
Journal of Parallel and Distributed Computing 181 (2023) 104743

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

journal homepage: www.elsevier.com/locate/jpdc

As easy as ABC: Optimal (A)ccountable (B)yzantine (C)onsensus is

easy!

Pierre Civit a,∗, Seth Gilbert b, Vincent Gramoli c,d, Rachid Guerraoui d, Jovan Komatovic d,∗∗
a Sorbonne Université, CNRS, LIP6, 4 place Jussieu, Paris, 75005, France
b NUS Singapore, 21 Lower Kent Ridge Road, 119077, Singapore
c University of Sydney, 1 Cleveland St, Darlington NSW, 2008, Australia
d École Polytechnique Fédérale de Lausanne (EPFL), Rte Cantonale, Lausanne, 1015, Switzerland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 August 2022
Received in revised form 22 June 2023
Accepted 17 July 2023
Available online 1 August 2023

Keywords:
Distributed consensus
Accountability
Fault detection
Byzantine fault tolerance

In a non-synchronous system with n processes, no t0-resilient (deterministic or probabilistic) Byzantine
consensus protocol can prevent a disagreement among correct processes if the number of faulty processes
is ≥ n − 2t0. Therefore, the community defined the accountable Byzantine consensus problem: the
problem of (i) solving Byzantine consensus whenever possible (e.g., when the number of faulty processes
does not exceed t0), and (ii) allowing correct processes to obtain proofs of culpability of n − 2t0
faulty processes whenever a disagreement occurs. This paper presents ABC, a simple yet efficient
transformation of any non-synchronous t0-resilient (deterministic or probabilistic) Byzantine consensus
protocol into its accountable counterpart. In the common case (up to t0 faults), ABC introduces an
additive overhead of two communication rounds and O (n2) exchanged bits. Whenever they disagree,
correct processes detect culprits by exchanging O (n3) messages, which we prove optimal. Lastly, ABC is
not limited to Byzantine consensus: ABC provides accountability for other essential distributed problems
(e.g., reliable and consistent broadcast).

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons .org /licenses /by /4 .0/).
1. Introduction

Byzantine consensus [40] is a fundamental problem of dis-
tributed computing. It plays a major role in state machine replica-
tion (SMR) [1,6,45,52,42,20], particular cryptographic protocols [9,
34], and blockchain systems [3,14,26,33]. In brief, Byzantine con-
sensus enables processes to agree on a common value despite
Byzantine (arbitrary) failures. Concretely, the problem is defined
among n processes, out of which some processes can misbehave
in an arbitrary manner (these processes can crash, send different
messages to different processes, fail to send some messages, etc.);
processes that misbehave are said to be faulty, whereas non-faulty
processes are said to be correct. The following interface is exposed:

• input propose(v): A process proposes a value v; the cardinal-
ity of the values processes can be proposed can be arbitrary

* Corresponding author.

** Principal corresponding author.
E-mail addresses: pierre.civit@lip6.fr (P. Civit), seth.gilbert@comp.nus.edu.sg

(S. Gilbert), vincent.gramoli@sydney.edu.au (V. Gramoli), rachid.guerraoui@epfl.ch
(R. Guerraoui), jovan.komatovic@epfl.ch (J. Komatovic).
https://doi.org/10.1016/j.jpdc.2023.104743
0743-7315/© 2023 The Author(s). Published by Elsevier Inc. This is an open access artic
(i.e., we consider multivalue consensus). Each correct process
proposes exactly one value.

• output decide(v ′): A process decides a value v ′ . Each correct
process decides at most one value (i.e., decisions are irrevoca-
ble).

The following properties characterize the problem:

• Agreement: No two correct processes decide different values.
• Validity: If all correct processes propose the same value v , then

no correct process decides a value v ′ �= v .
• Deterministic termination: Every correct process eventually de-

cides.
• Probabilistic termination: Every correct process eventually de-

cides with probability 1.

