

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/145733

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/145733
mailto:wrap@warwick.ac.uk

High-Level FPGA Accelerator Design for
Structured-Mesh-Based Explicit Numerical Solvers

Kamalavasan Kamalakkannan,
Gihan R. Mudalige

Dept. of Computer Science
University of Warwick, UK

{kamalavasan.kamalakkannan,
g.mudalige}@warwick.ac.uk

Istvan Z. Reguly
Faculty of Information Technology & Bionics
Pazmany Peter Catholic University, Hungary

reguly.istvan@itk.ppke.hu

Suhaib A. Fahmy
King Abdullah University of

Science and Technology (KAUST),
Thuwal, Saudi Arabia

suhaib.fahmy@kaust.edu.sa

Abstract—This paper presents a workflow for synthesizing
near-optimal FPGA implementations of structured-mesh based
stencil applications for explicit solvers. It leverages key character-
istics of the application class and its computation-communication
pattern and the architectural capabilities of the FPGA to ac-
celerate solvers for high-performance computing applications.
Key new features of the workflow are (1) the unification of
standard state-of-the-art techniques with a number of high-
gain optimizations such as batching and spatial blocking/tiling,
motivated by increasing throughput for real-world workloads
and (2) the development and use of a predictive analytical
model to explore the design space, and obtain resource and
performance estimates. Three representative applications are
implemented using the design workflow on a Xilinx Alveo U280
FPGA, demonstrating near-optimal performance and over 85%
predictive model accuracy. These are compared with equivalent
highly-optimized implementations of the same applications on
modern HPC-grade GPUs (Nvidia V100), analyzing time to so-
lution, bandwidth, and energy consumption. Performance results
indicate comparable runtimes with the V100 GPU, with over
2× energy savings for the largest non-trivial application on
the FPGA. Our investigation shows the challenges of achieving
high performance on current generation FPGAs compared to
traditional architectures. We discuss determinants for a given
stencil code to be amenable to FPGA implementation, providing
insights into the feasibility and profitability of a design and its
resulting performance.

Index Terms—FPGAs, Stencil Applications, Explicit solvers

I. INTRODUCTION
Field Programmable Gate Arrays (FPGAs) have become
highly attractive as accelerator architectures by virtue of
their high performance, low power consumption, and re-
programmability. As a result, FPGAs have gained a foothold
in a wider range of application domains such as cyber secu-
rity [1], databases [2], and deep learning [3]. In recent years,
the integration of FPGAs as first-class accelerator platforms
has also attracted significant interest in the high-performance
(HPC) and scientific computing communities, particularly in
the financial computing domain [4]. They have also emerged as
potential accelerator platforms for cloud computing [5]. How-
ever, a key limitation has been the design effort needed to pro-
duce performant accelerators for FPGAs, requiring hardware
expertise and an alternative approach to programming that
is more data-flow oriented. Commercial FPGA vendors have
attempted to address this problem with high level synthesis
(HLS) tools that can translate programs written in standard
high-level languages such as C/C++ or OpenCL. However,
these tools still require low level modification of code to
produce accelerators with optimum performance.

One solution to this problem is to leverage key characteris-
tics of an application, its computation-communication patterns
or motifs to explore the hardware design space. Once the
best optimization strategy for a given motif is identified for
the target hardware, it can be used as a design template for
similar applications, even going so far as to create higher-level
frameworks such as DSLs that can automatically generate the
accelerator implementations. Such a strategy has become an
important technique in developing performance-portable mas-
sively parallel HPC applications given the increasing diversity
of processor architectures [6]–[9].

In this paper we apply such analysis to the domain of
structured-mesh-based explicit numerical solvers, character-
ized by stencil computations, targeting FPGAs. These codes
frequently appear as the core motif in solvers for partial differ-
ential equation (PDEs). As such, they are used in applications
from a wide range of fields, including computational fluid
dynamics (CFD), hydro-dynamics, financial computing, and
oil/gas exploration simulations. The key characteristic is the
loop over a “rectangular” multi-dimensional set of mesh points
using one or more “stencils” to access data. This is in contrast
to unstructured meshes that require explicit connectivity infor-
mation [7] between neighboring mesh elements via mappings.

Considerable previous research has developed a range of
strategies to synthesize optimized FPGA implementations for
stencil codes [10]–[20]. Most recent works utilize HLS tools,
usually compiling OpenCL, and target both 2D and 3D stencil
applications. They develop a number of standard techniques,
ranging from basic methods such as cell-parallel/vectorization,
unrolling the iterative loop, to more complex transformations
such as spatial/temporal blocking (tiling), in order to best
utilize FPGA resources for maximum performance. However,
many of these previous works target optimizations specific to
an application in isolation without developing a design strategy
that can be applied to other stencil codes. While some [12],
[16] attempt to generalize accelerator implementations for
stencil codes, they only target simpler stencil applications
without exploiting higher-gain optimizations. A key gap is
the lack of a unifying design strategy particularly focusing
on realistic applications.

As such, an open question remains regarding how to op-
timize implementation of stencil applications on FPGAs, and
how characteristics of the application and various optimiza-
tions determine performance compared to traditional CPU and
GPU architectures. To this end, in this paper we present an

initial proposal and unifying workflow for designing near-
optimal FPGA implementations for structured-mesh based
stencil applications together with analytical models that enable
exploration of the design space for stencil accelerators on mod-
ern FPGAs. Specifically, we make the following contributions:

• We propose an implementation template, and an accom-
panying step-wise optimization strategy for conversion of
structured-mesh, explicit, iterative stencil applications to
FPGA accelerators. Given hardware resource constraints,
we focus on features of the application that are amenable
for FPGA implementation and optimizations for gaining
near-optimal performance. A key optimization, novel in
this area, is the batched execution of multiple independent
stencil problems on an FPGA.

• Targeting current generation Xilinx FPGAs, we present
the design and optimization of three contrasting, repre-
sentative explicit stencil solvers, comparing a range of
alternatives based on resource and performance trade-
offs. The applications include both 2D and 3D stencil
solvers and multiple stencil loops.

• We develop a predictive analytical model that provides
estimates for determining the feasibility of implementing
a given stencil application on an FPGA using the pro-
posed design strategy. The model calculates the resource
requirements considering the optimizations implemented,
together with memory requirements and operating fre-
quency. It predicts the runtime of the resulting FPGA
accelerator accurate to within 15% of the achieved run-
time.

• Finally, the runtime, bandwidth, and power/energy per-
formance of the FPGA implementations developed with
the proposed strategy are compared with highly optimized
implementations on a traditional accelerator architecture,
a modern Nvidia V100 GPU.

Initial results on current generation Xilinx hardware demon-
strate competitive performance compared to the best perfor-
mance achieved for the same applications on traditional (in this
case GPU) architectures using single precision floating-point
(SP) representations. To our knowledge, such an extended
workflow for stencil application development accompanied
with a predictive model have not been previously presented.
We believe that the proposed approach provides a promising
strategy for use with industrial workloads from areas such as
financial computing, standardizing the development cycle for
these platforms.

