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Abstract—Sparsity, which occurs in both scientific applications
and Deep Learning (DL) models, has been a key target of
optimization within recent ASIC accelerators due to the potential
memory and compute savings. These applications use data
stored in a variety of compression formats. We demonstrate
that both the compactness of different compression formats and
the compute efficiency of the algorithms enabled by them vary
across tensor dimensions and amount of sparsity. Since DL and
scientific workloads span across all sparsity regions, there can
be numerous format combinations for optimizing memory and
compute efficiency. Unfortunately, many proposed accelerators
operate on one or two fixed format combinations. This work
proposes hardware extensions to accelerators for supporting
numerous format combinations seamlessly and demonstrates
∼4× speedup over performing format conversions in software.

I. INTRODUCTION

Scientific computing and deep learning (DL) applications are
impacting society in many ways, from solving computational
chemistry, power network, robotics and economics problems [1]
to generating personalized recommendations, image classifica-
tions, and machine translations [2]. Unfortunately, the compute
kernels and tensors that enable these applications can become
extremely large (Amazon Review tensor has dimension sizes in
millions [3]), leading to high memory and compute costs. This
has led to growing interest in domain-specific accelerators for
tensor algebra [4], [5]. In addition to custom compute units for
tensor operations, the key property these accelerators exploit
is sparsity in tensors within DL and scientific applications.
For instance, modern Deep Neural Networks (DNNs) often
exhibit 30% to 90% sparsity in trained weights without loss
in accuracy via state-of-the-art pruning techniques [6], [7],
while tensors in scientific workloads are often more than 99%
sparse [5]. This naturally leads to the question on the right
compression format for storing the tensors and there has been
growing research on this topic [8], [9], [10], [11], [12] (see
Sec. II).

The two main criteria for choosing a specific compression
format depend on both (1) compactness, which represents the
total memory size required to store the metadata and data for the
tensor, and (2) compute efficiency, which represents the access
complexity and data-to-compute mappings. High compactness
is critical for storage, as a data transfer from DRAM can cost
6400× more energy than an add operation [13], [14]. High
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compute efficiency is critical to maintain high utilization within
the accelerator1, which in turn translates to runtime and energy-
efficiency. To separate these two objectives, we refer to the
format used for storage in memory as Memory Compression
Format (MCF) and the format used during the computation of
the algorithm within the accelerator as Algorithm Compression
Format (ACF). If the MCF and ACF are different, naturally
a converter is needed. Fig. 1a presents an overview of this
concept with three matrices: A, B, and O.

There have been limited studies evaluating the trade-offs of
various MCF and ACF combinations for tensor accelerators.

1With sparse workloads, processing elements (PEs) that perform MAC
operations of zero valued elements are considered underutilized.



TABLE I: MCF and ACF Characterization of SOTA accelerators.
Design MCF, ACF Same? Conv E.g.
Fix Fix None Fix, Fix Yes None [4], [14], [15]
Fix Fix HW Fix, Fix No HW [16], [17], [18]
Fix Flex HW Fix, Flex No HW [19]
Flex Fix SW Flex, Fix No SW [20], [21]
Flex Fix HW Flex, Fix No HW [22], [23]
Flex Flex None Flex, Flex Yes None [5], [24]
Flex Flex SW Flex, Flex No SW CPU/GPU
Flex Flex HW Flex, Flex No MINT This work

In fact, many accelerators are optimized for a certain workload
and density region, and pick fixed choices for the MCF and
ACF. In Table I we categorize how different formats and
conversions happen in accelerators today2. Fix Fix None refers
to accelerators that use a fixed and identical format for both
MCF and ACF; therefore, no format conversion is needed. For
e.g., the MCF and ACF of EIE [14] are both Dense(A)-CSC(B)-
Dense(O). Fix Fix HW are accelerators that use different
fixed MCF and ACF. For e.g., Eyeriss [17] stores and reads
all fmaps in RLC. A hardware decoder transforms this RLC
MCF into a dense ACF during computation. Flex Fix SW/HW
is when the accelerator supports myriad choices for MCF
but a fixed ACF. Software support relies on cuSPARSE [26]
or Intel MKL [27]. Hardware support relies on a dedicated
decompression unit. For e.g., NVDLA [22] has a dedicated
ZVC to dense converter. Its MCFs are Dense(A)-ZVC(B)-
Dense(O) and Dense(A)-Dense(B)-Dense(O), and its ACF
is Dense(A)-Dense(B)-Dense(O). Flex Flex None refers to
accelerators like Extensor [5], which supports multiple choices
for MCFs and ACFs, but both must be the same, requiring no
format converter.

In this work, we highlight two key challenges with using
fixed format combinations (see Sec. III). First, the optimal
format for compactness (i.e., MCF) might not be optimized
for compute-efficiency (i.e., ACF), and vice versa. Second,
the optimal format for compactness (or compute-efficiency)
depends heavily on the tensor dimensions and sparsity ratio of
the workload. As hardware accelerators in datacenters are
expected to run a suite of scientific and DL applications,
deployment of an accelerator optimal only for a certain sparsity
region but inefficient for other regions is impractical and
inefficient. We propose to extend tensor accelerators to support
various compression formats (Flex Flex HW in Table I).
The key contributions (Fig. 1b) of this paper are:

• We analyze scientific and DL workloads across different
MCFs and ACFs to understand how they perform at various
sparsity regions (Sec. III). We make the case for accelerating
kernels with a wide spectrum of sparsity ratios via three
key extensions to current accelerators:

• First, we propose hardware extensions to accelerator PEs
to support various ACFs to enhance utilization (Sec. IV).

