
Towards Distributed 2-Approximation Steiner
Minimal Trees in Billion-edge Graphs

Tahsin Reza, Geoffrey Sanders and Roger Pearce
Center for Applied Scientific Computing (CASC), Lawrence Livermore National Laboratory (LLNL)

Email: {reza2, sanders29, rpearce}@llnl.gov

Abstract—Given an edge-weighted graph and a set of known
seed vertices of interest, a network scientist often desires to un-
derstand the graph relationships to explain connections between
the seed vertices. If the size of the seed set is 2, shortest path
calculations are an attractive computational kernel to explore
the connections between the two vertices. When the seed set is
3 or larger (say up to 1,000s) Steiner minimal tree – min-weight
acyclic connected subgraph (of the input graph) that contains
all the seed vertices – is an attractive generalization of shortest
weighted paths. In general, computing a Steiner minimal tree is
NP-hard, but decades ago several polynomial-time algorithms
were designed and proven to yield Steiner trees whose total
weight is bounded within 2 times the minimal Steiner tree.

Despite its rich theoretical literature, works related to parallel
Steiner minimal tree computation and their scalable implemen-
tations are rather scarce. In this paper, we present a parallel 2-
approximation Steiner minimal tree algorithm (with theoretical
guarantees) and its MPI-based distributed implementation. In
place of distance computation between all pairs of seed vertices,
an expensive phase in many approximation algorithms, the
solution we employ, exploits Voronoi cell computation. Also, this
approach has higher parallel efficiency than others that involve
minimum spanning tree computation on the entire graph. Fur-
thermore, our distributed design exploits asynchronous process-
ing and a message prioritization scheme to accelerate convergence
of distance computation, employs techniques to avoid inefficient
distributed spanning tree computation on the entire graph, and
harnesses a combination of vertex and edge centric processing
to offer fast time-to-solution. We demonstrate scalability and
performance of our solution using real-world graphs with up
to 128 billion edges and 512 compute nodes (8K processes), show
the ability to find Steiner trees with up to 10K seed vertices in
under one minute, and present in-depth analyses that highlight
the benefits of our design choices. Using four real-world graphs
and three seed sets for each, we compare our solution with the
state-of-the-art exact Steiner minimal tree solver, SCIP-Jack, and
two sequential algorithms with the same approximation bound as
our algorithm. Our distributed solution comfortably outperforms
these related works on graphs with 10s million edges and offers
decent strong scaling – up to 90% efficient. We empirically show
that, on average, the total distance (sum of edge weights) of the
Steiner tree identified by our solution is 1.0527 times greater
than the Steiner minimal tree (i.e., the optimal solution) – well
within the theoretical bound of less than equal to 2.

I. INTRODUCTION

Networks are often represented by a distance-weighted
graph G(V, E , d), with data entities represented by vertices
V , their relationships represented by edges E ⊂ V × V , and
distances d : E → [1,∞). In this work, smaller weights
represent stronger relationships (or closer distances between
the underlying data entities). For {u, v} ∈ V , the weight or

1

(a) Input Graph and Seed Vertices (b) Output Steiner Tree

5

6 7

8

9

2

4

3
16

2018

24

2

4

2

1

1
2

2

1

5

6 7

8

9

2

4

3
16

2018

24

2

4

2

1

1
2

2

Fig. 1: (a) A data graph G, and given seed vertices S, have red fill. (b) A
Steiner tree GS of G. Steiner vertices S′ ∈ V \S have blue fill. Vertices and
edges not in the Steiner tree GS have light grey outline and fill, respectively.

distance of (u, v) ∈ E is written d(u, v), and for a knowledge
network, is often a function of the metadata living on u, v,
(u, v) and the relationship type of (u, v). The total weight or
total distance of a set of edges associated with a subgraph H
(e.g., a cluster, a tree or a path) is the sum of the distances
D(H) =

∑
(u,v)∈H d(u, v). We call the user’s entities of

interest, the seed vertices, S ⊂ V , and various applications
need different magnitude of seed set sizes. The goal is to
compute a relatively small subgraph GS that connects all
vertices in S, preferring edges that have low distance over
those that are larger – known in the literature as the Steiner
minimal tree problem [1].

Given a set of seed vertices S (also called terminal vertices
in the literature), a Steiner tree GS(VS , ES , dS) of G(V, E , d)
is called a Steiner minimal tree, if its total distance D(GS) =∑

e∈ES dS(e) is minimal among all Steiner trees for G and
S ⊂ V . In the literature, the vertex set S ′ ⊂ V\S is commonly
refereed as Steiner vertices, although are not required to be in a
Steiner tree, may be used to achieve a small total distance [1]–
[3]. Fig. 1 shows an example. Gilbert and Pollack [2] are
often credited for formalising the Steiner minimal tree prob-
lem which has direct applications to VLSI design [4], [5],
communication network optimization [6], [7], computational
and systems biology [8], [9], and knowledge discovery and
management [10], [11]. The problem of finding a Steiner
minimal tree of a graph and arbitrary seed vertices is known
to be NP-hard (the decision variant is NP-complete) [1], [12].
Therefore, polynomial time algorithms for finding a Steiner
tree GS with a total distance D(GS) close to the total distance
of a Steiner minimal tree Dmin(G) are sought due to their
practical relevance.

Often in large knowledge networks, property graphs, or
other relational datasets, a user seeks to understand the re-
lationships between two or more entities of interest. Without

ar
X

iv
:2

20
5.

14
50

3v
1

 [
cs

.D
C

]
 2

8
M

ay
 2

02
2

knowing much about the graph and entities of interest a priori,
it is difficult to know precisely what analytics and parame-
ters gives users exactly what they want, and an interactive
framework is highly desired for exploring data relationships.
Today’s knowledge networks are also massive, so this frame-
work needs to be scalable and efficient enough to provide
palatable interactivity. We aim at a framework that is scalable
in a parallel, distributed computing environment, where the
topology and metadata of massive relational datasets can be
stored concurrently in memory.

Typically, a user will interact with such computation in
various ways, exploring the relationships, as several factors
dramatically change the nature of the output size (for example,
the number of graph hops or shortest path distances between
pairs of vertices and the presence of multiple paths that are
tied in hop length and distance). This includes the user adding
or removing classes of edges and/or vertices and adjusting
edge distance functions based on investigating the output. Such
interaction warrants computations that can be made as fast as
possible and strongly scale, so more computing resources can
be employed to speed up the calculations when needed.

When |S| = 2, sets of edges that exist in shortest weighted
paths and near-shortest weighted paths (low total distance
paths) provide an attractive framework for understanding the
relationships between the seeds. Computing edge and vertex
sets with such paths is fairly easy, even for massive graphs
using distributed computing, and simple variants allow the
user to remove edges (rank vertices and edges in various ways
and remove the low-ranking subgraph members) or add edges
of near-shortest paths (i.e., augmenting paths) to build up a
subgraph. When |S| > 2, low-weight Steiner trees provide an
attractive framework and minimally-weighted Steiner trees are
a direct generalization of shortest weighted paths.

Since Steiner minimal tree is an NP-hard problem, there
have been continuing interests in practical polynomial-time
solutions with tight approximation bound. Takahashi et
al. [13] presents an algorithm with the approximation bound
D(GS)/Dmin(G) ≤ 2(1 − 1/|S|). The algorithm by Kou et
al. [14] (known as the KMB algorithm) improves the bound to
D(GS)/Dmin(G) ≤ 2(1− 1/l) where l is the minimum num-
ber of leaves in any Steiner minimal tree for G and S. A corpus
of algorithms capitalizes over the KMB algorithm and offer
improved sequential runtime-complexity while preserving the
2-approximation bound: algorithms by Wu et al. [15] (known
as the WWW algorithm), Widmayer [16] and Mehlhorn [17]
are some the most well known 2-approximation solutions.

Despite its rich theoretical literature, work related to parallel
Steiner minimal tree computation and their scalable implemen-
tations is rather scarce. In this paper, we present a parallel
2-approximation Steiner minimal tree algorithm and its MPI-
based distributed implementation. Our solution is based on
the idea of computing Voronoi cells similar to [17]: Mehlhorn
replaces the most computationally expensive task in the KMB
algorithm, i.e., computing all-pair-shortest-paths (APSP) be-
tween the vertices in S, by Voronoi cell computation of each
s ∈ S . Our solution approach stems from the observations

that, in practice, the Voronoi cell approach is less expensive
then APSP computation (see Table I), and has higher parallel
efficiency than minimum spanning tree (MST) computation on
the entire graph [18] (as in WWW and Widmayer algorithms).
To accommodate large-scale graphs, e.g., 100s billion edges,
we adopt a scale-out design based on graph partitioning. Our
distributed design embraces a combination of vertex and edge
centric processing, asynchronous processing, and a message
prioritization scheme to offer fast time-to-solution. Below we
summarize the key contributions in this paper.
(i) We present a parallel algorithm, based on Voronoi

cell identification for distance computation [17], for 2-
approximation Steiner minimal tree computation that of-
fers guarantees on the approximation bound (§II and §III).