The rest of the paper is organized as follows: Section II
begins with a background on structured-mesh stencil applica-
tions together with previous work that explored FPGA imple-
mentations for this class of applications. Section III presents
our proposed design strategy for implementing iterative stencil
codes for FPGAs, as a step-by-step methodology, starting from
the basic stencil loops, down to target FPGA code for the
Xilinx Alveo U280 accelerator board. Further optimizations
for target synthesis is discussed in Section IV. The design
including the advanced optimizations is then explored through
the development of an analytical performance model. A per-

formance analysis and benchmarking of the FPGA implemen-
tations compared against the performance of state-of-the-art
optimized CPU and GPU implementations is presented in
Section V. Finally, conclusions are presented in Section VI.

II. BACKGROUND
The key characteristic of structured-mesh stencil computations
is loops over a “rectangular” multi-dimensional set of mesh
points using one or more fixed data access patterns, called
stencils, to access data. The main motivating numerical method
here is the solution to Partial Differential Equations (PDEs),
specifically based on the finite difference method. These tech-
niques are used extensively in computational fluid dynamics
(CFD), computational electromagnetics (CEM) in the form of
iterative solvers. For example the finite difference scheme for
the solution of a generic PDE can be given by the 2D explicit
equation (1):

U t+1
x,y = aU t

x−1,y+bU
t
x+1,y+cU

t
x,y−1+dU

t
x,y+1+eU

t
x,y (1)

Here, U is a 2D mesh and a, b, c, d, and e are coefficients.
In this example U is accessed at spatial mesh points (x-
1,y), (x+1,y), (x,y-1), (x,y+1), and (x,y) which forms a five
point stencil. In an explicit scheme the computation iterates
over the full rectangular mesh, updating the solution at each
mesh point, for the current time step, t+1, using the solution
from the previous time step, t. The time step iteration usually
continues until a steady state solution is achieved. There is
a data dependency for the computations among multiple time
step iterations, but no dependency within the spatial iterations.
As such, each mesh point calculation within a time iteration
can be computed in parallel. In contrast, an implicit scheme
would update the solution at the current time step using
values from the same time step, further introducing a data
dependency within the spatial iterations. This leads to a much
faster convergence to the final solution, but enforces an order
in which a computation iterates over the mesh leading to
limited parallelism. While both explicit and implicit schemes
are equally used in production settings in scientific computing
applications, we focus on explicit iterative solvers in this paper
given their simplicity and higher parallelism.

A. Related Work
Many previous works have targeted FPGAs for stencil com-
putations. Early works [21]–[23] used Hardware Description
Languages (HDL) for describing the architectures. However
the process required extensive hardware knowledge and a
time consuming development cycle. The introduction of High-
Level Synthesis (HLS) tools has significantly improved devel-
oper productivity and time to design. As such more recent
work [11]–[13], [16], [17] has utilized HLS tools for imple-
menting FPGA designs for stencil computations. As FPGAs
have advanced to incorporate a variety of high bandwidth
interfaces and memory types, the system level view of an ac-
celerator architecture has become more important to achieving
overall high performance.

The most comprehensive implementation workflow and
optimization methodology to date is by Waidyasooriya et.

al in [12], [16]. The authors use OpenCL and propose an
optimization strategy for stencil applications targeting Intel
FPGAs. A number of 2-D and 3-D stencil applications are
developed through the above strategy, demonstrating up to
950 GFLOPS of achieved computational performance on Intel
FPGAs. Runtime and bandwidth performance are compared to
conventional GPU and multi-core CPU implementations. The
work, however, limits the investigation to applications with
only a single stencil loop over the mesh. Multiple stencil loops
within a single time-step iterative loop are not considered.

A previous implementation of the 3D Reverse Time Mi-
gration (RTM) application, which has similarities to the RTM
application we develop later in this paper, can be found in [10].
The implementation uses early-generation Xilinx FPGAs, prior
to the introduction of HLS tools, but with designs equivalent to
the techniques we use in this paper. The work in [14] uses Intel
FPGAs with a design goal to enable unrestricted input sizes
for stencil computations without sacrificing performance. They
combine spatial and temporal blocking to avoid input size
restrictions, and employ multiple FPGA-specific optimizations
to tackle the added design complexity. The same authors apply
these techniques to higher-order stencils in [15]. The use of
spatial and temporal blocking is novel, which our work in this
paper also addresses, but we extend it to variable sized tiling
and multi-port implementations, generalizing the technique
and incorporating it to our overall design workflow.

A number of previous works have also utilized high-level
frameworks for generating efficient FPGA accelerators. The
SDSLc framework [11] presents the use of source-to-source
translation for generating parallel executables for a range of
hardware platforms. These include CPUs, GPUs and FPGAs.
The paper details optimizations such as iterative loop unrolling
and full data reuse within FPGAs. Similarly the SODA frame-
work [13] performs several optimizations including perfect
data reuse by minimal reuse buffers and data quantization.
Additionally it models the performance and predicts resource
consumption, significantly reducing design time. The authors
present competitive performance with multi-core CPU im-
plementations and state-of-the-art stencil implementations on
FPGAs. The main limitations of the work are fixed tile size and
host based tiling. Due to the DSL’s support of only declarative
programming, it is not clear whether any limitations exists for
porting of complex kernels using SODA.

The more recent HeteroCL framework [17] addresses image
processing applications. It also supports stencil applications
through a SODA back-end. The HeteroCL DSL separates
algorithm from compute, schedules and determines data types,
and automatically translates SODA DSL to reflect the itera-
tion factor, unroll factor and other parameters such as data
width. A deep single kernel pipeline generated using the
above frameworks usually suffers from routing congestion in
modern large FPGAs from Xilinx that incorporate multiple
Super Logic Regions (SLRs). In [18], Dohi et. al, use the
proprietary MaxCompiler and MaxGenFD high-level design
tools to implement finite-difference equations. The work is
limited to Maxeler Technologies FPGA platforms and does not

compare results with other FPGAs, GPUs or CPUs. The au-
thors of [19] use the polyhedral model and implement a related
framework to automatically accelerate iterative stencil loops
on a multi-FPGA system. In contrast [20] develop a Scalable
Streaming Array to implement stencil computations on mul-
tiple FPGAs, using a DSL, achieving reduced development
time and near-peak performance. Automatic code generation
is also used in [24] and has similarities to our design in this
paper. However, it mainly focuses on non-iterative applications
with multiple kernels, hence spanning designs over multiple
FPGAs. Batching and tiling optimizations are not attempted.

In contrast to the above work, this paper presents a unify-
ing strategy for the development of FPGA implementations
of both 2-D and 3-D stencil applications, including multi-
dimensional mesh elements and multiple stencil loops. We
incorporate many of the optimization techniques in previous
works that have usually been applied in isolation or on a single
application. Additionally we introduce a number of further
optimizations such as batching to achieve higher throughput in
real-world/production workloads and settings. We also present
a predictive analytical model that estimates the feasibility of
implementing a given stencil application on a given FPGA
platform. We compare the performance of the FPGA ac-
celerators to equivalent highly-optimized implementations of
the same applications on modern HPC-grade GPUs analyz-
ing time to solution, bandwidth, and energy consumption.
To our knowledge, the 3D RTM application developed in
this work, using HLS tools for the FPGA using our design
flow, motivated by real-world stencil codes, is also novel,
being one of the few non-trivial applications presented in
literature. Our investigation uncovers the determinants for a
given stencil code to benefit from a FPGA implementation,
providing insights into the feasibility of a design and its
resulting performance.