Definition 1 (Byzantine consensus protocol). A protocol is a t0-
resilient deterministic (resp., probabilistic) Byzantine consensus protocol
if it satisfies agreement, validity and deterministic (resp., proba-
bilistic) termination while tolerating up to t0 faulty processes.

In this paper, we are particularly interested in non-synchronous
Byzantine consensus protocols: protocols that operate in an en-
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.jpdc.2023.104743
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2023.104743&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:pierre.civit@lip6.fr
mailto:seth.gilbert@comp.nus.edu.sg
mailto:vincent.gramoli@sydney.edu.au
mailto:rachid.guerraoui@epfl.ch
mailto:jovan.komatovic@epfl.ch
https://doi.org/10.1016/j.jpdc.2023.104743
http://creativecommons.org/licenses/by/4.0/

P. Civit, S. Gilbert, V. Gramoli et al. Journal of Parallel and Distributed Computing 181 (2023) 104743
vironment without (permanent) timely communication. Dwork,
Lynch and Stockmeyer proved that non-synchronous Byzantine
consensus cannot be solved with n/3 (or more) faulty pro-
cesses [31]. By adapting their technique, we prove another negative
result: the safety of Byzantine consensus can always be compro-
mised in severely corrupted systems. (The following theorem is
proven in Appendix A.)

Theorem 1 (Unavoidable disagreement). For any non-synchronous t0-
resilient (deterministic or probabilistic) Byzantine consensus protocol
among n processes, there exists an execution with t ≥ n −2t0 faulty pro-
cesses in which correct processes disagree (i.e., decide different values).

A direct consequence of Theorem 1 is that no blockchain based
on a non-synchronous Byzantine consensus protocol can prevent
its divergence if the system is overly corrupted. Real-life conse-
quences of such unlucky scenarios can be substantial. For exam-
ple, people might lose valuable assets due to a fork created in a
blockchain – such an attack is called double-spending.

While disagreements (and, thus, double-spending attacks) are
unavoidable in severely corrupted systems (by Theorem 1), can we
at least detect faulty processes which are responsible for disagree-
ments? Such a detection would naturally stimulate processes to
behave correctly, thus increasing the security of the entire system.
Luckily, Civit et al. [24] answered this question affirmatively by in-
troducing accountability to Byzantine consensus protocols. Namely,
they defined the accountable Byzantine consensus problem: the
problem of (i) solving Byzantine consensus whenever possible (e.g.,
when the number of faulty processes does not exceed some pre-
defined threshold), and (ii) allowing correct processes to obtain
proofs of culpability of (some) faulty processes whenever a dis-
agreement occurs.

Definition 2 (Accountable Byzantine consensus protocol). A protocol is
a t0-resilient deterministic (resp., probabilistic) accountable Byzantine
consensus protocol if it satisfies the following two properties:

• Byzantine consensus solvability: In all executions with up to t0
faults, the protocol solves the Byzantine consensus problem,
i.e., it satisfies agreement, validity and deterministic (resp.,
probabilistic) termination.

• Accountability: If two correct processes decide different values,
every correct process eventually irrefutably detects (at least)
n − 2t0 faulty processes and obtains a proof of culpability of
each detected process. A proof of culpability of a process can
be independently verified by a third party, and it is impossible
to produce such a proof for a correct process.

Informally, a protocol is an accountable Byzantine consensus
protocol if (1) it solves the Byzantine consensus problem when the
system is not overly corrupted (Byzantine consensus solvability),
and (2) it allows each correct process to detect (at least) n − 2t0
culprits whenever a disagreement occurs (accountability). More-
over, detection of culprits in the case of a disagreement implies
an attainment of their culpability proofs. Importantly, no proof of
culpability of a correct process can ever be obtained. Note that, if
there are more than t0 faulty processes, correct processes might
never decide and accountability is not provided in this case. In
other words, accountability is guaranteed only in the case of a dis-
agreement.