2We would like to point out that while GPUs can technically support any
MCF and any ACF, they lack hardware support for the specific choice of
ACF, unlike custom accelerators. They are thus inefficient for sparse DL and
scientific workloads. The scope of this work is on custom accelerators for
tensor algebra and not GPUs, which are also adding sparsity support [25].
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Fig. 2: Tensor kernels accelerated in accelerators [4], [5], [14], [24].

• Second, we present MINT3, a hardware module that serves
as a library of MCF to ACF converters (Sec. V). Rather than
using separate converters, MINT reuses common building
blocks across all conversions and also repurposes parts of
the accelerator for format conversion.

• Third, we develop an analytical model called SAGE4

to determine the optimized MCF and ACF combination
given a workload, and configure MINT and the accelerator
appropriately (Sec. VI).

II. BACKGROUND ON TENSOR ALGEBRA

Tensors are multidimensional arrays used to represent the
input and model datasets in DL and scientific workloads.
Popular tensor kernels are shown in Fig. 2.

GEMM. General matrix-matrix multiplication (GEMM)
along with its sparse matrix-sparse matrix multiplication equiva-
lent (SpGEMM) and sparse matrix-dense matrix multiplication
equivalent (SpMM) are often compute bottlenecks in both DL
and scientific workloads. For DL, fully connected layers with
batched inputs are rearranged into GEMMs. Convolutional
layers are also commonly rearranged into GEMMs by using
im2col or other efficient techniques [28], [29]. For scientific
workloads and recommender systems, SpMM is often used for
matrix factorization. SpMM and SpMV (sparse matrix-dense
vector multiplication) are the key computational kernels in
an iterative solver for sparse linear systems, while SpGEMM
dominates the setup times of applications that use multigrid
methods [30].

TTM. Sparse tensor times dense matrix multiplication
(SpTTM) is a standard building block for all tensor com-
putations. Tucker decomposition algorithm (often used for
analyzing scientific datasets) intensively uses SpTTM, which
is one of the main compute bottlenecks [31], [32].

MTTKRP. Matricized tensor times Khatri-Rao product
(MTTKRP) is a core computation for canonical polyadic decom-
position (CPD) algorithm and is the main compute bottleneck
[32]. The three-dimensional tensor MTTKRP operation is
shown in Fig. 2. Typically the tensor, A , is sparse; while
the matrices, B and C, are dense.

Sparsity Formats. Fig. 3 shows common lossless com-
pression formats given a sparse matrix of size 4×4 and a
sparse tensor of size 4×4×4. Popular formats in the scientific

3Microarchitecture for Interchangeable compressioN formats for Tensors
4Sparsity formaAt Generation Engine
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Fig. 3: Common compression formats for (a) matrix operations and
(b) tensor operations. Not shown is Dense (uncompressed).

computing domain include COO, CSR, and CSC [8]. COO
stores the nonzeros with their corresponding row and column
locations. Rather than storing the row location like COO, CSR
has row ptrs that point to the corresponding values locations
where each row starts. BSR is a blocked representation of
CSR [33]. Given that the nonzeros follow a pattern, BSR
reduces the metadata overhead and enables a more regular
memory access pattern. Other formats that reduce metadata by
clustering locations include HiCOO [10] and DIA [8]. CSF
[11] constructs a tree to hold tensors. ZVC [9] stores nonzero
elements along with a string of bits to represent each element
(a bit value of 1 for a nonzero element and a bit value of 0 for
a zero valued element). RLC [17] alternates between a nonzero
element and the number of zeros between nonzeros.

III. MOTIVATION: COMPRESSION FORMAT ANALYSIS

This section analyzes the performance of different compres-
sion formats and makes a case for supporting multiple unique
MCFs and ACFs in accelerators. Recall from Sec. I that MCF
is the format for memory storage and ACF is the format used
for processing the algorithm. Note that many kernels require
two or more tensor operands, and each operand can have its

own MCF/ACF. An ideal MCF enables high compactness and
an ideal ACF enables high compute efficiency.

A. MCF Compactness Analysis

We assume a scratchpad in the accelerator for our compact-
ness analysis. The number of metadata bits required is the log of
the maximum possible value. Fig. 4a shows the relative energy
cost of transferring a matrix of size 11k × 11k, with each
compression format normalized to CSR. From the graphs, we
observe that different compression formats are better at different
sparsity regions. The regions to the left of the first red line in all
Fig. 4a graphs indicate when CSR becomes more efficient than
ZVC. For extreme sparsity, COO becomes the most compact
format. The regions to the right of the second red line in all
Fig. 4a graphs indicate when dense (uncompressed) becomes
more efficient than CSR; while the middle region is well suited
for RLC and ZVC. The figure also shows how quantization
affects the effectiveness of each compression format. As the
number of bits per data element goes down, the percentage of
memory that goes to the compression format metadata goes up.
Fig. 4b compares formats for extremely sparse matrices using a
16 bit datatype. Fig. 4bi, in particular, shows how increasing a
dimension can affect the compactness of a format. The various
metadata-to-data ratios make different MCFs outperform others.

In summary, the compactness of a format depends on (1)
tensor size, (2), sparsity region, and (3) datatype. There is
no ‘best’ MCF.

B. ACF Performance Analysis

Different compression formats enable different ways of
computing the desired output tensor. For e.g., Alg. 1 [34]
shows a SpMM example with an input sparse matrix A in
COO format, and the other matrix B in dense format. The
algorithm iterates over the nonzero elements in the matrix A
(nnz), and then multiplies with the corresponding elements
in the matrix B. The generated output matrix O is in dense
format; hereafter, this ACF is COO(A)-Dense(B)-Dense(O).