III. ACCELERATOR DESIGN

FPGAs differ from traditional CPUs and GPUs as they do not
present a fixed general purpose architecture to be exploited
using software. A program, made up of a sequence of instruc-
tions, is executed on a fixed CPU or GPU architecture that
does not change. In contrast, an FPGA must be configured
with an architecture that implements the data flow computation
for a specific task. This leads to significantly reduced energy
consumption compared to the CPUs and GPUs, primarily
due to the locality of data movement within the mapped
architecture rather than via multiple reads and writes to
various stages of the memory hierarchy. The reconfigurability
of FPGAs offers a significant advantage over the design of
custom Application Specific Integrated Circuits (ASICs) which
is much more time-consuming and costly and leads to a
fixed architecture that cannot be modified post-design. FPGAs
comprise a variety of basic circuit elements, including ample
look-up-tables (LUTs) and registers, large numbers of digital
signal processing (DSP) blocks on modern devices, block
memories (BRAM/URAM), clock modules, and a rich routing
fabric to connect these elements into a large logical accelerator

R6 R5 R4 R3

R0 R1

R9 R8

R2R7

input1 input2

Cyclic
Buffer

Cyclic
Buffer

CU1

R0
R4
R5
R6
R9

CU2

R1
R3
R4
R5
R8

Output2

Output1

Input1

Input2

Fig. 1: Window buffer and factor of 2 vectorization.

architecture. While these resources are primarily suited to
implementation of fixed point integer data-paths, they can be
used to implement floating point data paths too, though these
typically consume significantly more resources for the same
computation. Optimizing datapaths to maximise the achievable
frequency, and hence throughput, approaching the limits of
what DSP blocks are capable of, is essential in the design
of high performance accelerators on FPGAs [25]. In modern
Xilinx FPGAs, the overall die is split into a number of regions
called Super Logic Regions (SLR) [26]. Bandwidth within an
SLR is extremely high (TB/s) due to the wealth of connections
and memory elements, while between SLRs it is limited by
the number of silicon connections available. The BRAMs
and URAMs that reside in SLRs provide high-speed, small
blocks of on-chip memory, typically 10s of MB in total, recent
devices like the U280 have close coupled High Bandwidth
Memory (HBM) (8 GB on the U280) connected to multiple
SLRs. HLS tools can typically combine multiple on-chip
BRAMs or URAMs to obtain a larger block of memory. An
FPGA board will also include much larger, but slower DDR4
(32 GB on the U280) memory as external memory. Managing
the movement of data between these different types of memory
is key to achieving high computational performance. The
performance of an FPGA architecture is hard to predict, as it
is impacted by various design characteristics beyond the level
of parallelization applied. As a design grows and begins to
occupy a larger portion of the FPGA, routing (i.e. connecting
all the circuit elements together) becomes more challenging,
and can reduce the achievable clock frequency and hence
overall performance.

To achieve high computational throughput on FPGAs, a
custom architecture is designed that is then implemented using
the low-level circuit elements described above. A data-flow
arrangement seeks to map a complex computation to a series
of data-paths that implement the required computational steps
with movement of data through direct connections. Compared
to fixed CPU and GPU architectures where the steps in
an algorithm are computed sequentially with intermediate
results stored to registers, FPGA compute pipelines can be
much deeper and more irregular parallelism can be exploited.
Performing a stencil computation will then involve, starting up
the pipeline (requiring some clock cycles equal to the pipeline
depth) and outputting the result from the computation for each
mesh point per clock cycle as a pipelined execution.

For CPU/GPU architectures such a computation is imple-
mented using nested loops, iterating over the mesh and over
the neighborhood points. On FPGAs these multiple levels of

Reg Reg Reg

Reg

Reg

input

Cyclic Buffer

Cyclic Buffer

Stencil
Computation

Reg Reg Reg

Reg

Reg

Cyclic Buffer

Cyclic Buffer

Stencil
Computation

Compute module for Iteration - k Compute module for Iteration – k+1

Fig. 2: Unrolling the iterative loop.

loops can be unrolled. Retaining an outer loop can be costly
due to the need to flush the unrolled inner loop pipeline
which can be long. Hence, multi-dimensional nested loops
should be flattened to a 1D loop either manually or by using
HLS directives such as loop_flatten. We have observed
that manual flattening still provides the best performance
and optimized resource utilization, as current Xilinx HLS
compilers can make pessimistic scheduling decisions.

A key approach to gaining the best performance from the
above computational pipeline is streaming data from/to exter-
nal and near-chip memories to/from on-chip BRAMs/URAMs
to feed the computational pipelines efficiently. A perfect data
reuse path can be created by (1) using a First-In-First-Out
(FIFO) buffer to fetch data from DDR4/HBM memory without
interruption (allowing burst transfers) to on-chip memory, and
then (2) by caching mesh points using the multiple levels of
memory, from registers to BRAM/URAM. Fig. 1 illustrates
such a data path for a 2D, 2nd order stencil. This technique
has previously been referred to as window buffers [10]. A 2D,
D order stencil requires D rows to be buffered to achieve
perfect data reuse. Similarly, D planes should be buffered for
a 3D stencil. The total number of mesh elements needed to be
buffered is the maximum number of mesh elements between
any two stencil points. BRAM/URAMs can be used to design
window buffers by using cyclic buffering. Given their high
capacity, URAMs are preferred if the number of elements to
be buffered is large.

Multiple pipelines for the same computation (i.e. loop body
or kernel) can be created using HLS directives. This technique,
called the cell-parallel method in [12] allows computation of
the stencil on multiple mesh points simultaneously, provided
that there are no data dependencies, which is the case for
explicit schemes. The cell-parallel method is similar to SIMD
vectorization on CPUs and SIMT on GPUs but on an FPGA it
essentially creates parallel replicas of the computational units
as opposed to single vector operations. However the resource
availability in an FPGA limits the number of parallel units
that can be synthesized on a given device. Fig. 1 illustrates
a factor of 2 implementation, where the vectorization factor
represents the number of mesh points updated in parallel.

Another approach that can increase performance is to unroll
the iterative loop, which encompasses one or more stencil
loops over the rectangular mesh. This allows the results from a
previous iteration to be fed to the next iteration without writing
back to external (DDR4 or HBM) memory. This scheme,
called the step-parallel technique in previous work [12] is

illustrated in Fig. 2. Note how the unrolling yields two “com-
pute modules” in this case. The technique leads to increased
throughput without the need for additional external memory
bandwidth. However, the unrolling factor depends once more
on available FPGA resources and internal memory capacity.
Cutting down on external memory access in this manner
also lead to more power-efficient designs. One disadvantage,
however, is the increased length of the computational pipeline,
which significantly affects performance for small mesh sizes.

