7v
2

 [
cs

.D
C

]
 2

7
Fe

b
20

21

such that an approximation of the original data with a specified
fidelity can be reconstructed by using different numbers of
coefficient classes. We call the process of building coefficient
classes decomposition and the process of reconstructing data
from coefficient classes recomposition.

Hierarchical data refactoring gives both data producers
(e.g., scientific simulations) and consumers (e.g., data analysis
routines) the flexibility to store, transport, and access data
to satisfy space and/or accuracy requirements. For example,
data sharing between two coupled scientific applications [12]
can be optimized by intelligently moving coefficient classes
through multi-tiered-storage systems (e.g., storage systems
containing non-volatile memory, magnetic disks, and tapes)
[13, 14] and/or networks based on available capacity and
bandwidth. In Figure 1, simulation data are refactored into five
coefficient classes and then shared with data analysis routines
via multi-tiered-storage systems and networks. When accuracy
can be estimated based on the number of selected coefficient
classes, users can control the accuracy of the reconstructed
data while storing and reading the data. If user-defined ac-
curacy requirements indicate that information encoded in the
first four coefficient classes are enough for subsequent data
analyses, then the fifth coefficient class can be ignored. Then,
the four coefficient classes can be intelligently shared over
the storage systems and network based on their size, available
bandwidth/capacities, and accuracy requirements from data
analysis routines. In the figure, Data Analysis Routine 1 needs
only two coefficient classes to achieve desired accuracy, while
Routine 2 needs four. The ability to choose a reduced number
of coefficient classes allows users to reduce data movement
costs substantially.

As great as the benefits of reduction in data movement
and management costs may be, if the decomposition and
recomposition routines are too expensive, then the total process
is less useful in production. The use of Graphics Processing
Units (GPUs) for scientific computations that can be adopted
to the streaming execution model has increased significantly
due to the high parallel computational power and memory
throughput of GPUs. As the algorithms involved in multigrid-
based hierarchical data refactoring are highly parallelizable,
using GPUs to accelerate its routines is attractive. Also, we
anticipate that if used with merging GPU communication
technologies [15, 16] (e.g., NVLink, GPUDirect RDMA, etc.),
GPU data refactoring would be greatly beneficial for speeding
up data sharing for both CPU- and GPU-based scientific
applications.

We focus here on accelerating the two major routines,
decomposition and recomposition, in multigrid-based data
refactoring on GPUs and evaluating the benefit for producer
and consumer applications. Although the multigrid-based al-
gorithms are naturally parallelizable, achieving good perfor-
mance requires carefully designed parallel algorithms together
with deep optimizations for GPU architectures. Our specific
contributions, and the sections in which they are described,
are as follows.

In §III, we describe the first multigrid-based data refactoring
routines for modern GPU architectures, and present systematic

TABLE I: NOTATION USED IN ALGORITHMS, FORMULATIONS, FIGURES

Symbol Description
u Function represented by the original data.
Nl Nodes at grid level l.
Cl Coefficients at grid level l.
Vl Function space with respect to Nl.
Ql The L2 projection onto Vl.
Πl The piecewise linear interpolant in space Vl.

a→ b b is calculated using a.

optimizations for multigrid-based data refactoring at three lev-
els: instruction level, kernel level, and program-structure level.
These optimizations can balance both minimizing memory
footprint and improving memory access efficiency.

In §IV, we demonstrate our design by implementing
the state-of-the-art non-uniform multi-dimensional multigrid-
based data refactoring algorithms of Ainsworth et al. [9–11],
and show that our methods perform well on both a consumer-
class desktop and the Summit supercomputer, achieving 145×
and 14× speedups compared with state-of-the-art CPUs and
GPUs, and 250 TB/s throughput on 1024 Summit nodes.

In §V, we use two common scenarios in scientific comput-
ing to showcase our work: 1) reducing data movement costs
between simulations and in situ visualization applications; and
2) speeding up lossy compression for scientific data.

II. BACKGROUND

A. Theory of multigrid-based hierarchical data refactoring

The multigrid-based hierarchical data refactoring developed
by Ainsworth et al. supports nonuniformly-spaced structured
multidimensional data, commonly found in scientific compu-
tations, by using hierarchical representations to approximate
data. Specifically, they decompose data from fine grid repre-
sentation to coarse grid representation in an iterative fashion,
with a global correction to account for the impact of missing
grid nodes in each iteration. If we use functions to represent
the discrete values continuously, the decomposition from fine
grid level l to coarser grid level l− 1 can be formulated with
the notation in Table I as follows,

Ql−1u︸ ︷︷ ︸
Projection
ontoVl−1

= Qlu︸︷︷︸
Projection

ontoVl

− (I −Πl−1)Qlu︸ ︷︷ ︸
Coefficients

+ (Ql−1u−Πl−1Qlu)︸ ︷︷ ︸
Corrections

(1)
where the piecewise linear function u takes the same values
as the original data for each node; Ql−1u and Qlu are the
function approximations of u at levels l−1 and l, respectively;
(I − Πl−1)Qlu is the difference between the values of the
fine grid nodes at level l and their corresponding piecewise
linear approximations; and (Ql−1u− Πl−1Qlu) is the global
correction. According to Eq. (1), two major steps are involved
at each level of the multigrid decomposition: 1) compute
coefficients for the current multigrid level l; and 2) compute
the global correction and add it to the nodes in the next coarse
grid (level l−1). In what follows, we introduce how to compute
coefficients and corrections.

1) Compute coefficients: The coefficients store the differ-
ence between the data approximated by nodes at levels l (i.e.,
Nl) and l− 1 (i.e., Nl−1) before corrections are added. Since
Nl−1 is contained in Nl, its nodes have the same values in

u

u1

Multi-tiered-storage Systems

Networks

Original Data

Approximated Data

Refactored
Hierarchical Data

Decomposition
Algorithms

Recomposition
Algorithms

Scientific
Simulations

Data Analytics
Routine 1

Computing Resources for Scientific Simulations

Computing Resources for Data Analytics Tools

User-defined
storing accuracy

User-defined
reading accuracy

Hint

Recomposition
Algorithms u2

Approximated Data

Data Analytics
Routine 2

Optimized Data Sharing

Fig. 1: Example of hierarchical data refactoring helping optimize data movement in scientific workflows by intelligently moving each coefficient class across
networks and/or multi-tiered-storage systems, based on available capacity and bandwidth.

