
Journal of Parallel and Distributed Computing 181 (2023) 104743

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

journal homepage: www.elsevier.com/locate/jpdc

As easy as ABC: Optimal (A)ccountable (B)yzantine (C)onsensus is 

easy!

Pierre Civit a,∗, Seth Gilbert b, Vincent Gramoli c,d, Rachid Guerraoui d, Jovan Komatovic d,∗∗
a Sorbonne Université, CNRS, LIP6, 4 place Jussieu, Paris, 75005, France
b NUS Singapore, 21 Lower Kent Ridge Road, 119077, Singapore
c University of Sydney, 1 Cleveland St, Darlington NSW, 2008, Australia
d École Polytechnique Fédérale de Lausanne (EPFL), Rte Cantonale, Lausanne, 1015, Switzerland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 August 2022
Received in revised form 22 June 2023
Accepted 17 July 2023
Available online 1 August 2023

Keywords:
Distributed consensus
Accountability
Fault detection
Byzantine fault tolerance

In a non-synchronous system with n processes, no t0-resilient (deterministic or probabilistic) Byzantine 
consensus protocol can prevent a disagreement among correct processes if the number of faulty processes 
is ≥ n − 2t0. Therefore, the community defined the accountable Byzantine consensus problem: the 
problem of (i) solving Byzantine consensus whenever possible (e.g., when the number of faulty processes 
does not exceed t0), and (ii) allowing correct processes to obtain proofs of culpability of n − 2t0
faulty processes whenever a disagreement occurs. This paper presents ABC, a simple yet efficient 
transformation of any non-synchronous t0-resilient (deterministic or probabilistic) Byzantine consensus 
protocol into its accountable counterpart. In the common case (up to t0 faults), ABC introduces an 
additive overhead of two communication rounds and O (n2) exchanged bits. Whenever they disagree, 
correct processes detect culprits by exchanging O (n3) messages, which we prove optimal. Lastly, ABC is 
not limited to Byzantine consensus: ABC provides accountability for other essential distributed problems 
(e.g., reliable and consistent broadcast).

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).
1. Introduction

Byzantine consensus [40] is a fundamental problem of dis-
tributed computing. It plays a major role in state machine replica-
tion (SMR) [1,6,45,52,42,20], particular cryptographic protocols [9,
34], and blockchain systems [3,14,26,33]. In brief, Byzantine con-
sensus enables processes to agree on a common value despite 
Byzantine (arbitrary) failures. Concretely, the problem is defined 
among n processes, out of which some processes can misbehave 
in an arbitrary manner (these processes can crash, send different 
messages to different processes, fail to send some messages, etc.); 
processes that misbehave are said to be faulty, whereas non-faulty 
processes are said to be correct. The following interface is exposed:

• input propose(v): A process proposes a value v; the cardinal-
ity of the values processes can be proposed can be arbitrary 
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(i.e., we consider multivalue consensus). Each correct process 
proposes exactly one value.

• output decide(v ′): A process decides a value v ′ . Each correct 
process decides at most one value (i.e., decisions are irrevoca-
ble).

The following properties characterize the problem:

• Agreement: No two correct processes decide different values.
• Validity: If all correct processes propose the same value v , then 

no correct process decides a value v ′ �= v .
• Deterministic termination: Every correct process eventually de-

cides.
• Probabilistic termination: Every correct process eventually de-

cides with probability 1.

Definition 1 (Byzantine consensus protocol). A protocol is a t0-
resilient deterministic (resp., probabilistic) Byzantine consensus protocol
if it satisfies agreement, validity and deterministic (resp., proba-
bilistic) termination while tolerating up to t0 faulty processes.

In this paper, we are particularly interested in non-synchronous
Byzantine consensus protocols: protocols that operate in an en-
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vironment without (permanent) timely communication. Dwork, 
Lynch and Stockmeyer proved that non-synchronous Byzantine 
consensus cannot be solved with n/3 (or more) faulty pro-
cesses [31]. By adapting their technique, we prove another negative 
result: the safety of Byzantine consensus can always be compro-
mised in severely corrupted systems. (The following theorem is 
proven in Appendix A.)

Theorem 1 (Unavoidable disagreement). For any non-synchronous t0-
resilient (deterministic or probabilistic) Byzantine consensus protocol 
among n processes, there exists an execution with t ≥ n −2t0 faulty pro-
cesses in which correct processes disagree (i.e., decide different values).

A direct consequence of Theorem 1 is that no blockchain based 
on a non-synchronous Byzantine consensus protocol can prevent 
its divergence if the system is overly corrupted. Real-life conse-
quences of such unlucky scenarios can be substantial. For exam-
ple, people might lose valuable assets due to a fork created in a 
blockchain – such an attack is called double-spending.

While disagreements (and, thus, double-spending attacks) are 
unavoidable in severely corrupted systems (by Theorem 1), can we 
at least detect faulty processes which are responsible for disagree-
ments? Such a detection would naturally stimulate processes to 
behave correctly, thus increasing the security of the entire system. 
Luckily, Civit et al. [24] answered this question affirmatively by in-
troducing accountability to Byzantine consensus protocols. Namely, 
they defined the accountable Byzantine consensus problem: the 
problem of (i) solving Byzantine consensus whenever possible (e.g., 
when the number of faulty processes does not exceed some pre-
defined threshold), and (ii) allowing correct processes to obtain 
proofs of culpability of (some) faulty processes whenever a dis-
agreement occurs.

Definition 2 (Accountable Byzantine consensus protocol). A protocol is 
a t0-resilient deterministic (resp., probabilistic) accountable Byzantine 
consensus protocol if it satisfies the following two properties:

• Byzantine consensus solvability: In all executions with up to t0
faults, the protocol solves the Byzantine consensus problem, 
i.e., it satisfies agreement, validity and deterministic (resp., 
probabilistic) termination.

• Accountability: If two correct processes decide different values, 
every correct process eventually irrefutably detects (at least) 
n − 2t0 faulty processes and obtains a proof of culpability of 
each detected process. A proof of culpability of a process can 
be independently verified by a third party, and it is impossible 
to produce such a proof for a correct process.

Informally, a protocol is an accountable Byzantine consensus 
protocol if (1) it solves the Byzantine consensus problem when the 
system is not overly corrupted (Byzantine consensus solvability), 
and (2) it allows each correct process to detect (at least) n − 2t0
culprits whenever a disagreement occurs (accountability). More-
over, detection of culprits in the case of a disagreement implies 
an attainment of their culpability proofs. Importantly, no proof of 
culpability of a correct process can ever be obtained. Note that, if 
there are more than t0 faulty processes, correct processes might 
never decide and accountability is not provided in this case. In 
other words, accountability is guaranteed only in the case of a dis-
agreement.

1.1. Contributions

In this paper, we present the following contributions:
2

1. We introduce a generic and simple transformation – ABC – 
that maps any non-synchronous t0-resilient (deterministic or 
probabilistic) Byzantine consensus protocol into its account-
able counterpart. Additionally, our transformation is efficient: 
in the common case (i.e., in all executions with up to t0
faulty processes), ABC introduces an additive overhead of (1) 
two all-to-all communication rounds, and (2) O (n2) exchanged 
bits. In the case of a disagreement, correct processes achieve 
accountability by exchanging O (n3) “accountability-specific” 
messages; we refer to this metric as the accountability com-
plexity. Our transformation relies on (1) a public-key infras-
tructure [43,19], and (2) a threshold signature scheme [49].
ABC owes its simplicity and efficiency to an observation that 
the simple composition presented in Algorithm 1 solves the 
Byzantine consensus problem in a non-synchronous environ-
ment. Indeed, if the number of faults does not exceed t0, 
all correct processes eventually decide the same value from 
Byzantine consensus (line 2). Therefore, all correct processes 
eventually receive n − t0 matching confirm messages (line 4), 
and decide (line 5). The critical mechanism illustrated in Algo-
rithm 1 is that faulty processes must send conflicting confirm

messages in order to cause a disagreement. Hence, whenever 
correct processes disagree, an exchange of received confirm

messages is sufficient for obtaining accountability.

Algorithm 1 Intuition behind ABC transformation.
1: function propose(v) do
2: v ′ ← bc.propose(v) � bc is any non-synchronous t0-resilient Byzantine 

consensus protocol
3: broadcast [confirm, v ′]
4: wait for [confirm, v ′] from n − t0 processes
5: return v ′

2. We prove a lower bound on the accountability complexity 
in a non-synchronous environment: any accountable Byzan-
tine consensus protocol incurs �(n3) accountability complex-
ity, with t0 ∈ �(n). As a consequence, ABC suffices for achiev-
ing optimal accountability complexity.

3. We show that the applicability of ABC is not limited to 
Byzantine consensus. Specifically, we define a class of easily-
accountable agreement tasks, and demonstrate that generalized 
ABC transformation provides accountability for such tasks. 
Important distributed problems, such as Byzantine reliable 
and consistent broadcast [13,17], fall into the class of easily-
accountable agreement tasks.

1.2. Related work

The work on accountability in distributed systems was pio-
neered in [36]: PeerReview, a generic accountability layer for dis-
tributed systems, was presented. Importantly, PeerReview does not 
allow correct processes to irrefutably detect faulty processes in 
non-synchronous environments: faulty processes might be sus-
pected forever (i.e., processes strongly “believe” that the accused 
process is faulty, but no definitive proof is obtained), yet never 
conclusively detected. Hence, PeerReview does not suffice for ac-
countability in non-synchronous Byzantine consensus. The formal 
study of Byzantine failures in the context of accountability was ini-
tiated by Haeberlen and Kuznetsov [37].

Recently, with the expansion of blockchain systems, the interest 
in accountable distributed protocols resurfaced once again. Poly-
graph [23], the first accountable Byzantine consensus protocol, was 
introduced by Civit et al. The Polygraph protocol is based on the 
DBFT consensus protocol [26] used in blockchains [27], tolerates 
up to n faulty processes in achieving accountability, and has the 
communication complexity of O (n4) in the common case. It is 
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Table 1
Overview of the main properties of existing accountable Byzantine consensus protocols.

Base Consensus 
Protocol

Communication Complexity 
of the Base Consensus Protocol

Communication Complexity 
of the Accountable Counterpart 
in the Common Case

Accountability 
Threshold

Paper

PBFT O (n4) O (n4) 2n/3 Sheng et al. [48]
HotStuff O (n3) O (n3) 2n/3 Sheng et al. [48]
Binary DBFT O (n3) O (n4) n Civit et al. [23]
Multivalue DBFT O (n4) O (n4) n Civit et al. [23]
Any X X · O (n2) (or X · O (n)) n Civit et al. [25]
Any X X n this paper
worth observing that Polygraph worsens the communication com-
plexity of (the binary-value version of) the DBFT base protocol by 
an O (n) multiplicative factor. Casper [16] is another system de-
signed around the goal of obtaining accountability in blockchains, 
while Trap [47] combines accountability with game theory to in-
crease the Byzantine fault tolerance of blockchains.

Recently, the possibility of obtaining accountability in protocols 
based on PBFT [20] was investigated [48]. Specifically, accountable 
variants of PBFT [20] and HotStuff [53] were presented; however, 
these protocols allow for accountability only if up to 2n/3 pro-
cesses are faulty, which implies that their “accountability thresh-
old” is lower than the one of Polygraph. A generic transformation 
τscr of any protocol solving a Byzantine decision task into its ac-
countable equivalent was introduced in [25]. Thus, τscr suffices for 
obtaining accountability in any Byzantine consensus protocol. The 
drawback of the proposed transformation is its cost: τscr worsens 
the communication complexity of a Byzantine consensus protocol 
by a multiplicative factor of O (n2) (or O (n) in “broadcast-based” 
protocols1). The commonality between the discussed prior work 
is employing sophisticated mechanisms for achieving accountabil-
ity. Indeed, the prior work achieves accountability with the help of 
non-trivial modifications applied to the base consensus protocol.