Algorithm 1: SpMM in COO format

Input: row id, col id and data: COO data structures for storing
M×K sparse matrix A, nnz: number of nonzero elements in
A, B: K×N dense matrix, O: M×N dense output matrix

1 Initialize output matrix O to 0;
2 for i ← 0 to nnz − 1 do
3 for j ← 0 to N − 1 do
4 rid ← row id[i]; cid ← col id[i]; val ← data[i];
5 O[rid][j] ← O[rid][j] + val ∗ B[cid][j];

To show how different ACFs result in varying performance,
we benchmarked NVIDIA’s cuBLAS and cuSPARSE libraries
across all density regions. Fig. 5 shows the performance of
four algorithms that use varying ACFs. Note that for this
study, matrices A and B are set to the same density region.
From Fig. 5a, we observe that Dense(A)-Dense(B)-Dense(O)
performs better in density regions from 10% to 100%. CSR(A)-
CSR(B)-CSR(O) performs better from 10−6% to 0.1%. Fig. 5b
and Fig. 5c show the SM and memory utilization of Fig. 5a.
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Fig. 4: (a) Relative energy cost of transferring an 11k × 11k compressed matrix from DRAM with varying compression formats, density
regions, and datatypes. The stars highlight density regions of 10−6%, 10%, 50% and 100%. (b) Relative energy cost of transferring extremely
sparse matrices from DRAM with varying compression formats and K dimensions. M dimension is set to 1k.
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Fig. 5: Performance of MM algorithms (different ACFs) from
cuBLAS and cuSPARSE on Titan GPU across density regions. (a)
Exec time, (b) SM util. and (c) Mem util. with M, N, and K of size
11k. The stars are density regions of 10−6%, 10%, 50% and 100%.

GEMM is compute bound, but note that SM utilization includes
zero-valued operations. SpGEMM is often latency bound, while
the other two SpMM algorithms are often memory bound. How
much resources are spent processing the metadata vs computing
the data enable different ACFs to outperform others at different
sparsity regions. Though not shown, we observe that changing
the tensor size affects the relative performance of each ACF.

In summary, the compute efficiency depends on (1) tensor
size and (2) sparsity region. There is no ‘best’ ACF.

Fig. 4a-i and Fig. 5a show stars for four specific density
regions: 10−6%, 10%, 50% and 100%. Both are measured
using matrices of 11k by 11k with float32 datatype. At 10−6%,
COO is the best MCF, while CSR(A)-CSR(B)-CSR(O) is the
best ACF. RLC, ZVC and dense (uncompressed) are the best
MCF for 10%, 50% and 100% density region respectively;
while Dense(A)-Dense(B)-Dense(O) is the best ACF for all
three.

In summary, the most compact MCF and the most
compute efficient ACF need not be the same.

C. Other Use Cases For Format Conversions
Conversion between different compression formats not only

result in better compactness and compute efficiency as shown

above, but can also be necessary for algorithmic reasons. For
instance, during backpropagation in DL training, converting
CSR to CSC (or vice versa) is necessary since the weight
matrix gets transposed before running GEMM. Similarly,
accelerators that output in dense format (e.g., TPU) may require
compression before storing back to memory.

IV. ACCELERATOR MICROARCHITECTURE EXTENSIONS

As discussed in Sec. III, different formats are ideal for
different datatypes, tensor sizes, and density regions. This
motivates the need for supporting multiple sparsity formats
within the accelerator. In this section, we present the extensions
required to support various ACFs over an example accelerator
via the walkthrough example in Fig. 6. In Sec. V and Sec. VI
we present a format converter and format predictor respectively.

A. Accelerator Architecture
We assume an accelerator template consisting of an array

of PEs connected to a global shared scratchpad buffer via
specialized network-on-chip (NoC), similar to prior works [14],
[15], [18], [19]. Each PE has a vector MAC unit, weight
buffer, output register, and state registers. For our walkthrough
example, we assume a weight stationary (WS) dataflow, i.e.,
elements of matrix B stay stationary at the PEs, while matrix A
is streamed. In addition, PEs in sparse accelerators [14], [15],
[18] house an indexing unit to match the non-zero input-weight
pairs that need to be multiplied.

Microarchitecture Extensions. To enable sparse accelera-
tors to support multiple ACFs, we propose two microarchitec-
ture extensions. The first is to enable flexible resource allocation
of scratchpad buffer space within each PE for metadata (color
red in Fig. 7) and stationary data (color green in Fig. 7); i.e. a
buffer entry can be treated as either data or metadata depending
on a flag. This is essential because different ACFs have different
ratios of metadata. The PEs also need comparators for metadata
index matching like any other sparse accelerator [14], [15].
The second extension is to have flags next to the data being
delivered over the bus/NoC by the global buffer to identify
whether it is the operand data or metadata for the format.

To find matching indices, metadata from the buffer is
compared with the metadata from the input bus/NoC. The
outputs of the comparators go to a one-hot-to-binary encoder
to find the location of the valid data within the data region.
Then, the matching data from the input bus and buffer is sent