A. Model for the Baseline Design
The performance of a baseline design, as discuses above, there-
fore depends on (1) the capacity of the computational pipeline
and (2) the external memory bandwidth. Computational ca-
pacity depends on the number of mesh point updates done
in parallel (vectorization factor), latency of the pipeline and
operating clock frequency of the FPGA. However, memory
throughput depends on various factors such as the number
of mesh elements transferred, and the stride between each
transferred element. To simplify, we model reading/writing of
contiguous data from/to memory with a maximum transfer
size of 4K bytes, to reach a near optimal throughput of
external/near-chip memory for the Xilinx U280 FPGA, our
target hardware in this work.

Assuming that the memory throughput is sufficient to supply
V mesh points (i.e. a vectorization factor of V) continuously
without interruption, then the total clock cycles taken to
process a row from a 2D mesh with m × n elements will
be given by

⌈
m
V

⌉
. Here, we have padded each row to be a

multiple of V if required. The compute pipeline will process
n+D

2 rows as there are D/2 different rows between the current
stencil update mesh point and farthest mesh point required for
the stencil computation, where D is the stencil order. If the
outer iterative loop unroll factor is given by p then the total
number of clock cycles required to process the full m × n
mesh for niter iterations is given by:

Clks2D =
niter
p

×
(⌈m

V

⌉
× (n+ p× D

2
)

)
(2)

The above extends naturally to 3D meshes as in (3), where the
3D mesh size is given by m×n× l and D is then equivalent
to the number of plains to be buffered.

Clks3D =
niter
p

×
(⌈m

V

⌉
× n× (l + p× D

2
)

)
(3)

As noted before, the models above only hold for cases where
the vectorization factor V , which determines the number
of parallel mesh points computed, does not demand more
memory bandwidth than what can be supplied by the FPGA’s
external DDR4 bandwidth. The FPGA’s HBM memory can
be used to support a larger V , which could then be limited
by the resources available to implement the parallel compute
pipelines. An estimate of maximum V for an application can
be computed by using the FPGA operating frequency f , and
maximum supported bandwidth of a data channel (or port)
on the FPGA, BWchannel, and the size in bytes of a mesh
element sizeof(t) as follows:

BWchannel ≥ 2V f × sizeof(t) (4)

For 2D meshes, if the width of the mesh n is a multiple of
vectorization factor V, then clock cycles for computing a single
mesh point (or a cell) per iteration per compute module can
be obtained from equation (2) as :

Clks2D,cell = 1/V + pD/2nV (5)

Setting n to higher values gives a better clock cycles per
mesh point ratio, the ideal being, 1/V . But higher order
stencil applications on meshes with fewer rows will have a
larger (pD)/(2nV) value, indicating idling in the processing
pipeline. We explore techniques to reduce this idle time in
Section IV-B.

A key parameter in (2) and (3) is the loop unroll factor,
p which directly determines performance, where a large p
reduces the total clock cycles required. However, p is limited
by the available resources on the FPGA as in Fig. 2, a larger p
requires more DSP blocks and LUTs. Furthermore, the internal
memory required for a compute module, primarily due to
memory capacity for the cyclic buffers also determines p. The
number of DSP blocks required for a single mesh-point update,
Gdsp depends on the stencil loop kernel’s arithmetic operations
and number representation. Here we consider single precision
floating point arithmetic. With a V vectorization factor, the
total consumed is V ×Gdsp . If the total available DSP blocks
on the FPGA is FPGAdsp then the maximum unroll factor
based on DSP resources, pdsp is given by:

pdsp = FPGAdsp/V Gdsp (6)

The internal memory requirement for a single compute module
which performs a D order stencil operation on an m×n mesh
is D×m. If the total available internal memory on the device
is FPGAmem , then maximum possible iterative unroll factor
based on internal memory requirements, pmem is :

pmem = FPGAmem/kDm (7)

Here, k is the size of a mesh element in bytes. The denomina-
tor of (7) becomes kDmn for 3D meshes. Thus we see that the
internal memory of an FPGA, directly limits the solvable mesh
size. Usually, the above ideal depth is not achievable, as the
FPGA internal memory, BRAMs and URAMs, are quantized
(for example BRAMs are 18Kb/36Kb and URAMs are 288Kb
on the U280). Additionally, the limited width configurations of
the URAMs, plus the need to allow for flexible routing further
reduces the effective internal memory resources. Thus we usu-
ally target an 80%–90% internal memory utilization. Then the
maximum iterative loop unroll factor is given by the minimum
of pdsp and pmem . It is also worth considering that a larger
pipeline depth, and hence more resource consumption leads
to the design spreading over multiple SLRs. Communication
between SLRs increasing routing congestion between these
regions, directly impacting the achievable operating frequency.

IV. OPTIMIZATIONS
Further optimizations and extensions are required to obtain
high throughput for more complex applications. These include
(1) spatial and temporal blocking, specifically for solvers over

larger meshes, and (2) batching for improving performance
and throughput of stencil applications on smaller meshes. In
this section, we build on the baseline design from Section III
and extend the performance models to account for these
optimizations.

A. Spatial and Temporal Blocking
The baseline design attempts to obtain perfect data reuse,
requiring FPGA internal memory (consisting of BRAMs and
URAMs) to be of size D×m for 2D and D×m× n for 3D
meshes. Equation (7) illustrates this, where the requirement
becomes highly limiting for applications with higher order (D)
stencils and/or on larger meshes (increasing m). Even if the
mesh fully fits in the FPGA’s DDR4 memory, a sufficiently
large mesh could result in a pmem less than one, meaning
that even a single compute module cannot be synthesized. A
solution is to implement a form of spatial blocking, similar to
cache blocking tiling on CPUs, for the FPGA.

The idea is to use the baseline design to build an accelerator
that operates on a smaller block of mesh elements and then
transfer one such block at a time to the compute pipeline from
FPGA DDR4 memory. The compute pipeline is designed with
an appropriate vectorization factor (V) and an outer iterative
loop unroll factor (p). Larger p results in better exploitation
of temporal locality, where the execution uses the same data
several times. One issue with such a blocked execution is
when applying the computation over the boundary of a block
where a stencil computation on the boundary will not have
the contributions from all the neighboring elements in the
mesh. The solution is to overlap blocks such that the correct
computation is carried out on the boundary by a subsequent
block. The amount of overlap depends on the order of the
stencil. Overlapping leads to redundant computation. However
this overhead can be acceptable, due to the savings from
further exploiting local data in multiple iterations.

The main challenge of tiling then is to get close to maximum
DDR4 memory bandwidth, due to the latency of smaller, non-
contiguous data transfer sizes. Such data transfers results due
to a strided access pattern in one dimension when accessing
memory locations within a spatial block. For example on
the Xilinx U280, it takes 16 clock cycles to transfer 1024
Bytes via the 512 bit wide AXI interface bus, but the latency
of the transfer is about 14 clock cycles. As such, multiple
read/write requests should be made to hide the latency of each
individual memory transaction. The preference to maintain a
512 bit wide bus interface to obtain better memory bandwidth
further increases the amount of redundant computation at
block boundaries as we must maintain a 512 bit alignment in
read/write transactions, regardless of the order of the stencil.

