
Parallel Vertex Cover Algorithms on GPUs
Peter Yamout, Karim Barada, Adnan Jaljuli, Amer E. Mouawad, Izzat El Hajj

American University of Beirut, Lebanon

Abstract—Finding small vertex covers in a graph has appli-
cations in numerous domains such as scheduling, computational
biology, telecommunication networks, artificial intelligence, social
science, and many more. Two common formulations of the
problem include: Minimum Vertex Cover (MVC), which finds
the smallest vertex cover in a graph, and Parameterized Vertex
Cover (PVC), which finds a vertex cover whose size is less than
or equal to some parameter k. Algorithms for both formulations
involve traversing a search tree, which grows exponentially with
the size of the graph or the value of k.

Parallelizing the traversal of the vertex cover search tree
on GPUs is challenging for multiple reasons. First, the search
tree is a narrow binary tree which makes it difficult to extract
enough sub-trees to process in parallel to fully utilize the GPU’s
massively parallel execution resources. Second, the search tree is
highly imbalanced which makes load balancing across a massive
number of parallel GPU workers especially challenging. Third,
keeping around all the intermediate state needed to traverse
many sub-trees in parallel puts high pressure on the GPU’s
memory resources and may act as a limiting factor to parallelism.

To address these challenges, we propose an approach to
traverse the vertex cover search tree in parallel using GPUs while
handling dynamic load balancing. Each thread block traverses a
different sub-tree using a local stack, however, we use a global
worklist to balance the load to ensure that all blocks remain
busy. Blocks contribute branches of their sub-trees to the global
worklist on an as-needed basis, while blocks that finish their sub-
trees pick up new ones from the global worklist. We use degree
arrays to represent intermediate graphs so that the representation
is compact in memory to avoid limiting parallelism, but self-
contained which is necessary for the load balancing process.

Our evaluation shows that compared to approaches used in
prior work, our hybrid approach of using local stacks and a
global worklist substantially improves performance and reduces
load imbalance, especially on difficult instances of the problem.
Our implementations have been open sourced to enable further
research on parallel solutions to the vertex cover problem and
other similar problems involving parallel traversal of narrow and
highly imbalanced search trees.

I. INTRODUCTION

A vertex cover of a graph is a set of vertices whose
deletion from the graph (along with incident edges) induces an
edgeless graph. Finding small vertex covers is one of the most
famous problems in algorithmic graph theory and is among
the original 21 NP-complete problems introduced by Karp
in 1972 [1]. Finding small vertex covers has many applica-
tions in numerous domains such as scheduling, computational
biology, telecommunication networks, artificial intelligence,
social science, and many more [2], [3]. It is a problem that is
particularly well-studied from the view point of parameterized

This work is supported by the Mamdouha El-Sayed Bobst Deanship Fund
in the Faculty of Arts and Sciences at the American University of Beirut.

complexity [4], [5], kernelization [6], [7], approximation [8],
[9], exact exponential-time algorithms [10], [11], and heuris-
tics [12], [13].

We consider two common formulations of the problem:
MINIMIUM VERTEX COVER (MVC), which finds a vertex
cover with the smallest number of vertices, and PARAME-
TERIZED VERTEX COVER (PVC) which finds a vertex cover
with ≤ k vertices for a given integer k > 0. Most algorithms
for MVC and PVC traverse a binary tree to search for
vertex covers, following the branch-and-reduce paradigm, also
commonly known as branch-and-bound. At each node in the
tree, reduction rules are first applied, followed by a check if
a stopping criteria has been reached or if a solution has been
found. If neither is the case, the tree branches into two sub-
problems: one that removes the highest-degree vertex from the
graph and adds it to the solution, and another that removes the
neighbors of the highest-degree vertex from the graph and adds
them to the solution.

Parallelizing the traversal of the vertex cover search tree
on GPUs comes with many challenges. One challenge is
extracting enough parallelism to fully utilize the GPU. Prior
works [14], [15] divide the tree into sub-trees starting at
the same depth and distribute these sub-trees across thread
blocks. Since the search tree is narrow (binary), the sub-
trees need to start at a deep level to ensure that enough
parallelism is extracted. However, the deeper the starting level,
the higher the overhead incurred for reaching these sub-
trees due to redundancy [15] or grid launches and memory
consumption [14]. Another challenge is dealing with load
imbalance. Load imbalance is particularly challenging because
the vertex cover search tree is highly imbalanced, so sub-trees
have dramatically different sizes. Load imbalance on GPUs is
typically addressed by extracting even more parallelism than
the number of thread blocks that can run simultaneously to
allow for dynamic load balancing. Indeed, prior work [15]
extracts many more sub-trees than thread blocks for this
reason. However, the imbalance in the vertex cover search
tree is so high that one would need to start at very deep levels
to ensure adequate load balancing, thus further increasing
the overhead of reaching these sub-trees. A third challenge
is ensuring that memory does not become a limiting factor
for parallelism. As each thread block traverses a sub-tree, it
needs to reserve a large amount of memory to maintain the
intermediate traversal state. Hence, the memory capacity can
limit the number of thread blocks that can execute in parallel.

One way to address these challenges is to use a global
worklist that dynamically distributes work across thread blocks

ar
X

iv
:2

20
4.

10
40

2v
1

 [
cs

.D
C

]
 2

1
A

pr
 2

02
2

on a per-tree-node instead of a per-sub-tree basis. However,
such an approach would result in high contention on the queue
and an exponential explosion in the number of queue entries.
Instead, we propose a hybrid approach where each thread
block uses a local stack to traverse a sub-tree, but contributes
branches of its sub-tree to a global worklist as needed to ensure
that there is enough work to keep all thread blocks busy. This
hybrid approach extracts just enough parallelism to ensure
load balance without incurring the overhead of redundancy
or grid launches and memory capacity. We represent the
intermediate graphs using degree arrays to ensure that the
representation is compact so that memory consumption does
not limit parallelism, but at the same time self-contained so
that intermediate graphs can be shared across different thread
blocks in the load balancing process.

We implement CUDA kernels for solving both MVC and
PVC using our proposed approach and evaluate them on a
server-grade GPU. Our evaluation shows that compared to
the approach of distributing sub-trees starting at the same
depth across thread blocks, our hybrid approach substantially
improves performance and reduces load imbalance, especially
on difficult instances of the problem and on graphs with a high
average degree.

II. BACKGROUND

A. Vertex Cover

We assume a graph G = (V,E) that is finite, simple, and
undirected [16]. The neighborhood of a vertex v ∈ V (G) is the
set of vertices adjacent to v, denoted by NG(v). The degree
of a vertex v ∈ V (G) is the number of edges incident on
v, denoted by dG(v). The subscript G will be dropped when
clear from the context. The maximum degree in G is denoted
by ∆(G). Given a set of vertices S ⊆ V (G), the subgraph
induced by S is denoted by G[S]. G − v and G − S denote
G[V (G) \ {v}] and G[V (G) \ S], respectively.

A set S ⊆ V (G) is a vertex cover for G, if for every edge
uv ∈ E(G), we have {u, v} ∩ S 6= ∅. Alternatively, one can
view a vertex cover as a set of vertices whose deletion from the
graph (along with incident edges) induces an edgeless graph.
A vertex cover S is a minimum vertex cover for G if there is
no vertex cover S′ for G such that |S′| < |S|.

We consider two common formulations of the problem
of finding small vertex covers in graphs. One formulation
is MINIMIUM VERTEX COVER (MVC) which aims to find
the minimum vertex cover S of G. Another formulation is
PARAMETERIZED VERTEX COVER (PVC) which, for a given
integer k > 0, aims to find a vertex cover S of G such that
|S| ≤ k, if such a vertex cover exists. When k is larger than
(or equal to) the size of a minimum vertex cover, PVC tends
to be “faster” than MVC because the search terminates as
soon as a solution of size k or less is found, in contrast with
MVC where the search continues exploring the solution space
to guarantee that no smaller solution exists.