1.1. Contributions

In this paper, we present the following contributions:
2

1. We introduce a generic and simple transformation – ABC –
that maps any non-synchronous t0-resilient (deterministic or
probabilistic) Byzantine consensus protocol into its account-
able counterpart. Additionally, our transformation is efficient:
in the common case (i.e., in all executions with up to t0
faulty processes), ABC introduces an additive overhead of (1)
two all-to-all communication rounds, and (2) O (n2) exchanged
bits. In the case of a disagreement, correct processes achieve
accountability by exchanging O (n3) “accountability-specific”
messages; we refer to this metric as the accountability com-
plexity. Our transformation relies on (1) a public-key infras-
tructure [43,19], and (2) a threshold signature scheme [49].
ABC owes its simplicity and efficiency to an observation that
the simple composition presented in Algorithm 1 solves the
Byzantine consensus problem in a non-synchronous environ-
ment. Indeed, if the number of faults does not exceed t0,
all correct processes eventually decide the same value from
Byzantine consensus (line 2). Therefore, all correct processes
eventually receive n − t0 matching confirm messages (line 4),
and decide (line 5). The critical mechanism illustrated in Algo-
rithm 1 is that faulty processes must send conflicting confirm

messages in order to cause a disagreement. Hence, whenever
correct processes disagree, an exchange of received confirm

messages is sufficient for obtaining accountability.

Algorithm 1 Intuition behind ABC transformation.
1: function propose(v) do
2: v ′ ← bc.propose(v) � bc is any non-synchronous t0-resilient Byzantine

consensus protocol
3: broadcast [confirm, v ′]
4: wait for [confirm, v ′] from n − t0 processes
5: return v ′

2. We prove a lower bound on the accountability complexity
in a non-synchronous environment: any accountable Byzan-
tine consensus protocol incurs �(n3) accountability complex-
ity, with t0 ∈ �(n). As a consequence, ABC suffices for achiev-
ing optimal accountability complexity.

3. We show that the applicability of ABC is not limited to
Byzantine consensus. Specifically, we define a class of easily-
accountable agreement tasks, and demonstrate that generalized
ABC transformation provides accountability for such tasks.
Important distributed problems, such as Byzantine reliable
and consistent broadcast [13,17], fall into the class of easily-
accountable agreement tasks.

1.2. Related work

The work on accountability in distributed systems was pio-
neered in [36]: PeerReview, a generic accountability layer for dis-
tributed systems, was presented. Importantly, PeerReview does not
allow correct processes to irrefutably detect faulty processes in
non-synchronous environments: faulty processes might be sus-
pected forever (i.e., processes strongly “believe” that the accused
process is faulty, but no definitive proof is obtained), yet never
conclusively detected. Hence, PeerReview does not suffice for ac-
countability in non-synchronous Byzantine consensus. The formal
study of Byzantine failures in the context of accountability was ini-
tiated by Haeberlen and Kuznetsov [37].

Recently, with the expansion of blockchain systems, the interest
in accountable distributed protocols resurfaced once again. Poly-
graph [23], the first accountable Byzantine consensus protocol, was
introduced by Civit et al. The Polygraph protocol is based on the
DBFT consensus protocol [26] used in blockchains [27], tolerates
up to n faulty processes in achieving accountability, and has the
communication complexity of O (n4) in the common case. It is

P. Civit, S. Gilbert, V. Gramoli et al. Journal of Parallel and Distributed Computing 181 (2023) 104743

Table 1
Overview of the main properties of existing accountable Byzantine consensus protocols.

Base Consensus
Protocol

Communication Complexity
of the Base Consensus Protocol

Communication Complexity
of the Accountable Counterpart
in the Common Case

Accountability
Threshold

Paper

PBFT O (n4) O (n4) 2n/3 Sheng et al. [48]
HotStuff O (n3) O (n3) 2n/3 Sheng et al. [48]
Binary DBFT O (n3) O (n4) n Civit et al. [23]
Multivalue DBFT O (n4) O (n4) n Civit et al. [23]
Any X X · O (n2) (or X · O (n)) n Civit et al. [25]
Any X X n this paper
worth observing that Polygraph worsens the communication com-
plexity of (the binary-value version of) the DBFT base protocol by
an O (n) multiplicative factor. Casper [16] is another system de-
signed around the goal of obtaining accountability in blockchains,
while Trap [47] combines accountability with game theory to in-
crease the Byzantine fault tolerance of blockchains.