In contrast, we take a fundamentally different approach that al-
lows us to treat the base consensus protocol as a “closed box”, 
thus obtaining simpler and more efficient accountable Byzantine 
consensus protocols. Table 1 compares accountable Byzantine con-
sensus protocols obtained by ABC with the existing alternatives.

Roadmap We present the necessary preliminaries in § 2. We de-
vote § 3 to our ABC transformation. In § 4, we prove a cubic 
lower bound on the accountability complexity. We define easily-
accountable agreement tasks, and prove the applicability of gen-
eralized ABC to such tasks in § 5. We conclude the paper in § 6. 
Optional appendix includes (1) a proof of Theorem 1 (Appendix A), 
and (2) a detailed specification of the cryptographic primitives we 
use (Appendix B).

2. Preliminaries

System model We consider a system � = {P1, ..., Pn} of n pro-
cesses that communicate by exchanging messages through a point-
to-point authenticated network. Concretely, a message is a se-
quence of bits whose semantics is application-specific. The sys-
tem is non-synchronous: there is no known bound that always 
holds on message delays and relative speed of the processes. Non-
synchronous systems include:

• asynchronous systems, where the bound does not exist; and

1 The τscr transformation [25] modifies each protocol by reliably-broadcasting [13,
17] its messages. Therefore, if the original protocol exclusively sends its messages to 
all processes (i.e., no unicasts are present), τscr introduces an overhead of an O (n)

multiplicative factor.
3

• partially synchronous systems [31], where the bound holds 
only after some unknown Global Stabilization Time (GST).

Each process is assigned its local protocol. A local protocol of a 
process defines the steps to be taken during a run of the system. 
The collection of all local protocols is a distributed protocol (or sim-
ply a protocol).

Some processes might be faulty: these processes may arbitrar-
ily deviate from their local protocol (e.g., by crashing, failing to 
receive or send messages, sending different messages to different 
processes, performing arbitrary state transitions). That is, this pa-
per considers the Byzantine failure model [40]. If a process is not 
faulty, the process is correct. We assume that the communication 
is reliable: a message sent by a correct process to a correct process 
is eventually received.

An execution is a single run of the system. We denote by t the 
actual number of faulty processes in an execution.

Best-effort broadcast Throughout the entire paper, we extensively 
rely on the best-effort broadcast primitive [17]. This primitive ex-
poses the following interface:

• input broadcast(m): A process broadcasts a message m; each 
correct process can broadcast its messages arbitrarily many 
times.

• output deliver(s, m′): A process delivers a message m′ with 
sender s.

The following properties are satisfied:

• Validity: If a correct process broadcasts a message m, then ev-
ery correct process eventually delivers m.

• Integrity: If a correct process delivers a message m with sender 
s and s is correct, then s has previously broadcast m.

Best-effort broadcast can easily be implemented in an asyn-
chronous environment assuming a reliable point-to-point network: 
the sender sends its message to every process. In the rest of the 
paper, we exclusively rely on the best-effort broadcast primitive 
for protocol designs. Hence, whenever we say that “a process 
broadcasts a message”, we mean that the process broadcasts the 
message using the best-effort broadcast primitive.

Cryptographic primitives This paragraph outlines the cryptographic 
primitives we use throughout the paper. For the completeness, 
these primitives are formally treated in Appendix B.

We assume a public-key infrastructure (PKI): each process is as-
sociated with its public/private key pair that is used to sign mes-
sages and verify signatures of other processes. Crucially, the fol-
lowing holds:

• If a correct process P signs a message m, every correct process 
successfully verifies that m was signed by P .
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• If a message m is accompanied by a signature of a correct pro-
cess P , then P has indeed signed m.

A message m signed by the PKI private key of a process Pi is de-
noted by mσi .

Additionally, we assume a (k, n)-dual threshold signature
scheme [49], where k is a parameter of the scheme. In this scheme, 
each process holds a distinct private key, and there exists a single 
public key. Each process Pi can use its private key to produce a 
partial signature of a message m by invoking ShareSigni(m). More-
over, a partial signature tsignature of a message m produced by 
process Pi could be verified by ShareVerifyi(m, tsignature) (as is 
the case for the PKI). Finally, a set S = {tsignature1, tsignature2,

..., tsignaturek} of partial signatures, where |S| = k and, for each 
tsignaturei ∈ S , tsignaturei = ShareSigni(m), could be combined 
into a single digital signature by invoking Combine(S). A com-
bined digital signature tcombined of message m could be verified 
by Verify(m, tcombined); if Verify(m, tcombined) = 	 (true), then 
tcombined was obtained by combining k partial signatures of m. 
For obtaining the threshold signature scheme, we can either rely 
on (1) a trusted setup, or (2) a distributed key generation proto-
col [28,2]. In the latter case, the best known solution [28] incurs 
O (n3) (expected) communication cost; in this paper, we assume 
the cost is amortized (i.e., the threshold signature scheme is setup 
only once for a sequence of consensus instances).

Crucially, we assume that the PKI private key of a correct pro-
cess is never revealed (irrespectively of the number of faulty pro-
cesses in the system). Therefore, if a message m is signed by the 
PKI private key of a process Pi and Pi is correct, then the message 
m was certainly sent by Pi . Conversely, if the number of faulty 
processes exceeds n − k, the threshold private key of a process can
be revealed, and a partial signature of a correct process might be 
forged.2 In other words, we assume a computationally-bounded ad-
versary for which the following holds:

• The adversary cannot forge a PKI signature of a correct pro-
cess.

• If t ≤ n − k, the adversary cannot forge a partial signature of a 
correct process.

For the full details, refer to Appendix B.

Why cryptography? As accountability implies a proof of culpability 
which can be independently verified by a third party, cryptography 
is irreplaceable in the accountable protocols. Indeed, cryptography 
is able to provide unforgeable association between any message 
and its sender. If such association is non-existent, one cannot verify 
that a proof of culpability is genuine, i.e., not manufactured by a 
faulty process whose goal is to falsely accuse correct processes.

Proof of culpability In order for correct processes to satisfy ac-
countability (Definition 2), they need to obtain a proof of culpa-
bility of each detected process. Let us formally define a proof of 
culpability of a process.

Definition 3 (Proof of culpability). A set �i of messages properly 
signed by the PKI private key of a process Pi is a proof of culpa-
bility of Pi if and only if there does not exist an execution such 
that (1) Pi is correct, and (2) Pi sends all the messages from the 
�i set.

2 The fact that the threshold private key of a correct process can be revealed if 
the system is overly corrupted allows us to not assume a trusted setup in obtaining 
the threshold signature scheme, i.e., the scheme might be obtained via a distributed 
key generation protocol (e.g., [2,28]).
4

Intuitively, a proof of culpability of a process is a set of mes-
sages which are properly signed (by the PKI private key) such that, 
if the process is correct, the process could not have sent all of 
those messages. Therefore, a proof of culpability undeniably proves 
that the concerned process is faulty (and this proof can be verified 
by a third party). A proof of culpability includes only messages 
signed by the PKI private key as the private PKI key of a correct 
process is never revealed (as opposed to the threshold private key 
of a correct process which might be revealed if the number of 
faulty processes exceeds n − k; see the paragraph “Cryptographic 
primitives”). Thus, a proof of culpability of a correct process can 
never be obtained.

Let us give an example of a proof of culpability. Suppose that a 
correct process Pi never sends two conflicting proposal messages 
in some protocol. Hence, a set �i = {[proposal, v]σi , [proposal,

v ′ �= v]σi } is a proof of culpability of Pi as �i demonstrates that 
Pi has sent two conflicting proposal messages.

Lastly, if a correct process detects a process Pi and accompanies 
a proof of culpability �i of Pi to the detection, we say that the 
process detects Pi using �i .

Communication complexity In this work, as in many in distributed 
computing [51,4,22], we care about the number of exchanged bits 
of information. To this end we define a word: a word contains a 
constant number of signatures and values. Each message contains 
at least a single word.

For deterministic protocols, we are interested in the worst-case 
communication complexity.

Definition 4 (Worst-case communication complexity). The worst-case 
communication complexity of a deterministic protocol is the max-
imum number of words sent in messages by correct processes 
across all possible executions. If the protocol operates in the par-
tially synchronous model, the worst-case communication complex-
ity considers only the messages sent after GST.

We underline that Definition 4 only counts words sent after
GST as it is known that, prior to GST, an unbounded number of 
words can be exchanged in any deterministic partially synchronous 
consensus protocol [32,51]. For probabilistic protocols, we are in-
terested in the expected communication complexity.

Definition 5 (Expected communication complexity). The expected com-
munication complexity of a probabilistic protocol is the maximal 
expected number of words sent in messages by correct processes 
across all possible executions, over all possible adversaries.3 If the 
protocol operates in the partially synchronous model, the expected 
communication complexity considers only the messages sent after 
GST.

Accountability complexity The accountability complexity is a novel 
complexity metric designed for measuring the accountability-
specific performance of protocols. We define the accountability 
complexity since the communication complexity is not a suitable 
metric for measuring the performance of accountable Byzantine 
consensus protocols in the degraded case (i.e., when the number of 
faults exceeds a predefined threshold). For example, Polygraph [24]
and accountable variants of PBFT and Hotstuff [48] suffer from 
the infinite worst-case communication complexity in the degraded 
case: Byzantine processes force correct processes to constantly ex-
ecute “one more round”, thus constructing an infinite execution 
where correct processes never decide.

3 An adversary defines a probability distribution over executions of the algorithm 
[39].
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In order to define the accountability complexity, we first define 
the accountability-specific messages.

Definition 6 (Accountability-specific message). We denote by P the 
set of all “used” culpability proofs across all executions of an ac-
countable Byzantine consensus protocol. Formally:

P = {a proof of culpability �i of Pi |
there exists an execution in which a correct

process detects Pi using �i}.
A message m is an accountability-specific message if and only if 
there exists a proof of culpability � ∈P such that m ∈ �.

Intuitively, a message is accountability-specific if it is used (in 
any execution) by a correct process to detect a faulty process. 
For example, if a correct process detects a faulty process Pi us-
ing �i in some execution, then all messages that belong to �i are 
accountability-specific messages.

Finally, we are ready to formally define the accountability com-
plexity.

Definition 7 (Accountability complexity). The accountability complex-
ity of an accountable Byzantine consensus protocol is the maxi-
mum number of accountability-specific messages sent by correct 
processes across all executions with at least two correct pro-
cesses.

Intuitively, the accountability complexity represents the number 
of messages correct processes exchange with the goal of achieving 
accountability.

3. ABC transformation

This section presents ABC , our transformation that enables any 
non-synchronous (deterministic or probabilistic) Byzantine consen-
sus protocol to obtain accountability. We first introduce the ac-
countable confirmer problem, and give its asynchronous implemen-
tation (§ 3.1). Then, we construct our ABC transformation around 
the accountable confirmer (§ 3.2). Finally, we discuss the applica-
bility and limitations of ABC (§ 3.3).

3.1. Accountable confirmer

The accountable confirmer problem is a distributed problem de-
fined among n processes, out of which some can be faulty (i.e., 
Byzantine). It exposes the following interface:

• input submit(v): A process submits a value v . Each correct 
process submits exactly one value.

• output confirm(v ′): A process confirms a value v ′ . Each correct 
process confirms at most one value.

• output detect(F , proof ): A process detects processes from the 
set F such that proof contains a proof of culpability of each 
process included in F . Each correct process triggers detect(·, ·)
at most once.