4



a d 0 0
0 0 0 0
b 0 0 0
0 0 f 0
c 0 0 0
0 0 g h
0 0 0 0
0 e 0 0

Matrix A

(a) Dense(A)-Dense(B)-Dense(O) ACF

A 0 B 0 C 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 H 0 0

M
at

rix
 B

A
0

0
B

C
0

0
0

0
H

0
0

A

B
0

2

C

0
4

0

H

0
5

0
003

data
col_id
data
col_id
row_id003

data
data
data
data
row_id

A

0

B

0
0

0
0

003

data
col_id
row_id
NA
NA

0

H
025

a c
0 0
b 0
0 0

d 0
0 0
0 0
0 e

0 0
0 g
0 0
f 0

0 0
0 h
0 0
0 0

A
0
B
0

A
0
B
0

A
0
B
0

A
0
B
0

a c
0 0
b 0
0 0

d 0
0 0
0 0
0 e

0 0
0 g
0 0
f 0

0 0
0 h
0 0
0 0

A A

A A

a 0
b 2
c 4
0 0

d 0
e 7
0 0
0 0

f 3
g 5
0 0
0 0

h 5
0 0
0 0
0 0

A

0
0

0
0

1

0
0

0
0

1

0
0

0
0

2

0
0

0
0

2

0
0

0
0

3

C

0
0
0
4

A
B
0
2

0 0

0

PE0

0

0

vMAC

Rreg: 0
Oreg

Creg: 0
PE1

vMAC

Rreg: 0
Oreg

Creg: 1

PE3

vMAC

Rreg: 0
Oreg

Creg: 3
PE2

vMAC

Rreg: 0
Oreg

Creg: 2

PE0

vMAC

Rreg: 0
Oreg

Creg: 0
PE1

vMAC

Rreg: 0
Oreg

Creg: 1

PE3

vMAC

Rreg: 0
Oreg

Creg: 3
PE2

vMAC

Rreg: 0
Oreg

Creg: 2

PE0

vMAC

Rreg: 0
Oreg

Creg: 0
PE1

vMAC

Rreg: 0
Oreg

Creg: 1

PE3

vMAC

Rreg: 0
Oreg

Creg: 3
PE2

vMAC

Rreg: 0
Oreg

Creg: 2
cycles

(b) CSR(A)-CSC(B)-Dense(O) ACF (c) COO(A)-Dense(B)-Dense(O) ACF

cycles cycles

Fig. 6: Examples of different ACFs mapped onto a sparse weight-stationary accelerator. Each column of Matrix B is loaded stationary to
each PE. Depending on Matrix B’s ACF, many zero-valued elements (e.g Dense ACF) or metadata (colored red, e.g CSC ACF) consume
buffer space. Next, Matrix A gets sent through a broadcast bus to all PEs, and matches corresponding elements for multiplication. Similarly,
depending on Matrix A’s ACF, the bus may contain many zero-valued elements (e.g Dense ACF), or metadata (colored red, e.g. CSR and
COO ACF). The key takeaway is that ACFs affect both buffer utilization and data streaming latency.

blue arrows come from input bus

x x x x

+ +
+

PE Buffer

Metadata 
Comparators

green arrows are 
valid data from PE 

buffer

Metadata 
region

Data 
region

(a)

Valid Data 
Address 

Generator

Vector Unit
(b)

Fig. 7: (a) Extended PE microarchitecture. (b) Overhead of extended
PE compared to base PE.

to a vector unit. Fig. 7 shows that the extension increases the
size of a PE with 128B buffer by ∼10%. We use a PE with
vector size of eight 32-bit compute units.

B. Walkthrough Example.
In Fig. 6, we assume 4 PEs, a distribution bandwidth of five

elements per cycle, and a weight buffer size of eight elements
per PE. Each PE has a output row register (Rreg), output
column register (Creg), and output value register (Oreg). We
assume that each metadata and data element consume the same
amount of resources (bandwidth and buffer space). Note that
differently sized partitions are needed if the metadata-to-data
ratio is not one-to-one.

Fig. 6a shows Dense(A)-Dense(B)-Dense(C) ACF. Each
column of matrix B (weights) is stored stationary within each
PE and Creg is set to the column number. Since the matrix
B is in dense format, the zeros must be stored to maintain
correct buffer indexing. Four data elements and one row id
from matrix A are broadcasted to all PEs per cycle. The row id
is generated by a controller and is used to set the Rreg. Rreg
and Creg are used track the output index. The streaming (blue)
data gets matched to the corresponding stationary (green) data.
Both data are then forwarded to the vector MAC units for
computation. The partial product is stored in Oreg and continues
to accumulate locally until either Creg or Rreg changes. Once
that happens, Oreg gets sent to a global output buffer. The
address where Oreg goes to is determined by Creg and Rreg.

Fig. 6b shows CSR(A)-CSC(B)-Dense(C) ACF. Since the
weights are stored in CSC, the buffers include the nonzero
elements and their corresponding row indices. Therefore, half of

the buffer is allocated to metadata entries. The input bandwidth
consists of two data elements, two col ids, and one common
row id. However, if the row id is not common among both
data, it must be broken up as shown by ’C’ and ’H’. In the
first cycle at PE0, streaming elements ’A’ and ’B’ get matched
with stationary elements ’a’ and ’b’. This occurs because the
streaming col ids of ’0’ and ’2’ match with the stationary row
indices of ’0’ and ’2’.

Fig. 6c shows COO(A)-Dense(B)-Dense(C) ACF (refer to
Alg. 1). For each nonzero element in the matrix A, data,
col id, and row id are broadcasted to each PE. Using the
col id, the PEs access the correct weight buffer entry to get the
corresponding data for multiplication. For e.g., at PE0, because
the col id is ’0’, element ’A’ matches with the element at buffer
index ’0’. Notice that only one data entry (color blue) can be
sent per cycle. This is because there is not enough bandwidth
to send two at a time, as (2 × (1 data + 2 metadata)) >
(bandwidth size of 5). Overall Fig. 6a,b,c require 8, 3, and 4
cycles to send matrix A respectively; showing how different
ACFs affect the overall performance.

V. MINT: COMPRESSION FORMAT CONVERTER

To support multiple MCFs and ACFs in a single accelerator
(Sec. III), we propose MINT, a general purpose format con-
verter next to the accelerator, instead of offloading conversions
to the host CPU /GPU as accelerators do today. Given m MCF’s
and a ACF’s supported by the architecture, MINT can provide
m× a conversions for any combination of MCF and ACF
deemed optimal for the current workload by SAGE (Sec. VI).
MINT’s efficiency comes from (i) merging building blocks to
one general-purpose converter rather than having m×a separate
converters, and (ii) reusing and repurposing compute modules
from the accelerator’s datapath for the format conversion.