Recently, the possibility of obtaining accountability in protocols
based on PBFT [20] was investigated [48]. Specifically, accountable
variants of PBFT [20] and HotStuff [53] were presented; however,
these protocols allow for accountability only if up to 2n/3 pro-
cesses are faulty, which implies that their “accountability thresh-
old” is lower than the one of Polygraph. A generic transformation
τscr of any protocol solving a Byzantine decision task into its ac-
countable equivalent was introduced in [25]. Thus, τscr suffices for
obtaining accountability in any Byzantine consensus protocol. The
drawback of the proposed transformation is its cost: τscr worsens
the communication complexity of a Byzantine consensus protocol
by a multiplicative factor of O (n2) (or O (n) in “broadcast-based”
protocols1). The commonality between the discussed prior work
is employing sophisticated mechanisms for achieving accountabil-
ity. Indeed, the prior work achieves accountability with the help of
non-trivial modifications applied to the base consensus protocol.

In contrast, we take a fundamentally different approach that al-
lows us to treat the base consensus protocol as a “closed box”,
thus obtaining simpler and more efficient accountable Byzantine
consensus protocols. Table 1 compares accountable Byzantine con-
sensus protocols obtained by ABC with the existing alternatives.

Roadmap We present the necessary preliminaries in § 2. We de-
vote § 3 to our ABC transformation. In § 4, we prove a cubic
lower bound on the accountability complexity. We define easily-
accountable agreement tasks, and prove the applicability of gen-
eralized ABC to such tasks in § 5. We conclude the paper in § 6.
Optional appendix includes (1) a proof of Theorem 1 (Appendix A),
and (2) a detailed specification of the cryptographic primitives we
use (Appendix B).

2. Preliminaries

System model We consider a system � = {P1, ..., Pn} of n pro-
cesses that communicate by exchanging messages through a point-
to-point authenticated network. Concretely, a message is a se-
quence of bits whose semantics is application-specific. The sys-
tem is non-synchronous: there is no known bound that always
holds on message delays and relative speed of the processes. Non-
synchronous systems include:

• asynchronous systems, where the bound does not exist; and

1 The τscr transformation [25] modifies each protocol by reliably-broadcasting [13,
17] its messages. Therefore, if the original protocol exclusively sends its messages to
all processes (i.e., no unicasts are present), τscr introduces an overhead of an O (n)

multiplicative factor.
3

• partially synchronous systems [31], where the bound holds
only after some unknown Global Stabilization Time (GST).

Each process is assigned its local protocol. A local protocol of a
process defines the steps to be taken during a run of the system.
The collection of all local protocols is a distributed protocol (or sim-
ply a protocol).

Some processes might be faulty: these processes may arbitrar-
ily deviate from their local protocol (e.g., by crashing, failing to
receive or send messages, sending different messages to different
processes, performing arbitrary state transitions). That is, this pa-
per considers the Byzantine failure model [40]. If a process is not
faulty, the process is correct. We assume that the communication
is reliable: a message sent by a correct process to a correct process
is eventually received.

An execution is a single run of the system. We denote by t the
actual number of faulty processes in an execution.

Best-effort broadcast Throughout the entire paper, we extensively
rely on the best-effort broadcast primitive [17]. This primitive ex-
poses the following interface:

• input broadcast(m): A process broadcasts a message m; each
correct process can broadcast its messages arbitrarily many
times.

• output deliver(s, m′): A process delivers a message m′ with
sender s.

The following properties are satisfied:

• Validity: If a correct process broadcasts a message m, then ev-
ery correct process eventually delivers m.

• Integrity: If a correct process delivers a message m with sender
s and s is correct, then s has previously broadcast m.

Best-effort broadcast can easily be implemented in an asyn-
chronous environment assuming a reliable point-to-point network:
the sender sends its message to every process. In the rest of the
paper, we exclusively rely on the best-effort broadcast primitive
for protocol designs. Hence, whenever we say that “a process
broadcasts a message”, we mean that the process broadcasts the
message using the best-effort broadcast primitive.