1 Let best = APPROX MVC(G)
2
3 function MVC(G,S)
4 (G,S) = reduce(G,S)
5 if |S| ≥ best ∨ |E(G)| > (best− |S| − 1)2

6 // No MVC on this branch (do nothing)
7 else if |E(G)| == 0 // New MVC found
8 best = min(|S|, best)
9 else // Vertex cover not found, need to branch

10 Let vmax ∈ {u ∈ V (G) | d(u) = ∆(G)}
11 MVC(G− vmax, S ∪ {vmax})
12 MVC(G−N(vmax), S ∪N(vmax))
13
14 function reduce(G,S)
15 do
16 graphHasChanged = false
17 while ∃v s.t. d(v) = 1
18 G = G−N(v)
19 S = S ∪N(v)
20 graphHasChanged = true
21 while ∃v s.t. N(v) = {u,w} ∧ uw ∈ E(G)
22 G = G−N(v)
23 S = S ∪ {u,w}
24 graphHasChanged = true
25 while ∃v s.t. d(v) > best− |S| − 1
26 G = G− v
27 S = S ∪ {v}
28 graphHasChanged = true
29 while graphHasChanged
30 return (G,S)

Fig. 1. The serial algorithm for MINIMUM VERTEX COVER. Initially S = ∅
and we assume that the graph has at least one edge, i.e., |E(G)| ≥ 1.

B. Algorithms for Finding Vertex Covers

Most algorithms for MVC and PVC follow the well-known
branch-and-reduce paradigm [11]. A branch-and-reduce al-
gorithm searches the complete solution space of a given
problem by branching, i.e., making decisions and solving
smaller sub-problems. Due to the exponentially increasing
number of potential solutions, the solution space is pruned
using reduction rules derived from bounds on the function to
be optimized and/or the value of the current best solution.
At the implementation level, branch-and-reduce algorithms
translate to search-tree-based algorithms. The search tree size
usually grows exponentially with either the size of the input
or, in the parameterized version, the value of the parameter k.

Figure 1 shows a branch-and-reduce algorithm for solving
the MVC problem by traversing the vertex cover search tree.
Figure 2 shows the tree traversed for an example graph
(reduction rules are not applied in the example to keep the
example small). The search tree is binary, branching into two
sub-problems at every node in the tree. When visiting a node,
the reduction rules are first applied (line 4, described later).
Next, a stopping condition is checked to see if the search
should stop or if it is still possible to find a better solution
at this node or its descendants (line 5, described later). If it
is possible, the algorithm checks if it has already arrived at a

a b

c

d e

a b

c

d e

a b

c

d e

a b

c

d e

a b

c

d e

b

c

d

a b

c

d e

a b

c

d e

S={a,b,d,e}, |S|=4

S={b,c,d}, |S|=3

S={a,c,e}, |S|=3 S={a,b,c,d}, |S|=4

Level 0

Level 1

Level 2

Level 3

Vertex

Vertex with max degree

Deleted vertex

Edge

Deleted edge

Fig. 2. Example of Vertex Cover Search Tree

vertex cover (line 7) and updates the best solution accordingly
(line 8). If it has not arrived at a vertex cover, then it needs
to branch. A vertex in the graph is selected as the basis for
branching, which is typically the vertex of highest degree
denoted by vmax (line 10). One branch removes vmax from
the graph and adds it to the solution, while the other branch
removes all the neighbors of vmax from the graph and adds
them to the solution. The MVC function is called recursively
to try and find a solution on each branch.

To initialize best (line 1), the minimum vertex cover is
approximated using a greedy algorithm. The algorithm applies
all reduction rules to the graph, removes the largest degree
vertex from the graph (hence adding it to a solution), and
repeats this process until a vertex cover is found.

The reduction rules applied are the degree-one reduction
rule, the degree-two-triangle reduction rule, and the high-
degree reduction rule. The rules are repeatedly applied until
the graph stops changing. The degree-one reduction rule (lines
17-19) states that for any vertex v of degree one, either v or
its neighbor u need to be in a solution to cover the edge uv. It
is always at least as good to include u as to include v because
u may have other incident edges that would also be covered.
For the degree-two-triangle reduction rule (lines 21-23), if G
contains a vertex v such that N(v) = {u,w} and uw ∈ E(G)
(i.e., u, v, and w form a triangle), then two of the three vertices
are needed to cover all the edges in the triangle. It is always
at least as good to include u and w as to include only one of
them and v because u and w may have other incident edges
that would also be covered. Finally, the high-degree rule states
that whenever a vertex v is found whose degree is greater than
best−|S|−1, then adding all the neighbors of v to S can never
achieve a solution better than best. Therefore, v is added to
the solution.

The stopping condition (line 5) identifies if it is possible to

find a solution at a node in the tree or its descendants. The
condition deems it impossible in one of two sub-conditions.
The first sub-condition is if the number of vertices added to a
solution so far already exceeds best. The second sub-condition
is based on the observation that the high-degree reduction rule
has already removed all vertices with degree > best−|S|−1.
Hence, the remaining vertices have degree at most best−|S|−
1. Moreover, finding a solution better than best would entail
including no more than best − |S| − 1 vertices. Hence, the
maximum number of edges that can be covered to find such a
solution is (best− |S| − 1)2. If the graph has more than that
number of edges, then it is impossible to find a better solution
on that branch.

As for the PVC problem, we omit the pseudocode for space
constraints because it is largely similar to the pseudocode for
MVC in Figure 1 with a few differences. For the high-degree
reduction rule, k − |S| is used instead of best − |S| − 1 for
comparison. For the stopping condition, the number of deleted
vertices is compared to the parameter k instead of best, and
the number of edges is compared to (k − |S|)2 instead of
(best − |S| − 1)2. When a vertex cover is found that does
not exceed k, rather than updating best and continuing, the
search is ended.

III. CHALLENGES

Parallelizing the traversal of the vertex cover search tree on
GPUs comes with numerous challenges. We discuss some of
these challenges in this section and discuss how prior work
has addressed them.

A. Challenge #1: Extracting Massive Parallelism

GPUs are massively parallel processors which require thou-
sands of threads to fully utilize their computational resources.
Hence, one must be able to extract many units of independent
work from an application to parallelize the application on the
GPU effectively. The typical way of extracting parallelism
from a search tree traversal is by traversing independent sub-
trees in parallel. For some graph applications that require
search tree traversal [17], [18], the search tree is wide be-
cause the branching factor is large, which means that enough
independent sub-trees can be extracted at the first or second
level of the tree. However, the vertex cover search tree is a
narrow binary tree, which means that enough parallelism is
not available until deeper levels of the tree.

Prior work on accelerating vertex cover on GPUs [14], [15]
consider a specific depth of the tree as the starting level, and
treat all sub-trees starting at that level as independent units of
parallelism. Sub-trees are distributed across thread blocks and
each thread block traverses its sub-tree in a depth-first manner.
This approach is illustrated in Figure 3. To reach the sub-
trees, one approach [14] is to consecutively launch a separate
grid for each level until the starting level is reached. However,
this approach requires launching multiple grids and storing the
state of all the initial sub-trees simultaneously. The deeper the
starting level, the more the grid launches needed and the more
the memory needed to store the state of the initial sub-trees.

TB0 TB1 TB2 TB3 TB4 TB5 TB6 TB7

Fig. 3. Traversing Sub-trees in Parallel by Different Thread Blocks

Hence, there is a trade-off between the amount of parallelism
extracted, and the grid launch and memory capacity overhead
incurred by the extraction process. Another approach [15] is
for each thread block to make its way down to its sub-tree
from the root. However, this approach causes thread blocks
assigned to nearby sub-trees to take redundant steps to arrive
to their sub-trees. For example, TB0 and TB1 in Figure 3 both
visit the same tree nodes in the first three levels. The deeper
the starting level, the more the redundant work performed by
different thread blocks. Hence, there is a trade-off between the
amount of parallelism extracted and the amount of redundant
work performed.