(ii) We present the design of a proof-of-concept distributed
implementation of our parallel Steiner tree algorithm. The
solution, (a) is designed to accommodate large graphs
through data partitioning; (b) performs both vertex and
edge centric processing to achieve fast time-to-solution;
(c) embraces asynchronous processing and message pri-
oritization to accelerate convergence of distance compu-
tation and achieves message efficiency in the process;
(d) employs techniques to avoid inefficient distributed
minimum spanning tree computation on the entire graph
(as some of the key sequential algorithms do [15], [16]);
(e) extends HavoqGT [19], an MPI-based vertex-centric
graph framework, for algorithm implementation (§IV).

(iii) We demonstrate scalability and performance using eight
real-world graphs with up to 128 billion edges and up to
512 compute nodes (8K processes) – up to 90% efficient
strong scaling, t.t.b.o.o.k., the largest scale to date for the
Steiner tree problem; show the ability to find Steiner trees
with up to 10K seed vertices in under one minute; evaluate
the effectiveness of our design choices and optimizations
(§V). Using 12 data instances, we compare our solution
with the state-of-the-art exact Steiner tree solver, SCIP-
Jack [20], and two 2-approximation sequential algorithms,
WWW [15] and Mehlhorn [17]. Our distributed solution
comfortably outperforms these related works on graphs
with 10s million edges. On average, the total distance
D(GS) of the Steiner tree identified by our solution
is 1.0527 times greater than the Steiner minimal tree
Dmin(G), which is well within the theoretical bound of
≤ 2(1−1/l), and the approximation error is 5.3% (§V-G).

TABLE I: Runtime comparison of all-pair-shortest-path (APSP) and Voronoi
cell (VC) computation using two graphs and three seed sets. All experiments
use a single thread. Dataset details are in §V, Table III.

|S| 10 100 1000
APSP VC APSP VC APSP VC

LVJ 49.7s 30.0s 539.2s 35.1s 5,813.3s 104.5s
PTN 26.7s 12.9s 270.3s 26.6s 2,767.4s 85.5s

II. PRELIMINARIES

Table II lists the symbolic notation used in this paper,
following the convention in [14]–[17]. A path is a non-

TABLE II: Symbolic notation used.
Object(s) Notation
background graph, vertices, edges G(V, E, d)
background graph vertices V := {v0, v1, ..., vn−1}
background graph edges (vi, vj) ∈ E
set of vertices adjacent to vi in G adj(vi)

predecessor, successor of vi pred(vi), scsr(vi)
d is a distance function which

maps E in to a set of non-zero, d(vi, vj) ∈ Z+ \ 0
non-negative integers

Steiner tree, vertices, edges, GS(VS , ES , dS), VS ⊂ V , ES ⊂ E
seed vertices, Steiner vertices S ⊂ VS , S′ ⊂ V \ S
dS is the distance function for GS dS(vi, vj) ∈ Z+ \ 0, (vi, vj) ∈ ES
Voronoi cell of vertex s ∈ S N(s), V =

⋃
s∈S N(s)

source vertex of vi src(vi) = s if vi ∈ N(s)

total distance of GS D(GS) =
∑

e∈ES dS(e)

distance of Steiner minimal tree Dmin(G)
approximation ratio D(GS)/Dmin(G)

repeating sequence of vertices in V . A vertex in a path has
at least one, at most two adjacent vertices. d1(vi, vj) is equal
to the distance of a shortest path from vi to vj in G. For every
seed vertex s ∈ S , Voronoi cell N(s) is the set of vertices in
V that are at a shorter distance (an edge or a path) to s than
to any other vertex in S. N(s) ∩ N(t) = ∅ for any s, t ∈ S
and s 6= t, with v ∈ N(s) ⇒ d1(v, s) ≤ d1(v, t). An edge
(u, v) ∈ E is a cross-cell edge if u ∈ N(s), v ∈ N(t), and
s, t ∈ S, s 6= t. A cross-cell edge bridges two Voronoi cells.

Kou et al. were the first to propose an algorithm (Alg. 1) for
finding a Steiner tree G′′ with D(G′′)/Dmin(G) ≤ 2(1− 1/l),
where l is the minimum number of leaves in any Steiner
minimal tree for G and S. The most expensive step in the
KMB algorithm (Alg. 1) is all-pair-shortest-path computation
among the seed vertices to form G1, the dense graph of
minimal distance between all seeds. Mehlhorn [17] proposes
to replace Step 1. in Alg. 1 by a cheaper alternative which is
based on Voronoi cell computation of every s ∈ S. Mehlhorn
improves sequential complexity of KMB from O(|S||V|2) to
O(|V|log|V| + |E|) with an algorithm that is more amenable
to parallel, distributed computing.

Mehlhorn observes that it is possible to construct a dis-
tance graph G′1 which is a subgraph of G1 in Alg. 1, where
G′1(S, E ′1, d′1) is defined by:
E ′1 = {(s, t); s, t ∈ S and there is an edge (u, v) ∈ E with
u ∈ N(s), v ∈ N(t)} and
d′1(s, t) = min(d1(s, u) + d(u, v) + d1(v, t)); (u, v) ∈ E ,
u ∈ N(s), v ∈ N(t).

Note: in general, d′1 is not the restriction of d1 to the set E ′1.
Mehlhorn proves that existence of an MST G2 of G1 that is

also a subgraph of G′1, that the associated distance functions d1
and d′1 agree on edges of G2, and further, that every MST of
G′1 is also a MST of G1. This fact allows approximation bound
of the KMB algorithm to apply to Mehlhorn’s algorithm.

III. PARALLEL STEINER TREE ALGORITHM

In this section, we introduce our parallel Steiner tree algo-
rithm, while in §IV, we discuss the distributed implementation.

Algorithm 1 KMB Algorithm [14]
Input: edge-weighted graph G, seed vertices S
Output: Steiner tree G5

1: Construct the complete distance graph G1(V1, E1, d1) where
V1 = S and, for every (vi, vj) ∈ E1, d1(vi, vj) is equal to
the distance of a shortest path from vi to vj in G.

2: Find MST G2 of G1.
3: Construct a subgraph G3 of G by replacing each edge in G2 by

(one of) the corresponding shortest path(s) in G.
4: Find MST G4 of G3 .
5: Construct a Steiner tree G5 from G4 by deleting edges in G4, if

necessary, so that no leaves in G5 are Steiner vertices.

The algorithm produces a Steiner tree GS with the approxi-
mation ratio D(GS)/Dmin(G) ≤ 2(1 − 1/l), same as [14]–
[17]. Our solution is based on the idea of computing Voronoi
cells similar to [17]. The generalized minimum spanning tree
computation approach [15], [16] may appear attractive because
of its simplicity and greater work efficiency, however, we
observe that it is possible to develop an algorithm with higher
parallel efficiency for Voronoi cell computation compared to
that of MST computation. Bader et al. [18] and authors of
the Galois [21] project demonstrated MST computation suffers
from rapid decrease in the available parallelism [22].

Voronoi cell computation naturally inclines to vertex-centric
parallel processing [23]. Computation of a single cell closely
resembles single source shortest path (SSSP) computation and
Bellman-Ford based fast, vertex parallel SSSP algorithms are
well known [23], [24]. It is worth noting that Ceccarello
et al. [25] used the work-efficient ∆-Stepping algorithm in
parallel shortest path computation from multiple sources for
diameter approximation of weighted graphs (comparable to
Voronoi cell computation). We, however, base our distributed
implementation of Voronoi cell computation on Bellman-
Ford’s algorithm which can harness asynchronous distributed
processing (i.e., overlapping latency prone distributed commu-
nication with computation) and accelerate the convergence rate

Algorithm 2 Parallel Steiner Tree Algorithm
Input: edge-weighted graph G, seed vertices S
Output: Steiner tree GS , total distance D(GS)

1: In parallel, for every s ∈ S, compute Voronoi cell N(s). Every
u ∈ V , u ∈ N(s), maintains states src(u), pred(u), d1(s, u).

2: Construct the distance graph G′1(S, E ′1, d′1):
In parallel, for every (s, t) ∈ E ′1, compute
d′1(s, t) = min(d1(s, u) + d(u, v) + d1(v, t)), where s, t ∈ S,
s 6= t and u ∈ N(s), v ∈ N(t).

3: Find MST G′2 of G′1 using a sequential algorithm.
4: In parallel, for every cross-cell edge (u, v) ∈ E , mark (u, v) as

“deleted”, where (s, t) ∈ G′1, d′1(s, t) = d1(s, u) + d(u, v) +
d1(v, t) and (s, t) /∈ G′2.