Cryptographic primitives This paragraph outlines the cryptographic
primitives we use throughout the paper. For the completeness,
these primitives are formally treated in Appendix B.

We assume a public-key infrastructure (PKI): each process is as-
sociated with its public/private key pair that is used to sign mes-
sages and verify signatures of other processes. Crucially, the fol-
lowing holds:

• If a correct process P signs a message m, every correct process
successfully verifies that m was signed by P .

P. Civit, S. Gilbert, V. Gramoli et al. Journal of Parallel and Distributed Computing 181 (2023) 104743
• If a message m is accompanied by a signature of a correct pro-
cess P , then P has indeed signed m.

A message m signed by the PKI private key of a process Pi is de-
noted by mσi .

Additionally, we assume a (k, n)-dual threshold signature
scheme [49], where k is a parameter of the scheme. In this scheme,
each process holds a distinct private key, and there exists a single
public key. Each process Pi can use its private key to produce a
partial signature of a message m by invoking ShareSigni(m). More-
over, a partial signature tsignature of a message m produced by
process Pi could be verified by ShareVerifyi(m, tsignature) (as is
the case for the PKI). Finally, a set S = {tsignature1, tsignature2,

..., tsignaturek} of partial signatures, where |S| = k and, for each
tsignaturei ∈ S , tsignaturei = ShareSigni(m), could be combined
into a single digital signature by invoking Combine(S). A com-
bined digital signature tcombined of message m could be verified
by Verify(m, tcombined); if Verify(m, tcombined) = 	 (true), then
tcombined was obtained by combining k partial signatures of m.
For obtaining the threshold signature scheme, we can either rely
on (1) a trusted setup, or (2) a distributed key generation proto-
col [28,2]. In the latter case, the best known solution [28] incurs
O (n3) (expected) communication cost; in this paper, we assume
the cost is amortized (i.e., the threshold signature scheme is setup
only once for a sequence of consensus instances).

Crucially, we assume that the PKI private key of a correct pro-
cess is never revealed (irrespectively of the number of faulty pro-
cesses in the system). Therefore, if a message m is signed by the
PKI private key of a process Pi and Pi is correct, then the message
m was certainly sent by Pi . Conversely, if the number of faulty
processes exceeds n − k, the threshold private key of a process can
be revealed, and a partial signature of a correct process might be
forged.2 In other words, we assume a computationally-bounded ad-
versary for which the following holds:

• The adversary cannot forge a PKI signature of a correct pro-
cess.

• If t ≤ n − k, the adversary cannot forge a partial signature of a
correct process.

For the full details, refer to Appendix B.

Why cryptography? As accountability implies a proof of culpability
which can be independently verified by a third party, cryptography
is irreplaceable in the accountable protocols. Indeed, cryptography
is able to provide unforgeable association between any message
and its sender. If such association is non-existent, one cannot verify
that a proof of culpability is genuine, i.e., not manufactured by a
faulty process whose goal is to falsely accuse correct processes.

Proof of culpability In order for correct processes to satisfy ac-
countability (Definition 2), they need to obtain a proof of culpa-
bility of each detected process. Let us formally define a proof of
culpability of a process.

Definition 3 (Proof of culpability). A set �i of messages properly
signed by the PKI private key of a process Pi is a proof of culpa-
bility of Pi if and only if there does not exist an execution such
that (1) Pi is correct, and (2) Pi sends all the messages from the
�i set.

2 The fact that the threshold private key of a correct process can be revealed if
the system is overly corrupted allows us to not assume a trusted setup in obtaining
the threshold signature scheme, i.e., the scheme might be obtained via a distributed
key generation protocol (e.g., [2,28]).
4

Intuitively, a proof of culpability of a process is a set of mes-
sages which are properly signed (by the PKI private key) such that,
if the process is correct, the process could not have sent all of
those messages. Therefore, a proof of culpability undeniably proves
that the concerned process is faulty (and this proof can be verified
by a third party). A proof of culpability includes only messages
signed by the PKI private key as the private PKI key of a correct
process is never revealed (as opposed to the threshold private key
of a correct process which might be revealed if the number of
faulty processes exceeds n − k; see the paragraph “Cryptographic
primitives”). Thus, a proof of culpability of a correct process can
never be obtained.