B. Challenge #2: Load Balancing

The massively parallel nature of GPUs makes them particu-
larly sensitive to load imbalance. This sensitivity is especially
challenging for the vertex cover problem. The vertex cover
search tree is highly imbalanced because whenever the tree
branches, one branch removes a single high-degree vertex from
the graph whereas the other branch removes all the neighbors
of that high-degree vertex; hence, the latter branch is likely to
exceed the current minimum and terminate sooner. Because the
search tree is imbalanced, prior work’s approach of extracting
parallelism via sub-trees starting at the same level leads to
high load imbalance. For example, in Figure 3, TB0 receives
a large sub-tree, TB5 only receives a single node, and TB7
does not even have a sub-tree to traverse.

One way to mitigate load imbalance on GPUs is to extract
more units of independent work than the number of workers
that can execute simultaneously such that there is enough
work available for dynamic load balancing. For prior work,
this would mean starting at a lower level in the search tree
where there are many more sub-trees available than the number
of thread blocks that can execute simultaneously. However,
we have seen that starting at a deeper level in the tree
could result in higher grid launch and memory overhead
in one approach [14] or more redundant work in another
approach [15].

C. Challenge #3: Memory as a Limiting Factor to Parallelism

GPUs have a relatively small memory capacity (compared
to CPUs) while at the same time placing higher pressure on

the memory capacity because of their massive parallelism.
Memory capacity on the GPU can be a limiting factor for
parallelism in two ways. First, the global memory capacity
can limit the number of threads or thread blocks that can run
simultaneously on the GPU if these threads or thread blocks
require a large amount of global memory to store intermediate
execution state. Second, the shared memory capacity per
streaming multiprocessor (SM) can limit the occupancy of
threads on the SM if a large amount of shared memory is
required to store frequently accessed data. Both of these limits
are encountered when traversing the vertex cover search tree.

For a thread block to traverse a sub-tree of the vertex
cover search tree, it needs to manage a stack that stores the
intermediate graph (a sub-graph with the solution vertices
removed) at each level of the sub-tree. An explicitly managed
stack is used instead of recursion because different threads in
a block all need to access the same intermediate graph. Due to
the expensive nature of dynamic memory allocation on GPUs,
it is inefficient to grow the memory allocated for this stack
dynamically. Instead, a stack for each thread block is pre-
allocated in global memory and provisioned for the maximum
possible depth that the tree can reach. Since GPUs execute
many thread blocks at a time, enough memory needs to be
available to support all the maximally-provisioned stacks for
all the thread blocks simultaneously. These stacks grow with
the size of the graph, which can make the global memory
capacity a limiting factor for parallelism for large graphs.

When a thread block visits a node in its sub-tree, it
frequently accesses the intermediate graph at that node. As an
optimization, the intermediate graph can be placed in shared
memory for fast access. However, placing the intermediate
graph in shared memory can make the shared memory capacity
a limiting factor for occupancy for large graphs. These global
and shared memory capacity limits make efficient memory
management an important challenge when parallelizing the
traversal of the vertex cover search tree on GPUs.

IV. PARALLELIZING VERTEX COVER ON GPUS

A. Hybrid Traversal Approach using a Global Worklist

One way to address the challenges mentioned in Section III
is by using a global worklist. Rather than assigning thread
blocks to entire sub-trees, a thread block can be assigned
to a single node in the tree. Upon branching, the thread
block could add its node’s children to a global worklist where
other thread blocks can pick them up and process them. This
approach substantially increases the amount of parallelism
extracted from the traversal because it treats each tree node
as a unit of parallelism as opposed to entire sub-trees. It
also substantially reduces load imbalance because tree nodes
are more similar to each other in load than entire sub-trees,
and there is more of them to go around for dynamic load
balancing. Additionally, a global worklist obviates the need
for each thread block to maintain a local stack, which reduces
the pressure on the global memory capacity. However, using a
global worklist has two major drawbacks. The first drawback
is that it converts the depth-first traversal of the search tree

into a breadth-first traversal, which results in an exponential
explosion of the number of tree nodes that need to be added to
the global worklist, quickly exceeding the worklist’s capacity.
The second drawback is that it creates a high amount of
contention between thread blocks when accessing the global
worklist, which becomes a serialization point in the program.

To reap the benefits of global worklists while mitigating
their drawbacks, we propose a hybrid approach. In our ap-
proach, each thread block traverses a sub-tree in depth-first
order while keeping track of its intermediate state using a
local stack (stored in global memory). However, every time
a thread block branches from a tree node, it first checks the
global worklist. If the number of entries in the global worklist
is below a certain threshold, the thread block will add one of its
node’s children to the global worklist and move to process the
other child. Otherwise, if the number of entries in the global
worklist exceeds the threshold, the thread block will push its
node’s child to its local stack and move to process the other
child. When the thread block reaches the bottom of the tree
and needs to find more work to do, it first attempts to pop
a tree node from its local stack. If the local stack is empty,
the thread block will then take a tree node from the global
worklist and begin to traverse the sub-tree rooted at that node.

This hybrid approach of using both a global worklist and
per-block local stacks captures the advantages of the two
individual approaches. On the one hand, using a global work-
list helps extract more parallelism from the computation and
performs better dynamic load balancing. On the other hand,
using the local stacks when the global worklist is sufficiently
full prevents the exponential explosion of the number of tree
nodes to be added to the global worklist. It also reduces
contention on the global worklist since thread blocks will only
add to the global worklist if it contains a small number of
elements, and will always try to remove work from their local
stacks before trying to remove from the global worklist.

Figure 4 shows the pseudocode for MINIMUM VERTEX
COVER using our hybrid approach with a global worklist and
per-block local stacks. Initially, all stacks are empty and the
global worklist contains the root node of the tree. Each thread
block first tries to pop work from its local stack (lines 5-6). If
unsuccessful, the thread block tries to get work from the global
worklist (lines 7-8). If the worklist indicates that the traversal
is done (see Section IV-C), then the block terminates (lines
9-10). If the block is successful at obtaining a tree node from
its local stack or the global worklist, then it starts by reducing
the intermediate graph at that tree node (line 11). Next, it
checks the stopping condition to see if it is still possible to
find a solution on this branch (line 12, see Section II-B). If
not possible, it sets a flag to obtain a new tree node from the
stack or the global worklist on the next iteration. If it is still
possible to find a solution, the block checks if it has already
found a solution at the current tree node (line 17), and if yes,
it atomically updates the current best solution size (line 18). It
also sets a flag to obtain a new tree node from the stack or the
global worklist on the next iteration (line 19). If the block has
not found a solution yet then it needs to branch (line 20). The

1 function MVC(worklist, stack)
2 getNewTreeNodeNextItr = true
3 do
4 if getNewTreeNodeNextItr
5 if !stack.empty()
6 (G,S) = stack.pop()
7 else
8 ((G,S), done) = worklist.remove()
9 if done

10 break
11 (G,S) = reduce(G,S)
12 if |S| ≥ best ∨ |E(G)| > (best− |S| − 1)2

13 // No MVC on this branch
14 getNewTreeNodeNextItr = true
15 else
16 Let vmax ∈ {u ∈ V (G) | d(u) = ∆(G)}
17 if d(vmax) == 0 // New MVC found
18 best = min(best, |S|)
19 getNewTreeNodeNextItr = true
20 else // Need to branch
21 G′ = G−N(vmax)
22 S′ = S ∪N(vmax)
23 if worklist.numEntries ≥ threshold
24 stack.push(G′, S′)
25 else
26 worklist.add(G′, S′)
27 G = G− {vmax}
28 S = S ∪ {vmax}
29 getNewTreeNodeNextItr = false
30 while(true)

Fig. 4. Minimum Vertex Cover using a Hybrid Approach with a Global
Worklist and Per-block Local Stacks

block sets up one of the child nodes by removing the neighbors
of the max-degree vertex from the graph and adding them to
the vertex cover (lines 21-22). If the worklist is sufficiently full
(line 23), the child is pushed to the stack (line 24), otherwise
it is added to the worklist (lines 25-26). The thread block then
sets up the other child node by removing just the max-degree
vertex from the graph and adding it to the vertex cover (lines
27-28). The block will proceed to process this child node on
the next iteration, so it sets a flag that it does not need to
obtain a new tree node from the stack or the global worklist
on the next iteration.