5: In parallel, for every “active” crocess-cell edge (u, v) ∈ E , where
u ∈ N(s), v ∈ N(t) and s 6= t, identify all edges in the shortest
path from u to s, and v to t, by following respective predecessor
vertices stored in pred.

6: GS(VS , ES , dS) is the final Steiner tree where ES only includes
“active” cross-cell edges in G, and edges identified in Step 5.

7: Compute D(GS) =
∑

e∈ES
dS(e).

(a) Voronoi Cell (c) MST of Distance Graph (e) Steiner Tree Edge

(b) Distance Graph

(d) Edge Pruning

Min Dist. Edge

Fig. 2: High-level illustration of output of key algorithm steps: (a) Each hexagon represents the Voronoi cell of a seed vertex (solid red fill); cross-cell edges
are shown using broken lines. (b) The distance graph G′1. (c) MST G′2 of G′1. (d) Post MST edge pruning: “deleted” cross-cell edges have light grey outline;
“active” cross-cell edges (corresponding edges of MST G′2 in G) are shown using blue outline. (e) The vertices and edges in the final Steiner tree.

(details in §IV). ∆-Stepping is an iterative algorithm. Recently,
Wang et al. [26] presented a shared memory, asynchronous
SSSP implementation for a single Nvidia GPU; the solution
is an adaptation of the ∆-Stepping algorithm. The technique,
however, does not naturally extend to distributed memory.
Our parallel algorithm computes all Voronoi cells in parallel
– comparable to running |S| parallel instances of a parallel
SSSP algorithm on the same graph. Alg. 2 presents a high-
level overview of the proposed parallel algorithm and Fig. 2
illustrates the key algorithmic steps.

Alg. 2 Step 1. computes Voronoi cells in parallel based on
Bellman-Ford’s SSSP algorithm. For given G and S, Fig. 2(a)
shows the computed Voronoi cells. Cross-cell edges, edges
connecting two separate cells, are shown using broken lines.
Step 2. constructs the distance graph G′1. Two cells can have
multiple cross-cell edges, as shown in Fig. 2(b). A parallel
routine identifies unique min-distance edges, each connecting
a pair of cells (a tie-breaking scheme is used to ensure
uniqueness). The distance information of these cross-cell edges
determines the edge weights of G′1. Step 3. generates G′2, an
MST of G′1 (Fig. 2(c)). Typically G′1 is small, has at most

(|S|
2

)
edges. Even for |S| = 10K, there are less than 50M edges,
orders of magnitude smaller than the billion-edge data graphs
we used for evaluation in §V. We argue that a sequential
routine is sufficient for computing the MST G′2. Given the
problem size is often small, attempting to parallelize MST
computation likely to yield marginal or no gain at all. This
design choice is congruent with Bader et al.’s parallel MST
approach [18]: when the problem size becomes small, they
switch to a sequential algorithm for the remainder of MST
computation. In §V, we show, for |S| = 10K, the MST G′2
can be computed in about two seconds, using a sequential C++
implementation of Prim’s MST algorithm, often insignificant
compared to total runtime. Step 4. in parallel, marks all
cross-cell edges in G as “deleted” except the ones whose
corresponding edges are present in the MST G′2. Fig. 2(d)
shows the deleted edges using light grey outline. Step 5. in
parallel, starting from each vertex u, v of each “active” cross-
cell edge (shown using blue outline in Fig. 2(d)), identifies
all the edges in the shortest path from u ∈ N(s) to s ∈ S

by following predecessor vertices identified during Voronoi
cell computation. The remaining cross-cell edges after edge
pruning in Step 4. and the edges identified in Step 5. form a
valid Steiner tree, as shown in Fig. 2(e).

The 2-approximation bound D(GS)/Dmin(G) ≤ 2(1−1/l)
of our algorithm is guaranteed by Mehlhorn’s proof [17] that
every MST of G′1 (defined in §II and Alg. 2) is also a MST of
G1 in Alg. 1 which allows the 2-approximation bound of the
KMB algorithm to apply to the algorithm in Alg. 2.

Time Complexity. We briefly discuss sequential time com-
plexity of key steps in Alg. 2: Voronoi cell computation based
on Bellman-Ford’s algorithm requires O(|V||E|) time. Identi-
fying min-distance, cross-cell edges during the construction of
G′1 requires O(|E|) time. The time complexity of finding the
MST G′2 using Prim’s algorithm is O(|E ′1|log|S|). Post MST
edge pruning and identification of final Steiner tree edges, each
requires no more than O(|E|) time.

IV. DISTRIBUTED IMPLEMENTATION

We present an MPI-based distributed implementation of the
parallel Steiner tree algorithm introduced in §III. To accom-
modate large-scale graphs with 10s and 100s billion edges, we
embrace a scale-out design: the data graph is partitioned; parti-
tions have approximately equal share of vertices; each partition
is assigned to an MPI process which enables processing the
partitions in parallel. The solution employs a combination of
vertex and edge centric processing, asynchronous processing
and a message prioritization scheme towards offering fast
time-to-solution and resources efficiency.

As highlighted in the time complexity analysis (§III),
Voronoi cell computation is the most expensive step in our
algorithm, therefore, we seek a solution that accelerates the
throughput of this step. Previous studies [24], [27] showed
that asynchronous processing offers notable advantage over
bulk synchronous processing (BSP) for distributed shortest
path computation: the former enabling faster convergence. To
this end, we begin with HavoqGT [19] as the foundation
and implement other features required by Alg. 2. Our choice
for HavoqGT is motivated by a number of considerations:
HavoqGT, (i) supports asynchronous processing, where latency
prone communication can be overlapped with computation;

Algorithm 3 Distributed Steiner Tree Algorithm
Input: edge-weighted graph G, seed vertices S
Output: Steiner tree GS , total distance D(GS)

1: procedure INITIALIZATION
2: G′1(V ′1 = S, E ′1 =

(S
2

)
, d′1 =∞), where (s, t) ∈ E ′1 : s < t

3: GS(VS = ∅, ES = ∅, dS)
4: EN ← ∅ . map of cross-cell edges that maps (s, t) ∈ E ′ to

(u, v) ∈ E , where u ∈ N(s), v ∈ N(t), u < v
5: dN is the distance function for keys (i.e., (s, t) ∈ E ′) of EN
6: for all v ∈ V do
7: if v ∈ S then
8: src(v)← v; pred(v)← v; d1(src(v), v)← 0
9: else

10: src(v)←∞; pred(v)←∞; d1(src(v), v)←∞
11: procedure STEINER TREE
12: VORONOI CELL ASYNC(G,S); barrier
13: LOCAL MIN DIST EDGE ASYNC(G,S, EN); barrier
14: GLOBAL MIN DIST EDGE COLL(G,S, EN); barrier
15: for all (s, t) ∈ E ′1 do . partition local operation
16: d′1(s, t)← dN (s, t) . dN is set in Alg. 5, line 3
17: G′2 ← MST SEQUENTIAL(G′1); barrier
18: EDGE PRUNING COLL(EN , G′2); barrier
19: TREE EDGE ASYNC(G, EN ,GS); barrier
20: return GS , D(GS) =

∑
e∈ES

dS(e)

(ii) offers load balancing for scale-free graphs through vertex-
cut partitioning by distributing edges of high-degree vertices
across multiple partitions – crucial to scale to large graphs
with skewed degree distribution; and (iii) an MPI-based imple-
mentation is likely more efficient than a Hadoop/Spark based
solution [28]. Note that our solution can easily be imple-
mented by extending other general purpose graph processing
frameworks that expose a vertex-centric API, e.g., Gluon-
Galois [21], GraphLab, Giraph, and GraphX [23], independent
of BSP or asynchronous processing approaches.

In HavoqGT, algorithms are implemented as vertex-
callbacks: the user-defined visit() callback accesses
and updates a vertex’s state(s). HavoqGT generates
events, called a VISITOR, that invoke visit()
callbacks – either on all graph vertices using the
do traversal(arguments, traversal type← init all)
method, or for a neighboring vertex using the push(VISITOR)
method. This enables asynchronous data exchange between
graph vertices. The graph computation completes when all
visitors in the message queue have been processed [19].

In a distributed setting, each process runs an instance
of Alg. 3 which iterates over a number of steps to pro-
duce the final 2-approximation Steiner minimal tree. The
INITIALIZATION procedure allocates per-partition memory
for distributed vertex and edge states and initializes them.
For example, the distance graph G′1, with

(|S|
2

)
edges (with

weights initialized to ∞), is created in this step (line 2);
the map EN , initially empty, identifies the cross-cell edges
in G, is defined here (line 4). The computation steps under the
STEINER TREE procedure can be categorized in to vertex
and edge centric procedures; we describe them next.