(a) Decomposition at l = 2 (b) Decomposition at l = 1

Fig. 2: Example of decomposing a 1D dataset produced from discretizing a
quadratic function: y = x2 − 5x + 6

both levels; thus the nonzero differences only occur on nodes
in Nl \Nl−1. Figure 2 shows how coefficients are calculated
along one dimension through linear interpolation. It can be
generalized to multi-dimensional cases easily by using multi-
linear interpolations for approximation.

2) Compute correction: Ainsworth et al. prove that the
correction is the orthogonal projection of the calculated coeffi-
cients at grid level l onto Vl−1 [9]; thus, adding the correction
to the next coarse grid better approximates data in the current
grid. To explain, we first define zl−1 as the correction for grid
at level l − 1. From Eq. (1), we have that:

zl−1 − (I −Πl−1)Qlu︸ ︷︷ ︸
Coefficients

= −(Ql −Ql−1)u ∈ V ⊥l−1 (2)

If we apply L2 projection at grid level l− 1 (i.e., Ql−1) to
both sides of Eq. 2, it leads to a zero function since it belongs
to V ⊥l−1. Also, since zl−1 is in Vl−1, Ql−1zl−1 = zl−1. So, we
can see that zl−1 is the orthogonal projection of the coefficients
onto Vl−1. Namely, Ql−1(I −Πl−1)Qlu = zl−1.

The correction can thus be computed by solving a varia-
tional problem: find zl−1 ∈ Vl−1 such that (zl−1, vl−1) =
((I − Πl−1)Qlu, vl−1) for all vl−1 ∈ Vl−1. Then, zl−1 can
be found by solving linear systems Ml−1zl−1 = fl−1 where
Ml−1 is a tensor product of the mass matrices [17] of each
dimension, i.e., Ml−1 = M1

l−1⊗M2
l−1 · · ·⊗Md

l−1, where d is
the number of dimensions and fl−1 is the load vector, which
can be calculated using: fl−1 = RlMlvec(Cl), where Rl is
a transfer matrix that coverts basis functions from Vl to Vl−1
and Cl is the coefficient matrix at level l, which consists of
computed coefficients at Nl \Nl−1 and zeros at Nl−1.

Overall decomposition/recomposition process: Figure 3 il-
lustrates this process on a 5×5 2D dataset. The original data
is on the left, and the refactored representation is on the right.
The decomposition process moves from left to right (i.e., from
finest to coarsest grid) and involves four steps: computing co-
efficient and computing correction (II.A.1 and II.A.2) for each
of the two levels. For multi-dimensional data, the computation
of correction is done by working on each dimension in a
prescribed order [18]; in this 2D example, it proceeds first
along the rows and then along the columns. Recomposition
moves from right to the left: i.e., from coarsest to finest grid.
There are again four total stages, but these occur in the reverse
order. The approximation of the original data is produced
after recomposition. Based on how coefficients are omitted
in recomposition, an error bound on data approximation can
be computed [10].

B. Existing GPU-based data refactoring

The state-of-the-art MGARD [19] GPU-based data refac-
toring system redesigns original serial algorithms to expose
high parallelism to suit the many-core architecture of modern
GPUs. It achieves O(n3) thread concurrency for computing
coefficients and O(n2) thread concurrency for computing cor-
rections, and applies node reordering such that each kernel can
take advantage of coalesced memory accesses. Theoretically,
with large inputs, these levels of thread concurrency are more
than enough to fully occupy GPU cores that can help achieve
high data refactoring throughput. However, performance eval-
uation shows that it still suffers from underutilized memory
throughput, achieving less than 10% of theoretical peak.

III. DESIGNING GPU-ACCELERATED DATA REFACTORING

We next discuss the design of our GPU-accelerated
multigrid-based hierarchical data refactoring method. We first
focus on the optimizations for each computing kernel involved
in data refactoring. We classify the computing patterns into
three categories and propose three general kernel designs
for GPUs. Following the efficient kernel designs, we discuss
optimizations to help each of the kernels efficiently work
together so that their performance can be maximized. Finally,
we discuss design details about how to use heuristic auto
tuning to maximize the refactoring throughput.

Original
data

Compute and add
corrections (l=1)

Coefficient
Compute

coefficients (l=1)
Compute

coefficients (l=2)
Compute and add
corrections (l=2)

Node on the next coarser grid used to approximate original data

Hierarchically
decomposed data

Compute and subtract
corrections (l=2)

Restore from
coefficients (l=2)

Compute and subtract
corrections (l=1)

Restore from
coefficients (l=1)

Done
decomposition

Done
recomposition

Reorder and store
hierarchically

Selectively load based
on desired accuracy

u

Approximated
data with
error: e

u’

Computable error bound: e = f (discarded coefficients)

Fig. 3: Multigrid-based data refactoring: Decomposition (left to right); recomposition (right to left).

A. Designing optimized GPU multigrid kernels

Decomposition and recomposition each involve three major
steps: 1) computing coefficients; 2) mass-transfer matrix multi-
plication; and 3) correction solver. Based on their computation
pattern, we can classify them into three categories: grid pro-
cessing style; linear processing style; and iterative processing
style. We design kernels dedicated for each processing style.

1) Grid processing kernel (GPK): Grid processing style has
the characteristic of processing data in a grid-wise fashion.
Namely, it processes nodes within the domain of a grid in
a certain resolution level (e.g., Nl) or between neighbor-
ing levels (e.g., Nl and Nl−1). In the multigrid-based data
refactoring, the calculation of coefficients follows the grid
processing style. The major calculation is to compute the
interpolation at nodes in Nl\Nl−1 using nodal values in Nl−1.
Parallelization can favor either interpolation operations (i.e.,
parallelism ∝ O(Nl \ Nl−1)) or accessing nodal values (i.e.,
parallelism ∝ O(Nl)). The former can lead to a less thread
divergence, while the latter can achieve a higher memory
access efficiency. The computation of coefficients is a memory
bound operation, as its time complexity is O(n). Therefore, it
is essential to optimize in favor of memory access efficiency
instead of computation. This is also chosen in the state-of-the-
art GPU data refactoring [19].