Let us give an example of a proof of culpability. Suppose that a
correct process Pi never sends two conflicting proposal messages
in some protocol. Hence, a set �i = {[proposal, v]σi , [proposal,

v ′ �= v]σi } is a proof of culpability of Pi as �i demonstrates that
Pi has sent two conflicting proposal messages.

Lastly, if a correct process detects a process Pi and accompanies
a proof of culpability �i of Pi to the detection, we say that the
process detects Pi using �i .

Communication complexity In this work, as in many in distributed
computing [51,4,22], we care about the number of exchanged bits
of information. To this end we define a word: a word contains a
constant number of signatures and values. Each message contains
at least a single word.

For deterministic protocols, we are interested in the worst-case
communication complexity.

Definition 4 (Worst-case communication complexity). The worst-case
communication complexity of a deterministic protocol is the max-
imum number of words sent in messages by correct processes
across all possible executions. If the protocol operates in the par-
tially synchronous model, the worst-case communication complex-
ity considers only the messages sent after GST.

We underline that Definition 4 only counts words sent after
GST as it is known that, prior to GST, an unbounded number of
words can be exchanged in any deterministic partially synchronous
consensus protocol [32,51]. For probabilistic protocols, we are in-
terested in the expected communication complexity.

Definition 5 (Expected communication complexity). The expected com-
munication complexity of a probabilistic protocol is the maximal
expected number of words sent in messages by correct processes
across all possible executions, over all possible adversaries.3 If the
protocol operates in the partially synchronous model, the expected
communication complexity considers only the messages sent after
GST.

Accountability complexity The accountability complexity is a novel
complexity metric designed for measuring the accountability-
specific performance of protocols. We define the accountability
complexity since the communication complexity is not a suitable
metric for measuring the performance of accountable Byzantine
consensus protocols in the degraded case (i.e., when the number of
faults exceeds a predefined threshold). For example, Polygraph [24]
and accountable variants of PBFT and Hotstuff [48] suffer from
the infinite worst-case communication complexity in the degraded
case: Byzantine processes force correct processes to constantly ex-
ecute “one more round”, thus constructing an infinite execution
where correct processes never decide.

3 An adversary defines a probability distribution over executions of the algorithm
[39].

P. Civit, S. Gilbert, V. Gramoli et al. Journal of Parallel and Distributed Computing 181 (2023) 104743
In order to define the accountability complexity, we first define
the accountability-specific messages.

Definition 6 (Accountability-specific message). We denote by P the
set of all “used” culpability proofs across all executions of an ac-
countable Byzantine consensus protocol. Formally:

P = {a proof of culpability �i of Pi |
there exists an execution in which a correct

process detects Pi using �i}.
A message m is an accountability-specific message if and only if
there exists a proof of culpability � ∈P such that m ∈ �.

Intuitively, a message is accountability-specific if it is used (in
any execution) by a correct process to detect a faulty process.
For example, if a correct process detects a faulty process Pi us-
ing �i in some execution, then all messages that belong to �i are
accountability-specific messages.

Finally, we are ready to formally define the accountability com-
plexity.

Definition 7 (Accountability complexity). The accountability complex-
ity of an accountable Byzantine consensus protocol is the maxi-
mum number of accountability-specific messages sent by correct
processes across all executions with at least two correct pro-
cesses.

Intuitively, the accountability complexity represents the number
of messages correct processes exchange with the goal of achieving
accountability.

3. ABC transformation

This section presents ABC , our transformation that enables any
non-synchronous (deterministic or probabilistic) Byzantine consen-
sus protocol to obtain accountability. We first introduce the ac-
countable confirmer problem, and give its asynchronous implemen-
tation (§ 3.1). Then, we construct our ABC transformation around
the accountable confirmer (§ 3.2). Finally, we discuss the applica-
bility and limitations of ABC (§ 3.3).