Voronoi Cells are computed asynchronously, initiated by
invoking do traversal(). Alg. 4 presents the corresponding

Algorithm 4 Voronoi Cell
1: procedure VORONOI CELL ASYNC (G,S)
2: do traversal(r ← 0, traversal type← init all)

3: procedure VISIT(G,S, vq) . vq - (priority) message queue
4: do update← false
5: if d1(src(vj), vj) = 0 and d1(src(vj), vj) = r then
6: t← src(vj); r ← d1(src(vj), vj); do update← true
7: else if 0 < r < d1(src(vj), vj) then
8: src(vj)← t; pred(vj)← vp; d1(src(vj), vj)← r
9: do update← true

10: if do update = true then
11: for all vi ∈ adj(vj) do
12: r ← r + d(vi, vj)
13: vq.push(VORONOI CELL VISITOR(vi, vj , t, r))
14: VORONOI CELL VISITOR
15: vj – vertex that is being visited
16: vp – vertex that sent the visitor to vj
17: t – current source vertex of vp
18: r – current distance of vp from t

visit() procedure in HavoqGT’s vertex-centric abstraction;
lines 15–18 list the VISITOR states. Initially only a vertex
s ∈ S visits its neighbors (line 5). In general, when a vertex
vj : src(vj) = s is visited by another vertex vp : src(vp) = t,
s 6= t, if d1(s, vj) > d(vj , vp) + d1(t, vp) then vj , becomes a
member of the Voronoi cell N(t), adopts vp as its predecessor,
updates its distance accordingly (line 8), and notifies its
neighbors about the state update (line 11).

To accelerate convergence of shortest path computations in
Voronoi cells, we employ a message prioritization technique
in the message queue of each graph partition (vq in line 3)
which gives precedence to a message from a vertex at a lower
distance. This can produce similar effect of the min-priority
queue in Dijkstra’s algorithm, enabling the Bellman-Ford-
based distributed shortest path kernel to potentially converge
faster. The technique is light-weight and best-effort only; its
effectiveness depends on timeliness of asynchronous message
propagation within the network which is nondeterministic. The
worst-case complexity is the same as that of Bellman-Ford’s
algorithm, however, even with message prioritization, it is
not guaranteed the best-case complexity will match that of
Dijkstra’s algorithm. In §V-C, we demonstrate the benefits of
using a priority message queue over a FIFO queue.

Min Distance Edges between Voronoi cells are iden-
tified towards creating the distance graph G′1. First, the
LOCAL MIN DIST EDGE ASYNC (Alg. 5) procedure
identifies min-distance, cross-cell edges local to a partition and
add them to the local copy of EN . This is an asynchronous
procedure based on HavoqGT’s vertex-centric abstraction.
The distance information of a vertex computed in Alg. 4
is stored locally. To compute dN (s, t) (Alg. 5, line 3), a
vertex u needs to receive d1(v, t) from v, possibly from
a remote partition; hence a distributed routine is required.
GLOBAL MIN DIST EDGE COLL (Alg. 5) is an edge-
centric procedure: it performs MPI ALLreduce(MPI MIN)
collective operation on distance values of local copies of EN to
identify global min-distances. G′1 is updated with the distance

Algorithm 5 MIN Distance Edge and Global Edge Pruning
1: procedure LOCAL MIN DIST EDGE ASYNC (G,S, EN)
2: for every (u, v) ∈ E local to a partition of G, computes
3: dN (s, t) = min(d1(s, u) + d(u, v) + d1(v, t)), where
4: u ∈ N(s), v ∈ N(t), s 6= t; adds each corresponding
5: min-distance edge (u, v) the local map,
6: i.e., EN : (s, t)← (u, v)

7: procedure GLOBAL MIN DIST EDGE COLL (G,S, EN)
8: performs MPI Allreduce(MPI MIN) on local distance
9: values (i.e., dN (s, t)) of EN and save results in global EN

10: procedure EDGE PRUNING COLL (EN ,G′2)
11: removes all cross-cell edges from the global EN
12: whose corresponding edges are not present in G′2;
13: performs MPI Allreduce(MPI MIN) on source vertex
14: IDs of edges, i.e., (u, v)→ (s, t) ∈ EN (global copy),
15: to ensure only one cross-cell edge per Voronoi cell pair

information in the global EN (Alg. 3, line 15).
MST G′2 of the distance graph G′1 is computed using a

sequential routine (Alg. 3, line 17); our current implementation
uses Boost’s implementation of Prim’s algorithm. Since G′1 has
only

(|S|
2

)
edges, it is replicated on all partitions. Partitions

locally compute G′2 and avoid remote memory copy operations.
Global Edge Pruning is a distributed edge-centric routine

(Alg 5): First, it removes the edges from global EN , whose
corresponding edges are not present in G′2. Then, it performs
collective operation MPI Allreduce(MPI MIN) on source ver-
tex IDs of edges in EN to ensure only a unique cross-cell edge
exists for each unique pair of Voronoi cells (multiple cross-cell
edges with identical distance can bridge the same two cells).

Steiner Tree Edges local to each Voronoi cell are identified
by a vertex-centric asynchronous routine (Alg. 6): starting
from each vertex u, v of every cross-cell edge (u, v) ∈ E
present in EN , tree edges within their respective Voronoi cells
are identified by recursively visiting predecessors until the
source vertex, e.g., s : u ∈ N(s), has been reached. Note
that the cross-cell edges in EN also belong to the final Steiner
tree GS (line 4). Alg. 6 significantly reduces the number of
messages communicated since often the number of Steiner tree
edges |ES | is orders of magnitude smaller than number of non-
tree edges |E| − |ES | (see Table IV for empirical evidence).

Algorithm 6 Steiner Tree Edge
1: procedure TREE EDGE ASYNC (G, EN ,GS)
2: for all (u, v)→ (s, t) ∈ EN do . defined in Alg. 3, line 4
3: if this partition of G is u’s home partition then
4: ES ← ES ∪ (u, v); dS(u, v)← d(u, v)
5: vq.push(TREE EDGE VISITOR(u))
6: vq.push(TREE EDGE VISITOR(v))
7: do traversal()

8: procedure VISIT(G,GS , vq)
9: if vj 6= src(vj) then

10: ES ← ES ∪ (pred(vj), vj)
11: dS(pred(vj), vj)← d(pred(vj), vj)
12: if pred(vj) 6= src(vj) then
13: vq.push(TREE EDGE VISITOR(pred(vj))
14: TREE EDGE VISITOR
15: vj – vertex that is being visited

TABLE III: Characteristics of graph datasets used for evaluation.
|V| 2|E| Max. Avg. Edge Size

degree degree weight
WDC12 3.5B 257B 95M 72.3 [1, 500K] 5.7TB
ClueWeb12 978M 85B 75.6M 87 [1, 100K] 1.9TB
UKWeb07 105M 7.5B 975K 71 [1, 75K] 150GB
Friendster 66M 3.6B 5.2K 55.1 [1, 50K] 84GB
LiveJournal 4.8M 85.7M 20.3K 17.7 [1, 5K] 2.1GB
Patent 2.7M 28M 789 10.2 [1, 5K] 692MB
MiCo 100K 2.2M 1.4K 22 [1, 2K] 52MB
CiteSeer 3.3K 9.4K 99 3.6 [1, 1K] 328KB

V. EVALUATION

We present strong scaling experiments using billion-edge,
real-world graphs and up to 512 compute nodes (§V-A);
demonstrate support for thousands of seed vertices (§V-B);
evaluate the effectiveness of our design choices and optimiza-
tions (§V-C); study influence of problem artifacts on perfor-
mance and sensitivity of our solution to problem parameters
(§V-D, §V-E and §V-F); compare performance of our solution
with related work and measure result quality (§V-G).

Testbed. The testbed is a 2.6 petaFLOP cluster comprised of
over 2K compute nodes and the Intel Omni-Path interconnect.
Each node has two 18-core Intel Xeon E5-2695v4 @2.10GHz
processors and 128GB of memory [29]. We run 16 MPI
processes per node (as observed, this configuration offers the
best performance, since each process runs two threads).

Graph Datasets. Table III summarizes the main character-
istics of the real-world datasets used for evaluation and shows
their storage requirements in HavoqGT binary graph format.
For each graph, we create symmetric edges (2|E| edges) with
non-zero, positive edge weights in the range as listed in
Table III. The Web Data Commons 2012 (WDC), ClueWeb
2012 (CLW), and UK Web 2007-05 (UKW) are web graphs
whose vertices are webpages and edges are hyperlinks [21].
Friendster (FSR) [21] and LiveJournal (LVJ) [30] are user-
centric social media graphs. Patent (PTN) and CiteSeer (CTS)
are citation graphs [30]. MiCo (MCO) is a co-author graph
created from the Microsoft research article repository [30].