A tac
0 -resilient accountable confirmer protocol satisfies the follow-

ing properties:

• Terminating convergence: If (1) the number of faulty processes 
does not exceed tac , and (2) all correct processes submit the 
0

5

same value, then that value is eventually confirmed by all cor-
rect processes.4

• Validity: The value confirmed by a correct process was submit-
ted by a correct process.

• Accountability: If two correct processes confirm different val-
ues, every correct process eventually irrefutably detects (at 
least) n − 2tac

0 faulty processes and obtains a proof of culpa-
bility of each detected process.

We give an asynchronous implementation of the accountable con-
firmer problem in Algorithm 2. Importantly, our implementation 
(Algorithm 2) works under any computationally-bounded adver-
sary.

Intuition behind Algorithm 2 Consider the following algorithm (de-
scribed in prose). (1) Once a correct process submits its value, it 
broadcasts a signed (by the PKI private key) message containing 
the submitted value. (2) The process waits for n − tac

0 messages 
containing the same value. (3) Once this happens, the process con-
firms the value, and broadcasts the received n − tac

0 messages to all 
processes in the system.

This simple algorithm ensures terminating convergence since, 
when there are up to tac

0 faults and all correct processes submit the 
same value, all correct processes eventually receive n − tac

0 mes-
sages containing the submitted value; thus, all correct processes 
confirm the value. As for the accountability property, if two cor-
rect processes disagree, every correct process eventually receives 
two conflicting sets of n − tac

0 messages. Every process whose mes-
sages belong to both sets is faulty as no correct process submits 
multiple values.

Description of Algorithm 2 The actual implementation (Algorithm 2) 
of a tac

0 -resilient accountable confirmer protocol builds upon the 
presented intuition. We emphasize that Algorithm 2 implements 
a tac

0 -resilient accountable confirmer for any tac
0 ≤ �n/3� − 1. It 

takes advantage of a (k, n)-dual threshold signature scheme (see 
§ 2, paragraph “Cryptographic primitives”), where k = n − tac

0 , in 
order to achieve quadratic communication complexity in the com-
mon case (i.e., in all executions with up to tac

0 faults). Note that 
an implementation which completely follows the presented in-
tuition would suffer from a cubic communication complexity in 
the common case as each correct process would rebroadcast O (n)

messages after confirming its value.
Each process initially broadcasts the value it submitted in a

submit message (line 19): the submit message contains the value 
and a partial signature of the value. Moreover, the entire message 
is signed by the PKI private key of the sender. Once a process re-
ceives such a submit message, the process (1) checks whether the 
message is properly signed (line 7), (2) verifies the partial signa-
ture (line 21), and (3) checks whether the received value is equal 
to its submitted value (line 21). If all checks pass, the process 
stores the received partial signature (line 23) and the entire mes-
sage (line 24). Once a process stores partial signatures from (at 
least) n −tac

0 processes (line 26), the process confirms its submitted 
value (line 28) and informs other processes about its confirmation 
by combining the received partial signatures into a light certificate
(line 29). The role of threshold signatures in our implementation is 
to allow every light certificate to contain a single signature (rather 
than n − tac

0 signatures), thus obtaining a quadratic overall commu-
nication complexity if t ≤ tac

0 .
Once a process receives two conflicting light certificates (line 

34), the process concludes that correct processes might have con-

4 Note that it is not guaranteed that any correct process confirms a value if cor-
rect processes submit different values (even if the number of faulty processes does 
not exceed tac

0 ).
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firmed different values. If the process has already confirmed its 
value, the process broadcasts the set of (at least) n − tac

0 properly 
signed [submit, v, ∗] messages (line 35), where v is the value con-
firmed (and submitted) by the process; such a set of messages is 
a full certificate for value v . Finally, once a process receives two 
conflicting full certificates (line 40), the process obtains proof of 
culpability of (at least) n − 2tac

0 faulty processes (line 48), which 
ensures accountability. Indeed, each full certificate contains n − tac

0
properly signed messages: every process whose messages belong 
to the conflicting full certificates is faulty and these messages rep-
resent a proof of its misbehavior. (Recall that no faulty process ever
obtains the PKI private key of a correct process.)

Definitions for Algorithm 2.
1) A combined digital signature tsig is a valid light certificate for value v if and only 
if Verify(v, tsig) = 	.

2) A set S of properly signed [submit, v, ∗]σ∗ messages is a valid full certificate for 
value v if and only if:

a) |S| ≥ n − tac
0

b) Each message m is sent (i.e., signed) by a distinct process.

3) Let tsigv be a valid light certificate for value v and let tsigv ′ be a valid light 
certificate for value v ′ . tsigv conflicts with tsigv ′ if and only if v �= v ′ .

4) Let Sv be a valid full certificate for value v and let Sv ′ be a valid full certificate 
for value v ′ . Sv conflicts with Sv ′ if and only if v �= v ′ .

5) Let (m1, m2) be a pair of messages properly signed by some process Pi . 
(m1, m2) is a proof of culpability of Pi if and only if:

a) m1 = [submit, v, share1]σi , and
b) m2 = [submit, v ′, share2]σi , and
c) v �= v ′ .

Theorem 2. Algorithm 2 is an asynchronous tac
0 -resilient accountable 

confirmer protocol safe under any computationally-bounded adversary, 
where tac

0 ≤ �n/3� − 1, with:

• O (n2) worst-case communication complexity in the common case 
(i.e., when t ≤ tac

0 ), and
• O (n3) submit messages being sent by correct processes.

Proof. We start by proving the terminating convergence and valid-
ity properties. If t ≤ tac

0 and all correct processes submit the same 
value v , the rule at line 26 eventually triggers at every correct 
process. Since every correct process confirms only the value it has 
submitted (line 28), terminating convergence and validity are sat-
isfied by Algorithm 2.

Next, let us prove accountability. Let a correct process Pi con-
firm a value v and let another correct process P j confirm a value 
v ′ �= v . The rule at line 34 is eventually triggered at each correct 
process that confirms a value. Once the rule is triggered at Pi and 
P j , these processes broadcast their full certificates (line 35). Even-
tually, the rule at line 40 is triggered at each correct process, which 
ensures accountability. Indeed, every process whose submit mes-
sages belong to both conflicting full certificates is detected (line 42
- line 46); moreover, such a process is indeed faulty since no cor-
rect process submits different values, i.e., no correct process ever 
sends different submit messages.

Finally, we prove the claimed complexity:

• If t ≤ tac
0 , the communication complexity of the algorithm is 

quadratic because (1) light certificates are sent only once and 
they contain a single threshold signature, and (2) no correct 
process broadcasts a full certificate as no two conflicting light 
certificates can be produced.

• Each correct process sends n submit messages at line 19. 
Moreover, each correct process includes (at most) n submit

messages in each full-certificate message it sends (line 35). 
6

Therefore, each correct process sends (at most) O (n) + O (n2) =
O (n2) submit messages, which implies that (at most) n ·
O (n2) = O (n3) submit messages are sent by all correct pro-
cesses.

The theorem holds. �
3.2. ABC: Byzantine consensus + accountable confirmer = accountable 
Byzantine consensus

We now present our ABC transformation (Algorithm 3), the 
main contribution of our work. ABC is built on the observation 
that any non-synchronous (deterministic or probabilistic) Byzan-
tine consensus protocol paired with the accountable confirmer 
solves the accountable Byzantine consensus problem. Specifically, 
we prove that Algorithm 3 solves the accountable Byzantine con-
sensus problem, which implies that ABC indeed enables non-
synchronous Byzantine consensus protocols to obtain accountabil-
ity.

The following theorem proves that the ABC transformation (Al-
gorithm 3) is correct.

Theorem 3 (Correctness of ABC). Let bc be a non-synchronous t0-
resilient deterministic (resp., probabilistic) Byzantine consensus protocol, 
where t0 ≤ �n/3� − 1. Let abc be a protocol obtained by applying ABC
(Algorithm 3) to bc. Then, abc is a non-synchronous t0-resilient deter-
ministic (resp., probabilistic) accountable Byzantine consensus protocol 
which tolerates the same computationally-bounded adversary as bc.

Proof. Consider an execution where t ≤ t0. Let bc be a determin-
istic (resp., probabilistic) Byzantine consensus protocol. All correct 
processes eventually decide (resp., decide with probability 1) the 
same value v from Byzantine consensus at line 9 by deterministic 
(resp., probabilistic) termination and agreement of Byzantine con-
sensus. Moreover, if all correct processes have proposed the same 
value (line 7), then the proposed value is indeed v (ensured by 
validity of Byzantine consensus). Terminating convergence of ac-
countable confirmer ensures that all correct processes eventually 
confirm v (line 11) and decide from accountable Byzantine con-
sensus (line 12). Hence, Algorithm 3 satisfies deterministic (resp., 
probabilistic) termination, agreement and validity.

If correct processes disagree (i.e., decide different values at 
line 12), then these processes have confirmed different values from 
the accountable confirmer (line 11). Thus, every correct process 
detects (and obtains proofs of culpability of) n − 2t0 processes at 
line 13 (by the accountability property of the accountable con-
firmer). Finally, as Algorithm 2 solves the accountable confirmer 
problem under any computationally-bounded adversary (by Theo-
rem 2), abc is safe under the same computationally-bounded ad-
versary as bc. �

Theorem 3 shows that Algorithm 3 is an (asynchronous) imple-
mentation of an accountable Byzantine consensus protocol. There-
fore, any Byzantine consensus protocol can be transformed into an 
accountable one by “inserting” that protocol into the composition 
presented by Algorithm 3 (line 5). Importantly, the upper bound 
on tolerated Byzantine processes for deterministic and probabilis-
tic protocols is �n/3� − 1 [31,12], which implies that the ABC
transformation is applicable to Byzantine consensus protocols with 
every possible resilience. Furthermore, we note that ABC provides 
maximal resilience against disagreement: if ABC is applied to a 
t0-resilient Byzantine consensus protocol, a disagreement in the 
resulting protocol cannot occur with less than n − 2t0 faulty pro-
cesses.
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Algorithm 2 tac
0 -Resilient Accountable Confirmer: Code for process Pi .

1: Implements:
2: tac

0 -Resilient Accountable Confirmer, instance ac

3: Uses:
4: Best-Effort Broadcast [17], instance beb � Unreliable broadcast with no guarantees if the sender is faulty
5: (k, n)-Threshold Signature Scheme, where k = n − tac

0

6: Rules:
7: 1) Any submit message that is not properly signed is discarded.
8: 2) Rules at lines 26, 34 and 40 are activated at most once.