3.1. Accountable confirmer

The accountable confirmer problem is a distributed problem de-
fined among n processes, out of which some can be faulty (i.e.,
Byzantine). It exposes the following interface:

• input submit(v): A process submits a value v . Each correct
process submits exactly one value.

• output confirm(v ′): A process confirms a value v ′ . Each correct
process confirms at most one value.

• output detect(F , proof): A process detects processes from the
set F such that proof contains a proof of culpability of each
process included in F . Each correct process triggers detect(·, ·)
at most once.

A tac
0 -resilient accountable confirmer protocol satisfies the follow-

ing properties:

• Terminating convergence: If (1) the number of faulty processes
does not exceed tac , and (2) all correct processes submit the
0

5

same value, then that value is eventually confirmed by all cor-
rect processes.4

• Validity: The value confirmed by a correct process was submit-
ted by a correct process.

• Accountability: If two correct processes confirm different val-
ues, every correct process eventually irrefutably detects (at
least) n − 2tac

0 faulty processes and obtains a proof of culpa-
bility of each detected process.

We give an asynchronous implementation of the accountable con-
firmer problem in Algorithm 2. Importantly, our implementation
(Algorithm 2) works under any computationally-bounded adver-
sary.

Intuition behind Algorithm 2 Consider the following algorithm (de-
scribed in prose). (1) Once a correct process submits its value, it
broadcasts a signed (by the PKI private key) message containing
the submitted value. (2) The process waits for n − tac

0 messages
containing the same value. (3) Once this happens, the process con-
firms the value, and broadcasts the received n − tac

0 messages to all
processes in the system.

This simple algorithm ensures terminating convergence since,
when there are up to tac

0 faults and all correct processes submit the
same value, all correct processes eventually receive n − tac

0 mes-
sages containing the submitted value; thus, all correct processes
confirm the value. As for the accountability property, if two cor-
rect processes disagree, every correct process eventually receives
two conflicting sets of n − tac

0 messages. Every process whose mes-
sages belong to both sets is faulty as no correct process submits
multiple values.

Description of Algorithm 2 The actual implementation (Algorithm 2)
of a tac

0 -resilient accountable confirmer protocol builds upon the
presented intuition. We emphasize that Algorithm 2 implements
a tac

0 -resilient accountable confirmer for any tac
0 ≤ �n/3� − 1. It

takes advantage of a (k, n)-dual threshold signature scheme (see
§ 2, paragraph “Cryptographic primitives”), where k = n − tac

0 , in
order to achieve quadratic communication complexity in the com-
mon case (i.e., in all executions with up to tac

0 faults). Note that
an implementation which completely follows the presented in-
tuition would suffer from a cubic communication complexity in
the common case as each correct process would rebroadcast O (n)

messages after confirming its value.
Each process initially broadcasts the value it submitted in a

submit message (line 19): the submit message contains the value
and a partial signature of the value. Moreover, the entire message
is signed by the PKI private key of the sender. Once a process re-
ceives such a submit message, the process (1) checks whether the
message is properly signed (line 7), (2) verifies the partial signa-
ture (line 21), and (3) checks whether the received value is equal
to its submitted value (line 21). If all checks pass, the process
stores the received partial signature (line 23) and the entire mes-
sage (line 24). Once a process stores partial signatures from (at
least) n −tac

0 processes (line 26), the process confirms its submitted
value (line 28) and informs other processes about its confirmation
by combining the received partial signatures into a light certificate
(line 29). The role of threshold signatures in our implementation is
to allow every light certificate to contain a single signature (rather
than n − tac

0 signatures), thus obtaining a quadratic overall commu-
nication complexity if t ≤ tac

0 .
Once a process receives two conflicting light certificates (line

34), the process concludes that correct processes might have con-

4 Note that it is not guaranteed that any correct process confirms a value if cor-
rect processes submit different values (even if the number of faulty processes does
not exceed tac

0).