Seed Vertex Selection. To ensure all seed vertices are
present in the Steiner tree, first, we identify the largest
connected component using Breath-first search (BFS) and
BFS-levels of vertices. It is undesirable that majority of seed
vertices are directly connected in which case Voronoi cell
computation could converge faster. To avoid this scenario,
from different BFS-levels, we randomly select vertices – often
a higher percentage of vertices are selected from a level with
higher vertex frequency. Note that the length of the weighted
shortest path between a vertex pair is unlikely to be the same as
in the BFS-tree. Also, sampling disjoint sets by the population
size roughly converges to uniform random overall.

Experiment Methodology. The performance metric is the
time-to-solution, i.e., identifying the edges in a Steiner tree.
It does not including graph partitioning and loading times.
Runtime numbers are averages over at least 10 runs. For strong
scaling experiments, the smallest platform scale is the one

Voronoi Cell Local Min Dist. Edge Global Min Dist. Edge MST Global Edge Pruning Steiner Tree Edge

0

20

40

60

80

100

128 256 512

WDC |S|=1000

0

10

20

30

40

50

60

64 128 256

CLW |S|=1000

0

2

4

6

8

10

12

14

16

32 64 128

UKW |S|=1000

0

2

4

6

8

10

12

32 64 128

FRS |S|=1000

1.5x

2.2x

1.4x

1.9x 1.8x

2.6x

1.8x

2.9x

0

2

4

6

8

10

12

32 64 128

T
im

e
 (

s
)

FRS |S|=100

1.4x

2.0x

0

3

6

9

12

15

18

32 64 128

UKW |S|=100

1.3x

1.8x

0

10

20

30

40

50

60

64 128 256

CLW |S|=100

1.7x

2.6x

0

20

40

60

80

100

128 256 512

WDC |S|=100

1.8x

2.7x

Fig. 3: Strong scaling experiment results using the FRS, UKW, CLW and WDC datasets. Runtime is broken down to the key computation steps (identified in
chart legends). For each experiment, X-axis labels in the first row indicates the platform size (number of compute nodes). Speedup achieved over the smallest
scale is shown on top of respective stacked bar plots.

that can accommodate a dataset and required algorithm states.
Strong scaling experiments do not include results on a single
node since this does not involve remote communication.

A. Strong Scaling

Fig. 3 presents results of strong scaling experiments using,
the four largest graphs in Table III, 100 and 1K seed vertices,
and up to 512 compute nodes. Runtime is broken down to the
key computation steps described in §IV. For each dataset, the
smallest platform scale (e.g., 32 nodes for FRS) is the one
that can accommodate the graph and required algorithm states
(each machine has 128GB memory). For all datasets, majority
of the runtime is spent in computing Voronoi cells, followed
by local min-distance edge computation whose scalability
improves almost linearly when the platform size is doubled.
More time is spent in local min-distance edge computation
when the number of seeds is increased by an order of mag-
nitude. Time spent in the remaining distributed computation
phases are insignificant compared to the total runtime (hence,
scalability). Moving from 100 to 1K seeds, for a dataset, no
major deviation is observed in scaling performance. Overall,
we observe decent scaling – the larger CLW and WDC
graphs demonstrate better scaling (up to 90% efficient scaling)
compared to the smaller FRS and UKW datasets. Voronoi
cell computation, whose performance is most affected by the
irregular graph topology, is the main scalabaility bottleneck.

B. Number of Seed Vertices vs Runtime Performance

Fig. 4 compares runtime performance of different seed
vertex counts |S|: 10, 100, 1K and 10K, using six graph
datasets. For each dataset, the number of processes used are
the same for all values of |S|. Runtime is broken down to the
key computation steps described in §IV. Except for smaller
PTN and LVJ, Voronoi cell computation time decreases for the
highest value of |S| (i.e., 10K). This is due to the convergence
rate being accelerated in the presence of a large S (a data
dependent artifact). For |S| = 10, 100 and 1K, time spent
in the final four steps (i.e, global min-distance edge, MST,
global edge pruning and Steiner tree edge) is insignificant
compared to the total runtime. For |S| = 10K, the distance
graph G′1 has ∼50M edges – two orders of magnitude larger
than the distance graph for |S| = 1K. Updating the edge-
weights, computing MST on the ∼50M edge graph and using

0

3

6

9

12

15

18

21

1
0

1
0
0

1
0
0
0

1
0
0
0
0

T
im

e
 (

s
)

PTN

0

5

10

15

20

25

30

35

40

1
0

1
0
0

1
0
0
0

1
0
0
0
0

LVJ

0

3

6

9

12

15

18

21

1
0

1
0
0

1
0
0
0

1
0
0
0
0

FRS

|S|=

Voronoi Cell Local Min Dist. Edge
Global Min Dist. Edge MST
Global Edge Pruning Steiner Tree Edge

0

5

10

15

20

25

1
0

1
0
0

1
0
0
0

1
0
0
0
0

T
im

e
 (

s
)

UKW

0

10

20

30

40

50

60

1
0

1
0
0

1
0
0
0

1
0
0
0
0

CLW

0

20

40

60

80

100

1
0

1
0
0

1
0
0
0

1
0
0
0
0

WDC

|S|=

Fig. 4: Runtime performance of different seed vertex counts |S|: 10, 100, 1K
and 10K, using six graph datasets. For each dataset, the number of processes
used are the same for all values of |S|. For |S| = 10K, we had to double
the number of compute nodes to allow more memory for the MPI collective
operation on buffers with ∼50M items (i.e., edges of the distance graph G′1).

this information for further edge pruning accounts for some
computation time. The influence is more visible in smaller
graphs. Note that reported time for the MST step also includes
time spent in moving results from the sequential code to the
distributed data structure; for |S| = 10K, the actual spanning
tree computation takes ∼2s only. Table IV lists the number
of edges in the final tree for each dataset and seed vertex
combination. Fig. 9 shows Steiner trees in the MiCo graph
for the given seed sets.

TABLE IV: Total number of edges in the output Steiner tree for different
graphs and seed vertex sets.
|S| WDC CLW UKW FRS LVJ PTN MCO CTS
10 326 152 184 149 105 125 93 66

100 1,953 1,265 1,542 1,485 1,108 1,112 743 320
1K 12,488 6,909 10,644 11,639 7,193 8,075 4,599 1,362

10K 85,586 36,397 42,782 85,211 50,530 51,988 N/A N/A

Voronoi Cell Local Min Dist. Edge
Global Min Dist. Edge MST
Global Edge Pruning Steiner Tree Edge

0

15

30

45

60

75

90

FIFO Priority

T
im

e
 (

s
)

LVJ

0

5

10

15

20

25

30

35

40

FIFO Priority

FRS

0

10

20

30

40

50

60

70

80

90

100

FIFO Priority

UKW|S|=100

6.2x

3.5x

13.1x

Fig. 5: Runtime comparison of using FIFO and priority queues using a fixed
number of seed vertices and cluster sizes (one node for LVJ, and 32 nodes
for FRS and UKW). Runtime is broken down to the key computation steps
(identified in chart legends). Speedup achieved due to the use of priority queue
is shown on top of respective stacked bar plots.

Voronoi Cell Local Min Dist. Edge Steiner Tree Edge

0

2E+09

4E+09

6E+09

8E+09

1E+10

F
IF

O

P
ri
o

ri
ty

M
e
s
s
a
g
e
 C

o
u
n
t

LVJ

0

1E+10

2E+10

3E+10

4E+10

5E+10

6E+10

7E+10

8E+10

F
IF

O

P
ri
o

ri
ty

FRS

0

4E+10

8E+10

1.2E+11

1.6E+11

2E+11
F

IF
O

P
ri
o

ri
ty

UKW

22.1x

4.9x
6.1x

|S|=100

Fig. 6: Comparison of message count due to the use of FIFO and priority
queues for the same experiments in Fig. 5. Message count is broken down
to the key computation steps (identified in chart legends). Improvement in
generated message count due to the use of priority queue is shown on top
of respective stacked bar plots. Note that the figure does not show message
count for computation phases that rely on MPI collective operations (Alg. 3).

C. FIFO vs Priority Queue for Message Propagation

In §IV, we discussed employing priority queue for message
propagation within HavoqGT, specifically to accelerate the
convergence of Voronoi cell computation. Here, we demon-
strate the advantage of this design optimization with respect
to runtime and message volume. Fig. 5 compares runtime
performance of using a priority queue with that of using a
FIFO queue (default in HavoqGT). The advantage of priority
queue is significant: for FRS, priority queue offers 3.5×
speedup, while for LVJ, the improvement is over 13×. Fig. 6
shows the actual number of messages communicated, grouped
by computation phases, for the same set of experiments as
in Fig. 5. These two set of results complement each other:
improvement in runtime of Voronoi cell computation is a direct
result of reduction in number of messages when the priority
queue is used – the improvement is 4.9× for FRS, while LVJ
shows 22.1× improvement in generated message traffic. The
local min-distance edge computation phase is responsible for
a small portion of the total generated message traffic which
is no greater than |E|. The number of messages due to the
final Steiner tree edge identification phase is comparatively
insignificant since the resulting Steiner tree is typically orders
of magnitude smaller than the original data graph.