For space constraints, we omit the pseudocode for PVC
which is largely similar to that of MVC in Figure 4 with
a few differences. The differences in the stopping condition
are already described in Section II-B. Another difference is
that when we find a vertex cover whose size does not exceed
k, rather than updating best and continuing, we set a flag
telling other blocks that a vertex cover has been found and
we terminate. We also add a condition at the beginning of the
loop (before line 4) where blocks check the flag and terminate
if a vertex cover has been found before picking up another tree
node to work on.

With this hybrid approach, we have tackled the first two
challenges described in Section III, namely extracting massive

parallelism and load imbalance. However, we are still using a
local stack per thread block so the third challenge of memory
as a limiting factor to parallelism remains. We address this
challenge in upcoming sections.

B. Graph Representation and Operations

The original graph is represented using the commonly used
Compressed Sparse Row (CSR) format [19]. This representa-
tion is compact, requiring O(|V |+|E|) memory. It also makes
it easy to access the incident edges and neighbors of a given
vertex. A single copy of the CSR graph representation exists
and is accessed by all thread blocks and never modified.

The intermediate graphs which are stored in the local stacks
and the global worklist are not represented using CSR. One
reason is that the CSR format is expensive to modify which
makes it inconvenient for removing vertices and edges from
the graph. Another reason is that the CSR format would make
the local stacks and global worklist require too much memory,
even with O(|V | + |E|) memory consumption. Recall from
Section III-C that efficient memory management is critical to
be able to support large graphs.

Instead of using CSR, the intermediate graphs along with
the set of removed vertices ((G,S) in Figure 4) are jointly
represented using just a degree array. The degree array is
an array with one element per original vertex that stores the
degree of the vertex if the vertex is still in the graph, or a
sentinel value if the vertex has been removed from the graph
and added to the solution |S|. The degree array representation
has been used to represent intermediate graphs when searching
for vertex covers [14], [20]. It is particularly useful in our
implementation for two reasons. The first reason is that the
array only consumesO(|V |) memory which limits the memory
consumption of the local stacks and global worklist. The
second reason is that when combined with the original graph,
it is sufficient to represent the updated graph without any
other information. This property is important for dynamic load
balancing because we need to be able to put (G,S) in the
global worklist where any other thread block can pick it up,
so (G,S) must be self-contained.

Operations on the intermediate graph in Figure 4 are per-
formed in parallel via collaboration between the threads within
the block. Applying the reduction rules (line 11) is discussed
separately in Section IV-D. To find the vertex with maximum
degree (line 16), a parallel reduction tree is performed on the
degree array. To remove a single vertex from the graph and
add it to the solution (lines 27-28), the vertex’s degree is set
to a sentinel value by one thread and the vertex’s neighbors
are distributed across the threads to decrement their degrees
in parallel. To remove the neighbors of a single vertex from
the graph and add them to the solution (lines 21-22), the
vertex’s neighbors are distributed across the threads. For each
neighbor, a thread will iterate over the neighbor’s neighbors
and atomically decrement their degrees, then set the degree
of the neighbor to a sentinel value. To find the number of
vertices in the solution (|S| on lines 12 and 18), a reduction
tree could be performed over the degree array to count the

number of sentinel values. However, as an optimization, we
store an additional counter with the degree array that tracks the
number of deleted vertices, and update that counter whenever
we delete a vertex.

C. Implementation of the Global Worklist

We implement the global worklist using the Broker Work
Distributor (BWD) [21] which is a state-of-the-art worklist
data structure for dynamic work distribution. We make one
modification to the BWD data structure to support our algo-
rithm. By design, if the worklist is empty, BWD returns that it
cannot remove any elements from the worklist. The worklist is
considered empty if all blocks that have added or committed to
add an entry have corresponding blocks that have committed to
remove an entry. However, the worklist may be empty in one
of two situations. The first situation is where some blocks are
still executing and may commit to add entries to the worklist
in the future. In this situation, we would like to keep checking
the worklist until the new work arrives. The second situation
is where no blocks are executing and they are all trying to
remove work from the empty worklist. In this situation, we
can expect that no blocks will commit to add work in the
future, which means that the work is done and we can safely
terminate.

To handle these two situations, we wrap the BWD function
for removing worklist entries in a loop. Each iteration of the
loop first attempts to remove an entry from the worklist. If it
succeeds, we return this entry so the block can process it. If it
fails, we atomically check if the worklist is empty and if the
number of thread blocks trying to remove from the worklist
is all the thread blocks in the grid. If the check succeeds, we
return that we are done so the block can exit (lines 9-10 in
Figure 4). In the parameterized version, we also check the flag
that indicates that a vertex cover has been found. If the flag is
set, then we return that we are done. If we are not done, then
we let the thread block sleep for some time then go back to
the beginning of the loop and repeat the process.

D. Reduction Rules

When a thread block visits a tree node, it applies the three
reduction rules (degree-one, degree-two-triangle, and high-
degree) described in Section II-B until the graph no longer
changes. Each rule is executed in parallel by all the threads
in the block, so care must be exercised when implementing
them in parallel. For the degree-one rule, different threads
find different degree-one vertices simultaneously. However,
different degree-one vertices may have a common neighbor
so care is exercised to ensure that the neighbor is removed
only once. Moreover, two threads may simultaneously find two
degree-one vertices that are neighbors of each others, so only
one of the two vertices is removed (the one with the smaller
vertex ID), not both. For the degree-two-triangle rule, different
threads find different degree-two vertices simultaneously and
check if they are part of a triangle. However, different degree-
two vertices may participate in the same triangle, so the
neighbors of only one of these vertices (the one with the

smaller vertex ID) are removed. We handle all these cases
in our parallel implementation of the reduction rules.

E. Memory Management

Recall from Section III-C that efficient memory manage-
ment is critical for supporting large graphs. The total amount
of global memory needed for storing all the per-block local
stacks is dependent on three factors: the size of a stack entry
(i.e., size of the intermediate graph), the number of stack
entries per stack (i.e., maximum depth of the search tree),
and the number of stacks (i.e., number of thread blocks). We
have already seen in Section IV-B that we limit the size of
a stack entry by representing the intermediate graph using
a degree array which requires O(|V |) space. To limit the
number of stack entries per stack, we run the greedy algorithm
to approximate the minimum vertex cover on the CPU (see
Section II-B) and use the approximation as the limit on the
stack depth when starting the GPU kernel since no thread
block will ever go deeper in the tree than the size of this
minimum. In the parameterized version, the parameter k is
used as the bound. To limit the number of stacks, we must limit
the number of thread blocks as the size of the graph gets larger.
To limit the number of thread blocks while maintaining the
total number of threads needed to achieve the highest device
occupancy, we must use a large number of threads per block.
Hence, the number of threads per block must be carefully
selected based on the size of the graph to ensure that the
highest device occupancy is achieved for large graphs.

As for shared memory, shared memory is primarily used
for each thread block to store the intermediate graph for the
tree node it is currently working on. The total amount of
shared memory needed per SM depends on two factors: the
amount of shared memory needed per block (i.e., the size of
the intermediate graph) and the number of blocks per SM. We
have already seen that we limit the size of the intermediate
graph by using a degree array to represent it which requires
O(|V |) space. To limit the number of thread blocks per
SM while maintaining the total threads needed to achieve
maximum SM occupancy, we must use a large number of
threads per block. Hence, the choice of the number of threads
per block not only considers the impact of the global memory
capacity on the number of blocks that can run concurrently on
the device, but also the impact of the shared memory capacity
on the number of blocks that can run concurrently per SM.