9: upon event 〈ac, Init〉 do
10: valuei ← ⊥
11: confirmedi ← false
12: fromi ← ∅
13: lightCertificatei ← ∅
14: fullCertificatei ← ∅
15: obtainedLightCertificatesi ← ∅
16: obtainedFullCertificatesi ← ∅
17: upon event 〈ac, Submit | v〉 do � Pi submits a value
18: valuei ← v
19: trigger 〈beb, Broadcast | [submit, v, ShareSigni(v)]σi 〉
20: upon event 〈beb, Deliver | P j , [submit, value, share]σ j 〉 do
21: if ShareVerify j(value, share) = 	 and value = valuei and P j /∈ fromi then
22: fromi ← fromi ∪ {P j}
23: lightCertificatei ← lightCertificatei ∪ {share}
24: fullCertificatei ← fullCertificatei ∪ {[submit, value, share]σ j }
25: end if
26: upon |fromi | ≥ n − tac

0 do
27: confirmedi ← true
28: trigger 〈ac, Confirm | valuei〉 � Pi confirms a value
29: trigger 〈beb, Broadcast | [light-certificate, valuei , Combine(lightCertificatei)]〉
30: upon event 〈beb, Deliver | P j , [light-certificate, value j , lightCertificate j ]〉 do
31: if lightCertificate j is a valid light certificate for value j then
32: obtainedLightCertificatesi ← obtainedLightCertificatesi ∪ {[light-certificate, value j , lightCertificate j ]}
33: end if
34: upon certificate1, certificate2 ∈ obtainedLightCertificatesi where certificate1 conflicts with certificate2

and confirmedi = true do
35: trigger 〈beb, Broadcast | [full-certificate, valuei , fullCertificatei ]〉
36: upon event 〈beb, Deliver | P j , [full-certificate, value j , fullCertificate j ]〉 do
37: if fullCertificate j is a valid full certificate for value j then
38: obtainedFullCertificatesi ← obtainedFullCertificatesi ∪ {fullCertificate j}
39: end if
40: upon certificate1, certificate2 ∈ obtainedFullCertificatesi where certificate1 conflicts with certificate2 do
41: proof = ∅
42: for each process Pi such that Pi ’s messages belong to both certificate1 and certificate2:
43: m1 ← the submit message signed by Pi which belongs to certificate1
44: m2 ← the submit message signed by Pi which belongs to certificate2
45: �i ← (m1, m2)

46: proof = proof ∪ {�i}
47: F ← the set of processes detected using proof
48: trigger 〈ac, Detect | F , proof 〉 � Pi detects faulty processes

Algorithm 3 ABC Transformation: Code for process Pi .
1: Implements:
2: t0-Resilient Accountable Byzantine Consensus, instance abc

3: Uses:
4: � Deterministic or probabilistic Byzantine consensus protocol to be transformed
5: t0-Resilient Byzantine Consensus, instance bc
6: t0-Resilient Accountable Confirmer implemented by Algorithm 2, instance ac

7: upon event 〈abc, Propose | proposal〉 do � Proposal
8: trigger 〈bc, Propose | proposal〉
9: upon event 〈bc, Decide | decision〉 do

10: trigger 〈ac, Submit | decision〉
11: upon event 〈ac, Confirm | confirmation〉 do
12: trigger 〈abc, Decide | confirmation〉 � Decision

13: upon event 〈ac, Detect | F , proof 〉 do
14: trigger 〈abc, Detect | F , proof 〉 � Detection
Next, we show that ABC does not worsen the communication 
complexity in the common case of sup-quadratic Byzantine con-
sensus protocols and induces a cubic accountability complexity.

Theorem 4. Let bc be a t0-resilient deterministic (resp., probabilistic) 
Byzantine consensus protocol, where t0 ≤ �n/3� − 1, with the worst-
case (resp., expected) communication complexity cc in the common case 
7

(with up to t0 faults). Let abc be a protocol obtained by applying ABC to 
bc. Then, abc has the worst-case (resp., expected) communication com-
plexity max

(
cc, O (n2)

)
in the common case and O (n3) accountability 

complexity.

Proof. As the communication complexity of the accountable 
confirmer is O (n2) in the common case (by Theorem 2), the 
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worst-case (resp., expected) communication complexity of abc
is max

(
cc, O (n2)

)
in the common case. Moreover, as the only 

accountability-specific messages sent by abc are the submit mes-
sages of the accountable confirmer and O (n3) submit messages 
are sent by correct processes (by Theorem 2), the accountability 
complexity is O (n3). �

Lastly, we remark that ABC does not worsen the communi-
cation complexity of any (1) deterministic Byzantine consensus 
protocol, or (2) (possibly probabilistic) Byzantine consensus pro-
tocol safe under a strongly adaptive adversary. Namely, Dolev and 
Reischuk [29] proved that any deterministic Byzantine consensus 
protocol incurs a quadratic worst-case communication complex-
ity in the common case. Similarly, Abraham et al. [5] showed 
that the quadratic lower bound for expected communication com-
plexity holds against an adaptive adversary. However, we under-
line that ABC worsens the communication complexity of partially 
synchronous probabilistic Byzantine consensus protocols with sub-
quadratic expected complexity (e.g., [46]).5

3.3. Discussion

In this subsection, we discuss ABC ’s applicability to different 
variants of the consensus problem, as well as some of ABC ’s lim-
itations.

ABC ’s applicability to different variants of Byzantine consensus The 
(accountable) Byzantine consensus problem (as defined in § 1) 
specifies the validity property, which ensures that, if all correct 
processes propose the same value, then only that value could be 
decided by a correct process. In the literature, this is not the only 
variant of the validity property; the variant we use is traditionally 
called strong validity. Other most notable variants of the validity 
property include:

• Weak Validity: If all processes are correct and if a correct pro-
cess decides value v , then v is proposed by a (correct) pro-
cess [44,53,15].

• External Validity: A value decided by a correct process satisfies 
a predefined valid predicate [18].

Importantly, the correctness of ABC does not depend on a spe-
cific variant of the validity property: the “connection” between 
proposed values and the decided value is preserved by ABC . In 
other words, an accountable Byzantine consensus protocol which 
is a product of ABC satisfies the same validity property as the 
original consensus protocol.

Limitations of ABC We now list a few limitations of ABC:

1. ABC is not optimized for the best-case scenarios: It is possi-
ble to devise Byzantine consensus protocols that exhibit o(n2)

communication in some favorable scenarios. For instance, Hot-
Stuff [53] achieves only linear communication if no faulty pro-
cesses exist and the execution is synchronous from the very 
beginning. However, this linear communication is lost when 
ABC is applied to HotStuff as processes “always” exchange the
submit messages, which leads to the inevitable O (n2) commu-
nication cost.

2. ABC (more precisely, our implementation of the account-
able confirmer) uses threshold signatures [41] to obtain O (n2)

communication complexity in the common case. As we have 

5 We emphasize that [46] assumes a static adversary, thus allowing itself to cir-
cumvent the quadratic lower bound [5].
8

already mentioned in § 2, we do not need to assume a 
trusted setup to obtain a threshold signature scheme: an asyn-
chronous distributed key generation (ADKG) protocol [2], exe-
cuted on top of a PKI setup, provides a threshold signature 
scheme. Importantly, we are not aware of an ADKG proto-
col whose communication complexity is quadratic. Therefore, 
ABC introduces a quadratic overhead only if (1) a trusted 
setup is assumed, or (2) the communication cost of an ADKG 
protocol is amortized. An alternative is to use compressed Σ
protocols [8], which allow us to obtain a transparent threshold 
signature scheme (without trusted setup) with a logarithmic 
overhead per threshold signature: communication overhead of 
ABC would be O

(
n2 · log(n)

)
.

In practice, it is worth considering multi-signatures [30,10]
instead of the aforementioned threshold signatures. Multi-
signatures have an accompanying bit-mask of n bits. In sum-
mary, if κ denotes the size of a signature (usually, κ = 256), 
the communication overhead of ABC would be:
• O (κ · n2 + n3) in the case of multi-signatures;
• O (κ · n2) in the case of threshold signatures (assuming a 

trusted setup or a cost-amortized ADKG); and
• O (κ · n2 · log(n)) in the case of compressed Σ-protocols.
A formal treatment of all of the aforementioned cryptographic 
primitives is available in Appendix B.

4. Lower bound on accountability complexity

In this section, we prove that any non-synchronous t0-resilient 
accountable Byzantine consensus protocol incurs cubic account-
ability complexity (when t0 ∈ �(n)). Throughout the entire sub-
section, we fix any non-synchronous t0-resilient (deterministic or 
probabilistic) accountable Byzantine consensus protocol abc. With-
out loss of generality, we assume that n = 3t0 + 1.

We prove the lower bound by showing that the accountabil-
ity complexity of abc is �(n3). Specifically, we prove that there 
exists an execution E such that correct processes send �(n3)

accountability-specific messages in E .

Execution 	 First, we construct a specific (finite) execution 	. We 
fix three disjoint groups of processes: (1) group A = {a1, a2, ..., at0 }, 
where |A| = t0, (2) group B = {b1, b2, ..., bt0 , bt0+1}, where |B| =
t0 + 1 = n − 2t0, and (3) group C = {c1, c2, ..., ct0 }, where |C | = t0. 
Throughout the entire subsection, we rely on the aforementioned 
groups.

Since abc solves Byzantine consensus if there are up to t0 faults, 
the following two infinite executions exist:

1. e1: All processes from the group C are faulty, and these pro-
cesses are silent throughout the entire execution (i.e., they 
send no messages). Moreover, all processes from the A ∪ B set 
propose the same value v . Since there are t0 faulty processes 
(as |C | = t0), abc ensures that all processes from the A ∪ B set 
eventually decide the same value v (by Byzantine consensus 
solvability of abc) by some global time t1.

2. e2: All processes from the group A are faulty, and these pro-
cesses are silent throughout the entire execution. Moreover, all 
processes from the B ∪C set propose the same value v ′ �= v . As 
there are t0 faulty processes (since |A| = t0), abc ensures that 
all processes from the B ∪ C set eventually decide the value 
v ′ �= v by some global time t2.

The existence of the executions e1 and e2 allows us to devise 
another infinite execution e, where:

• Processes from the group A and processes from the group C
are correct, whereas processes from the group B are faulty. 
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Fig. 1. Intuition behind the execution ea .
Moreover, all processes from the group A propose v , and all 
processes from the group C propose v ′ �= v .

• The processes from the group B behave towards the processes 
from the group A as in execution e1, and the processes from 
the group B behave towards the processes from the group C
as in e2. Moreover, if an event ε (e.g., reception of a message, 
sending of a message, local computation) occurs at global time 
tε in e1 or e2, then ε occurs at the same time tε in execution 
e.

• All messages between processes from the group A and the 
group C are delayed until after time T0 = max(t1, t2).

Importantly, execution e is indistinguishable from execution e1 to 
processes from the group A, which implies that all processes from 
the group A decide value v by time t1. Similarly, all processes from 
the group C decide value v ′ �= v by time t2. Thus, correct processes 
disagree in e.

We denote by 	 the prefix of execution e until time T0 =
max(t1, t2).6 Note that the following holds for 	:

• All processes from the group A decide v in 	.
• All processes from the group C decide v ′ �= v in 	.
• No message is exchanged between any two processes (a ∈

A, c ∈ C).

The first intermediate result we prove is that no correct process 
p ∈ A ∪ C can obtain a proof of culpability of any process from 
the messages it received in 	. Informally, the reason is that all 
processes seem correct in the eyes of a correct process; recall that 
the groups A and C do not communicate with each other in 	.

Lemma 1. Consider a process p ∈ A ∪ C. Given the messages p receives 
in 	, p is unable to construct a proof of culpability of any process.

Proof. Without loss of generality, let p ∈ A. Recall that 	 is in-
distinguishable from e1 until time T0 to p. Assume that, by the 
means of contradiction, p obtains a proof of culpability of some 
process from the messages received in 	.

We now construct an infinite execution e∗
1 by relying on e1:

1. All processes are correct in e∗
1.

2. All messages sent by the processes from the group C to any 
process from the groups A or B are delayed until after time 
T0.

3. The execution e∗
1 unfolds in the exact same way as e1 until 

time T0.

6 Recall that e is an infinite execution. On the other hand, 	 is a finite execution.
9

Due to the construction of e∗
1, p cannot distinguish e∗

1 (until time 
T0) from 	. Thus, p obtains a proof of culpability of some process 
in e∗

1. However, this is impossible as all processes are correct. �
Intuition Now that we have designed the finite execution 	, we 
can present the intuition behind the construction of E . Let us fix 
any process a ∈ A.