A final modification is the need to loop through the spatial
blocks to solve over the full mesh. This control loop is
best implemented on the FPGA to reduce latency due to
the host calling multiple kernels on the FPGA. An important
consideration is finding the optimal block size and its offset
from the start of the mesh. The block size and offsets need
only be computed once, which can be done on the host and

copied to FPGA memory. Considering a 3D stencil application
over a mesh of size m×n× l solved by computing over with
blocks (or tiles) of size M ×N × l, the valid number of mesh
points computed per block is given by:

Blockvalid = (M − pD)× (N − pD)× l (8)

Since the number of clock cycles required to process p
iterations (or a temporal block) on the M×N×l spatial block
is similar to the baseline design, the average time taken to
compute one block (assuming block dimensions are a multiple
of V) would be:

Clksblock,3D =
M

V
×N × l + pD/2

p
(9)

Dividing (8) by (9) leads to the number of valid mesh points
(or cells) computed per clock cycle (i.e. throughput, T) :

T = (1− pD

M
)× (1− pD

N
)× (

pV l

l + pD/2
) (10)

Now, substituting N from (7), for a 3D application, assuming
full utilization of the FPGA’s internal memory by a block, it
can be shown that maximum throughput can be achieved for
a given p when :

M =
√
FPGAmem/kpD (11)

The corresponding N , can be shown to be also equal to M ,
implying a square block to give the best throughput. However,
the throughput also varies with p and this can be analyzed by
considering a square tile (i.e. M = N) applied to equation (10)
and assuming l to be very large such that l

l+pD/2 is close
to 1. With these assumptions, we can show that maximum
throughput is achieved, for a given M , when setting p to a
pmax given by:

pmax =M/3D (12)

Obtaining a value for pV from (6), assuming we use all the
computational capacity of the FPGA, we can rewrite (10) as:

T3D = (1− pD

M
)2 × FPGAdsp

Gdsp
× (

l

l + pD/2
) (13)

The same for a 2D stencil application can also be derived as:

T2D = (1− pD

M
)× FPGAdsp

Gdsp
× (

n

n+ pD/2
) (14)

Here, we see that reducing pipeline depth p and increasing V
will improve the performance of the spatial blocked design.
The effect of p is more significant for 3D applications.

B. Batching
A final optimization attempts to improve throughput for
smaller mesh problems that usually perform poorly on acceler-
ator platforms, including FPGAs. On traditional architectures
such as GPUs the reason is the the under-utilization of
the massive parallelism available. Essentially the time spent
calling a kernel on the device and the overheads for data
movement between host and device comes to dominate the
actual processing time.

On an FPGA, in addition to the above, further overheads are
caused due to the latency of the processing pipeline, as given
in equation (5), compared to the time to process the mesh.

TABLE I: Experimental systems specifications.

FPGA Xilinx Alveo U280 [28]

DSP blocks 8490
BRAM / URAM 6.6MB (1487 blocks) / 34.5MB (960 blocks)
HBM 8GB, 460GB/s, 32 channels
DDR4 32GB, 38.4GB/s, in 2 banks (1 channel/bank)
Host Intel Xeon Silver 4116 @2.10GHz (48 cores)

256GB RAM, Ubuntu 18.04.3 LTS
Design SW Vivado HLS, Vitis-2019.2

GPU Nvidia Tesla V100 PCIe [28]

Global Mem. 16GB HBM2, 900GB/s
Host Intel Xeon Gold 6252 @2.10GHz (48 cores)

256GB RAM, Ubuntu 18.04.3 LTS
Compilers, OS nvcc CUDA 9.1.85, Debian 9.11

The idle time is proportional to the width of the 2D mesh.
Thus if a large number of smaller meshes are to be solved, as
is the case in financial applications [27], then processing one
mesh at a time incurs significant latencies. This motivates the
idea of grouping together meshes with the same dimensions
in batches, increasing the overall throughput of the solve. In
practice, the mesh can be extended in the last dimension by
stacking up the small meshes. Now, the inter-compute module
latencies only occur once at the start of the batched solve.
With B, 2D meshes in a batch, the time to process a single
mesh within a batched execution is given by:

Clks2D/batched mesh =

(⌈m
V

⌉
× (n+ p× D

2B
)

)
(15)

Thus, increasing B significantly reduces the idle time from
(5). Similar reasoning can be applied for batched 3D meshes.

V. PERFORMANCE

In this section we apply the FPGA design strategy, optimiza-
tions, and extensions to illustrate their utility in accelerating
stencil computations for explicit-iterative numerical solvers.
We select three representative applications consisting of, both
2D and 3D, low and high order, and with single and multiple
stencil loops to explore the versatility of our design flow.
Model-predicted resource utilization estimates are used to
determine initial design parameters, and runtime performance
is compared to model predictions for each application. The
implementations target the Xilinx Alveo U280 accelerator
board and demonstrate concrete implementations for each
application. We use Vivado C++ due to ease of use for config-
urations, arbitrary precision data types, and support of some
C++ constructs compared to OpenCL, but note OpenCL can
be equally used to implement the same design. Additionally,
we compare equivalent implementations of each application’s
performance on a modern GPU system for comparison1. TA-
BLE I briefly details the specifications of the FPGA and GPU
systems (both hardware and software) used in our experiments.

A. Poisson-5pt-2D
The first application is a 2D Poisson solver which uses a 2nd
order stencil, with scalar elements:
U t+1
i,j = 1

8

(
U t
i−1,j + U t

i+1,j + U t
i,j−1 + U t

i,j+1

)
+ 1

2U
t
i,j (16)

1We have omitted CPU performance results here as our previous work [27]
shows that GPUs provide significant speedups over CPUs for these applica-
tions

TABLE II: Baseline and batching, model parameters

Application Freq. Gdsp pdsp

(MHz) (model) (actual)

Poisson-5pt-2D 250 14 68 60
Jacobi-7pt-3D 246 33 28 29
Reverse Time Migration 261 2444 3 3

TABLE III: Spatial blocking model parameters

App. p V M N T2D|3D Valid ratio

Poisson-5pt-2D 60 8 8192 472 98.5%
Jacobi-7pt-3D 3 64 768 768 189 98.4%

A suitable initial vectorization factor V can be identified by
using (4) and assuming an operating frequency of 300MHz
given this is the default set by the Vivado HLS tools. For
a baseline implementation of Poisson a value of 8 for V
is calculated when using a single DDR4 channel or two
HBM channels with a frequency of 300MHz. However, this
frequency could only be supported when iterative loop unroll
factor p is in the order of 1– 20. Higher p lead to routing
congestion, which limited achievable frequency. As such the
frequency was reduced to 250MHz to support a p of 60, which
we observed to give the best performance for this stencil.
We find in some cases such a trial frequency adjustment is
unavoidable, but our model significantly narrows the design
space, enabling us to reason about and quickly obtain an
optimal configuration. The number of DSP blocks required
for a single mesh-point’s stencil computation for Poisson and
the resulting pdsp from (6) for V = 8, assuming a 90% DSP
utilization, is given in the first row of TABLE II.Column 4
gives the predicted pdsp from our performance model, while
column 5 is the actual result after synthesis, indicating good
agreement with the predicted design.