To satisfy these constraints while maximizing occupancy,
we select then number of threads per block as follows. We
determine an upper-limit on the number of threads per block
based on the hardware limit on the block size and |V (G)|,
whichever is smaller. We use |V (G)| as an upper-limit because
it is not useful to have more threads in the block than the
number of vertices in the graph because these threads will not
perform any work. We also determine a lower-limit on the
number of threads per block based on the desired number of
threads to achieve full occupancy and the upper-limit on num-
ber of blocks that can run simultaneously. The upper-limit on
the number of blocks is the minimum of the following limits:

the hardware limit on the number of simultaneous blocks, the
shared memory limit on the number of simultaneous blocks,
and the global memory limit on number of simultaneous
blocks (i.e., number of stacks that can be stored). If the lower-
limit is less than the upper-limit, we select a thread block size
within the range that is a power of two. If the lower-limit is
greater than the upper-limit, then it is impossible to achieve
full occupancy. In this case, we select the upper-limit as the
thread block size and let the kernel execute without achieving
full occupancy. In practice, the shared memory capacity tends
to be more restrictive than the global memory capacity for
most graphs. For this reason, we provide two versions of each
kernel, one that uses shared memory to store the intermediate
graph that the block is currently working on, and one that uses
global memory to store the intermediate graph. If the lower-
limit is too high because of the shared memory constraint,
we relax the shared memory constraint by falling back on
the kernel that uses global memory to store the intermediate
graph.

V. EVALUATION

A. Methodology

We implement and evaluate three different code versions:
• Sequential: This implementation executes on a single

CPU thread. The objective of evaluating this implemen-
tation is just for reference. A fair comparison to CPUs
would entail comparing to a parallel CPU implementa-
tion, but this is not the aim of our work. Our work aims
to show how the vertex cover search tree traversal can be
parallelized using GPUs.

• StackOnly: This implementation parallelizes sub-trees
starting at a specific level across thread blocks. Each
thread block makes its way down to its sub-tree from the
root then proceeds to traverse its sub-tree using a per-
block local stack, similar to what prior work does [15].

• Hybrid: This implementation uses the hybrid approach
that leverages per-block local stacks as well as a global
worklist to assist with dynamic load balancing.

For a fair comparison, all the versions use the same data
structure, apply the same reduction rules, and use the same
strategy to compute an approximate minimum on the CPU
before traversing the search tree.

We implement our code using C++ and CUDA. The CPU
implementation is evaluated on an AMD EPYC 7551P CPU
with 64GB of main memory. The GPU implementations are
evaluated on a Volta V100 GPU with 32GB of device memory.

For the StackOnly and Hybrid implementations, we follow
the strategy described in Section IV-E to select between the
shared memory and global memory kernels and to select
the number of threads per block (block size). The shared
memory kernel is selected for all high-degree graphs (small
|V |) and the global memory kernel is selected for all low-
degree graphs (large |V |). If multiple block sizes are possible,
we try them all and report the best result. However, one can
still obtain performance benefits without selecting the best

TABLE I
EXECUTION TIME (IN SECONDS)

Graph |V | |E| |E|
|V |

MVC PVC
k = min – 1 k = min k = min + 1

Sequential StackOnly Hybrid Sequential StackOnly Hybrid Sequential StackOnly Hybrid Sequential StackOnly Hybrid

H
ig

h
de

gr
ee

p hat 300 1 [22] 300 33917 113 0.138 0.780 0.021 0.140 0.782 0.023 0.031 0.021 0.016 0.028 0.001 0.003
p hat 300 2 [22] 300 22922 76 1.262 15.681 0.029 1.266 15.714 0.029 0.016 0.021 0.016 0.016 0.010 0.016
p hat 300 3 [22] 300 11460 38 200.990 2,197.583 1.657 193.597 2,199.056 1.658 0.047 0.528 0.056 0.006 0.005 0.008
p hat 500 1 [22] 500 93181 186 1.150 7.787 0.092 1.456 7.823 0.090 0.146 0.145 0.019 0.139 0.006 0.007
p hat 500 2 [22] 500 61804 124 102.553 1,541.506 1.558 100.602 1,542.344 1.559 0.069 0.122 0.101 0.072 0.036 0.070
p hat 500 3 [22] 500 30950 62 > 2 hrs > 2 hrs 1,018.898 > 2 hrs > 2 hrs 1,027.504 2.480 928.941 25.636 0.022 0.083 0.095
p hat 700 1 [22] 700 183651 262 4.838 31.245 0.238 8.054 31.200 0.178 0.672 0.584 0.188 0.409 0.593 0.075
p hat 700 2 [22] 700 122922 176 1,949.591 > 2 hrs 31.241 1,833.827 > 2 hrs 31.507 2.903 42.947 0.243 0.221 0.060 0.074
p hat 1000 1 [22] 1000 377247 377 58.056 495.296 1.400 63.104 495.099 1.397 1.456 5.099 0.135 1.151 0.043 0.017
p hat 1000 2 [22] 1000 254701 255 > 2 hrs > 2 hrs 4,527.601 > 2 hrs > 2 hrs 4,596.877 1.263 8.128 4.099 0.627 0.902 0.939
movielens-100k rating [23] 2625 94834 36 4.906 0.115 0.132 4.840 0.114 0.133 0.012 0.019 0.023 0.012 0.019 0.023
wikipedia link lo [23] 3811 83029 22 > 2 hrs > 2 hrs 387.628 > 2 hrs > 2 hrs 421.803 > 2 hrs 0.031 0.045 0.020 0.030 0.047
wikipedia link csb [23] 5561 187269 34 0.372 39.227 0.034 0.151 39.147 0.035 0.158 0.007 0.007 0.107 0.007 0.006

L
ow

de
gr

ee US power grid [23] 4942 6594 1.33 145.574 1.518 0.852 141.734 1.531 0.853 0.002 0.001 0.001 0.002 0.001 0.001
LastFM Asia [24] 7624 27806 3.65 83.389 4.345 0.939 81.894 4.395 1.052 0.005 0.009 0.005 0.005 0.008 0.005
Sister Cities [23] 14275 20573 1.44 5.634 2.850 0.106 5.526 2.853 0.116 0.004 0.005 0.002 0.004 0.005 0.003
vc-exact 023 [25] 27718 133665 4.82 > 2 hrs > 2 hrs >2 hrs > 2 hrs > 2 hrs > 2 hrs 1.539 0.898 0.878 1.537 0.898 0.881
vc-exact 009 [25] 38453 174645 4.54 > 2 hrs > 2 hrs > 2 hrs > 2 hrs > 2 hrs > 2 hrs 2.883 1.605 1.651 2.878 1.605 1.642

block size. Sub-optimal selection of the block size would cause
a geometric mean slowdown of 1.55× in the average case and
2.40× in the worst case for the StackOnly implementation,
and 1.39× in the average case and 1.80× in the worst case for
the Hybrid implementation. Hence, the Hybrid implementation
is more robust than the StackOnly implementation to a sub-
optimal selection of block size, and the slowdown of a sub-
optimal selection is within the speedup margins reported in
our evaluation.

For the StackOnly implementation, to select the starting
depth, we try three different depth values (8, 12, and 16) and
report the best result. Sub-optimal selection of the starting
depth would result in a geometric mean slowdown of 1.18×
in the average case and 1.37× in the worst case.

For the Hybrid implementation, we try global worklist sizes
of 128K, 256K, and 512K entries, and threshold values of
0.25×, 0.5×, 0.75×, and 1.0× the worklist size and report
the best result. Sub-optimal selection of the worklist size
and threshold would result in a geometric mean slowdown of
1.18× in the average case and 1.32× in the worst case, which
is within the speedup margins reported in our evaluation.

B. Performance

Table I shows the execution time of each implementation for
four different instances of the problem (MVC, PVC with k =
min−1, PVC with k = min, PVC with k = min+1) across a
wide range of graphs obtained from popular collections [22]–
[25]. We take the edge complements of graphs in the DIMACS
collection [22] like in prior work [15]. Table II shows the
speedup of the Hybrid implementation over the StackOnly
implementation and the CPU implementation (Sequential) for
the four instances, aggregated across two categories of graphs:
graphs with high average degree (denoted as high-degree)
and graphs with low average degree (denoted as low-degree).
Based on these results, we make three key observations.