The key strategy they used to optimize for memory access is
to use shared memory to cache a block of data for processing,
of which the nodes values are loaded/stored in a coalesced-
friendly fashion. However, we identify that keeping efficient
data movement on memory bound computations is not enough
to achieve good performance. The level of thread divergence
in a computation can still make a great impact on the overall
performance and sometimes it can wrongly convert compu-
tation from memory bound to compute bound. The reason
is threefold: 1) high degrees of thread divergence can great
increase the total cycle cost in computation; 2) variable floating
point operation counts caused by different interpolation types
further brings workload imbalance which leads to longer idling
cycles; 3) as shown in Figure 4, some thread blocks also need
to calculate coefficients in the ghost region, which exacerbate
the effect of thread divergence.

However, we found that keeping efficient memory access
patterns is not exclusive with having low thread divergence.
In designing our GPK, we propose to decouple memory access
and computation on nodal values in terms of thread-node
assignment through a thread reassignment strategy. Specifi-
cally, we use two different thread-node assignments for load-

0Thread block: 1 2 3

Thread block 0 need
to load nodes in its

ghost region but
does not need to

compute coefficients
in the ghost region

Thread block 3 need
to load nodes in its
ghost region and

also need to
compute

coefficients in the
ghost region

Fig. 4: The workload of computing coefficients is distributed among 4 thread
blocks. Calculating coefficients in the corresponding ghost regions is needed
for some thread blocks (e.g., thread blocks 1, 2, and 3).

Interpolation Types

Th
re

ad
 R

ea
ss

ig
nm

en
t

Th
re

ad
 R

ea
ss

ig
nm

en
t

Load
Load
Load
Load
Load
Load
Load
Load

Store
Store
Store
Store
Store
Store
Store
Store

X
Y
Z

XY
XZ
YZ

XYZ

X-ghost
Y-ghost
Z-ghost

XY-ghost
XZ-ghost
YZ-ghost

XYZ-ghost

Load
Load
Load
Load
Load
Load
Load
Load

Store
Store
Store
Store
Store
Store
Store
Store

Linear:

Bilinear:

Trilinear:

0-1:
2-3:
4-5:
6-7:
8-9:

10-11:
12-13:
14-15:

0-1:
2-3:
4-5:
6-7:
8-9:

10-11:
12-13:
14-15:

W
ar

p
ID

W
ar

p
ID

(a) Existing approach

(b) Our approach

Fig. 5: Conceptual flow of a thread block with 8× 8× 8 threads (16 warps)
calculating coefficients using the existing and our grid processing kernel
GPK. The thread reassignment strategy allows GPK to greatly reduce thread
divergence.

ing/storing nodal values and computing interpolations such
that we maintain efficient coalesced memory access pattern
while having one warp process the same type of interpolations
along the same dimension.

Figure 5 shows the conceptual execution flow of one thread
block using the existing approach and our proposed GPK when
computing coefficients. As nodes in Nl need to be shared with
neighbors during interpolation operations, we let each thread
block coordinate work on a block of data and use shared
memory as a scratch space. We organize threads such that
threads in the same warp load values that are consecutive
in memory to achieve efficient coalesced memory access
patterns. For computing, we apply a thread re-assignment
strategy to achieve divergence-free execution. Algorithm 1
shows how we calculate the thread-interpolation operation
assignments that minimize thread divergence. It is easy to see
that the reassignment processing brings negligible computing
overhead.

Algorithm 1: Thread re-assignment strategy
1 Function InterpolationType():
2 Bx, By, Bz ← Thread block size
3 x, y, z ← Thread local indexes within thread block
4 lane id, warp id← x, y, z
5 T ← 8 //total num. of warp group (4 for 2D)
6 group id← warp id/(Bx ×By ×Bz)/T
7 switch(group id)
8 case 0: Linear-x(main) and Bilinear-xy(ghost)
9 case 1: Linear-y(main) and Bilinear-xz(ghost)

10 case 2: Linear-z(main) and Bilinear-yz(ghost)
11 case 3: Bilinear-xy(main) and Linear-x(ghost)
12 case 4: Bilinear-xx(main) and Linear-y(ghost)
13 case 5: Bilinear-yz(main) and Linear-z(ghost)
14 case 6: Trilinear-xyz(main)
15 case 7: Trilinear-xyz(ghost)
16 return

2) Linear processing kernel (LPK): The linear processing
style computes stencil operations on elements in vectors along
one dimension in a grid. In multigrid-based data refactoring,
when multiplying the mass and transfer matrices with com-
puted coefficients, the computations become stencil operations,
as the matrices are defined as:

Mij =

2(hi + hi+1) if i = j
hi if |i− j| = 1
0 else

Rij =

1 if i = j/2

rj−1 if i = (j − 1)/2
1− rj if i = (j + 1)/2

0 else

where hi is the spacing between the ith node and the i + 1th

node and ri = hi/(hi + hi+1). As shown in Figure 6(a),
each value of each node needs to be computed using the
original values of its neighbors, which means it cannot update
its stored value unless all neighbors have finishing using
its original value for computation. Such data dependencies
present a dilemma for kernel design: common out-of-place
designs (i.e., element-wise parallelism) bring high parallelism
but also high memory footprint; on the other hand, in-place
design (i.e., vector-wise parallelism), used in [19], sacrifices
the opportunity to exploit intrinsic parallelism.