First, note that there exists a continuation e1
a of 	 in which (1) 

only a and c1 ∈ C are correct, and (2) these two processes do not 
receive messages from any other process after T0. Importantly, all 
processes in A \ {a} are silent after T0; note that their behavior is 
correct, except that sent messages which are not received by T0
are omitted (this will play an important role in the conclusion of 
the proof intuition). As Lemma 1 proves, c1 is unable to build any 
proof of culpability given the messages it has received in 	. As ac-
countability must be satisfied in e1

a , a must help c1 in obtaining (at 
least) t0 + 1 proofs of culpability. Therefore, a must send (at least) 
t0 + 1 = �(n) accountability-specific messages to c1. Let T1 denote 
the time by which a sends �(n) accountability-specific messages 
to c1.

However, if a receives a message from c2 ∈ C after T1, a
must help c2 in satisfying accountability. Indeed, a cannot rely 
on c1 helping c2 as c1 might be faulty. Thus, a needs to send 
�(n) accountability-specific messages to c2. Following the same 
logic, we construct a finite execution ea in which a sends �(n)

accountability-specific messages to each process c ∈ C ; hence, a
sends �(n2) accountability-specific messages in ea . We denote by 
Ta the time by which a sends �(n2) messages in ea . Fig. 1 gives a 
visual depiction of the intuition behind the design of ea .

At this point, for every process a ∈ A, we have an execution ea

in which (1) a sends �(n2) accountability-specific messages, and 
(2) all other processes from the group A are silent. Therefore, we 
can “merge” all of these executions into E in the following man-
ner:

1. Only processes from the group A are correct. All other pro-
cesses (i.e., B ∪ C ) are faulty.

2. Message between processes from the group A which are not 
received by T0 (i.e., in 	) are delayed until after max(Ta1 , Ta2 ,

..., Tat0
).

3. Each process c ∈ C behaves towards each process a ∈ A as it 
does in ea .

As no process a ∈ A can distinguish E from ea until Ta , a sends 
�(n2) messages in E . Thus, �(n3) accountability-specific messages 
are sent in E , which suffices for proving the lower bound.

Construction of E (part 1): In the first part of the construction, we 
build an execution ea in which (1) only a fixed process a ∈ A is cor-
rect, and (2) a sends (at least) t0 + 1 ∈ �(n) accountability-specific 
messages to each process from the group C . Thus, a sends a 
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Fig. 2. Execution e1
a .

quadratic number of accountability-specific messages in ea . As con-
structing ea is non-trivial, we construct ea incrementally (through 
a sequence of steps).

Step 1: Construction of an infinite execution e1
a in which a sends 

�(n) accountability-specific messages to c1.
We construct e1

a by relying on the previously described execution 
	. Specifically, we construct e1

a as follows:

1. Only processes a and c1 are correct.
2. We construct the prefix π1

a of e1
a until time T0 in the following 

way:
(a) Let π1

a be 	.
(b) For every message m such that (1) m is sent by a process 

s in π1
a with s �= a and s �= c1, and (2) m is not received in 

π1
a (i.e., 	), the sending event of m is removed from π1

a . 
In other words, each message which is sent by a process 
other than a and c1 and not received by T0 is removed 
from π1

a . This step ensures that processes can only receive 
messages from a and c1 after T0.

3. Each process p ∈ � \ {a, c1} is silent after time T0, i.e., it does 
not send any message after time T0.

Fig. 2 depicts the devised execution e1
a .

Let us analyze e1
a (the summary of the analysis can be seen in 

Fig. 2):

• No process receives any message from a process s after time 
T0, where s �= a and s �= c1 (step 2b). In other words, if any 
process receives a message after time T0, then the message 
was sent either by a or c1.

• Until time T0, e1
a is indistinguishable from 	 to both a and 

c1 (step 2a and step 2b). Thus, a decides v in e1
a , whereas c

decides v ′ �= v in e1
a . Moreover, c1 does not obtain any proof 

of culpability until time T0 in e1
a (due to Lemma 1).

• For every process q ∈ (A ∪ C) \ {a, c1}, q does not behave cor-
rectly until time T0 solely because it omits some messages 
(step 2b).

Finally, we prove that a sends (at least) t0 + 1 ∈ �(n) account-
ability-specific messages in e1

a . Intuitively, a does so to ensure that 
10
c1 is able to obtain a proof of culpability of t0 + 1 = n − 2t0 pro-
cesses in e1

a (to satisfy accountability).

Lemma 2. Process a sends �(n) accountability-specific messages to c1
in e1

a .

Proof. Given the messages c1 receives until time T0 in e1
a , c1 is 

not able to construct a proof of culpability of any process (by 
Lemma 1). However, as abc satisfies accountability, c1 eventually 
obtains proofs of culpability of t0 + 1 processes. Hence, c1 obtains 
the proofs after time T0. As c1 only receives messages from a (and 
itself) after time T0, c1 must have incorporated (at least) t0 + 1
messages sent by a into the obtained proofs of culpabilities; thus, 
all of these messages are accountability-specific. Therefore, a sends 
�(n) accountability-specific messages to c1 in e1

a . �
We denote by T1 the first time such that (1) T1 > T0, and (2) 

a sends �(n) accountability-specific messages to c1 by time T1 in 
e1

a .

Step 2: Construction of an infinite execution e2
a in which a sends 

�(n) accountability-specific messages to both c1 and c2.
This step of the construction is purely demonstrative. Namely, we 
show how to construct e2

a by relying on e1
a . In the next step of the 

construction, we will generalize the construction from ei
a (in which 

a sends �(n) accountability-specific messages to each process in 
{a1, ..., ai}) to ei+1

a (in which a sends �(n) accountability-specific 
messages to each process in {a1, ..., ai, ai+1}.

We construct e2
a in the following way:

1. Only processes a and c2 are correct.
2. We construct the prefix π2

a of e2
a until time T1 in the following 

manner:
(a) Let π2

a be the prefix of e1
a until time T1.

(b) We correct the behavior of c2 until time T0 by inserting 
all the messages omitted in e1

a (i.e., c2 behaves exactly as it 
behaves in 	). After time T0, the behavior of c2 is correct 
(as c2 is correct in e2

a ).
(c) For every message m sent by c1 in π2

a such that (1) m is 
sent to a process r with r �= a and r �= c1, and (2) m is not 
received by time T0, the sending event of m is removed 
from π2

a . In other words, only a (and c1) receive messages 
from c1 after T0.

(d) For every message m sent by c1 in π2
a such that (1) m is 

sent to a, and (2) m is not received by time T1, the sending 
event of m is removed from π2

a . This step of the construc-
tion ensures that a only receives messages from c1 until 
time T1; after T1, a receives no messages from c1.

3. Process c2 does not receive any message from any other pro-
cess between times T0 and T1.

4. Each process p ∈ � \ {a, c2} is silent after time T1, i.e., it does 
not send any message after time T1. Recall that processes in 
� \ {a, c1, c2} are silent after time T0 (due to the construction 
of e1

a ).

Fig. 3 depicts e2
a .

The following holds for e2
a (summarized in Fig. 3):

• After T0, only a and c1 receive messages from c1 (step 2c). 
Moreover, even a stops receiving messages from c1 after time 
T1 (step 2d).

• After time T0, c2 only receives messages from a and itself (step 
2c). Furthermore, between T0 and T1, c2 only receives mes-
sages from itself (step 3).

• Until time T0, e2
a is indistinguishable from 	 to both a and c2

(step 2a). Thus, a decides v , whereas c2 decides v ′ �= v .
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Fig. 3. Execution e2
a . All modifications introduced to e1

a (in order to obtain e2
a ) are noted in red.
• For every process q ∈ (A ∪ C) \ {a, c1, c2}, q does not behave 
correctly until time T0 solely because it omits some messages.

We conclude this step of the construction of ea by proving that 
a sends �(n) accountability-specific messages both to c1 and c2 in 
e2

a .

Lemma 3. Process a sends �(n) accountability-specific messages both 
to c1 and c2 in e2

a .

Proof. First, a sends �(n) accountability-specific messages to c1
in e2

a as (1) e2
a is indistinguishable from e1

a to a until time T1 (due 
to the construction of e2

a ), and (2) a sends �(n) accountability-
specific messages by T1 in e1

a (by Lemma 2). Hence, it is left to 
prove that a sends �(n) accountability-specific messages to c2 in 
e2

a , as well.
As already noted, a and c2 disagree in e2

a . Since abc satisfies ac-
countability, c2 eventually obtains proofs of culpability of (at least) 
t0 + 1 processes. Moreover, due to Lemma 1, given the messages 
c2 receives until time T0, c2 is unable to form a proof of culpa-
bility of any process. Therefore, c2 obtains the culpability proofs 
after T0. Given that c2 only receives messages from a (and it-
self) after T0, c2 must have “used” �(n) messages received from 
a to form the culpability proofs (in order to satisfy accountability). 
Thus, a indeed sends �(n) accountability-specific messages to c2
in e2

a , which concludes the proof. �
We denote by T2 the first time such that (1) T2 > T1, and (2) 

a sends �(n) accountability-specific messages to c2 by time T2 in 
e2

a . Note that a sends �(n) messages to both c1 and c2 by T2 in e2
a

as T2 > T1.

Step 3: Construction of an infinite execution ei+1
a in which a

sends �(n) accountability-specific messages to each process in 
{c1, c2, ..., ci, ci+1}, where i ∈ [1, t0 − 1].

We construct ei+1
a from ei

a . In order to do so, we describe the 
execution ei

a:

• Property 1: Only processes a and ci are correct in ei
a .

• Property 2: Until time T0, ei
a is indistinguishable from 	 to 

both a and ci .
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Fig. 4. A summary of the execution ei
a .

• Property 3: For every process c ∈ {ci+1, ci+2, ..., ct0 }, c behaves 
correctly in ei

a until time T0 except that some messages are 
omitted.

• Property 4: For every process f ∈ � \ {a, c1, c2, ..., ci−1, ci}, no 
process receives any message from f after T0.

• Property 5: For every process c ∈ {c1, c2, ..., ci−1}, only pro-
cesses a and c receive any message from c after T0.

• Property 6: There exists a time Ti > T0 such that a has sent 
�(n) messages to each process c ∈ {c1, c2, ..., ci−1, ci}.

• Property 7: For every j ∈ [1, i − 1], there exists a time T j such 
that, if a process a receives a message from c j after T0, the 
reception happens between T j−1 and T j (T j > T j−1).

• Property 8: Process ci does not receive any message from an-
other process between T0 and Ti−1.

• Property 9: If process a receives a message from ci after T0, the 
reception happens after Ti−1.

The execution ei
a is summarized in Fig. 4. Observe that e1

a and e2
a

satisfy the aforementioned properties.
Now, we construct ei+1

a from ei
a in the same way we con-

structed e2
a from e1

a :
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Fig. 5. Execution ei+1
a . All modifications introduced to ei

a (in order to obtain ei+1
a ) are noted in red.
1. Only processes a and ci+1 are correct.
2. We construct the prefix π i+1

a of ei+1
a until time Ti in the fol-

lowing manner:
(a) Let π i+1

a be the prefix of ei
a until time Ti .

(b) We correct the behavior of ci+1 until time T0 by inserting 
all the messages omitted in ei

a (i.e., ci+1 behaves exactly 
as it behaves in 	). After time T0, the behavior of ci+1 is 
correct (as ci+1 is correct in ei+1

a ).
(c) For every message m sent by ci in π i

a such that (1) m is 
sent to a process r with r �= a and r �= ci , and (2) m is not 
received by time T0, the sending event of m is removed 
from π i

a . In other words, only a (and ci ) receive messages 
from ci after T0.

(d) For every message m sent by ci in π i
a such that (1) m is 

sent to a, and (2) m is not received by time Ti , the sending 
event of m is removed from π i

a . This step of the construc-
tion ensures that a only receives messages from ci until 
time Ti ; after Ti , a receives no messages from ci .