0

20

40

60

80

100

120

[1, 100] [1, 500] [1, 1K] [1, 5K] [1, 10K] [1, 50K] [1, 100K]

T
im

e
 (

s
)

LVJ |S| = 1000

FIFO Priority

Edge

Weights

Fig. 7: Influence of edge weight distribution on end-to-end runtime perfor-
mance: X-axis labels are the edge weight range (inclusive). We compare two
cases, using FIFO and priority queues for message propagation. Here, S is
fixed, 1K seeds, and the LVJ graph uses a single machine for all experiments.

D. Edge Weight Distribution vs Runtime Performance

Edge weight distribution is known to influence the conver-
gence time of shortest path computation [24], [27]. Fig. 7
studies this phenomena using the LVJ graph for a fixed S
but different edge weight distributions, from [1, 100] up to [1,
100K]. We compare two cases, using FIFO and priority mes-
sage queues. Edge distribution does impact runtime, especially
Voronoi cell computation; for both message queues, edge
weight distribution [1, 100] achieves the fastest convergence
time. The variability in convergence time when using FIFO
queue is much higher compared to using priority queue: for
FIFO queue, the standard deviation is 13.5s, 14.7× higher
than that of priority queue (which is only 0.91s). The results
suggest the priority queue optimization makes our solution not
only to perform better (for the LVJ graph, on average 10.8×
faster than using FIFO queue) but also less sensitive to edge
weight distribution. Note that these results are subjected to
randomness associated with edge weight assignment.

E. Studying Seed Selection Alternatives

Earlier in the section, we discussed the seed selection
approach used for evaluating this work (we call it BFS-level).
In this section, we explore three additional seed selection
alternatives and study their influence on performance and char-
acteristics of the output tree. Uniform random – we randomly
select |S| vertices from the largest connected component.
Eccentric – we ensure seed vertices are faraway from each
other. We use a technique inspired by the k-BFS heuristic [31]
– the algorithm iteratively identifies (k = |S|) BFS sources
which are then used as seeds for Steiner tree computation.

TABLE V: Comparison of seed selection strategies using the LVJ graph. For
each technique, the table lists runtime, number of the edges |ES | in the output
Steiner tree |GS |, and its total distance D(GS).

BFS-level Uniform Random
|S| Time D(GS) |ES | Time D(GS) |ES |
100 6.4s 426.9K 1,108 5.5s 207.5K 889
1K 9.3s 2,840.9K 7,193 9.0s 1,845.5K 7,202

10K 38.2s 28,903.3K 50,530 37.5s 18,123.5K 49,755
Eccentric Proximate

|S| Time D(GS) |ES | Time D(GS) |ES |
100 6.1s 412.3K 1,115 7.6s 16.0K 272
1K 6.3s 6,091.5K 6,548 8.1s 101.0K 1,699

10K 31.4s 49,644.5K 49,691 39.1s 1,105.9K 16,624

Available Memory Application Runtime In-memory Graph

1

10

100

1000

1
0
0
0

1
0
0
0
0

M
e
m

o
ry

 S
iz

e
 (

G
B

)
–

lo
g
-s

c
a
le

LVJ

1

10

100

1000

10000

100000

1
0
0
0

1
0
0
0
0

CLW

|S|=

1

10

100

1000

10000

100000

1
0
0
0

1
0
0
0
0

WDC

128GB

256GB 8TB
16TB 16TB

32TB

Fig. 8: Cluster-wide peak memory usages by three graphs for 1K and 10K
seed vertices. The total system memory is listed on top of respective stacked
bars. For both |S| = 1K and 10K experiments, the number of processes used
are the same but the number of nodes is doubled for |S| = 10K to allow
more memory.

Starting with a random vertex in the largest connected com-
ponent as the BFS source, each of the subsequent k − 1 BFS
sources is identified based on BFS-levels computed in the
previous k − n rounds (1 ≤ n ≤ k − 1): BFS source for
the k − n + 1’th round uk−n+1 = max({

∑k−n
j=0 lj(vi)}),

where uk−n+1, vi ∈ V , uk−n+1 6= vi, lj(vi) is the BFS-
level of vi in the j’th round. Proximate – seed vertices are
selected such that they are close to each other, following
the same approach in the eccentric case: BFS source for the
k− n + 1’th round uk−n+1 = min({

∑k−n
j=0 lj(vi)}). Table V

presents the results. In summery, we do not observe notable
difference in performance between techniques. Compared to
other techniques, proximate produces significantly smaller
trees (which we tried to avoid in the evaluation of our work).

F. Memory Usage Analysis

Fig. 8 shows cluster-wide peak memory usages by three
graphs for 1K and 10K seed vertices. For both experiments,
the process count is the same but the number of compute
nodes is doubled in |S| = 10K to meet the memory demand.
|S| = 1K experiments for LVJ, CLW and WDC use one, 64
and 128 nodes, respectively. For each experiment in Fig. 8,
total memory usage is broken down to memory required for
the in-memory HavoqGT binary graph and algorithm states
(which includes communication buffers and messages). For the
smaller LVJ, memory usage is dominated by algorithm states;
|S| = 10K consumes 35.9× more memory than |S| = 1K. For
the larger CLW and WDC, the differences are 4.4× and 1.7×,
respectively. Note that for |S| = 10K, noticeable increase in
memory usage is due to the MPI collective operation on the
edge buffer EN which has ∼50M elements. Memory consump-
tion improves when, instead of a single collective operatio
on the entire edge buffer, multiple collective operations are
performed on smaller chunks, e.g., 500K or 1M items per
chunk, at the expense of runtime performance of course.

G. Comparison with Related Work

We compare our distributed solution with two sequential
2-approximate algorithms WWW [15] and Mehlhorn [17],
and sequential exact solution SCIP-JACK [20]. ParaSCIP [32]

TABLE VI: Runtime comparison between our distributed solution (D) – using
16 processes on a single machine, and three related work: exact solution SCIP-
Jack (S) [20], and 2-approximation algorithms WWW (W) [15] and Mehlhorn
(M) [17]. Time units: hour (h), minute (m), second (s), and millisecond (ms).
|S| 10 100 1000

S W M D S W M D S W M D
LVJ 9.4m 27.8s 25.1s 5.5s 10.1m 28.4s 40.5s 6.4s 45.8m 28.4s 1.9m 9.3s
PTN 7.3m 8.4s 14.8s 4.6s 11.0m 8.3s 28.7s 4.0s 1.0h 8.4s 1.5m 3.9s
MCO 8.8s 0.3s 0.2s 0.3s 9.8s 0.3s 0.4s 0.3s 53.5s 0.3s 1.6s 0.5s
CTS <1s 0.5ms 0.9ms 5ms <1s 0.7ms 4.9ms 6ms <1s 2.2ms 0.1s 0.2s

TABLE VII: The quality of approximation of our distributed solution: on the
left, the approximation ratio of a Steiner tree identified by our solution, i.e.,
D(GS)/Dmin(G); on the right % error of approximation for the same set
of experiments. Steiner minimal trees were computed using SCIP-Jack [20].

D(GS)/Dmin(G) % Error
|S| 10 100 1000 10 100 1000
LVJ 1.0112 1.0110 1.0183 1.12 1.10 1.83
PTN 1.1684 1.0859 1.0790 16.84 8.59 7.90
MCO 1.0375 1.0668 1.0435 3.75 6.68 4.35
CTS 1.0526 1.0438 1.0138 5.26 4.38 1.38

enables SCIP-Jack to harness distributed clusters by replicating
the data graph on all processes. Unfortunately, ParaSCIP did
not yield any performance advantage in our experiments:
the authors of SCIP-Jack reproduced our experiments and
concluded that branch-and-bound search was lacking paral-
lelism for the datasets we used (explained in [20]); hence,
we present results obtained using sequential SCIP-JACK 2.0
(reproduced by original authors as well). Unfortunately, we do
not have access to another parallel, distributed implementation
that solves the same problem that we could use for direct
comparison. We implement WWW and Mehlhorn algorithms
in C++ based on cache friendly CSR graph data structure. We
use four small graphs in Table III and up to 1K seed vertices.