To eliminate this dilemma, we design a novel linear process-
ing kernel (LPK) with four optimizations. First, we change
the original computation from in-place to out-of-place to
achieve finer-grain parallelism. Second, we merge the mass
and transfer matrices to reduce computational costs. We call
the new matrix mass-trans, which is defined as:

Kij =

(2 + rj−2)hj−1 + (1 + rj) if i = j/2
(2rj−2 + 1)hj−1 + 2rj−2hj−2 if i = (j − 1)/2
(3− 2rj)hj+1 + 2rj+1hj+1 if i = (j + 1)/2

rj−2hj−2 if i = (j − 2)/2
(1− rj)hj+1 if i = (j + 2)/2

0 else

Third, we use shared memory to cache a tile of nodes to
allow sharing of coefficients (input) between different threads,
so as to reduce total accesses to global memory. Finally,
to reduce extra memory footprint we use a kernel fusion

technique to fuse the operation of copying coefficients with
the multiplication of the mass-trans matrix with coefficients
along the first dimension. By eliminating the need to store a
copy of the computed coefficient in the workspace, we avoid
a large increase in the overall memory footprint.

*

c0,0
c1,0
c2,0
c3,0…

cn-4,0
cn-3,0
cn-2,0
cn-1,0

…
…
…
…

…
…
…
…

…

c0,1
c1,1
c2,1
c3,1…

cn-4,1
cn-3,1
cn-2,1
cn-1,1

c0,n-1
c1,n-1
c2,n-1
c3,n-1…

cn-4,n-1
cn-3,n-1
cn-2,n-1
cn-1,n-1

c'0,0
c'1,0
c'2,0
c'3,0…

c'n-4,0
c'n-3,0
c'n-2,0
c'n-1,0

…
…
…
…

…
…
…
…

…

c'0,1
c'1,1
c'2,1
c'3,1…
c'n-4,1
c'n-3,1
c'n-2,1
c'n-1,1

c'0,n-1
c'1,n-1
c'2,n-1
c'3,n-1…
c'n-4,n-1
c'n-3,n-1
c'n-2,n-1
c'n-1,n-1

*

Load Vector

T0 T1 Tn-1

Coarse-grain
parallelism

c0,n-1
c1,n-1
c2,n-1
c3,n-1

In-place compute impose
serial execution order

…M

R

c4,n-1

c0,n-1
c1,n-1
c2,n-1
c3,n-1

…c4,n-1

*

c0,0
c1,0
c2,0
c3,0…

cn-4,0
cn-3,0
cn-2,0
cn-1,0

…
…
…
…

…
…
…
…

…

c0,1
c1,1
c2,1
c3,1…

cn-4,1
cn-3,1
cn-2,1
cn-1,1

c0,n-1
c1,n-1
c2,n-1
c3,n-1…

cn-4,n-1
cn-3,n-1
cn-2,n-1
cn-1,n-1

Load Vector

T0

T1

T2

Fine-grain
parallelism

c0,n-1
c1,n-1
c2,n-1
c3,n-1

Out-of-place computing
enbales higher parallelism

…

K

c4,n-1

c0,n-1

c2,n-1

c4,n-1

(a) Existing approach (b) Our approach

}

}
Fig. 6: The conceptual workflow of mass and transfer multiplication using ex-
isting approach and proposed approach. Through optimizations, our approach
achieves finer grain parallelism.

3) Iterative processing kernel (IPK): The iterative process-
ing style has the characteristic of processing nodes in a grid
that contains strong data dependencies such that nodes have to
be processed iteratively in a certain order. In multigrid-based
data refactoring, the correction solver needs to solve for the
corrections. We use the Thomas algorithm [20], which needs
a forward and a backward pass on the load vector. Since the
load vectors along one dimension can be solved independently,
they can be solved in parallel. This level of parallelization is
well exploited in [19]. Specifically, they assign each thread to
handle the solving process of one load vector independently.
Although this brings high thread concurrency with divergence
free execution, it actually suffers from inefficient memory
accesses for two reasons: first when solving vectors on leading
dimension full coalesced memory access cannot be achieved
(actual achieve efficiencies are about only 12% and 25% for
single and double precision data); second, compared with GPK
and LPK, IPK only has O(n2) degrees of thread concurrency,
which may bring less on-the-fly memory accesses to fully
utilize the memory bandwidth.

To address this issue, we proposed a novel processing
kernel, IPK, that can guarantee efficient coalesced memory
access patterns with high concurrent memory accesses. We
first parallelize the vectors by assigning a batch to a thread
block. Since the update of each node depends on its neigh-
boring elements, we use shared memory as scratch space
to avoid polluting the un-processed nodes. Specifically, we
let each thread block iteratively work on a segment of load
vectors at a time until the whole vector is updated. Thus,
as shown in Figure 7, during the computation we divide the
elements in the vectors into six regions: 1) the processed region
stores updated elements (gray); 2) the main region consists of
elements that the current iteration is working on (green); 3)

and 4) due to dependence on the neighboring elements, the
original values of elements in the two ghost regions (red and
cyan) are needed to update the elements in the main region;
5) for better streaming processor utilization, we pre-fetch data
needed for the next iteration (purple); and 6) we mark the
unprocessed region as in block. The regions move forward
as the computation proceeds. One challenge in designing the
algorithm is to simultaneously consider maximizing coalesced
global memory access patterns, minimizing bank conflict in
accessing shared memory, and minimizing thread divergence.
We use a dynamic data-thread assignment strategy [21–25] to
optimize both the accessing and computation of coefficients.

f8,0
f9,0
f10,0
f11,0

…

fn-4,0
fn-3,0
fn-2,0
fn-1,0

…
…
…
…

…
…
…
…

…

f8,1
f9,1
f10,1
f11,1

…

fn-4,1
fn-3,1
fn-2,1
fn-1,1

f8,n-1
f9,n-1
f10,n-1
f11,n-1

…

fn-4,n-1
fn-3,n-1
fn-2,n-1
fn-1,n-1

M Z* =

Solve for
Correction

f4,0
f5,0
f6,0
f7,0

…
…
…
…

f4,1
f5,1
f6,1
f7,1

f4,n-1
f5,n-1
f6,n-1
f7,n-1

f0,0
f1,0
f2,0
f3,0

…
…
…
…

f0,1
f1,1
f2,1
f3,1

f0,n-1
f1,n-1
f2,n-1
f3,n-1

f12,0
f13,0

…
…

f12,1
f13,1

f12,n-1
f13,n-1

T0 T1 Tn-1

Threads

Processed Region

Prev. Ghost Region (Register)

Main Region (Shared Mem.)