3. Process ci+1 does not receive any message from any other pro-
cess between times T0 and Ti .

4. Each process p ∈ � \ {a, ci+1} is silent after time Ti , i.e., it does 
not send any message after time T1. Recall that processes in 
� \ {a, c1, c2, ..., ci−1, ci, ci+1} are silent after time T0 (due to 
the property 4 of ei

a).

Fig. 5 depicts ei+1
a .

First, let us prove that all nine introduced properties are pre-
served for ei+1

a :

• Property 1: Only processes a and ci+1 are correct by construc-
tion of ei+1

a .
• Property 2: For ci+1, this property is satisfied due to the con-

struction of ei+1
a (step 2b). For a, the property is satisfied as 

(1) a cannot distinguish ei+1
a from ei

a until time Ti > T0, and 
(2) a cannot distinguish ei

a from 	 until time T0.
• Property 3: This property is satisfied as it is satisfied for ei

a .
• Property 4: This property is satisfied as it is satisfied for ei

a .
• Property 5: For every process c ∈ {c1, c2, ..., ci−1}, the property 

is satisfied as it is satisfied for ei
a . For ci , the property holds 

due to the construction of ei+1
a (step 2c).

• Property 6: We prove the property by proving Lemma 4.
• Property 7: For every process c ∈ {c1, c2, ..., ci−1}, the property 

holds as it holds for ei
a . For ci , if a receives a message from ci
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after T0, that happens after Ti−1 (as ei+1
a is indistinguishable 

from ei
a until Ti > Ti−1 to a and a receives messages from 

ci only after Ti−1 due to the property 9 of ei
a). Moreover, a

receives no messages from ci after time Ti due to the con-
struction of ei+1

a (step 2d).
• Property 8: This property is ensured due to the step 3 of the 

construction.
• Property 9: The property is ensured by construction. Namely, a

cannot distinguish ei+1
a from ei

a until time Ti and a does not 
receive any message from ci+1 in ei

a (as the property 4 holds 
for ei

a).

Finally, let us prove that a sends �(n) messages to each process 
c ∈ {c1, c2, ..., ci, ci+1} in ei+1

a ; the following lemma ensures that 
the property 6 is satisfied for ei+1

a .

Lemma 4. Process a sends �(n) accountability-specific messages to 
each process c ∈ {c1, c2, ..., ci, ci+1} in ei+1

a .

Proof. First, a sends �(n) accountability-specific messages to each 
process in the {c1, c2, ..., ci−1, ci} set in ei+1

a as (1) ei+1
a is indis-

tinguishable to a from ei
a until time Ti (due to the construction 

of ei+1
a ), and (2) a sends �(n) accountability-specific messages to 

each process in {c1, c2, ..., ci} by Ti in ei
a (by the property 6 of ei

a). 
Hence, it is left to prove that a sends �(n) accountability-specific 
messages to ci+1 in ei+1

a , as well.
Processes a and ci+1 disagree in ei+1

a . Since abc satisfies ac-
countability, ci+1 eventually obtains proofs of culpability of (at 
least) t0 + 1 processes. Moreover, due to Lemma 1, given the mes-
sages ci+1 receives until time T0, ci+1 is unable to form a proof 
of culpability of any process. Therefore, ci+1 obtains the culpability 
proofs after T0. Given that ci+1 only receives messages from a (and 
itself) after T0 (due to the properties 4 and 5 of ei+1

a ), ci+1 must 
have “used” �(n) messages received from a to form the culpa-
bility proofs (to satisfy accountability). Thus, a indeed sends �(n)

accountability-specific messages to ci+1 in ei+1
a , as well. �

We denote by Ti+1 the first time such that (1) Ti+1 > Ti , and 
(2) a sends �(n) accountability-specific messages to ci+1 by time 
Ti+1 in ei+1

a . Note that a sends �(n) messages to each process in 
the {c1, ..., ci, ci+1} set by Ti+1.
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Step 4: Construction of a finite execution ea in which (1) a sends 
�(n2) accountability-specific messages, and (2) a is the only cor-
rect process.

We construct ea in the following manner:

1. Only process a is correct in ea .
2. We build the prefix πa of ea until time Tt0 in the follow-

ing manner, where Tt0 is the time specified explicitly in the 
construction of et0

a (constructed by the generic transformation 
introduced in the previous step):
(a) Let πa be the prefix of et0

a until time Tt0 .
(b) For every message m sent by ct0 in πa such that (1) m is 

sent to a process r with r �= a and r �= ct0 , and (2) m is not 
received by time T0, the sending event of m is removed 
from πa . In other words, only a (and ct0 ) receive messages 
from ct0 after T0.

(c) For every message m sent by ct0 in πa such that (1) m
is sent to a, and (2) m is not received by time Tt0 , the 
sending event of m is removed from πa . This step of the 
construction ensures that a only receives messages from 
ct0 until time Tt0 ; after Tt0 , a receives no messages from 
ct0 .

3. Each process p ∈ � \ {a} is silent after time Ti , i.e., it does 
not send any message after time Tt0 . Recall that processes in 
� \ {a, c1, c2, ..., ct0 } are silent after time T0.

Since a cannot distinguish et0
a from ea until time Tt0 , a sends �(n2)

accountability-specific messages in ea . Lastly, we associate ea with 
Ta = Tt0 .

Construction of E (part 2): The first part of the proof was devoted 
to constructing ea , an execution in which a fixed correct process 
a ∈ A sends a quadratic number of accountability-specific mes-
sages. The second part “merges” all of these executions in order 
to obtain an execution with a cubic number of sent accountability-
specific messages.

Theorem 5. The accountability complexity of abc, where abc is a t0-
resilient (deterministic or probabilistic) accountable Byzantine consen-
sus protocol and t0 ∈ �(n), is �(n3).

Proof. We prove the theorem by constructing an execution E with 
a cubic number of accountability-specific messages. Recall that, for 
each process a ∈ A, time Ta > T0 is associated with ea; a sends 
�(n2) accountability-specific messages by Ta in ea .

We construct E in the following manner. First, we “merge” ex-
ecutions ea until time T0, for every a ∈ A. More formally, we build 
a prefix ρ of E until time T0 using the following construction:

1. Let ρ be the prefix of ea1 until time T0, where a1 ∈ A.
2. For every process a ∈ A \ {a1}:

(a) If there exists a message m sent by a process p ∈ � in the 
prefix of ea until time T0 such that m is not sent in ρ , add 
m to be sent in ρ at the exact same time as in ea .

Intuitively, we create ρ as the “union” of the prefixes of ea until 
time T0, for every a ∈ A. Observe that all processes from the group 
A are correct in ρ .

After time T0, we do the following:

1. Processes from the C set behave towards a process a as they 
do in ea , for every a ∈ A.

2. Processes from the group B are silent, i.e., they do not send 
any messages.
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3. Messages between processes from the group A that are 
not received by time T0 are delayed until after time T ∗ =
max(Ta1 , Ta2 , ..., Tat0

).

Given that no process a ∈ A distinguishes E from ea until 
time T ∗ > Ta , each process a ∈ A sends a quadratic number of 
accountability-complexity messages in E . Since |A| = t0 ∈ �(n), the 
overall accountability complexity of execution E is �(n3), which 
concludes the proof. �
5. Generalized ABC transformation

We have shown that ABC enables Byzantine consensus pro-
tocols to obtain accountability. This section generalizes our ABC
transformation and defines its applicability. Namely, we specify a 
class of distributed computing problems named easily-accountable 
agreement tasks, and we prove that generalized ABC enables ac-
countability in such tasks.

We introduce agreement tasks in § 5.1. Then, we define the 
class of easily-accountable agreement tasks (§ 5.2), and prove the 
correctness of generalized ABC transformation applied to such 
agreement tasks (§ 5.3).

5.1. Agreement tasks

Agreement tasks represent an abstraction of distributed input-
output problems performed in a Byzantine environment. Specifi-
cally, each process has its input value. We assume that “⊥” denotes 
the special input value of a process that specifies that the input 
value is non-existent. A process may eventually halt; if a process 
halts, it produces its output value. The “⊥” output value of a pro-
cess means that the process has not yet halted (and produced its 
output value). We denote by Ii (resp., O i) the input (resp., output) 
value of process Pi . We note that some processes might never halt 
if permitted by the definition of an agreement task. We provide 
the formal explanation in the rest of the subsection.

An agreement task A is parametrized with the upper bound tA
on number of faulty processes that are tolerated. In other words, 
the specification of an agreement task assumes that no more than 
tA processes are faulty in any execution.

Any agreement task could be defined as a relation between 
input and output values of processes. Since we assume that pro-
cesses might fail, we only care about input and output values of 
correct processes. Hence, an agreement task could be defined as a 
relation between input and output values of correct processes.

An input configuration of an agreement task A is νI = {(Pi, Ii)

with Pi is correct}, where |νI | ≥ n − tA: an input configuration 
consists of input values of all correct processes. Similarly, an out-
put configuration of an agreement task is νO = {(Pi, O i) with Pi is
correct}, where |νO | ≥ n − tA: it contains output values of correct 
processes. We denote by θ(νO ) = |{O i | (Pi, O i) ∈ νO ∧ O i �= ⊥}| the 
number of distinct non-⊥ values in the νO output configuration.

Finally, we define an agreement task A as tuple (I, O, �, tA), 
where:

• I denotes the set of all input configurations of A.
• O denotes the set of all output configurations of A such that 

θ(νO ) ≤ 1, for every νO ∈O.
• � : I → 2O , where νO ∈ �(νI ) if and only if the output con-

figuration νO ∈O is valid given the input configuration νI ∈ I .
• tA ≤ �n/3� − 1 denotes the maximum number of faulty pro-

cesses the task assumes.

As seen from the definition, correct processes that halt always 
output the same value in agreement tasks. Moreover, we define 
agreement tasks to tolerate less than n/3 faults. Without loss of 
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generality, we assume that �(νI ) �= ∅, for every input configura-
tion νI ∈ I . Moreover, for every νO ∈ O, there exists νI ∈ I such 
that νO ∈ �(νI ).

We note that some problems that are traditionally consid-
ered as “agreement” problems do not fall into our classification 
of agreement tasks. For instance, Byzantine lattice agreement [50]
or k-set agreement [21] is not agreement tasks per our definition 
since the number of distinct non-⊥ values that can be outputted 
is greater than 1.

Solutions The following definitions specify solutions of agreement 
tasks.

Definition 8 (Solution of an agreement task). A protocol �A deter-
ministically (resp., probabilistically) solves an agreement task A =
(I, O, �, tA) if and only if, in every execution with up to tA faults, 
there exists (resp., exists with probability 1) an unknown time T D

such that νO ∈ �(νI ), where νI ∈ I denotes the input configuration 
that consists of input values of all correct processes and νO ∈ O
denotes the output configuration that (1) consists of output values 
(potentially ⊥) of all correct processes, and (2) no correct process 
Pi with O i = ⊥ updates its output value after T D .

Lastly, we define accountable solutions of agreement tasks.

Definition 9 (Accountable solution of an agreement task). A protocol 
�Acc

A deterministically (resp., probabilistically) solves an agreement 
task A = (I, O, �, tA) with accountability if and only if the follow-
ing holds:

• A-Solvability: �Acc
A deterministically (resp., probabilistically) 

solves A.
• Accountability: If two correct processes output different values, 

then every correct process eventually detects (at least) n −2tA
faulty processes and obtains a proof of culpability of each de-
tected process.