Fig. 3 (a) and (b) present the runtime performance of
Poisson-5pt-2D, with the above design and compare the
resultant performance to an equivalent implementation on
the Nvidia V100 GPU. The achieved bandwidth and energy
consumption from these runs are summarized in TABLE IV.
The bandwidth is computed by counting the total number
of bytes transferred during the execution of the stencil loop
(looking at the mesh data accessed) and dividing it by the
total time taken by the loop. Baseline FPGA performance is
significantly better than on the V100, since the GPU is not
saturated by this application. The batching of 2D meshes as
in [27] improves GPU performance significantly and offers a
closer comparison. The FPGA achieves a maximum speedup
of about 30–34% for different mesh sizes and batching sizes
of 100 (100B) and 1000 (1000B). Memory bandwidth results
indicate high utilization of the communication channels in
agreement with the observed runtimes. The xbutil utility
was used to measure power during FPGA execution, while
nvidi-smi was used for the same on the V100. The power
consumption of the FPGA during the 1000B runs is indicative
of the significant energy efficiency of the device compared to
a GPU. The FPGA was operating at an average 70W, while
the GPU’s power consumption ranged from 40W (for single

0.03 0.04 0.04
0.06 0.06

0.10

0.51

0.56

0.43

0.59 0.58
0.62

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

200x100 200x200 300x150 300x300 400x200 400x400

R
u

n
 t

im
e

(s
ec

o
n

d
s)

Mesh size - m x n

FPGA FPGA - Pred GPU

(a) Baseline - 60000 iterations

0

5

10

15

20

25

30

35

40

200x100 200x200 300x150 300x300 400x200 400x400

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Mesh size - m x n

GPU - 1000B

FPGA - 1000B

GPU - 100B

FPGA - 100B

FPGA - Pred

(b) Batching - 60000 iterations

GPU - 20000^2

GPU - 15000^3

0

5

10

15

20

25

30

35

512 1024 2048 4096 8000

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Tile Size

FPGA - 15000^2 FPGA - 20000^2 FPGA - Pred

(c) Spatial-blocking - 6000 iterations
Fig. 3: Poisson-5pt-2D performance

0.14
0.77

2.26

4.97

9.28

0.32
0.76

1.61

3.49

6.04

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

50x50x50 100x100x100 150x150x150 200x200x200 250x250x250

R
u

n
 t

im
e

(s
ec

o
n

d
s)

Mesh size - m x n

FPGA FPGA - Pred GPU

(a) Baseline - 29000 iterations

0

5

10

15

20

25

50x50x50 100x100x100 200x200x200 250x250x250 300x300x300

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Mesh size - m x n

FPGA - 50B

GPU - 50B

FPGA - 10B

GPU - 10B

FPGA - Pred

(b) Batching - 2900 iterations

GPU - 600^3

GPU - 1800x1800x100

0

0.2

0.4

0.6

0.8

1

1.2

1.4

256 384 512 640 768

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Tile Size

FPGA - 600^3 FPGA - 1800x1800x100 FPGA - Pred

(c) Spatial-blocking - 120 iterations
Fig. 4: Jacobi-7pt-3D performance

TABLE IV: Poisson-5pt: Bandwidth (GB/s) and Energy(kJ)

Baseline and Batching (60000 iterations)

Mesh Baseline 100B 1000B Energy-1000B
FPGA GPU FPGA GPU FPGA GPU FPGA GPU

200× 100 384 18 857 404 867 530 0.77 3.48
200× 200 543 32 886 465 892 540 1.50 6.74
300× 150 535 38 901 483 907 560 1.66 7.60
300× 300 681 69 922 530
400× 200 612 62 889 536
400× 400 735 116 904 560

Spatial-blocking (60000 iterations)

Mesh Tile Size BW Energy
FPGA GPU FPGA GPU

150002 1024 805 607 0.93 2.91
4096 892 0.84
8000 905 0.83

200002 1024 800 609 1.67 4.96
4096 879 1.52
8000 907 1.48

batch) to 210W for 1000B runs on the larger meshes.
To implement Poisson-5pt-2D on larger meshes with spatial

blocking, we assume a V and p equivalent to the baseline
design and compute the valid mesh points updated per clock
cycle using (13). Here we assume the dimensions of the mesh
to be very large. TABLE III lists the model parameters for spa-
tial blocking. For Poisson we see that the 2D spatially blocked
designs theoretically perform similar to the baseline design
and thus we need not change the compute pipeline. Runtime,
bandwidth and energy consumption of this implementation is
given in Fig. 3 (c) and TABLE IV, respectively, including
comparison to performance from the V100 GPU. Again we
see good speedups and higher energy efficiency achieved with
the FPGA, this time on large problem sizes with tiling.

B. Jacobi-7pt-3D
The Jacobi iteration as a 3D, 7-point stencil, provides us with
an initial, 3D, single stencil loop, for our evaluation:

U t+1
i,j,k = k1U

t
i+1,j,k + k2U

t
i−1,j,k + k3U

t
i,j−1,k + k4U

t
i,j,k+

k5U
t
i,j+1,k + k6U

t
i,j,k+1 + k7U

t
i,j,k−1 (18)

This application requires higher internal memory for the
baseline design. For the spatially blocked design it involves
transfers less than 4K from memory, which makes it difficult
to approach raw external memory bandwidth. This is different
to the baseline/batched and 2D spatially blocked design. We
speculate that this could be the reason for the slightly less
accurate model predictions in Fig. 4(c). While the stencil is
still fairly simple, now we see the GPU outperforming the
FPGA conclusively, in both baseline, Fig. 4(a) and batched
Fig. 4(b) tests. The V100 GPU gives nearly 40% faster
runtimes on the 50B problem. However, the FPGA remains
more energy efficient for the same problem. For the 200×200
problem with 50B, it is nearly 2× more energy efficient than
the faster GPU run (see TABLE V). The FPGA operated at
an average 90W while the GPU power ranged from 77–240W.
Spatial blocking was significantly more challenging and the
resulting FPGA design, using a 6402 tile size was about 40%
slower than the GPU runtime (see Fig. 4(c)). However, the
FPGA was again more energy efficient, operating at an average
70W consuming about 40–50% less energy than the GPU
(operating at 180–216 W) as seen in TABLE V.