Next Ghost Region (Shared Mem.)

Pre-fetch Region (Register)

Unprocessed Region

Fig. 7: Correction solver designed following iterative processing kernel (IPK).
The node vectors are partitioned into six regions during processing. The use
of shared memory ensures efficient coalesced memory accesses regardless
of which dimension it is processing. Data prefetching further increases
concurrency on memory accesses.

B. Overall algorithms
Figure 8 shows how we use our optimized kernels to build

data refactoring routines for multi-dimensional data on GPUs.
For each level, the computed coefficients are also used for cor-
rection calculations. This process involves altering the values
of coefficients. So, to preserve the values of previously com-
puted coefficients, the correction is computed in a workspace.
In the state-of-the-art design [19], the computed coefficients
are first copied to the workspace before they are used for
computing corrections, which limit the design’s capability to
do out-of-place computing unless using extra memory space.
Our optimization merges the copy of coefficients, with the first
mass-trans matrix multiplication, so that it enables out-of-place
computation. We further extend out-of-place mass-trans matrix
multiplication for processing other dimensios, which improves
parallelism with a slight increase in memory footprint for the
workspace. In the state-of-the-art design, the workspace is of
size m×n×k and in our design its size is (m+1)×(n+1)×k,
where m, n, and k are the three dimensions of the input data.
The recomposition process is the opposite so we omit showing
its process due to the page limit.

C. Heuristic Performance Auto Tuning
When launching each proposed kernel, choosing the execu-

tion parameters is important for achieving good performance,

Input/output space workspace

Compute
Coefficient
(In-place)

Row-wise
Mass-Trans
Matrix Multi.

(Out-of-place)

Column-wise
Mass-Trans
Matrix Multi.

(Out-of-place)

Apply correction

…

Coefficient Node on the next coarser grid
Row Correction Overall Correction

Row-wise
Solving

Correction
(In-place)

Colume-wise
Solving

Correction
(In-place)

Fig. 8: Overall decomposition process with optimizations.

since even with the optimized design the parameters can still
greatly impact the efficiency of memory accesses, warp diver-
gence, context switch overhead, etc. Auto tuning is an effective
approach for searching the optimum configurations. However,
brute force search can be expensive and thus impractical.
Thus, we propose to use a heuristic auto tuning approach
guided by theoretical performance models for our GPU data
refactoring. We first build performance models for the three
kernels we proposed. Among all tunable execution parameters,
we find that the size of the thread block (Bx, By, Bz) plays
an important role in determining each kernel’s performance.
Since we eliminate the majority of the thread divergence and
inefficient computations, we assume the memory load/store
takes the majority time, so we only consider the total amount
of memory transactions with their efficiency. The estimated
execution time of each kernel can be modeled as:

TGPK =dBx + 1/(S/L)e · (S/L) · (By + 1) · (Bz + 1) ·
bN/Bxc · bN/Byc · bN/Bzc · 2L ·
(1/Peak Mem. Band.)

TLPK = (dBx/(S/L)e · S/L + 2S/L) ·By ·Bz ·
bN/Bxc · bN/Byc · bN/Bzc · 2L ·
(1/Peak Mem. Band.)

TIPK = (dG/(S/L)e · S/L + dBx/(S/L)e · S/L · dN/Bxe) ·
By ·Bz · bN/Byc · bN/Bzc · 2L ·
(1/Peak Mem. Band.)

TABLE II: RANKING OF ESTIMATED PERFORMANCE OF SEVEN TYPICAL
THREAD BLOCK SIZE CONFIGURATIONS; ACTUAL BEST IN RED.

Bz By Bx GPK LPK IPK
2 2 2 7 7 7
4 4 4 6 6 1
4 4 8 4 5 2
4 4 16 2 4 3
4 4 32 1 3 4
2 2 64 5 2 5
2 2 128 3 1 6

where S is the number of bytes per memory transaction, (32 in
our test GPU); L is bytes per float (4 for single, 8 for double);
and G is the dimension of the next ghost region, set to S/L so
that ghost data can fit into exactly one memory transaction and
do not consume too much shared memory. Table II shows the
ranking of estimated performance using seven typical thread
block size configurations. Numbers in red represent the actual
best configuration as determined by profiling. We can see our
performance model can help up predict relationship between
different configuration in terms of performance with relative
high accuracy. It helps us narrow down the searching space
for auto tuning. For instance, in our following evaluation, we
only let the auto tuning search and pick among the estimated
top three configurations to save time.

IV. EXPERIMENTAL EVALUATION

We evaluate our work on two GPU-enabled platforms. Each
node of the Summit supercomputer at ORNL is equipped with
6 NVIDIA Volta GV100 GPUs with 16 GB memory on each
GPU and two 22-core (of which 21 cores/socket are accessible
for computation) IBM POWER9 CPUs with 512 GB memory.
Turing is a GPU-accelerated desktop with an NVIDIA RTX
2080 Ti GPU with 11 GB of memory and one 8-core Intel
i7-9700K CPU with 32 GB of memory.

A. Evaluation methodology

We use datasets from a Gray–Scott reaction–diffusion simu-
lation [26, 27]. Each node in the input grid data is represented
as single or double precision floating point values. Note that
our data refactoring algorithms have deterministic computation
time complexity regardless of the values in the chosen dataset,
so it will yield the same performance for any dataset with
the same dimensions and size. For simplicity, we let each
dimension have the same size in our experiments.

We evaluate five different data refactoring implementations.
• SOTA-GPU: We use the state-of-the-art GPU data refac-

toring in the MGARD lossy compression software [19]
as our GPU baseline. Its design includes two perfor-
mance tuning parameters: thread block size and number
of CUDA streams. In our evaluation, we use the best
performance achieved by hand tuning those parameters.