A. MINT Designs and Building Blocks
Fig. 8a shows the different MINT designs and building

blocks. The building blocks are composed of prefix sum,
memory controller, parallel divide, parallel mod, comparators,
and other format specific modules. There are three different
MINT implementations: MINT baseline (MINT b), MINT
merge (MINT m), and MINT merge + reuse (MINT mr).

5



Fig. 8: (a) High level MINT designs with building blocks for format conversion. (b) Matrix used in example c-e. (c) CSR to CSC conversion.
(d) RLC to COO conversion. (e) CSR to BSR format. (f) Dense to CSF conversion using the tensor from Fig. 3b.

MINT b composes of separate format converters. MINT m
generalizes overlapping building blocks and merges them
together. MINT mr expands on MINT m by reusing the MAC
(for prefix sum) and activation units (for parallel divides) from
the accelerator, as we discuss next.

Adders for Prefix Sum. Prefix sums are often used dur-
ing format conversions. Specific examples are discussed in
Sec. V-B. All accelerators that target tensor kernels already

have adders inside their PEs [4], [5], [16], [18], [24], which
we repurpose to compute prefix-sums.

There are three main implementations of prefix sums: (a)
serial chain, (b) work efficient, and (c) highly parallel designs,
as shown in Fig. 9. The throughput-optimized serial chain
implementation can reuse a store-and-forward spatial reduction
network by adding diagonal links across adders as shown
in Fig. 9a. Registers are used to maintain timing. To solve
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Fig. 9: Common prefix sum (scan) implementations and how they
can be implemented on top of accelerator hardware structures.

blocking issues and to maintain a throughput of N prefix sum
outputs in a cycle, a row of adders at the end is needed to add
the offset, which is the maximum value from the previous cycle.
Work efficient prefix sums can reuse the adders in an adder
tree reduction network as shown in Fig. 9b. Highly parallel
prefix sums achieve a latency of logN cycles but require more
active adders and forwarding links as shown in Fig. 9c.

There are two requirements to enable prefix sums in existing
accelerators. The first requirement is that the accelerator must
support int32 adds (often used for metadata calculations). The
second requirement is that the accelerator need wire and mux
modifications. We observe that the overhead for enabling these
modifications is minimal in the evaluation section.

Activation Units for Position Calculations. DL accelera-
tors often have activation units attached [4], [22]. They contain
varying types of compute units such as dividers, which support
many DL operations including softmax and batch normalization.
They can also be used to calculate metadata positions, enabling
potential compute reuse (refer to Sec. V-B).

B. Example Conversions
To discuss how format conversions are implemented in

MINT, we select four representative conversions that are
typically used in tensor accelerators. CSR to CSC is useful for
transposing weights during DL backpropagation. RLC to COO
is useful because RLC is a common MCF, while COO enables
fast translation to other formats. CSR to BSR is common for
accelerators that benefit from operating on structured data.
Dense to CSF is useful as many accelerators output in dense
format; and compression may be beneficial before storing back
to memory. Fig. 8 shows how the four conversions can be
broken down into building blocks. Other format conversions
can be generalized with the same building blocks; For e.g.,
ZVC-to-Dense and Dense-to-ZVC [9].

1) CSR to CSC: Fig. 8b shows the target matrix and Fig. 8c
presents the CSR to CSC conversion. 1 reads a chunk of the
col ids and stores them a buffer. 2 sorts the chunk and 3

counts the number of specific values within the chunk. It is also
possible to stream the col ids and atomically increment the
cluster counter. Note that steps 2 and 3 are not needed if the
size of the chunk is one. 4 allocates space in the scratchpad
to read and write the col ptr. This continues until all of the
input col ids are read and accumulated to the corresponding
location in the col ptr. 5 The entire col ptr goes through a
prefix sum module. 6 iterates across the CSR fields. The first
entry uses the col ids (2) to index the col ptr, which contains
the value (3). This is used to index the value and row id of
the CSC format. 7 After getting the value (3), the col ptr
increments by one for the next reference. For example, the
value ’a’ gets written to location 3. Three gets updated to four,
so that value ’c’ gets written to location 4 in the future. This
is to prevent overwriting data. 8 contains logic to determine
the output row id by counting the number of iterated values
versus the row ptr, which shows how many elements are in
every row. 9 shows the final updated values and row ids of
the CSC format, while 10 stores the outputs into the correct
memory space. The col ptr is fixed slightly during this step
to point the original values.

2) RLC to COO: Fig. 8b shows the target matrix. Fig. 8d
presents the RLC to COO conversion. 1 shows the matrix
compressed in RLC format being streamed in. 2 adds one
to all elements beside the first element of cycle 0. This is to
offset the position of the level (nonzero value). 3 Depending
on the buffer size, all elements go to a prefix sum module. 4
After generating the prefix sums, the outputs go into a parallel
divide and mod units. The row ids is generated by dividing
the sum with the K dimension of the matrix, and the col ids
is generated by moding the sum with the K dimension. 5 The
memory controller stores the level fields (nonzero elements)
from step 1 and the coordinates from step 4 to the allocated
memory spaces.

3) CSR to BSR: Fig. 8b shows the target matrix. Fig. 8e
shows the conversion of CSR to 2×2 BSR. 1 iterates through
the first two rows of the matrix (which we refer to as a row
block). 2 Then, mods and comparators are used to find the
block position and to determine whether the block has already
been initialized or not. 3 appends the number of unique blocks
to the row ptr, while the column position of the block goes into
the col ids. Register flags are used to keep track of initialized
blocks so elements that fit within the block region are written
to the correct place in memory. Note that zeros are inserted
into the values if the blocks are not complete. (CSR does not
contain any zero values, while BSR may contain zero values
based on the completeness of the block structure.) 4 repeats
steps 1 - 3 for the remaining row blocks. 5 After iterating
through the whole matrix, the row ptrs are read from the
scratchpad via the memory controller and fed into a prefix sum
module.