The first observation is that the Hybrid implementation sub-
stantially outperforms the StackOnly implementation on high-
degree graphs, while having moderate performance advantage
on low-degree graphs. Recall from Section III-B that the vertex
cover search tree is imbalanced because whenever the tree
branches, one branch removes a single high-degree vertex from
the graph whereas the other branch removes all the neighbors

TABLE II
AGGREGATE SPEEDUP (GEOMETRIC MEAN)

Category
Speedup of Hybrid over StackOnly Speedup of Hybrid over Sequential

MVC PVC MVC PVC
k=min–1 k=min k=min+1 k=min–1 k=min k=min+1

High-degree 167.1× 171.3× 4.2× 0.9× 30.0× 30.1× 1.8× 2.4×
Low-degree 6.1× 5.7× 1.2× 1.2× 93.1× 85.0× 1.5× 1.5×
Overall 72.9× 73.1× 3.0× 1.0× 39.0× 38.2× 1.7× 2.1×

of that high-degree vertex. The higher the average degree of
the graph, the higher the disparity in how many vertices are
removed by each branch on average, and therefore, the more
imbalanced the search tree is likely to be. Since high-degree
graphs are likely to have more imbalanced search trees, they
are likely to benefit more from the load balancing that the
Hybrid implementation provides.

The second observation is that the Hybrid implementation
substantially outperforms the StackOnly implementation on
the difficult instances with long run-times (MVC and PVC
with k = min− 1), while having comparable performance on
the easier instances with short run-times (PVC with k = min
and k = min + 1). PVC with k = min and PVC with
k = min + 1 stop as soon as a solution is found on
one branch of their search trees, whereas MVC searches all
branches of its tree to find the smallest vertex cover and
PVC with k = min − 1 searches all branches of its search
tree without finding any solution. Because MVC and PVC
with k = min − 1 search their trees more exhaustively, they
are more likely to run into deeper branches that cause load
imbalance, which makes them more likely to benefit from the
load balancing that the Hybrid implementation provides.

We look further into the first and second observation in
Section V-C where we analyze the load balance of each
implementation more thoroughly on different graphs and for
different instances. As shown in Table II, the Hybrid im-
plementation is faster than the StackOnly implementation on
high-degree graphs by 167.1× for MVC and 171.3× for PVC
with k = min − 1. Although the StackOnly implementation
does outperform the Hybrid implementation in a few instances
for select graphs as shown in Table I, these cases tend to be
on easier instances with short run-times and the performance
difference is not usually significant. For this reason, we are
not motivated to design a criteria for selecting between the

0.1

1

10

100

St
ac

kO
n

ly

H
yb

ri
d

St
ac

kO
n

ly

H
yb

ri
d

St
ac

kO
n

ly

H
yb

ri
d

St
ac

kO
n

ly

H
yb

ri
d

St
ac

kO
n

ly

H
yb

ri
d

St
ac

kO
n

ly

H
yb

ri
d

St
ac

kO
n

ly

H
yb

ri
d

St
ac

kO
n

ly

H
yb

ri
d

MVC PVC
(k=min-1)

PVC
(k=min)

PVC
(k=min+1)

MVC PVC
(k=min-1)

PVC
(k=min)

PVC
(k=min+1)

p_hat_1000_1 US power grid

Tr
ee

 n
o

d
es

 v
is

it
ed

 b
y

an
 S

M
(n

o
rm

al
iz

e
d

 t
o

 a
ve

ra
ge

)

Fig. 5. Distribution of Load across SMs

two GPU implementations.
Our third observation is that the Hybrid GPU implemen-

tation outperforms the Sequential CPU implementation sub-
stantially, especially for difficult instances with long run-times
(MVC and PVC with k = min − 1). As mentioned in Sec-
tion V-A, a fair comparison to CPUs would entail comparing
to a parallel CPU implementation. We compare to Sequential
just for reference to show that GPUs can have competitive
performance compared to CPUs in this tree traversal algorithm
that is normally considered difficult to parallelize.

C. Load Balance

Figure 5 compares the load distribution achieved by each
of the StackOnly and Hybrid implementations for the four
instances of the problem on two sample graphs. Load is
measured as the ratio of the number of tree nodes visited by an
SM to the average number of tree nodes visited across all SMs.
The graphs picked are those at the two extremes, having the
highest average degree (p hat 1000 1) and the lowest average
degree (US power grid). We make three key observations.

The first observation is that the StackOnly implementation
has substantially higher load imbalance on the high-degree
graph than on the low-degree graph. The second observation
is that the StackOnly implementation has substantially higher
load imbalance on the difficult instances with long run-times
(MVC and PVC with k = min−1) than on the easier instances
with short run-times (PVC with k = min and k = min + 1).
These observations are consistent with the points mentioned in
Section V-B that high-degree graphs and difficult long-running
instances are likely to suffer from more load imbalance.

The third observation is that the Hybrid implementation
achieves better load balance than the StackOnly implementa-
tion. For example, when the StackOnly implementation solves
MVC on p hat 1000 1, more than 75% of the SMs take less
than 0.21× the average load, whereas one SM takes 63.98×
the average load. In contrast, when the Hybrid implementation
solves the same instance, the least loaded SM takes 0.89× the
average load whereas the most loaded SM takes 1.07× the
average load. These results demonstrate the effectiveness of
the Hybrid implementation at achieving load balance.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

p
_

h
at

_
3

0
0

_1

p
_

h
at

_
3

0
0

_2

p
_

h
at

_
3

0
0

_3

p
_

h
at

_
5

0
0

_1

p
_

h
at

_
5

0
0

_2

p
_

h
at

_
5

0
0

_3

p
_

h
at

_
7

0
0

_1

p
_

h
at

_
7

0
0

_2

p
_

h
at

_
1

0
0

0
_1

p
_

h
at

_
1

0
0

0
_2

m
o

vi
el

en
s-

1
0

0
k

w
ik

ip
ed

ia
_

lin
k_

lo

w
ik

ip
ed

ia
_

lin
k_

cs
b

U
S

p
o

w
er

 g
ri

d

La
st

FM
 A

si
a

Si
st

er
 C

it
ie

s

M
ea

n

High-degree Low-degree

P
er

ce
n

ta
ge

 o
f

to
ta

l e
xe

cu
ti

o
n

 t
im

e Add to worklist

Remove from worklist

Push to stack

Pop from stack

Terminate

Degree-one rule

Degree-two-triangle
rule
High-degree rule

Find max degree vertex

Remove max-degree
vertex
Remove neighbors of
max-degree vertex

W
o

rk
 d

is
tr

ib
u

ti
o

n
 a

n
d

lo

ad
 b

al
an

ci
n

g
R

ed
u

ci
n

g
B

ra
n

ch
in

g

Fig. 6. Breakdown of Execution Time for MVC

D. Breakdown of Execution Time

To better understand where our traversal code is spending
time, Figure 6 shows the breakdown of the execution time
of our MVC kernel for different graphs. To measure this
breakdown, we instrument our code to use the SM clocks
to get the number of cycles spent by each thread block on
each activity. We then normalize the cycle counts to the
total number of cycles executed by the thread block and
take the mean across all thread blocks. We make three key
observations.

The first observation is that the kernel spends 24.1% of
its time on average on activities related to work distribution
and load balancing, of which 16.0% is spent removing from
the global worklist. Removing from the worklist is expensive
because there may be high contention on the worklist from
other blocks, or because the worklist may be empty requiring
the block to wait for new work to arrive (see Section IV-C).
This overhead is acceptable given the difficulty of extracting
parallelism and load balancing in this particular problem.

The second observation is that the kernel spends 65.2% of
its time (the majority of its time) on average on the reduction
rules. This time is well-spent because the reduction rules
allow the kernel to make the fastest progress towards finding
a solution. The time is distributed almost evenly across the
different rules.

The third observation is that the kernel spends 10.7% of its
time on average on activities related to branching, of which
9.4% is spent on removing the neighbors of the max-degree
vertex. It is noteworthy that removing the neighbors of the
max-degree vertex takes less time in low-degree graphs than in
high-degree graphs since there are fewer neighbors to remove
on average in the low-degree graphs.