• SOTA-CPU: We use the state-of-the-art CPU data refac-
toring implemented in the MGARD lossy compression
software [19], parallelized with MPI for a fair compari-
son, as our CPU baseline.

• OPT: Our GPU data refactoring, which uses our novel
grid/linear/iterative processing kernels (i.e., GPK, LPK,
and IPK) but not auto tuning.

• OPT+AT: OPT plus auto tuning.

B. Evaluation on kernels

We first show the performance improvement we achieve
from accelerating the three major operations in data refactoring
on GPUs. Figure 9 shows speedups achieved on the three
operations on the two GPU platforms with both single and
double precision inputs. The input size is 513×513×513. For
single precision input, with the thread-level load-compute de-
coupled design, coefficient calculation with GPK outperforms
the existing design by 4.9× and 6.9× on Summit and Turing
GPUs, respectively. For mass-transfer matrix multiplication,
with higher thread concurrency and data dependency free
calculation, LPK achieves 6.3× and 4.1× speedups on Summit
and Turing GPUs, respectively. For correction solver, IPK
triples the performance on Summit and doubles the perfor-
mance on Turing with the same level of thread concurrency as
the state-of-the-art design, thanks to the more efficient memory
access patterns. Also, leveraging our heuristic auto tuning
capability, the optimum configurations can be selected au-
tomatically, yielding additional 1.2–4.9× speedups compared
with choosing one configuration for all kernels and input sizes.

C. Evaluation on data refactoring on a single GPU

Figure 10 shows the end-to-end data refactoring throughput
achieved on a single GPU with different input sizes. (As de-
composition and recomposition are symmetric processes, they
have identical performance.) To see how close the achieved
data refactoring throughput is to the theoretical peak through-
put, we estimate the theoretical peak by dividing the achievable
single pass throughput with the accumulated number of passes
on the entire input data over the data refactoring process. (The
achievable single pass throughput is the maximum throughput
achievable when data are read and stored on GPU memory
once. We measured it through a specially designed benchmark
kernel that simultaneously reads and writes the same amount
of data from and to the GPU memory without computation.)

The accumulated number of passes is calculated by sum-
ming the number of passes for all decomposition levels: passes
per level × 1

1− 1
8

. passes per level = 1(coefficient calculation)
+ 1(copy to workspace) + 5.25(correction calculation) +
0.125(apply correction).

The theoretical peaks for Summit and Turing GPUs are 49.8
GB/s and 32.0 GB/s, respectively, for both single and dou-
ble precision data. The state-of-the-art GPU data refactoring
methods that we use as our baseline achieve only up to 10.4%
of the theoretical peak throughput; our optimized GPU data
refactoring achieves up to 83.8% of theoretical peak.

D. Evaluation on multi-node performance at scale

To show the potential of GPU-accelerated data refactoring in
large-scale scientific applications, we conduct a weak scaling
test on Summit. Here we parallelize the workload by assigning
each GPU or CPU core an equal-sized data partition and
perform decomposition and recomposition independently. Due
to the nature of multigrid-based data refactoring, parallelizing
the workload in this way brings near linear speedups with
negligible impact on decomposition and recomposition results.
We assign each GPU or CPU core to one MPI process and

(a) Coefficient calculation (b) Mass-transfer matrix multiplication (c) Correction solver

Fig. 9: Speedups achieved through using our proposed processing kernels compared with the state-of-the-art GPU designs. 32 and 64 represent single and
double precision input.

(a) Volta (32-bit) (b) Volta (64-bit)

(c) Turing (32-bit) (d) Turing (64-bit)

Fig. 10: Data refactoring throughput on a single GPU

perform data refactoring on 1 GB of simulation data. For
each computing node, we use the total available number of
GPUs and CPU cores. We scale the number of nodes up to
1024 in our tests on Summit. As shown in Figure 11, our
optimized GPU data refactoring method achieves much greater
throughput than state-of-the-art GPU and CPU designs. For
example, we need only four computing nodes to achieve 1
TB/s data throughput, whereas state-of-the-art GPU and CPU
designs require 64 and 512 nodes, respectively. With 1024
nodes (i.e., 6144 Volta GPUs), we achieve up to 250.26 TB/s
aggregated data refactoring throughput.

V. SHOWCASE

Data refactoring algorithms were designed to offer much
greater flexibility when managing large scientific data than
the traditional methods. With well-designed data management,
data can be shared between scientific applications more intelli-
gently with a large reduction in I/O costs. However, inefficient
data refactoring routines can diminish the benefits brought by
data refactoring itself. Here we use two examples to show the
benefits of GPU-based data refactoring over the CPU designs.

Fig. 11: Aggregated data refactoring throughput at scale on Summit. 6 GPUs
or 42 CPU cores are used per computing node, with each GPU or CPU core
handling 1 GB in double precision.

A. Visualization workflow

First we show how our GPU optimizations can make data
refactoring effective when used for I/O cost reduction in scien-
tific workflows that rely on file-based data sharing. Figure 12
shows the cost of writing and reading a 4 TB simulation data
file using 4096 and 512 processes using the state-of-the-art
ADIOS I/O library [28] on Summit with GPU-accelerated data
refactoring enabled. By writing or reading fewer coefficient
classes, we can see immediate cost reduction in file write and
read. When our efficient GPU-accelerated data refactoring is

(a) Write simulation data (b) Read simulation data and visualize

Fig. 12: Showcase 1: Data refactoring in scientific visualization workflow

(a) Compression (b) Decompression

Fig. 13: Showcase 2: MGARD lossy compression using CPU (left bars) vs. GPU (right bars)

used, we can see this reduction in the cost of file write and read
can be effectively translated into a reduction in the total I/O
cost. Although multigrid-based data refactoring allows us to
encode the most important information in the data with a few
coefficient classes, it would not reduce the total I/O cost unless
those coefficient classes can be efficiently computed or used
for data recovery. For example, in our experiments we achieve
∼95% accuracy for a chosen feature in the visualization result
(i.e., the total area of the iso-surfaces [29, 30]) with only three
out of ten coefficient classes. This can be effectively translated
into ∼66% I/O cost reduction.