4) Dense to CSF: Fig. 8f shows the conversion from Dense
to CSF and refers to the tensor from Fig. 3b. 1 shows the
dense format equivalent in z→ y→ x order from bottom-left to
top-right. Note that different orders are valid for dense format.
The exact order must be specified to the decoder beforehand.
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TABLE II: MCF and ACFs for SOTA Accelerators Evaluated. The
naming scheme is MCF ACF Converter.

Type MCF (A-B) ACF (A-B) E.g.
Fix Fix None Dense-Dense Dense-Dense TPUv1 [4]
Fix Fix None2 CSR-Dense CSR-Dense EIE

Dense-CSC Dense-CSC [14]
Fix Flex HW ZVC-ZVC CSR-Dense SIGMA

Dense-CSC [19]
Dense-dense

Flex Flex None (CSR/Dense)- (CSR/Dense)- ExTensor
(Dense/CSC) (Dense/CSC) [5]

Flex Fix HW (ZVC/Dense)- Dense-Dense NVDLA
(ZVC/Dense) [22]

Flex Flex SW CSR-Dense CSC-CSR Intel MKL
cuSPARSE

Flex Flex HW From SAGE From SAGE This work

2 checks if the elements in dense format are zero or not,
and the prefix sum module adds one to each element of the
streaming dense format. 3 contains parallel dividers and mod
units to get the COO coordinates of the nonzero values. The
equations are shown in the figure. x idx, y idx, z idx represent
the COO coordinates. The sum represents the prefix sum value
of that particular nonzero element. While x dim, y dim and
z dim represent the corresponding dimension of the tensor. 4
shows the generated COO format equivalent of dense format,
and 5 iterates COO to begin generating CSF. 6 includes the
tree construction logic which consists of comparators, adders,
and a prefix sum unit. 7 contains the final CSF structure that
is located in the scratchpad.

In summary, the compute components for format conversions
can be broken down into building blocks; enabling hardware
reuse for many other conversion combinations. For perfor-
mance, MINT is pipelined to start conversion while streaming
in data from memory.

VI. SAGE: COMPRESSION FORMAT PREDICTOR

SAGE predicts which MCF and ACF combination results
in the lowest energy-delay product (EDP). The inputs to
SAGE are workload size, datatype, density region, MINT
format conversion cost, and accelerator hardware parameters
(Fig. 1b). The outputs are the ideal MCF and ACF combinations.
Note that there might be scenarios when the MCF is already
predetermined by the programmer. In that case, the SAGE will
find the best accelerator configuration (ACF) and conversion
type. SAGE contains a cost model and performance model.

Cost Modeling. The cost model first predicts the DRAM
energy consumption and transfer cycles cost. This is directly
proportional to the compression size of the MCF. Second, to
model the conversion cost, we evaluate the building blocks
necessary for each conversion scenario along with their relative
execution cycles and power consumption.

Performance Modeling. The performance model assumes
a WS accelerator, described in Sec. IV, and a flexible NoC
to deliver non-zeros from the streaming tensor [5], [19]. It
estimates the buffers used by data and meta-data (assuming
full flexibility within the scratchpads for this partition), and
calculates the number of compute cycles for all target ACFs
(similar to Fig. 6). For the target matrices and tensors, we
assume a uniform random distribution of the dense values.

This has minimal effect on the performance of unstructured
format conversions, because the number of calculations is
directly proportional to the tensor dimensions and the number
of nonzeros. However, assuming random sparsity does not
apply to structured formats. Enhancing the performance model
for structured formats (e.g. DIA, HiCOO, BSR and ELLPACK
[8]) is part of our future work.

VII. EVALUATION

A. Methodology

Accelerators. We contrast our proposed accelerator with
flexible MCF-ACF support against a suite of SOTA sparse
accelerators shown in Table II. All accelerators are given 16384
total MAC units (similar to Google TPU [4]), 512B of buffer
storage per PE, 512-bit input bus per cycle, and 32-bit datatype.
Workloads. For our evaluations, we use matrices and tensors
from the following datasets: Suitesparse [1], Deepbench [35],
FROSTT, [3], and BrainQ [36]. Deepbench represents DL
workloads and the others represent scientific workloads. The
dimension, number of nonzeros, and density ratio characteristics
are shown in Table III.
Compression Formats. For MCF, we consider six format
choices for each operand: Dense, RLC, ZVC, COO, CSR,
and CSC. For ACF, we consider four format choices for each
operand: Dense, COO, CSR, and CSC. Table III shows the ideal
MCF and ACF combinations for each workload, determined
by SAGE(Sec. VI). Combinations shaded blue are ideal for
SpGEMM, grey for SpMM, tan for SpTTM, and yellow for
MTTKRP. The factorizing matrices that are multiplied with
the tensors are generalized to have dimensions of K by (M/2).