5.2. Easily-accountable agreement tasks

Fix an agreement task A = (I, O, �, tA). We say that A is an 
easily-accountable agreement task if and only if one of the following 
conditions is satisfied:

1. “All-or-None-Decidability”: There does not exist νO ∈ O such 
that (Pi, O i �= ⊥) ∈ νO and (P j, O j = ⊥) ∈ νO ; or

2. “Partial-Decidability”: For every νI ∈ I such that there exists 
νO ∈ �(νI ), where (Pi, O i = v �= ⊥) ∈ νO and (P j, O j = ⊥) ∈
νO , the following holds:

for every c ∈ P ({Pi | (Pi, Ii) ∈ νI }),∃ν ′
O ∈ �(νI ),where

∀Pi ∈ c : (Pi, O i = v) ∈ ν ′
O and

∀P j ∈ {Pk | (Pk, Ik) ∈ νI }
\ c : (P j, O j = ⊥) ∈ ν ′

O .

“All-or-None-Decidability” characterizes all the problems in 
which either every process halts or none does. For instance, Byzan-
tine consensus [40] and Byzantine reliable broadcast [17] satisfy 
“All-or-None-Decidability”.

On the other hand, some agreement tasks permit that some 
processes halt, whereas others do not. We say that these tasks sat-
isfy “Partial-Decidability” if and only if it is allowed for any subset 
of correct processes to halt (and output a value). Note that “Partial-
Decidability” covers the case where no correct process ever halts. 
Byzantine consistent broadcast [17] is the only agreement task we 
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are aware of that satisfies “Partial-Decidability” (in the case of a 
Byzantine sender). However, the significance of Byzantine consis-
tent broadcast (e.g., for implementing cryptocurrencies [35]) moti-
vated us to consider the “Partial-Decidability” property.

5.3. Correctness of generalized ABC transformation

We now prove the correctness of our generalized ABC trans-
formation (Algorithm 4). First, we show that Algorithm 4 solves an 
easily-accountable agreement task A if A satisfies “All-or-None-
Decidability”.

Lemma 5. Let A = (I, O, �, tA) be an easily-accountable agreement 
task that satisfies “All-or-None-Decidability”. Algorithm 4 deterministi-
cally (resp., probabilistically) solves A if �A (line 5) deterministically 
(resp., probabilistically) solves A.

Proof. If no correct process ever outputs a value at line 9, then 
no correct process confirms any value from accountable confirmer 
(because no correct process submits any value to accountable con-
firmer at line 10). Hence, no correct process produces any output 
at line 12, which concludes the proof in this scenario.

Otherwise, each correct process eventually outputs a value at 
line 9. Moreover, all correct processes output the exact same value 
v (since A is an agreement task). Therefore, all correct processes 
submit the same value v to accountable confirmer (line 10). By 
terminating convergence of accountable confirmer, all correct pro-
cesses eventually confirm value v (line 11) and output it (line 12). 
Once this happens, the agreement task A is solved, which con-
cludes the lemma. �

Now, we prove that Algorithm 4 solves an easily-accountable 
agreement task A if A satisfies “Partial-Decidability”.

Lemma 6. Let A = (I, O, �, tA) be an easily-accountable agreement 
task that satisfies “Partial-Decidability”. Algorithm 4 deterministically 
(resp., probabilistically) solves A if �A (line 5) deterministically (resp., 
probabilistically) solves A.

Proof. Let νI denote a specific input configuration of A. We con-
sider two cases:

• If no or all correct processes output a value at line 9, the proof 
is identical to the proof of Lemma 5.

• Otherwise, there exists a correct process that outputs a value 
v at line 9 and another correct process that does not output 
any value at line 9. Since A is an agreement task, any cor-
rect process that outputs a value at line 9 outputs the value v . 
Moreover, any correct process that outputs a value at line 12
outputs the value v (ensured by validity of accountable con-
firmer). Finally, once the system stabilizes at time T D (the 
system stabilizes at time T D if and only if no correct process 
Pi with O i = ⊥ updates its output value after T D ), the fact 
that any subset of correct processes could halt and that all 
halted processes output v implies that Algorithm 4 solves A.

The lemma holds. �
Finally, we are ready to prove that Algorithm 4 solves A with 

accountability, where A is an easily-accountable agreement task, 
which means that generalized ABC is correct.

Theorem 6. Let A = (I, O, �, tA) be an easily-accountable agree-
ment task. Algorithm 4 deterministically (resp., probabilistically) solves 
A with accountability if �A (line 5) deterministically (resp., probabilis-
tically) solves A.
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Algorithm 4 Generalized ABC Transformation - Code For Process Pi .
1: Implements:
2: Agreement Task A With Accountability, instance a −A
3: Uses:
4: � Protocol to be transformed
5: Protocol that (deterministically or probabilistically) solves agreement task A, instance �A
6: tA-Resilient Accountable Confirmer, where tA is the resilience of A, instance ac

7: upon event 〈a −A, Input | input〉 do � Input
8: trigger 〈�A, Input | input〉
9: upon event 〈�A, Output | output〉 do

10: trigger 〈ac, Submit | output〉
11: upon event 〈ac, Confirm | confirmation〉 do
12: trigger 〈a −A, Output | confirmation〉 � Output

13: upon event 〈ac, Detect | F , proof 〉 do
14: trigger 〈a −A, Detect | F , proof 〉 � Detection
Proof. Algorithm 4 satisfies A-solvability by Lemmas 5 and 6. 
Finally, Algorithm 4 ensures accountability since the accountable 
confirmer ensures detection of (at least) n − 2tA faulty processes 
whenever a disagreement occurs. �
6. Concluding remarks

We presented ABC , a generic and simple transformation that 
allows non-synchronous (deterministic or probabilistic) Byzantine 
consensus protocols to obtain accountability. Besides its simplic-
ity, ABC is efficient: it introduces an additive overhead of only 
two all-to-all communication rounds and O (n2) exchanged bits 
of information in the common case. Furthermore, we show that 
ABC can easily be generalized to other agreement problems (e.g., 
Byzantine reliable broadcast, Byzantine consistent broadcast). Fu-
ture work includes (1) designing similarly simple and efficient 
transformations for problems not covered by the generalized ABC
transformation, like Byzantine lattice and k-set agreement prob-
lems, and (2) circumventing the cubic accountability complexity 
bound using randomization techniques.
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Appendix A. Formal proof of Theorem 1

Theorem 1 (Unavoidable disagreement; restated). For any non-synchro-
nous t0-resilient (deterministic or probabilistic) Byzantine consensus 
protocol among n processes, there exists an execution with t ≥ n − 2t0
faulty processes in which correct processes disagree (i.e., decide different 
values).

Proof. As we need to have at least two correct processes (in order 
for a disagreement to occur), t ≤ n − 2. Let B denote the group 
of faulty processes; |B| = t ≥ n − 2t0. We denote by A a group of 
any �n−t

2 � correct processes and by C the group of “other” �n−t
2 �

correct processes. Note that (1) A ∩ C = ∅, (2) A �= ∅ (as n − t ≥ 2), 
and (3) C �= ∅ (as n − t ≥ 2).

Consider the following two executions:
15
• Execution e1: In this execution, processes in A ∪ B are correct, 
whereas processes in C are faulty and silent (i.e., they do not 
send any messages). All correct processes propose the same 
value v . The number of faulty processes in e1 is |C | = �n−t

2 � ≤
t0. Due to the fact that the Byzantine consensus protocol is t0-
resilient and the number of faulty processes is ≤ t0, all correct 
processes decide v by some time T1.

• Execution e2: In this execution, processes in B ∪ C are cor-
rect, whereas processes in A are faulty and silent. All correct 
processes propose the same value v ′ . The number of faulty 
processes in e1 is |A| ≤ t0. Hence, all correct processes decide 
v ′ by some time T2.

Now, we build an execution e3:

1. Processes in A ∪ C are correct, whereas processes in B are 
faulty.

2. Processes in A propose v , whereas processes in C propose v ′ .
3. Processes in B behave (1) towards processes in A as in e1, and 

(2) towards processes in C as in e2. Moreover, all messages 
between groups A and C are delayed until after max(T1, T2).

Until time T1, processes in A cannot distinguish e3 from e1; thus, 
processes in A decide v in e3. Similarly, until time T2, processes in 
C cannot distinguish e3 from e2; thus, processes in C decide v ′ in 
e3. Therefore, a disagreement occurs in e3, and there are n − 2t0 ≤
t ≤ n − 2 faulty processes in e3, which concludes the proof. �
Appendix B. Cryptographic primitives: formal overview

This subsection recalls the formal definitions of the crypto-
graphic schemes we rely upon for constructing ABC .

A family of real numbers (xk)k∈N ∈ RN is said to belong to 
poly(k) if there exists c ∈ N such that xk =

k→∞
O (kc). A family of 

real numbers (xk)k∈N ∈ RN is said to be negligible, denoted by 
(xk)k∈N ∈ neg(k), if for every c ∈ N , xk =

k→∞
o( 1

kc ). A probabilistic 

Turing Machine is k-bounded for some k ∈ N if (1) it can be de-
scribed with k bits, assuming a standard bit-string representation, 
and (2) it halts after k transitions.

The cryptographic schemes and their properties are defined 
with respect to a security parameter κ ∈ N . A (local) protocol 
is said to be efficient if its complexity belongs to poly(κ). A real 
number x (which, traditionally, describes a probability) is said to 
be negligible if it is parametrized with the security parameter κ
and x ∈ neg(κ). An adversary is said to be polynomially-bounded if 
it is parametrized with the security parameter κ and is poly(κ)-
bounded. A property of a cryptographic scheme is said to hold if 
it cannot be violated by a polynomially-bounded adversary with 
more than a negligible probability.
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Throughout the section, we denote by String � {0, 1}∗ the set of 
all strings.

B.1. Digital signatures

A digital signature scheme is a tuple of efficient local protocols 
(Gen, Sign, Verify), with:

• Gen: a probabilistic algorithm that takes the security number 
κ as the input, and randomly selects a pair (ski, pki) composed 
of a secret (i.e., private) key ski and a public (i.e., verification) 
key pki ; the bit-representations of ski and pki are of size of (at 
most) κ bits.

• Sign(m, ski): a (potentially probabilistic) algorithm that takes 
(1) a string m ∈ String, and (2) a private key ski as the input. 
The algorithm outputs a signature σi whose bit-representation 
has a size of (at most) κ bits.

• Verify(m, pk j, σ j): a (potentially probabilistic) algorithm that 
takes (1) a string m ∈ String, (2) the public key pk j of a process 
P j , and (3) a signature σ j as the input. The algorithm outputs 
	 (true) or ⊥ (false) depending on whether σ j is deemed as 
a valid signature.

The following properties hold:

• Correctness: If (ski, pki) ← Gen(κ), then Verify
(
m, pki,

Sign(m, ski)
)

returns 	.
• Unforgeability: If Verify(m, pk j, σ j) returns 	, then (1) σ j ←

Sign(m, sk j) has been executed by P j , or (2) P j is faulty.

This scheme is formalized by the functionality FSIG in the uni-
versally composable (UC) framework [19].

B.2. Public key infrastructure (PKI)

An ideal public key infrastructure is a tuple (Keys, Sign, Verify), 
where Keys = (

(SK = (sk1, ..., skn), PK = (pk1, ..., pkn)
)
, with:

• PK: a vector of public (i.e., verification) keys stored by every 
correct process; each public key pk j is associated with the pro-
cess P j .

• SK: a vector of secret (i.e., private) keys such that, for every 
correct process Pi , Pi stores its secret key ski which corre-
sponds to its public key pki ; ski is hidden from the adversary 
(i.e., the unforgeability property of digital signatures is satis-
fied; Appendix B.1).