B. Lossy compression

Multigrid-based hierarchical data refactoring can also be
used as a preconditioner in scientific lossy compression soft-
ware. As one of the key components in lossy compression
workflows, it is important to have efficient data refactor-
ing in order to make fast lossy compression possible. We
showcase how our GPU-accelerated data refactoring can help
improve the performance of lossy compression workflows in
the MGARD lossy compression software. MGARD is a CPU-
based lossy compressor with three components in its workflow:
multigrid-based data refactoring, quantization, and entropy
encoding. Figure 13 shows the time breakdown of the each
component in MGARD [19] when data refactoring remains
on the CPU (left bars) or is off-loaded to the GPU (right
bars). In our test, besides the data refactoring process, we also
off-load the quantization and de-quantization processes to the
GPUs, since it can help reduce the GPU-CPU data transfer
cost. The entropy encoding stage (ZLib lossless compression)
is kept on the CPU. We can see that our GPU-accelerated data

refactoring can greatly reduce the overall execution time of the
lossy compression workflows.

VI. RELATED WORK

Multigrid-based data refactoring shares some similarities
with multigrid solvers, such as the use of multiple interlocking
grids. But while multigrid solvers aim to accelerate the solv-
ing of linear systems, multigrid-based data refactoring aims
to reconstruct scientific data progressively with hierarchical
representations. This difference in focus leads to fundamental
differences in both algorithms and optimization that prevent
direct translation of GPU optimizations.

From an algorithmic perspective, although data refactor-
ing and multigrid solvers have some operations in common,
data refactoring composes these operations in a unique way.
Further, the correction used in data refactoring is designed
specifically for the orthogonal projection, while the correction
in multigrid solvers is used to generate the fine grid solution.
From a GPU optimization perspective: optimizations for data
refactoring need to consider handling large-volume scientific
data, which means we need to consider not only limited GPU
memory but also cases where refactoring process might share
resources with original scientific computations on GPUs. So,
it is essential to optimize for low memory footprint as well
as performance. Although part of the kernels used in data
refactoring share similar computation patterns to those found
in multigrid solvers, it is challenging to leverage existing work
directly to achieve good parallelism and memory footprint
balance in data refactoring. For example, state-of-the-art GPU
refactoring [19] uses a parallelization technique proposed by
Basu et al. [31], which only use coarse grain vector-wise
parallelism, which can cause lower performance for data

refactoring. Although fine-grain parallelism has been achieved
in previous works [32–36], it generally brings high memory
footprint and it would require considerable effort to apply the
optimizations to different algorithms.

VII. CONCLUSION

We have presented optimized data refactoring kernels that
allow for use of GPUs to accelerate multigrid-based hierar-
chical refactoring for scientific data. We evaluated our designs
on two platforms, including the leadership-class Summit su-
percomputer at ORNL, and showed that our GPU version can
speed up data refactoring by up to 145× and 14× compared
with state-of-the-art CPU and GPU designs, respectively, and
can achieve 250 TB/s throughput using 1024 nodes on Summit
We also showcased our work using a large-scale scientific
visualization workflow and the MGARD lossy compression
technique. Together, these results demonstrate that scientists
have another opportunity for dealing with their high data
throughput requirements. Inline refactoring of scientific data
can offer performance improvements and temporal fidelity that
can benefit a number of science scenarios.

ACKNOWLEDGMENT

This work was made possible by support from the Depart-
ment of Energy’s Office of Advanced Scientific Computing
Research, including via the CODAR and ADIOS Exascale
Computing Project (ECP) projects. This research used re-
sources of the Oak Ridge Leadership Computing Facility, a
DOE Office of Science User Facility supported under Contract
DE-AC05-00OR22725.

REFERENCES

[1] F. Alexander et al., “Exascale applications: Skin in the game,” Philo-
sophical Transactions of the Royal Society A, vol. 378, no. 2166, 2020.

[2] L. Wan et al., “Data management challenges of exascale scientific simu-
lations: A case study with the Gyrokinetic Toroidal Code and ADIOS,”
in The 10th International Conference on Computational Methods, ser.
ICCM’19, 2019.

[3] S. Ku et al., “Full-f gyrokinetic particle simulation of centrally heated
global ITG turbulence from magnetic axis to edge pedestal top in a
realistic tokamak geometry,” Nuclear Fusion, vol. 49, no. 11, 2009.

[4] C.-S. Chang et al., “Numerical study of neoclassical plasma pedestal in
a tokamak geometry,” Physics of Plasmas, vol. 11, no. 5, 2004.

[5] R. Taylor et al., “Science with the Square Kilometer Array: Motivation,
key science projects, standards and assumptions,” arXiv preprint astro-
ph/0409274, 2004.

[6] L. Wan et al., “Comprehensive Measurement and Analysis of the User-
Perceived I/O Performance in a Production Leadership-Class Storage
System,” in IEEE 37th International Conference on Distributed Com-
puting Systems, ser. ICDCS ’17, 2017, pp. 1022–1031.

[7] L. Wan et al., “Analysis and Modeling of the End-to-End I/O Perfor-
mance in OLCF’s Titan Supercomputer,” in IEEE 19th International
Conference on High Performance Computing and Communications, ser.
HPCC ’17, 2017, pp. 1–9.

[8] “HPSS,” www.hpss-collaboration.org/. Accessed: 10/2020.
[9] M. Ainsworth et al., “Multilevel techniques for compression and reduc-

tion of scientific data—the univariate case,” Computing and Visualization
in Science, vol. 19, no. 5-6, pp. 65–76, 2018.

[10] M. Ainsworth et al., “Multilevel techniques for compression and re-
duction of scientific data—the multivariate case,” SIAM J. Scientific
Computing, vol. 41, no. 2, 2019.

[11] M. Ainsworth et al., “Multilevel techniques for compression and re-
duction of scientific data—quantitative control of accuracy in derived
quantities,” SIAM J. Scientific Computing, vol. 41, no. 4, 2019.