C. Reverse Time Migration (RTM) - Forward Pass

The final application we applied our development flow to
is the forward pass from a Reverse Time Migration (RTM)
solver [29]. The application represents algorithms of interest
from industry [30], going beyond simple single stencil loops.
It includes an iterative loop consisting of multiple stencil loops
as summarized in Algorithm 1. Y, T and K1..K4 are 3D
floating-point (SP) data arrays defined on the mesh consisting
of vector elements of size 6. Y holds current values and T
holds intermediate values, both updated with the fpml function

0.28 0.34 0.35
0.56

0.76

2.18

4.12

0.33 0.40
0.57

0.69
0.83

2.00

3.56

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

32x32x32 32x32x50 50x50x16 50x50x32 50x50x50 50x50x200 50x50x400

R
u

n
 t

im
e

(s
ec

o
n

d
s)

Mesh size - m x n

 FPGA FPGA - Pred GPU

(a) Baseline - 1800 iterations

0.0

0.5

1.0

1.5

2.0

2.5

32x32x32 32x32x50 50x50x16 50x50x32 50x50x50

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Mesh size - m x n

GPU - 40B FPGA - 40B

GPU - 20B FPGA - 20B

FPGA - Pred

(b) Batching - 180 iterations
Fig. 5: RTM performance

TABLE V: Jacobi-7pt-3D: Bandwidth (GB/s) and Energy(kJ)

Baseline (29k iters) and Batching (2.9k iters)

Mesh Baseline 10B 50B Energy-50B
FPGA GPU FPGA GPU FPGA GPU FPGA GPU

503 202 83 307 284 323 404 0.04 0.07
1003 301 284 378 434 387 469 0.27 0.51
2003 374 496 421 548 426 543 1.96 3.77
2503 391 559 431 585
3003 403 553 438 569

Spatial-blocking (120 iterations)

Mesh Tile Size BW Energy
FPGA GPU FPGA GPU

6003 256 233 392 0.062 0.106
512 281 0.051
640 292 0.049

1800× 1800× 100 256 247 363 0.088 0.143
512 270 0.080
640 273 0.079

which uses a 25-point, eighth order 3D stencil. K1..K4 is ac-
cessed/updated with a self-stencil (or zeroth-order, i.e. i, j, k).
ρ and µ are two 3D scalar coefficient meshes, which are also
accessed using a self-stencil. This application is significantly

Algorithm 1 RTM - Forward Pass

for i = 0, i < niter, i++ do
K1 = fpml(Y25pt, ρ, µ)× dt; T = Y +K1/2
K2 = fpml(T25pt, ρ, µ)× dt; T = Y +K2/2
K3 = fpml(T25pt, ρ, µ)× dt; T = Y +K3

K4 = fpml(T25pt, ρ, µ)× dt
Y = Y +K1/6 +K2/3 +K3/3 +K4/6

end for

more complex than the previous applications and pushes the
resource usage on the FPGA to its limits. Nevertheless our
design strategy is able to provide a good implementation,
albeit limited to a batched design. The number of stencil
loops was reduced by fusing the K1,K2, and K3 with the
corresponding T loop. The K4 and final Y update were
merged into one further loop, resulting in a total of 4 loops.
For an FPGA implementation, all the four fused loops needed
to be brought into a single pipeline. Intermediate data T and
K1...K4 were replaced with a FIFO stream connected through
window buffers. Similarly ρ, µ and Y were internally buffered
and fed to subsequent compute units. These optimizations
reduce the number of memory accesses to a single read and
write of Y and a single read each for ρ and µ. These are
significant savings compared to the original loop chain.

A limitation of the FPGA implementation is that the mesh
plane size (in this 3D application), is limited to 642 as it

uses 3D stencils on a 6 dimensional element (i.e. a vector
of 6 floats). Furthermore, partitioning four compute-intensive
kernels on the U280’s three SLR regions was a significant
challenge. Our implementation avoids spanning of a compute
unit on multiple SLRs to avoid inter SLR routing congestion,
by setting V to 1, allowing us to fit the four fused loops in one
SLR. This, then allows for an iterative loop unroll factor of 3
(p) given the three SLRs on the U280. We do note that using
more HBM channels could provide more bandwidth to obtain
a larger V , but we have not explored this in current work. A
solution for the limited mesh size is of course spatial blocking,
but it requires p = 4. This leads to a tile size dimension
M = 96 from (12) given D is 8, which requires a large amount
of FPGA internal memory, making an implementation on the
U280 challenging as the four fused loops will span across
SRLs. We leave this to future work.

TABLE VI: RTM - Avg. Bandwidth (GB/s) and Energy(kJ)

Baseline (1800 iters) and Batching (180 iters)

Mesh Baseline 20B 40B Energy-40B
FPGA GPU FPGA GPU FPGA GPU FPGA GPU

32× 32× 32 108 130 225 251 232 266 0.043 0.086
32× 32× 50 141 163 247 263 253 274 0.062 0.133
50× 50× 16 77 124 210 251 220 263 0.055 0.111
50× 50× 32 127 155 262 266 270 272 0.091 0.218
50× 50× 50 165 179 287 271 293 275 0.130 0.338

From the runtime results in Fig. 5 and bandwidth results in
TABLE VI we see that the FPGA implementation is either
matching or marginally better performing than the GPU. Note
that, given there are four stencil loops fused on the FPGA the
bandwidth reported is for the fused loop. The GPU bandwidth
therefore is the average for the full loop chain. The most
time consuming kernel, fpml on the GPU achieved around
180 GB/s, while the highest bandwidth achieved by a single
kernel is over 340GB/s. Again we see that the FPGA operates
at a lower average power (70W) than the GPU (51–170W)
consuming 2× less energy.

VI. CONCLUSIONS

In this paper we developed a unified workflow and a sup-
porting predictive analytic model for FPGA synthesis of
structured-mesh stencil applications that combines standard
state-of-the-art techniques with a number of high-gain opti-
mizations targeting features of real-world work loads. The
model allows estimation of design parameters, resource usage,

and performance for performant FPGA implementation. The
workflow was applied to three representative applications,
implemented on a Xilinx Alveo U280 FPGA. Performance was
compared to highly-optimized HPC-grade Nvidia V100 GPU
code. In most cases, the FPGA is able to match or improve on
GPU performance. However, even when runtime is inferior to
the GPU, significant energy savings, over 2× for the largest
application, are observed. Estimations produced by the model
were shown to be accurate and a good guide in the design
process. Future work will investigate how a similar workflow
can be applied to implicit solvers and further automating the
development of this class of application on FPGAs, including
alternative numerical representations. The FPGA and GPU
source code developed in this paper are available at [31].

ACKNOWLEDGMENT
Gihan Mudalige was supported by the Royal Society Industry Fel-
lowship Scheme (INF/R1/1800 12). István Reguly was supported by
National Research, Development and Innovation Fund of Hungary
(PD 124905), under the PD 17 funding scheme. We are grateful
to Jacques Du Toit and Tim Schmielau at NAG UK for the RTM
application and Xilinx for their hardware and software donation.

REFERENCES

[1] D. B. Cousins, K. Rohloff, and D. Sumorok, “Designing an FPGA-
accelerated homomorphic encryption co-processor,” IEEE Transactions
on Emerging Topics in Computing, vol. 5, no. 2, pp. 193–206, 2016.

[2] M. Owaida, D. Sidler, K. Kara, and G. Alonso, “Centaur: A framework
for hybrid CPU-FPGA databases,” in Proceedings of the IEEE Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2017, pp. 211–218.