B. MINT Performance and Cost

MINT vs Software. We contrast the performance of MINT
(i.e., Flex Flex HW) versus the time it would take to do
format conversion using software on a CPU and GPU (i.e.,
Flex Flex SW). For CPU evaluations, we use the Intel’s MKL
library to evaluate Dense to CSR and CSR to CSC. We use
an Intel Core i9-9820X CPU operating at 3.3GHz. It has 10
cores, 85GB/s memory bandwidth and a TDP of 165W. For
GPU evaluations, we use cuSPARSE on an NVIDIA Titan RTX
GPU operating at 1.77GHz. It has 4,608 CUDA cores, 672GB/s
memory bandwidth and a TDP of 280W. Fig. 10 compares
the wall time among Intel’s MKL, NVIDIA’s cuSPARSE, and
MINT for CSR to CSC and Dense to CSR. Note that few
conversions are compared because of limited library support.
MINT shows faster average conversion time than both CPUs
and GPUs. This is because MINT is able to efficiently overlap
conversion with data streaming from memory. Since MINT
is a hardware module design placed next to the accelerator,
it also observes roughly three orders of magnitude energy
improvement. Besides performing better compute-wise, MINT
offers significant speedup and energy savings by reducing the
host to device (H2D) and device to host (D2H) transfer times.
As shown in Fig. 11, transferring data can consume up to 75%
of the total time, and has a geomean of roughly 50%. Thus, it
is critical to have hardware support for format conversion.
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TABLE III: Tensors for our evaluations (left side). MCFt is the format of the input tensor, and MCFf is the format of the input factorization
matrix(es). Blue shaded formats are ideal MCFs and ACFs for SpGEMM. Grey shade for SpMM. Tan shade for SpTTM. Yellow shade for
MTTKRP. The format combinations are generated by SAGE.

Workload Dimensions #Nonzeros Density% MCFt MCFf ACFt ACFf MCFt MCFf ACFt ACFf

journal [1] 124 × 124 12K 78.5 ZVC ZVC Dense Dense ZVC Dense Dense Dense
bibd [1] 171 × 92K 3.3M 20.9 RLC CSC Dense CSC RLC Dense Dense Dense
dendrimer [1] 730 × 730 63K 11.8 RLC CSC Dense CSC RLC Dense Dense Dense
speech1 [35] 11K × 3.6K 3.9M 10.0 RLC CSC Dense CSC RLC Dense Dense Dense
speech2 [35] 7.7K × 2.6K 1M 5.0 RLC CSC Dense CSC RLC Dense Dense Dense
nd3k [1] 9K × 9K 3.3M 4.1 RLC CSC Dense CSC RLC Dense Dense Dense
cavity14 [1] 2.6K × 2.6K 76K 1.1 CSR CSC Dense CSC CSR Dense CSR Dense
model3 [1] 1.6K × 4.6K 24K 3.2x10−1 CSR CSC CSR CSC CSR Dense CSR Dense
cat ears [1] 5.2K × 13.2K 40K 5.7x10−2 CSR CSC CSR CSC CSR Dense CSR Dense
m3plates [1] 11K × 11K 6.6K 5.4x10−3 COO COO CSR CSC COO Dense CSR Dense
BrainQ [36] 60 × 70K × 9 11M 29.1 ZVC Dense Dense Dense ZVC Dense Dense Dense
Crime [3] 6.2K × 24 × 2.5K 5.2M 1.5 CSF Dense CSF Dense CSF Dense CSF Dense
Uber [3] 4.4K × 1.1K × 1.7K 3.3M 3.9x10−2 COO Dense CSF Dense COO Dense CSF Dense

(a) (b) (c)
Fig. 10: (a) CSR to CSC conversion execution time. (b) Dense to CSR conversion execution time. (c) Energy consumption analysis.

Fig. 11: Average GPU transfer to compute ratio, highlighting
additional costs of offloading conversions rather than doing it locally.

MINT Overhead. To get area and power estimates, we
implemented the building blocks of MINT in RTL and
performed synthesis and place-and-route using a 28nm PDK
at a clock rate of 1GHz. For our MINT implementation,
we limit the number of parallel mod and divider units to
eight due to how hardware expensive the modules are. Other
components include a pipelined sorting network (input size
equal to the number of unique metadata coming in per cycle),
cluster counter, prefix sum unit, numerous comparators, eight
multipliers, and a memory controller with address generators,
FIFOs, and crossbar. Using the conversions in Fig. 8, MINT b,
MINT m, and MINT mr consumes 0.95 mm2, 0.41 mm2, and
0.23 mm2 respectively. MINT m has a ∼57% area reduction
over MINT b from building block reuse, while MINT mr has
an additional ∼45% area reduction over MINT m from reusing
compute units found inside the host accelerator.

MINT mr requires slight modifications to existing int32-
supported accelerators. We enable highly parallel prefix sum
of 32 inputs by modifying adders with forwarding links and
muxes. The size of 32 is selected to satisfy MINT throughput
requirement. We observe roughly a 20% increase in area and

27% increase in power. As shown in Fig. 9, other reduction
networks in accelerators can be augmented to enable various
versions prefix sum. Reusing the dividers in the activation units
require a mux, controller, and dedicated data paths.

To reduce MINT mr’s area and power overhead, a serial
chain prefix sum design (Fig. 9a) can be used instead of a
highly parallel prefix sum design (Fig. 9c). Serial chain has
a longer tail latency; but has simpler wiring, fewer muxes,
and fewer active adders than highly parallel design. It is also
possible to make the design smaller by reducing the number of
parallel inputs in exchange for less throughput. To overlay a 16
× 16 int32 PE array with serial chain prefix sum, we observe a
2% increase in area and 3% increase in power. Divider and mod
units must be pipelined to meet timing. Together, they consume
74% and 65% of MINT m’s area and power respectively. In
comparison to a 16384 PE accelerator with (int16/int32 &
bfp16/fp32) support, MINT m consumes 0.5% of its area and
0.4% of its power overhead. Note that power gating is possible
when no conversion is operating.

C. Performance Breakdown

Fig. 12 shows the breakdown of SpGEMM on journals,
speech2, and m3plates from Table III with different accelerator
from Table II. With SAGE’s ability to find the best MCF and
ACF configurations, it is possible to achieve lower EDP than
the other accelerators. Fig. 12a shows that Fix Fix None2
takes the most cycles and energy. This is because journals is
relatively dense, so an ACF of Dense(A)-Dense(B) is better
than Dense(A)-CSR(B). Flex Fix HW and our work is similar
because both choose MCFs of ZVC(A)-ZVC(B) and ACFs of
Dense(A)-Dense(B). Fig. 12b shows that Dense(A)-CSC(B)
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Fig. 12: Breakdown of (a) journals (b) speech2, and (c) m3plates.
Part-i shows the performance. Part-ii shows the energy and EDP.