• Sign(m, ski): a (potentially probabilistic) algorithm that takes 
(1) a string m ∈ String, and (2) a private key ski as the input. 
The algorithm outputs a signature σi .

• Verify(m, pk j, σ j): a deterministic algorithm that takes (1) a 
string m ∈ String, (2) the public key pk j of a process P j , and 
(3) a signature σ j as the input. The algorithm outputs 	 or ⊥
depending on whether σ j is deemed as a valid signature.

The following properties hold:

• Correctness: For every i ∈ [1, n], Verify
(
m, pki, Sign(m, ski)

)
re-

turns 	.
• Unforgeability: If Verify(m, pk j, σ j) returns 	, then (1) σ j ←

Sign(m, sk j) has been executed by P j , or (2) P j is faulty.

In our paper, we assume an established PKI, i.e., we are not con-
cerned with how such an infrastructure is obtained. We emphasize 
that the definition above does not state how a verifier learns the 
public (i.e., verification) key of another process. The associated 
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ideal functionality, formalized by FCA in the UC model [19], cor-
responds to a “rudimentary certification authority that registers 
party identities together with public values provided by the reg-
istered party”. Traditionally, this functionality is emulated in the 
following manner: a process publicly announces its public key us-
ing the Byzantine reliable broadcast primitive [13,17]. However, 
without additional assumptions, the resiliency of Byzantine reli-
able broadcast is bounded by n/3 (without previously established 
PKI), even in the synchronous setting [40], making it impossible 
for implementation in overly corrupted systems.

Assuming that each party can solve cryptographic puzzles only 
at a bounded rate, it is possible to (1) implement a setup phase to 
establish an ideal PKI assuming a (potentially very large) bound �
on message delays [38,7], and then (2) run asynchronous protocols 
on top of the established ideal PKI (in the main phase), without 
facing the dilemma between safety and efficiency due to the choice 
of �. (A small � would threat the safety, while a large � would 
increase the latency.)

B.3. Threshold signature scheme

A non-interactive (k, n)-dual threshold signature scheme is a tu-
ple of efficient local protocols (Keys, ShareSign,ShareVerify, Verify,
Combine), where Keys = (

PK, SK = (sk1, ..., skn), VK = (vk1, ...,
vkn)

)
, with:

• PK: a public key store by correct process.
• VK: a vector of verification keys stored by every correct pro-

cess.
• SK: a vector of private key shares such that, for every correct 

process Pi , Pi stores its private key share ski ; ski is hidden 
from the adversary.

• ShareSign(m, ski): a (potentially probabilistic) algorithm that 
takes (1) a string m ∈ String, and (2) a private key share ski as 
the input. The algorithm outputs a partial signature σ P

i of (at 
most) κ bits.

• ShareVerify(m, vk j, σ P
j ): a deterministic algorithm that takes 

(1) a string m ∈ String, (2) the verification key vk j of a process 
P j , and (3) a partial signature σ P

j as the input. The algorithm 
outputs 	 or ⊥ depending on whether σ P

j is deemed as a 
valid partial signature.

• Combine(m, {σi}i∈S∧S⊂[1,n]∧|S|=k): an algorithm that takes (1) 
a string m ∈ String, and (2) a subset S of size |S| = k of partial 
signatures {σi}i∈S . The algorithm outputs a threshold signature 
σ T .

• Verify(m, PK, σ T ): a deterministic algorithm that takes (1) a 
string m ∈ String, (2) the public key PK, and (3) a threshold 
signature σ T . The algorithm outputs 	 or ⊥ depending on 
whether σ T is deemed as a valid threshold signature.

The following properties hold:

• Correctness of partial signatures: For every i ∈ [1, n],
ShareVerify

(
m,vki, ShareSign(m, ski)

)
returns 	.

• Unforgeability of partial signatures: If ShareVerify(m, vk j, σ P
j ) re-

turns 	, then (1) σ P
j ← ShareSign(m, sk j) has been executed 

by P j , or (2) P j is faulty.
• Correctness of threshold signatures: Verify

(
m, PK,

Combine({ShareSign(m, sk j)} j∈ J∧ J⊂[1,n]∧| J |=k)
)

returns 	.
• Unforgeability of threshold signatures: If Verify(m, PK, σ T ) re-

turns 	, then there exists a set J , | J | = k, of partial signatures 
such that, for each σ P

j ∈ J , (1) σ P
j ← ShareSign(m, sk j) has 

been executed by P j , or (2) P j is faulty.
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Importantly, there exist dual threshold signature schemes with 
threshold signatures having κ bits (e.g., [49]). Note that, without 
a trusted setup, a (k, n)-dual threshold signature scheme can be 
obtained via a distributed key generation (DKG) protocol (e.g., [2]) 
if the number of faulty processes does not exceed n −k. Otherwise, 
no guarantees exist. For example, if the number of faults exceeds 
n − k, we can have an imperfect threshold signature scheme in 
which the aforementioned properties would not hold (e.g., faulty 
processes could forge the private key shares of correct processes 
and use them to sign statements on their behalf).

B.4. Threshold signature scheme in a transparent setup (via 
�-compressed protocols)

A transparent non-interactive (k, n)-dual threshold signature scheme
is a scheme whose specification is extremely similar to the spec-
ification presented in Appendix B.3. The only difference is that 
a transparent scheme does not include a common public key, 
which implies that a trusted setup nor a DKG protocol is neces-
sary. Hence, obtaining a transparent scheme is strictly easier (in 
terms of necessary assumptions) than obtaining a non-transparent 
scheme (Appendix B.3). For the completeness, the full specification 
is given below.

A transparent non-interactive (k, n)-dual threshold signature 
scheme is tuple of efficient local protocols (Keys, ShareSign,

ShareVerify, Verify, Aggregate), where Keys = (
SK = (sk1, ..., skn),

VK = (vk1, ..., vkn)
)
, with:

• VK: a vector of verification keys stored by every correct pro-
cess.

• SK: a vector of private key shares such that, for every correct 
process Pi , Pi stores its private key share ski ; ski is hidden 
from the adversary.

• ShareSign(m, ski): a (potentially probabilistic) algorithm that 
takes (1) a string m ∈ String, and (2) a private key share ski as 
the input. The algorithm outputs a signature share σ S

i of (at 
most) κ bits.

• ShareVerify(m, vk j, σ S
j ): a deterministic algorithm that takes 

(1) a string m ∈ String, (2) the verification key vk j of a process 
P j , and (3) a signature share σ S

j as the input. The algorithm 
outputs 	 or ⊥ depending on whether σ S

j is deemed as a 
valid signature.

• Aggregate(m, {σi}i∈S∧S⊂[1,n]∧|S|=k): an algorithm that takes (1) 
a string m ∈ String, and (2) a subset S of size |S| = k of signa-
ture shares {σi}i∈S . The algorithm outputs an aggregate signa-
ture σ A .

• Verify(m, σ A): a deterministic algorithm that takes (1) a string 
m ∈ String, and (2) an aggregate signature σ A . The algorithm 
outputs 	 or ⊥ depending on whether σ A is deemed as a 
valid aggregate signature.

The following properties hold:

• Correctness of signature shares: For every i∈[1, n], ShareVerify
(
m,

vki, ShareSign(m, ski)
)

returns 	.
• Unforgeability of signature shares: If ShareVerify(m, vk j, σ S

j ) re-

turns 	, then (1) σ S
j ← ShareSign(m, sk j) has been executed 

by P j , or (2) P j is faulty.
• Correctness of aggregate signatures: Verify

(
m,

Aggregate({ShareSign(m, sk j)} j∈ J∧ J⊂[1,n]∧| J |=k)
)

returns 	.
• Unforgeability of aggregate signatures: If Verify(m, σ A) returns 	, 

then there exists a set J , | J | = k, of share signatures such that, 
for each σ S

j ∈ J , (1) σ S
j ← ShareSign(m, sk j) has been exe-

cuted by P j , or (2) P j is faulty.
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Importantly, there exist transparent threshold signature schemes 
such that the aggregate signatures have a size of O (κ log(n)) bits 
(e.g., [8]). Thus, proving that a group of a linear number of pro-
cesses signed a certain message requires O (κ log(n)) bits to be 
transmitted rather than O (κ) bits for the non-transparent thresh-
old signature schemes (Appendix B.3).

B.5. Aggregate signatures

A non-interactive n-aggregate signature scheme is a tuple of
efficient (local) protocols (Keys, ShareSign,ShareVerify, Verify,
Aggregate), where Keys = (

SK = (sk1, ..., skn), VK = (vk1, ..., vkn)
)
, 

with:

• VK: a vector of verification keys stored by every correct pro-
cess.

• SK: a vector of private key shares such that, for every correct 
process Pi , Pi stores its private key share ski ; ski is hidden 
from the adversary.

• ShareSign(m, ski): a (potentially probabilistic) algorithm that 
takes (1) a string m ∈ String, and (2) a private key share ski as 
the input. The algorithm outputs a signature share σ S

i of (at 
most) κ bits.

• ShareVerify(m, vk j, σ S
j ): a deterministic algorithm that takes 

(1) a string m ∈ String, (2) the verification key vk j of a process 
P j , and (3) a signature share σ S

j as the input. The algorithm 
outputs 	 or ⊥ depending on whether σ S

j is deemed as a 
valid signature.

• Aggregate(m, {σi}i∈S∧S⊆[1,n]): an algorithm that takes (1) a 
string m ∈ String, and (2) a subset S of any size of signature 
shares {σi}i∈S . The algorithm outputs an aggregate signature 
σ A .

• Verify(m, σ A, B): a deterministic algorithm that takes (1) a 
string m ∈ String, (2) an aggregate signature σ A , and (3) a bit 
bask B ∈ {0, 1}n . The algorithm outputs 	 or ⊥ depending on 
whether σ A is deemed as a valid aggregate signature with ref-
erence to B .

The following properties hold:

• Correctness of signature shares: For every i∈[1, n], ShareVerify
(
m,

vki, ShareSign(m, ski)
)

returns 	.
• Unforgeability of signature shares: If ShareVerify(m, vk j, σ S

j ) re-

turns 	, then (1) σ S
j ← ShareSign(m, sk j) has been executed 

by P j , or (2) P j is faulty.
• Correctness of aggregate signatures: Consider any string m ∈

String and any bit-mask B ∈ {0, 1}n . The following holds: 
Verify

(
m, Aggregate({ShareSign(m, sk j)}B[ j]=1), B

)
returns 	.

• Unforgeability of aggregate signatures: If Verify(m, σ A, B) returns 
	, then, for every j ∈ [1, n] such that B[ j] = 1, (1) σ S

j ←
ShareSign(m, sk j) has been executed by P j , or (2) P j is faulty.

There exist transparent aggregate signature schemes such that 
the aggregate signatures have a size of O (κ) bits (e.g., [11]). The 
interface of an aggregate signature scheme is similar to the in-
terface of the non-transparent threshold signature schemes (Ap-
pendix B.3). We emphasize two differences:

• (Complexity) An aggregate signature σ A has to be associ-
ated with a bit-mask B of n bits (representing the subset of 
signers). Indeed, this bit-mask is an argument of the associ-
ated Verify protocol. Thus, proving that a group of a linear 
number of processes have signed a certain message requires 
O (κ + n) bits to be transmitted instead of O (κ) bits for the 
non-transparent threshold signature schemes (Appendix B.3).



P. Civit, S. Gilbert, V. Gramoli et al. Journal of Parallel and Distributed Computing 181 (2023) 104743
• (Transparency) This scheme requires weaker assumptions for 
the setup (the same ones as the transparent threshold signa-
ture schemes defined in Appendix B.4). Indeed, the secret keys 
can be generated independently, and the correct processes 
have to agree on the associated verification keys (exactly as 
in a PKI).
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