[12] I. Foster et al., “Online data analysis and reduction: An important co-
design motif for extreme-scale computers,” International Journal of
High-Performance Computing Applications, vol. in press, 2020.

[13] L. Wan et al., “SSD-Optimized Workload Placement with Adaptive
Learning and Classification in HPC Environments,” in 30st International
Conference on Massive Storage Systems and Technology, ser. MSST ’14,
2014.

[14] L. Wan et al., “Optimizing Checkpoint Data Placement with Guaranteed
Burst Buffer Endurance in Large-Scale Hierarchical Storage Systems,”
Journal of Parallel and Distributed Computing, vol. 100, pp. 16–29,
2017.

[15] A. Li et al., “Tartan: evaluating modern gpu interconnect via a multi-gpu
benchmark suite,” in 2018 IEEE International Symposium on Workload
Characterization (IISWC). IEEE, 2018, pp. 191–202.

[16] A. Li et al., “Evaluating modern gpu interconnect: Pcie, nvlink, nv-sli,
nvswitch and gpudirect,” IEEE Transactions on Parallel and Distributed
Systems, vol. 31, no. 1, pp. 94–110, 2019.

[17] “Mass matrix computation in the finite ele-
ment method,” https://demonstrations.wolfram.com/
MassMatrixComputationInTheFiniteElementMethod.

[18] X. Liang et al., “Optimizing multi-grid based reduction for efficient
scientific data management,” arXiv preprint arXiv:2010.05872, 2020.

[19] MGARD Lossy Compression Software, 2020 (accessed April 21, 2020).
[Online]. Available: https://github.com/CODARcode/MGARD

[20] K. E. Atkinson et al., Elementary numerical analysis. Wiley New York,
1985.

[21] J. Chen et al., “TSM2: optimizing tall-and-skinny matrix-matrix multi-
plication on GPUs,” in ACM International Conference on Supercomput-
ing, 2019, pp. 106–116.

[22] C. Rivera et al., “Tsm2x: High-performance tall-and-skinny matrix-
matrix multiplication on gpus,” 2020.

[23] J. Chen et al., “Online algorithm-based fault tolerance for cholesky
decomposition on heterogeneous systems with gpus,” in 2016 IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2016, pp. 993–1002.

[24] J. Chen et al., “Fault tolerant one-sided matrix decompositions on
heterogeneous systems with gpus,” in SC18: International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE, 2018, pp. 854–865.

[25] J. Chen et al., “Gpu-abft: Optimizing algorithm-based fault tolerance
for heterogeneous systems with gpus,” in 2016 IEEE International
Conference on Networking, Architecture and Storage (NAS). IEEE,
2016, pp. 1–2.

[26] J. E. Pearson, “Complex patterns in a simple system,” Science, vol. 261,
no. 5118, pp. 189–192, 1993.

[27] “Gray-Scott Simulation Code,” https://github.com/pnorbert/adiosvm/
tree/master/Tutorial/gray-scott, [Online; accessed 2019].

[28] Q. Liu et al., “Hello ADIOS: The challenges and lessons of develop-
ing leadership class I/O frameworks,” Concurrency and Computation:
Practice and Experience, vol. 26, no. 7, pp. 1453–1473, 2014.

[29] J. Chen et al., “Understanding performance-quality trade-offs in sci-
entific visualization workflows with lossy compression,” in 2019
IEEE/ACM 5th International Workshop on Data Analysis and Reduction
for Big Scientific Data (DRBSD-5). IEEE, 2019, pp. 1–7.

[30] I. Yakushin et al., “Feature-preserving lossy compression for in situ
data analysis,” in 49th International Conference on Parallel Processing-
ICPP: Workshops, 2020, pp. 1–9.

[31] P. Basu et al., “Compiler-based code generation and autotuning for ge-
ometric multigrid on GPU-accelerated supercomputers,” Parallel Com-
puting, vol. 64, no. C, 2017.

[32] N. Bell et al., “Exposing fine-grained parallelism in algebraic multigrid
methods,” SIAM J. Scientific Computing, vol. 34, no. 4, 2012.

[33] K. Esler et al., “GAMPACK (GPU accelerated algebraic multigrid
package),” in 13th European Conference on the Mathematics of Oil
Recovery, 2012.

[34] J. Sebastian et al., “GPU accelerated three dimensional unstructured
geometric multigrid solver,” in International Conference on High Per-
formance Computing and Simulation, ser. HPCS ’14, 2014.

[35] C. Richter et al., “Multi-GPU acceleration of algebraic multi-grid
preconditioners for elliptic field problems,” IEEE Transactions on Mag-
netics, vol. 51, no. 3, 2015.

[36] M. A. Clark et al., “Accelerating lattice QCD multigrid on GPUs using
fine-grained parallelization,” in SC’16, 2016, pp. 68:1–68:12.

www.hpss-collaboration.org/
https://demonstrations.wolfram.com/MassMatrixComputationInTheFiniteElementMethod
https://demonstrations.wolfram.com/MassMatrixComputationInTheFiniteElementMethod
https://github.com/CODARcode/MGARD
https://github.com/pnorbert/adiosvm/tree /master/Tutorial/gray-scott
https://github.com/pnorbert/adiosvm/tree /master/Tutorial/gray-scott

	I Introduction
	II Background
	II-A Theory of multigrid-based hierarchical data refactoring
	II-A1 Compute coefficients
	II-A2 Compute correction

	II-B Existing GPU-based data refactoring

	III Designing GPU-accelerated data refactoring
	III-A Designing optimized GPU multigrid kernels
	III-A1 Grid processing kernel (GPK)
	III-A2 Linear processing kernel (LPK)
	III-A3 Iterative processing kernel (IPK)

	III-B Overall algorithms
	III-C Heuristic Performance Auto Tuning

	IV Experimental Evaluation
	IV-A Evaluation methodology
	IV-B Evaluation on kernels
	IV-C Evaluation on data refactoring on a single GPU
	IV-D Evaluation on multi-node performance at scale

	V Showcase
	V-A Visualization workflow
	V-B Lossy compression

	VI Related Work
	VII Conclusion
	References