Table VI presents comparison of the runtime performance.
While for smaller CTS and MCO graphs, work efficient
WWW performances slightly better, the advantage of our
parallel solution becomes apparent for larger PTN and LVJ
graphs: when using 16 processes on a single machine, our
solution is maximum 27× faster than Mehlhorn and 5× faster
than WWW. Table VII shows the quality of approximation
of our distributed solution. We compare the total wight of a
Steiner tree identified by our algorithm with that of the Steiner
minimal tree produced by exact solution SCIP-Jack, i.e., we
measure D(GS)/Dmin(G). The table also lists the percentage
error in approximation relative to the optimal solution. The
empirical results complement the 2-approximation bound that
our solution guarantees: on average, the total distance D(GS)
of the Steiner tree identified by our solution is 1.0527 times
greater than that of the Steiner minimal tree (i.e., Dmin(G))
which is well within the theoretical bound of ≤ 2(1 − 1/l),
and the approximation error is 5.3%.

VI. RELATED WORK

The Steiner minimal tree problem is one of Karp’s 21
NP-complete problems [1]. Hakimi [3] is often credited for
proposing the first exact solution; followed by a significant

(a) |S|=10 (b) |S|=100 (c) |S|=1000
Fig. 9: Steiner trees in the MiCo graph for three seed sets of different sizes. Seed vertices have red fill and Steiner vertices have blue fill.

number of contributions over the decades – a comprehensive
survey is available in [33]. Often practical applications solve a
particular variant of the problem, such as the Steiner arbores-
cence, euclidean and rectilinear minimum tree, group, prize-
collecting, and node-weighted Steiner tree problem [33], [34].
GeoSteiner [35] is a well known solver for exact euclidean and
rectilinear Steiner minimal tree problems. SCIP-Jack [20], [36]
is the state-of-the-art general purpose, exact solver, winner of
the 11’th DIMACS challenge, in the rooted prize-collecting
problem category. SCIP-Jack follows a branch-and-cut ap-
proach which enables tight liner programming (LP) relaxation.

For many years, there have been continuing interests in
polynomial-time algorithms with tight approximation bound.
In §I – III, we discussed key 2-approximation algorithms.
Winter and Smith [37] proposed heuristics with approximation
bound ≤ 2, however, they do not improve runtime over [14]
and are not good candidate for parallelization. More recently,
Hougardy and Prömel improved the approximation ratio to
1.598 [38], followed by Robins and Zelikovsky further im-
proving the ratio to 1.55 [39]. T.t.b.o.o.k., to date, the LP-
based approximation algorithm based on iterative randomized
rounding by Byrka et al. [40] offers guarantees for the best
approximation ratio: ln(4) + ε ≤ 1.39. Often algorithms
with approximation ratio < 2 iteratively refine a base-solution
which is typically computed using a 2-approximation algo-
rithm [41]. STAR [42] and SketchLS [43], although lack
guarantees of polynomial runtime and tight approximation
bound, were evaluated using real-world, scale-free graphs.
Genetic algorithm [44], Swarm optimization [45], Physarum
optimization [46] heuristics have been used for approximating
Steiner minimal trees – they only offer probabilistic solutions
and their result quality suffers with increasing graph size.

We are not aware of any parallel, distributed solution
that can compete with the scalability demonstrated in this
paper. Several papers discuss parallel, distributed Steiner
tree computation from the theoretical perspective only [41],
[47]–[49]. PARSTEINER94 [50], algorithmically similar to
GeoSteiner, is an early parallel exact solver. ParaSCIP [32]
is an MPI library enabling SCIP-Jack to harness distributed
clusters: it replicates the data graph on all processes and
performs parallel branch-and-bound search. A distributed dual
ascent [37] heuristic is presented in [51] whose performance
was demonstrated using graphs with less than 10K edges. A
GPU implementation of the STAR heuristic [42] is presented

in [52]. Group Steiner tree computation on the GPU with
application to VLSI routing is presented in [53]. Curious
readers are encouraged to check out the survey paper by
Bezensek and Robic [54] – it presents an extensive survey
of distributed Steiner tree computation efforts.

VII. CONCLUSION

This paper presents a parallel Steiner tree algorithm and
its evaluation using a proof-of-concept distributed implemen-
tations. We demonstrate the ability to generate Steiner trees
within 2-approximation of the Steiner minimal tree for thou-
sands of seed vertices in graphs with up to 128 billion edges,
t.t.b.o.o.k., to date, the largest graph scale for this problem. We
show up to 90% efficient strong scaling and present analyses
that highlight the benefits of our design choices. Finally,
empirical comparison with the state-of-the-art exact Steiner
minimum tree solver confirms the fidelity of our solution.

ACKNOWLEDGEMENT

Lawrence Livermore National Laboratory is operated by
Lawrence Livermore National Security, LLC, for the U.S. De-
partment of Energy, National Nuclear Security Administration
under Contract DE-AC52-07NA27344. Funding from project
LDRD #21-ERD-020 was used in this work.

REFERENCES

[1] R. M. Karp, Reducibility among Combinatorial Problems. Boston, MA:
Springer US, 1972, pp. 85–103.

[2] E. N. Gilbert and H. O. Pollak, “Steiner minimal trees,” SIAM Journal
on Applied Mathematics, vol. 16, no. 1, pp. 1–29, 1968.

[3] S. L. Hakimi, “Steiner’s problem in graphs and its implications,”
Networks, vol. 1, pp. 113–133, 1971.

[4] E. Ihler, G. Reich, and P. Widmayer, “Class steiner trees and vlsi-design,”
Discrete Appl. Math., vol. 90, no. 1–3, p. 173–194, Jan. 1999.

[5] A. Caldwell, A. Kahng, S. Mantik, I. Markov, and A. Zelikovsky, “On
wirelength estimations for row-based placement,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 18,
no. 9, pp. 1265–1278, 1999.

[6] Y. Sun, M. Brazil, D. Thomas, and S. Halgamuge, “The fast heuristic
algorithms and post-processing techniques to design large and low-cost
communication networks,” IEEE/ACM Trans. Netw., vol. 27, no. 1, p.
375–388, Feb. 2019.

[7] H. Gong, L. Zhao, K. Wang, W. Wu, and X. Wang, “A distributed algo-
rithm to construct multicast trees in wsns: An approximate steiner tree
approach,” in Proceedings of the 16th ACM International Symposium on
Mobile Ad Hoc Networking and Computing, ser. MobiHoc ’15. New
York, NY, USA: ACM, 2015, p. 347–356.

[8] Y. Sun, C. Ma, and S. Halgamuge, “The node-weighted steiner tree
approach to identify elements of cancer-related signaling pathways,”
BMC Bioinformatics, vol. 18, 12 2017.

[9] C. L. Lu, C. Y. Tang, and R. C.-T. Lee, “The full steiner tree problem
in phylogeny,” in Computing and Combinatorics, O. H. Ibarra and
L. Zhang, Eds. Springer Berlin Heidelberg, 2002, pp. 107–116.

[10] W. Lee, W.-K. Loh, and M. M. Sohn, “Searching steiner trees for web
graph query,” Comput. Ind. Eng., vol. 62, no. 3, p. 732–739, Apr. 2012.

[11] R.-H. Li, L. Qin, J. X. Yu, and R. Mao, “Efficient and progressive group
steiner tree search,” in Proceedings of the 2016 International Conference
on Management of Data, ser. SIGMOD ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 91–106.

[12] M. R. Garey, R. L. Graham, and D. S. Johnson, “Some np-complete
geometric problems,” in Proceedings of the Eighth Annual ACM Sym-
posium on Theory of Computing, ser. STOC ’76. New York, NY, USA:
Association for Computing Machinery, 1976, p. 10–22.

[13] H. Takahashi et al., “An approximate solution for the steiner problem
in graphs,” Math. Jap., vol. 24, p. 573–577, 1980.

[14] L. Kou, G. Markowsky, and L. Berman, “A fast algorithm for steiner
trees,” Acta Inf., vol. 15, no. 2, p. 141–145, Jun. 1981.

[15] Y.-F. Wu, P. Widmayer, and C.-K. Wong, “A faster approximation
algorithm for the steiner problem in graphs,” Acta Informatica, vol. 23,
pp. 223–229, 1986.

[16] P. Widmayer, “On approximation algorithms for steiner’s problem in
graphs,” in Graph-Theoretic Concepts in Computer Science, G. Tinhofer
and G. Schmidt, Eds. Springer Berlin Heidelberg, 1987, pp. 17–28.

[17] K. Mehlhorn, “A faster approximation algorithm for the steiner problem
in graphs,” Info. Processing Letters, vol. 27, no. 3, pp. 125–128, 1988.

[18] D. Bader and G. Cong, “Fast shared-memory algorithms for computing
the minimum spanning forest of sparse graphs,” in 18th IEEE Interna-
tional Parallel and Distributed Processing Symposium, 2004, pp. 39–.