Fig. 13: SpGEMM and SpMM normalized EDP against this work.

is the best ACF, as Fix Fix None2, Flex Flex None and our
work have similar compute times. Since our design has MINT,
it is able to use RLC as the MCF, reducing memory transfer
time. Fig. 12c shows that CSR(A)-CSC(B) is the best ACF,
as Flex Flex None and our work show much lower compute
and energy cost. Since m3plates is extremely sparse, any ACF
with dense format will lead to poor compute efficiency.

Fig. 13 shows the averaged SpGEMM and SpMM normalized
EDP of various accelerators against our work. Our work
shows geomean reductions of 369%, 63%, 20%, 15%, and
143% over Fix Fix None, Fix Fix None2, Fix Flex HW,
Flex Flex None, and Flex Fix HW respectively; averaging
to a ∼122% EDP reduction. The maximum EDP reduc-
tion across all workloads is 9860%, 99%, 79%, 44%, and
7338% over Fix Fix None, Fix Fix None2, Fix Flex HW,
Flex Flex None, and Flex Fix HW respectively. The average
conversion energy cost is 8.75E-05 J (0.023% of total system
energy cost) for Fig. 13 workloads that require conversions
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3 128 512 (16,16) (1,1) 63.1% 0% 59.2% 50.0% 60.4% 63.4%
4 128 128 (16,16) (3,3) 52.6% 0% 52.0% 50.0% 52.3% 35.3%
5 1024 256 (8,8) (1,1) 60.2% 0% 57.0% 50.0% 59.8% 49.9%
6 256 256 (8,8) (3,3) 59.4% 0% 56.5% 50.0% 57.0% 38.3%
7 512 2048 (4,4) (1,1) 64.0% 0% 61.0% 50.0% 41.0% 88.2%
8 512 512 (4,4) (3,3) 49.2% 0% 47.8% 50.0% 43.6% 98.4%

(a)

(b)

(c)

Fig. 14: (a) Convolution layers specifications. (b) EDP of our work
with different pruning strategies. (c) Average EDP across the three
pruning strategies of our work against different hardware baselines.

with our methodology. Conversion energy cost is negligible
because (1) accessing data from DRAM consumes significantly
more energy than compute [13], and (2) for matrix multipli-
cations, the conversion complexity is O(MK + KN), while
the computation complexity is O(MNK). Part one of Fig. 12
shows system cycles breakdown and part two of Fig. 12 shows
system energy cost breakdowns.

D. Case Study: Convolutional Neural Networks

We train a ResNet50 model using the CIFAR-10 dataset
[37]. Fig. 14a shows select convolution layers and their
specifications. All layers have a stride of one. To get a
wide spectrum of sparsity regions, we apply two different L1
unstructured pruning strategies to induce weight sparsity. The
first strategy prunes 50% of values per layer, while the second
strategy prunes 70% of values globally; accuracy loss is 0.29%
and 0.74% respectively. As shown in Fig. 14a, with global
pruning, convolution layers 7 and 8 have significantly higher
weight sparsity than the other layers. Input activation sparsity,
induced from ReLU, is fairly consistent across different pruning
strategies.

For our evaluations, we use a batch size of 64. System
configuration is described in Section VII-A. Like TPU, we use
im2col to convert convolutions to GEMM operations. Fig. 14b
shows the EDP of our proposed work with different pruning
strategies. In early layers (1-6), the number of weight elements
is relatively small compared to the number of activation
elements; hence, the weight sparsity has little impact on the
EDP. Layers 7 and 8 have more weight elements than activation
elements. Additionally, with global pruning, the two layers are
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significantly sparser. This allows (1) larger weight pruning
impact on EDP by using optimal MCF compression, and
(2) better compute utilization, particularly by using the ACF
of Dense(A)-CSC(B) rather than Dense(A)-Dense(B). This
is because the weight matrix (B) is much sparser, and will
utilize less PE buffer space when stored as CSC (metadata
and nonzero data) than Dense (nonzero data and zero-valued
data). Fig. 14c shows the average EDP across the three pruning
strategies of our work against different accelerator baselines.
Since our work enables various MCF (using MINT) and ACF
(using accelerator extensions) combinations, we observe on
average ∼70% EDP reduction across all baselines.

VIII. RELATED WORK

Hardware Accelerators for Sparsity. Numerous DL accel-
erators have recently been proposed for sparse computations
[14], [15], [18], [20]. There are also tensor algebra accelerators
for scientific applications [5], [24], [38]. Recently, NVIDIA’s
Ampere GPUs added support for limited structured sparsity [25].
The aim of this work is to enable an accelerator to support
multiple compression formats; and thus optimize for both
memory and compute costs. It can be applied, in principle,
over any of the sparse accelerators.

Format Conversion Support. The TACO compiler proposes
six primitives to concisely represent all tensor formats [12].
Custom hardware modules for (de)compression are common
across many applications [9], [39]. However, most custom
designs target specific conversions. This limits the flexibility of
what the MCFs and ACFs can be. In contrast, MINT proposes
to use generic building blocks.

IX. CONCLUSION

DL and scientific workloads exhibit vastly different sizes
and sparsity. We demonstrate that this leads to different optimal
compression formats for storage and compute. Our main
contributions include: accelerator extensions for flexible format
support, efficient format conversion in hardware using MINT
and SAGE predictor to find the optimal format combination.
Together, these extensions can enable accelerators deployed in
datacenters or HPC systems to run a mix of scientific and DL
workloads at high-efficiency.
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