E. Comparison with Prior Work

Table III compares the performance of our implementation
to that of the most recent prior work for GPUs [15]. This
prior work uses an approach similar to our StackOnly approach
which distributes sub-trees starting at a specific level across
thread blocks then has each block make its way down to its
sub-tree from the root and traverse its sub-tree using a per-
block local stack. In particular, it solves the PVC instance and

TABLE III
COMPARISON OF EXECUTION TIME (IN SECONDS) WITH PRIOR WORK

Graph Sequential StackOnly Hybrid Abu Khuzam et al. [15]
p hat 300 1 0.031 0.021 0.016 4.400
p hat 300 2 0.016 0.021 0.016 5.000
p hat 300 3 0.047 0.528 0.056 2.800
p hat 500 1 0.146 0.145 0.019 10.700
p hat 500 2 0.069 0.122 0.101 10.100
p hat 500 3 2.480 928.941 25.636 6.000
p hat 700 1 0.672 0.584 0.188 21.000
p hat 700 2 2.903 42.947 0.243 14.800
p hat 1000 1 1.456 5.099 0.135 48.300
p hat 1000 2 1.263 8.128 4.099 30.800

evaluates using k = min. The times reported in the paper [15]
are used directly for comparison and are replicated in Table III.
We note that this comparison is not fair because prior work
uses two AMD FirePro D500 GPUs with 3GB of memory
each, while we use a more powerful Volta V100 GPU with
32GB of memory. However, we are unable to evaluate their
performance on our system because the code is not publicly
available. The objective of this comparison is to show that our
approach is highly competitive with prior GPU solutions for
the vertex cover problem.

VI. RELATED WORK

In the last few decades, a lot of effort has been devoted to
developing fast and simple exact algorithms for NP-hard prob-
lems [26] and MVC is no exception. One of the first examples
is the O(2n/3)-time algorithm of Tarjan and Trojanowski [27]
for MAXIMUM INDEPENDENT SET (MIS) on n-vertex graphs.
Note that MIS is equivalent to MVC since the complement of
a minimum vertex cover is a maximum independent set, i.e.,
a maximum set of pairwise non-adjacent vertices. The afore-
mentioned O(2n/3)-time algorithm is significantly faster than
the trivial O(2n)-time brute-force algorithm. Considerable
improvements were made in the algorithm of Robson [28],
[29] which runs in O(1.1889n)-time (further improvements
are also known [30], [31]).

For PVC, when the size of the vertex cover we are looking
for, denoted by k, is sufficiently smaller than n, much faster
algorithms exist. A problem is said to be fixed-parameter
tractable (FPT), if it can be solved in time f(k) ·nO(1), where
f only depends on k (usually exponential in k) and n is the
size of input. In 1988, Fellows provided an O(2k · n) algo-
rithm for PVC, showing that the problem is fixed-parameter
tractable (a recent exposition can be found in Downey and
Fellows [32]). The algorithm is based on the bounded search
tree technique discussed in Section II-B. Since then, and
after a long series of works [5], [33]–[36], the asymptotic
upper bound on the running time of PVC was improved to
O(1.2738k + kn) by Chen et al. [4].

There are many serial [37]–[39] and parallel [40], [41]
implementations that solve the vertex cover problem on CPUs.
Our work focuses on solving the problem on GPUs, which
has only recently gained attention. Some recent works provide
approximate/heuristic algorithms for MVC [42] and MIS [43],
[44] on GPUs. The focus of our work is on the exact algo-
rithms which follow the hard-to-parallelize branch-and-reduce

paradigm. Section III already compares to prior works [14],
[15] that parallelize exact vertex cover algorithms on GPUs.
These works distribute sub-trees starting at at the same level
across thread blocks. We show that our approach can achieve
substantially better performance via improved load balancing.
Liu et al. [45] traverse the top of the tree on the CPU and send
sub-trees to the GPU whenever the size of the graph drops
below a certain threshold. This approach requires frequent
communication between the CPU and the GPU, and results
in launching many small grids (one single-block grid per sub-
tree) which is known to underutilize device resources.

Search tree traversal on GPUs has been explored in the
context of other problems. For example, recent work has
been done on graph pattern mining [46], [47], maximal
clique enumeration [17], [48], and k-clique counting [18].
These problems usually have a sufficient number of sub-trees
available at the first or second level of the search tree such
that distributing sub-trees across thread blocks can achieve
adequate load balance. The vertex cover problem is different in
that the search tree is narrower and highly imbalanced, which
makes extracting enough parallelism more difficult. Other
problems involving search tree traversal that have been solved
on GPUs include the N-Queens problem [49] and minimax tree
search [50]. To extract enough parallelism, these approaches
distribute sub-trees across threads or blocks starting at a certain
depth in the tree, similar to what prior work [14], [15] does for
the vertex cover problem. Our work uses a global worklist to
allow thread blocks to contribute branches of their sub-trees
at any level for other idle blocks to process. Another work
on the N-Queens problem [51] uses dynamic parallelism to
parallelize the search tree traversal. We avoid using dynamic
parallelism in our implementation because it is known to be
inefficient when many small grids are launched [52], [53].

VII. CONCLUSION

We present techniques for parallelizing exact algorithms for
MINIMUM VERTEX COVER and PARAMETERIZED VERTEX
COVER on GPUs. We propose a hybrid approach for work
distribution and dynamic load balancing where each thread
block uses a local stack to traverse a sub-tree, but contributes
branches of its sub-tree to a global worklist on an as-needed
basis, extracting just enough parallelism for load balancing
without incurring too much overhead. We represent intermedi-
ate graphs using degree arrays to ensure that they are compact
so that memory consumption does not limit parallelism, but at
the same time self-contained so that they can be shared across
different thread blocks in the load balancing process. We im-
plement CUDA kernels for solving both MVC and PVC using
our proposed approach, and show that they achieve substantial
performance and load balance improvements, especially on
difficult instances of the problem and on graphs with high
average degree. Our implementations have been open sourced
to enable further research on parallel solutions to the vertex
cover problem and other similar problems involving parallel
traversal of narrow and highly imbalanced search trees.

REFERENCES

[1] R. M. Karp, “Reducibility among combinatorial problems,” in Proceed-
ings of a Symposium on the Complexity of Computer Computations,
R. E. Miller et al., Eds. Plenum Press, New York, 1972, pp. 85–103.

[2] S. Bhattacharyya et al., “Resynchronization for multiprocessor DSP
systems,” IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, vol. 47, no. 11, pp. 1597–1609, 2000.

[3] D. Vigo et al., “Modeling and solving the crew rostering problem,”
Operations Research, vol. 46, 11 1996.

[4] J. Chen et al., “Improved upper bounds for vertex cover,” Theoretical
Computer Science, vol. 411, no. 40-42, pp. 3736–3756, 2010.

[5] R. Balasubramanian et al., “An improved fixed-parameter algorithm for
vertex cover,” Information Processing Letters, vol. 65, no. 3, pp. 163–
168, 1998.

[6] M. R. Fellows et al., “What is known about vertex cover kerneliza-
tion?” in Adventures Between Lower Bounds and Higher Altitudes,
H. Böckenhauer et al., Eds., vol. 11011. Springer, 2018, pp. 330–356.

[7] J. Chen, “Vertex cover kernelization,” in Encyclopedia of Algorithms -
2008 Edition, M. Kao, Ed. Springer, 2008.

[8] G. Karakostas, “A better approximation ratio for the vertex cover
problem,” ACM Transactions on Algorithms, vol. 5, no. 4, pp. 41:1–
41:8, 2009.

[9] F. Delbot et al., “New approximation algorithms for the vertex cover
problem,” in 24th International Workshop Combinatorial Algorithms
IWOCA, vol. 8288. Springer, 2013, pp. 438–442.

[10] F. Grandoni, “Exact algorithms for maximum independent set,” in
Encyclopedia of Algorithms, 2016, pp. 680–683.

[11] G. J. Woeginger, “Exact algorithms for NP-hard problems: A survey,”
in Combinatorial Optimization - Eureka, You Shrink!, M. Jünger et al.,
Eds., vol. 2570. Springer, 2001, pp. 185–208.

[12] I. K. Evans, “Evolutionary algorithms for vertex cover,” in 7th Inter-
national Conference Evolutionary Programming, vol. 1447. Springer,
1998, pp. 377–386.