[3] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie, and X. Zhou, “DLAU: A
scalable deep learning accelerator unit on FPGA,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 36,
no. 3, pp. 513–517, 2016.

[4] T. Becker, O. Mencer, S. Weston, and G. Gaydadjiev, “Maxeler data-flow
in computational finance,” in FPGA Based Accelerators for Financial
Applications, 2015, pp. 243–266.

[5] S. A. Fahmy, K. Vipin, and S. Shreejith, “Virtualized FPGA accelerators
for efficient cloud computing,” in Proceedings of the IEEE International
Conference on Cloud Computing Technology and Science (CloudCom),
2015, pp. 430–435.

[6] I. Z. Reguly, G. R. Mudalige, and M. B. Giles, “Loop tiling in large-scale
stencil codes at run-time with OPS,” IEEE Transactions on Parallel and
Distributed Systems, vol. 29, no. 4, pp. 873–886, April 2018.

[7] G. R. Mudalige, M. B. Giles, I. Z. Reguly, C. Bertolli, and P. H. J. Kelly,
“OP2: An active library framework for solving unstructured mesh-based
applications on multi-core and many-core architectures,” Proceedings of
Innovative Parallel Computing (InPar), 2012.

[8] P. Vincent, F. Witherden, B. Vermeire, J. S. Park, and A. Iyer, “To-
wards green aviation with Python at petascale,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2016.

[9] F. Luporini, M. Lange, M. Louboutin, N. Kukreja, J. Hückelheim,
C. Yount, P. Witte, P. H. J. Kelly, F. J. Herrmann, and G. J. Gorman,
“Architecture and performance of Devito, a system for automated
stencil computation,” Jul 2018, coRR arXiv:1807.03032. [Online].
Available: http://arxiv.org/abs/1807.03032

[10] H. Fu and R. G. Clapp, “Eliminating the memory bottleneck: An FPGA-
based solution for 3d reverse time migration,” in Proceedings of the
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, 2011, p. 65–74.

[11] P. Rawat, M. Kong, T. Henretty, J. Holewinski, K. Stock, L.-N. Pouchet,
J. Ramanujam, A. Rountev, and P. Sadayappan, “SDSLc: A multi-target
domain-specific compiler for stencil computations,” in Proceedings of
the International Workshop on Domain-Specific Languages and High-
Level Frameworks for High Performance Computing (WOLFHPC),
2015.

[12] H. M. Waidyasooriya, Y. Takei, S. Tatsumi, and M. Hariyama, “OpenCL-
based FPGA-platform for stencil computation and its optimization
methodology,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 5, pp. 1390–1402, 2017.

[13] Y. Chi, J. Cong, P. Wei, and P. Zhou, “SODA: Stencil with optimized
dataflow architecture,” in Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2018.

[14] H. R. Zohouri, A. Podobas, and S. Matsuoka, “Combined spatial and
temporal blocking for high-performance stencil computation on FPGAs
using OpenCL,” in Proceedings of the ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, 2018, pp. 153–162.

[15] H. R. Zohouri, A. Podobas, and S. Matsuoka, “High-performance high-
order stencil computation on FPGAs using OpenCL,” in Proceedings of
the IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), 2018, pp. 123–130.

[16] H. M. Waidyasooriya and M. Hariyama, “Multi-FPGA accelerator
architecture for stencil computation exploiting spacial and temporal
scalability,” IEEE Access, vol. 7, pp. 53 188–53 201, 2019.

[17] Y.-H. Lai, Y. Chi, Y. Hu, J. Wang, C. H. Yu, Y. Zhou, J. Cong, and
Z. Zhang, “HeteroCL: A multi-paradigm programming infrastructure
for software-defined reconfigurable computing,” in Proceedings of the
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, 2019, pp. 242–251.

[18] K. Dohi, K. Fukumoto, Y. Shibata, and K. Oguri, “Performance mod-
eling and optimization of 3d stencil computation on a stream-based
FPGA accelerator,” in Proceedings of the International Conference on
Reconfigurable Computing and FPGAs (ReConFig), 2013.

[19] G. Natale, G. Stramondo, P. Bressana, R. Cattaneo, D. Sciuto, and M. D.
Santambrogio, “A polyhedral model-based framework for dataflow im-
plementation on FPGA devices of iterative stencil loops,” in Proceedings
of the IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2016.

[20] K. Sano, Y. Hatsuda, and S. Yamamoto, “Multi-FPGA accelerator for
scalable stencil computation with constant memory bandwidth,” IEEE
Transactions on Parallel and Distributed Systems, vol. 25, no. 3, pp.
695–705, 2014.

[21] M. Shafiq, M. Pericàs, R. de la Cruz, M. Araya-Polo, N. Navarro, and
E. Ayguadé, “Exploiting memory customization in FPGA for 3D stencil
computations,” in Proceedings of the International Conference on Field-
Programmable Technology (FPT), 2009, pp. 38–45.

[22] M. Schmidt, M. Reichenbach, and D. Fey, “A generic VHDL template
for 2D stencil code applications on FPGAs,” in Proceedings of the IEEE
International Symposium on Object/Component/Service-Oriented Real-
Time Distributed Computing Workshops, 2012, pp. 180–187.

[23] K. Sano, Y. Hatsuda, and S. Yamamoto, “Scalable streaming-array of
simple soft-processors for stencil computations with constant memory-
bandwidth,” in Proceedings of the IEEE International Symposium on
Field-Programmable Custom Computing Machines, 2011, pp. 234–241.

[24] J. de Fine Licht, A. Kuster, T. D. Matteis, T. Ben-Nun, D. Hofer, and
T. Hoefler, “StencilFlow: mapping large stencil programs to distributed
spatial computing systems,” Oct 2020, coRR arXiv:2010.15218.
[Online]. Available: https://arxiv.org/abs/2010.15218

[25] B. Ronak and S. A. Fahmy, “Mapping for maximum performance on
FPGA DSP blocks,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 35, no. 4, pp. 573–585, 2015.

[26] “Xilinx - large fpga methodology guide,” 2012, https://www.xilinx.com/
support/documentation/sw manuals/xilinx14 7/ug872 largefpga.pdf.

[27] I. Z. Reguly, B. Moore, T. Schmielau, J. du Toit, and G. R. Mudalige,
“Batch solution of small PDEs with the OPS DSL,” in High Performance
Computing, M. Weiland, G. Juckeland, S. Alam, and H. Jagode, Eds.
Cham: Springer International Publishing, 2019, pp. 124–141.

[28] Alveo U280 data center accelerator card data sheet, Xilinx Inc., May
2020, v1.3.

[29] R. Clayton and B. Engquist, “Absorbing boundary conditions for acous-
tic and elastic wave equations,” Bulletin of the Seismological Society of
America, vol. 67, no. 6, pp. 1529–1540, 12 1977.

[30] “Discussions with the Numerical Algorithms Group, UK.” 2019-2020.
[31] “High-Level FPGA accelerator design for structured-mesh-based explicit

numerical solvers - GitHub Code Repository,” 2020, https://github.com/
Kamalavasan/StencilsOnFPGA.