[19] R. Pearce, M. Gokhale, and N. M. Amato, “Faster parallel traversal of
scale free graphs at extreme scale with vertex delegates,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’14. Piscataway, NJ, USA:
IEEE Press, 2014, pp. 549–559.

[20] D. Rehfeldt, Y. Shinano, and T. Koch, “Scip-jack: An exact high perfor-
mance solver for steiner tree problems in graphs and related problems,”
in Modeling, Simulation and Optimization of Complex Processes HPSC
2018, H. G. Bock, W. Jäger, E. Kostina, and H. X. Phu, Eds. Cham:
Springer International Publishing, 2021, pp. 201–223.

[21] R. Dathathri, G. Gill, L. Hoang, V. Jatala, K. Pingali, V. K. Nandivada,
H.-V. Dang, and M. Snir, “Gluon-async: A bulk-asynchronous system
for distributed and heterogeneous graph analytics,” in 28th International
Conf. on Parallel Architectures and Compilation Tech. (PACT), 2019.

[22] K. Pingali, “Lonestar minimum spanning tree,” 2018. https://iss.oden.
utexas.edu/?p=projects/galois/analytics/mst

[23] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and
I. Stoica, “Graphx: Graph processing in a distributed dataflow frame-
work,” in Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’14. Berkeley, CA,
USA: USENIX Association, 2014, pp. 599–613.

[24] T. Aasawat, T. Reza, K. Yoshizoe, and M. Ripeanu, “Hygn: Hybrid
graph engine for numa,” in 2020 IEEE International Conference on Big
Data (Big Data), 2020, pp. 383–390.

[25] M. Ceccarello, A. Pietracaprina, G. Pucci, and E. Upfal, “A practical
parallel algorithm for diameter approximation of massive weighted
graphs,” in 2016 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2016, pp. 12–21.

[26] K. Wang, D. Fussell, and C. Lin, “A fast work-efficient sssp algorithm
for gpus,” in Proceedings of the 26th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, ser. PPoPP ’21.
New York, NY, USA: Association for Computing Machinery, 2021, p.
133–146. https://doi.org/10.1145/3437801.3441605

[27] C. Xie, R. Chen, H. Guan, B. Zang, and H. Chen, “Sync or async:
Time to fuse for distributed graph-parallel computation,” SIGPLAN Not.,
vol. 50, no. 8, p. 194–204, Jan. 2015.

[28] A. Gittens, K. Rothauge, S. Wang, M. W. Mahoney, L. Gerhardt,
Prabhat, J. Kottalam, M. Ringenburg, and K. Maschhoff, “Accelerating
large-scale data analysis by offloading to high-performance computing
libraries using alchemist,” in 24th ACM Inter. Conf. on Knowledge
Discovery and Data Mining, ser. KDD ’18, 2018, pp. 293–301.

[29] LLNL, “Quartz,” 2017. https://hpc.llnl.gov/hardware/platforms/Quartz
[30] T. Reza, M. Ripeanu, G. Sanders, and R. Pearce, “Approximate pattern

matching in massive graphs with precision and recall guarantees,” in
ACM Inter. Conf. on Management of Data, ser. SIGMOD ’20, 2020.

[31] K. Iwabuchi, G. Sanders, K. Henderson, and R. Pearce, “Computing
exact vertex eccentricity on massive-scale distributed graphs,” in 2018
IEEE Inter. Conf. on Cluster Computing (CLUSTER), 2018.

[32] G. Gamrath, T. Koch, D. Rehfeldt, and Y. Shinano, “Scip-jack - a
massively parallel stp solver,” ZIB, Berlin, Tech. Rep. 14-35, 2014.

[33] M. Hauptmann and M. K. (eds.), A Compendium on Steiner Tree
Problems. Hausdorff Center for Mathematics, Univ. of Bonn, 2013.

[34] D. Rehfeldt, “A generic approach to solving the steiner tree problem
and variants,” The Technical University of Berlin, Tech. Rep., 2015.

[35] D. M. Warme, P. Winter, and M. Zachariasen, Exact Algorithms for
Plane Steiner Tree Problems: A Computational Study. Boston, MA:
Springer US, 2000, pp. 81–116.

[36] D. Rehfeldt and T. Koch, “Implications, conflicts, and reductions for
steiner trees,” in Integer Programming and Combinatorial Optimization,
M. Singh and D. P. Williamson, Eds. Springer, 2021, pp. 473–487.

[37] P. Winter and J. Smith, “Path-distance heuristics for the steiner problem
in undirected networks,” Algorithmica, no. 7, pp. 309–327, 1992.

[38] S. Hougardy and H. J. Prömel, “A 1.598 approximation algorithm for the
steiner problem in graphs,” in Proceedings of the 10th Annual Acm-Siam
Symposium on Discrete Algorithms, Soda, 1999, pp. 448–453.

[39] G. Robins and A. Zelikovsky, “Improved steiner tree approximation in
graphs,” in In Proceedings of the 11th Annual ACM-SIAM Symposium
on Discrete Algorithms, 2000, pp. 770–779.

[40] J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità, “An improved lp-based
approximation for steiner tree,” in Proceedings of the Forty-Second ACM
Symposium on Theory of Computing, ser. STOC ’10. New York, NY,
USA: Association for Computing Machinery, 2010, p. 583–592.

[41] J.-S. Park, W. W. Ro, H. Lee, and N. Park, “Parallel algorithms for
steiner tree problem,” in 3rd International Conference on Convergence
and Hybrid Information Technology, vol. 1, 2008, pp. 453–455.

[42] G. Kasneci, M. Ramanath, M. Sozio, F. M. Suchanek, and G. Weikum,
“Star: Steiner-tree approximation in relationship graphs,” in Proceedings
of the 2009 IEEE International Conference on Data Engineering, ser.
ICDE ’09. USA: IEEE Computer Society, 2009, p. 868–879.

[43] A. Gubichev and T. Neumann, “Fast approximation of steiner trees in
large graphs,” in Proceedings of the 21st ACM International Conference
on Information and Knowledge Management, ser. CIKM ’12. New
York, NY, USA: ACM, 2012, p. 1497–1501.

[44] A. Kapsalis, V. Rayward-Smith, and G. Smith, “Solving the graphical
steiner tree problem using genetic algorithms,” Journal of the Opera-
tional Research Society, vol. 44, 04 1993.

[45] X. Ma and Q. Liu, “A particle swarm optimization for steiner tree
problem,” in 6th Inter. Conf. on Natural Comp., vol. 5, 2010.

[46] Y. Sun and S. Halgamuge, “Fast algorithms inspired by physarum
polycephalum for node weighted steiner tree problem with multiple ter-
minals,” in IEEE Congress on Evol. Comp. (CEC), 2016, p. 3254–3260.

[47] K. Makki, K. Been, and N. Pissinou, “A parallel algorithm for the steiner
tree problem,” in Proceedings of ICCI’93: 5th International Conference
on Computing and Information, 1993, pp. 380–384.

[48] P. Saikia and S. Karmakar, “Distributed approximation algorithms for
steiner tree in the congested clique,” International Journal of Founda-
tions of Computer Science, vol. 31, no. 07, pp. 941–968, 2020.

[49] H. Akbari, Z. Iranmanesh, and M. Ghodsi, “Parallel minimum spanning
tree heuristic for the steiner problem in graphs,” in 2007 International
Conference on Parallel and Distributed Systems, 2007, pp. 1–8.

[50] F. C. Harris, Steiner Minimal Trees: An Introduction, Parallel Computa-
tion, and Future Work. Boston, MA: Springer US, 1998, pp. 851–903.

[51] L. M. A. Drummond, M. Santos, and E. Uchoa, “A distributed dual
ascent algorithm for steiner problems in multicast routing,” Netw.,
vol. 53, no. 2, p. 170–183, Mar. 2009.

[52] C. Mathieu and M. Klusch, “Accelerated steiner tree problem solving on
gpu with cuda,” in Algorithms and Architectures for Parallel Processing,
G. Wang, A. Zomaya, G. Martinez, and K. Li, Eds. Cham: Springer
International Publishing, 2015, pp. 444–457.

[53] V. Maringanti, B. Imana, and P. Yoon, “Gpu-accelerated vlsi routing
using group steiner trees,” The Journal of Computational Science
Education, vol. 8, pp. 16–19, 01 2017.

[54] M. Bezensek and B. Robic, “A survey of parallel and distributed
algorithms for the steiner tree problem,” International Journal of Parallel
Programming, 04 2014.

https://iss.oden.utexas.edu/?p=projects/galois/analytics/mst
https://iss.oden.utexas.edu/?p=projects/galois/analytics/mst
https://doi.org/10.1145/3437801.3441605
https://hpc.llnl.gov/hardware/platforms/Quartz