[13] S. Voß et al., “A hybridized tabu search approach for the minimum
weight vertex cover problem,” J. Heuristics, vol. 18, no. 6, pp. 869–
876, 2012.

[14] R. K. Kabbara, “A parallel search tree algorithm for vertex cover
on graphical processing units,” Master’s thesis, Lebanese American
University, 2013.

[15] F. N. Abu-Khzam et al., “Accelerating vertex cover optimization on a
GPU architecture,” in 2018 18th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGRID). IEEE, 2018, pp.
616–625.

[16] R. Diestel, Graph Theory, 4th Edition, ser. Graduate texts in mathemat-
ics. Springer, 2012, vol. 173.

[17] J. Jenkins et al., “Lessons learned from exploring the backtracking
paradigm on the GPU,” in European Conference on Parallel Processing.
Springer, 2011, pp. 425–437.

[18] M. Almasri et al., “K-clique counting on GPUs,” arXiv preprint
arXiv:2104.13209, 2021.

[19] N. Bell et al., “Efficient sparse matrix-vector multiplication on CUDA,”
Citeseer, Tech. Rep., 2008.

[20] F. N. Abu-Khzam et al., “A hybrid graph representation for recursive
backtracking algorithms,” in 4th International Workshop Frontiers in
Algorithmics, vol. 6213. Springer, 2010, pp. 136–147.

[21] B. Kerbl et al., “The broker queue: A fast, linearizable FIFO queue for
fine-granular work distribution on the GPU,” in Proceedings of the 2018
International Conference on Supercomputing, 2018, pp. 76–85.

[22] D. S. Johnson et al., Cliques, coloring, and satisfiability: second
DIMACS implementation challenge, October 11-13, 1993. American
Mathematical Society, 1996, vol. 26.

[23] J. Kunegis, “KONECT: the Koblenz network collection,” in Proceedings
of the 22nd International Conference on World Wide Web, 2013, pp.
1343–1350.

[24] J. Leskovec et al., “SNAP datasets: Stanford large network dataset
collection,” 2014.

[25] M. A. Dzulfikar et al., “The PACE 2019 parameterized algorithms
and computational experiments challenge: the fourth iteration,” in 14th
International Symposium on Parameterized and Exact Computation
(IPEC 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[26] M. R. Garey et al., Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

[27] R. E. Tarjan et al., “Finding a maximum independent set,” SIAM Journal
on Computing, vol. 6, no. 3, pp. 537–546, 1977.

[28] J. M. Robson, “Algorithms for maximum independent sets,” Journal of
Algorithms, vol. 7, no. 3, pp. 425–440, 1986.

[29] ——, “Finding a maximum independent set in time O(2n/4),” Technical
Report - 1251-01, LaBRI, Universite Bordeaux I, 2001.

[30] M. Xiao et al., “Exact algorithms for maximum independent set,”
Information and Computation, vol. 255, pp. 126–146, 2017.

[31] ——, “A refined algorithm for maximum independent set in degree-
4 graphs,” Journal of Combinatorial Optimization, vol. 34, no. 3, pp.
830–873, 2017.

[32] R. G. Downey et al., Parameterized complexity. New York: Springer-
Verlag, 1997.

[33] J. Chen et al., “Vertex cover: Further observations and further improve-
ments,” in 25th International Workshop on Graph-Theoretic Concepts
in Computer Science, P. Widmayer et al., Eds., vol. 1665. Springer,
1999, pp. 313–324.

[34] ——, “Improvement on vertex cover for low-degree graphs,” Networks,
vol. 35, no. 4, pp. 253–259, 2000.

[35] M. R. Fellows et al., “Fixed-parameter complexity and cryptography,” in
10th International Symposium on Applied Algebra, Algebraic Algorithms
and Error-Correcting Codes, vol. 673. Springer, 1993, pp. 121–131.

[36] J. F. Buss et al., “Nondeterminism within P,” SIAM Journal on Com-
puting, vol. 22, no. 3, pp. 560–572, 1993.

[37] D. Hespe et al., “WeGotYouCovered: The winning solver from the
PACE 2019 challenge, vertex cover track,” in Proceedings of the SIAM
Workshop on Combinatorial Scientific Computing. SIAM, 2020.

[38] T. Akiba et al., “Branch-and-reduce exponential/FPT algorithms in
practice: A case study of vertex cover,” Theoretical Computer Science,
vol. 609, pp. 211–225, 2016.

[39] M. A. Dzulfikar et al., “The PACE 2019 parameterized algorithms
and computational experiments challenge: The fourth iteration (invited
paper),” in 14th International Symposium on Parameterized and Exact
Computation, ser. LIPIcs, vol. 148. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019, pp. 25:1–25:23.

[40] F. N. Abu-Khzam et al., “Scalable parallel algorithms for FPT prob-
lems,” Algorithmica, vol. 45, no. 3, pp. 269–284, 2006.

[41] ——, “On scalable parallel recursive backtracking,” Journal of Parallel
and Distributed Computing, vol. 84, pp. 65–75, 2015.

[42] K. Toume et al., “A GPU algorithm for minimum vertex cover prob-
lems,” in AIP Conference Proceedings, vol. 1618, no. 1. American
Institute of Physics, 2014, pp. 724–727.

[43] M. Burtscher et al., “A high-quality and fast maximal independent set
implementation for GPUs,” ACM Transactions on Parallel Computing
(TOPC), vol. 5, no. 2, pp. 1–27, 2018.

[44] T. Imanaga et al., “Efficient GPU implementation for solving the maxi-
mum independent set problem,” in 2020 Eighth International Symposium
on Computing and Networking (CANDAR). IEEE, 2020, pp. 29–38.

[45] Y. Liu et al., “Finding vertex cover: Acceleration via CUDA,” GPU
Technology Conference, 2008.

[46] X. Chen et al., “Pangolin: An efficient and flexible graph mining system
on CPU and GPU,” Proceedings of the VLDB Endowment, vol. 13, no. 8,
pp. 1190–1205, 2020.

[47] ——, “Sandslash: a two-level framework for efficient graph pattern
mining,” in Proceedings of the ACM International Conference on
Supercomputing, 2021, pp. 378–391.

[48] Y.-W. Wei et al., “Accelerating the Bron-Kerbosch algorithm for max-
imal clique enumeration using GPUs,” IEEE Transactions on Parallel
and Distributed Systems, vol. 32, no. 9, pp. 2352–2366, 2021.

[49] T. Zhang et al., “Optimization of N-Queens solvers on graphics pro-
cessors,” in International Workshop on Advanced Parallel Processing
Technologies. Springer, 2011, pp. 142–156.

[50] K. Rocki et al., “Parallel minimax tree searching on GPU,” in Inter-
national Conference on Parallel Processing and Applied Mathematics.
Springer, 2009, pp. 449–456.

[51] M. Plauth et al., “Using dynamic parallelism for fine-grained, irregular
workloads: a case study of the N-Queens problem,” in 2015 Third
International Symposium on Computing and Networking (CANDAR).
IEEE, 2015, pp. 404–407.

[52] I. El Hajj et al., “KLAP: Kernel launch aggregation and promotion
for optimizing dynamic parallelism,” in 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 2016.

[53] M. G. Olabi et al., “A compiler framework for optimizing dynamic
parallelism on GPUs,” in 2022 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO), 2022.

	I Introduction
	II Background
	II-A Vertex Cover
	II-B Algorithms for Finding Vertex Covers

	III Challenges
	III-A Challenge #1: Extracting Massive Parallelism
	III-B Challenge #2: Load Balancing
	III-C Challenge #3: Memory as a Limiting Factor to Parallelism

	IV Parallelizing Vertex Cover on GPUs
	IV-A Hybrid Traversal Approach using a Global Worklist
	IV-B Graph Representation and Operations
	IV-C Implementation of the Global Worklist
	IV-D Reduction Rules
	IV-E Memory Management

	V Evaluation
	V-A Methodology
	V-B Performance
	V-C Load Balance
	V-D Breakdown of Execution Time
	V-E Comparison with Prior Work

	VI Related Work
	VII Conclusion
	References