P. Civit, S. Gilbert, V. Gramoli et al. Journal of Parallel and Distributed Computing 181 (2023) 104743
firmed different values. If the process has already confirmed its
value, the process broadcasts the set of (at least) n − tac

0 properly
signed [submit, v, ∗] messages (line 35), where v is the value con-
firmed (and submitted) by the process; such a set of messages is
a full certificate for value v . Finally, once a process receives two
conflicting full certificates (line 40), the process obtains proof of
culpability of (at least) n − 2tac

0 faulty processes (line 48), which
ensures accountability. Indeed, each full certificate contains n − tac

0
properly signed messages: every process whose messages belong
to the conflicting full certificates is faulty and these messages rep-
resent a proof of its misbehavior. (Recall that no faulty process ever
obtains the PKI private key of a correct process.)

Definitions for Algorithm 2.
1) A combined digital signature tsig is a valid light certificate for value v if and only
if Verify(v, tsig) = 	.

2) A set S of properly signed [submit, v, ∗]σ∗ messages is a valid full certificate for
value v if and only if:

a) |S| ≥ n − tac
0

b) Each message m is sent (i.e., signed) by a distinct process.

3) Let tsigv be a valid light certificate for value v and let tsigv ′ be a valid light
certificate for value v ′ . tsigv conflicts with tsigv ′ if and only if v �= v ′ .

4) Let Sv be a valid full certificate for value v and let Sv ′ be a valid full certificate
for value v ′ . Sv conflicts with Sv ′ if and only if v �= v ′ .

5) Let (m1, m2) be a pair of messages properly signed by some process Pi .
(m1, m2) is a proof of culpability of Pi if and only if:

a) m1 = [submit, v, share1]σi , and
b) m2 = [submit, v ′, share2]σi , and
c) v �= v ′ .

Theorem 2. Algorithm 2 is an asynchronous tac
0 -resilient accountable

confirmer protocol safe under any computationally-bounded adversary,
where tac

0 ≤ �n/3� − 1, with:

• O (n2) worst-case communication complexity in the common case
(i.e., when t ≤ tac

0), and
• O (n3) submit messages being sent by correct processes.

Proof. We start by proving the terminating convergence and valid-
ity properties. If t ≤ tac

0 and all correct processes submit the same
value v , the rule at line 26 eventually triggers at every correct
process. Since every correct process confirms only the value it has
submitted (line 28), terminating convergence and validity are sat-
isfied by Algorithm 2.

Next, let us prove accountability. Let a correct process Pi con-
firm a value v and let another correct process P j confirm a value
v ′ �= v . The rule at line 34 is eventually triggered at each correct
process that confirms a value. Once the rule is triggered at Pi and
P j , these processes broadcast their full certificates (line 35). Even-
tually, the rule at line 40 is triggered at each correct process, which
ensures accountability. Indeed, every process whose submit mes-
sages belong to both conflicting full certificates is detected (line 42
- line 46); moreover, such a process is indeed faulty since no cor-
rect process submits different values, i.e., no correct process ever
sends different submit messages.

Finally, we prove the claimed complexity:

• If t ≤ tac
0 , the communication complexity of the algorithm is

quadratic because (1) light certificates are sent only once and
they contain a single threshold signature, and (2) no correct
process broadcasts a full certificate as no two conflicting light
certificates can be produced.

• Each correct process sends n submit messages at line 19.
Moreover, each correct process includes (at most) n submit

messages in each full-certificate message it sends (line 35).
6

Therefore, each correct process sends (at most) O (n) + O (n2) =
O (n2) submit messages, which implies that (at most) n ·
O (n2) = O (n3) submit messages are sent by all correct pro-
cesses.

The theorem holds. �
3.2. ABC: Byzantine consensus + accountable confirmer = accountable
Byzantine consensus

We now present our ABC transformation (Algorithm 3), the
main contribution of our work. ABC is built on the observation
that any non-synchronous (deterministic or probabilistic) Byzan-
tine consensus protocol paired with the accountable confirmer
solves the accountable Byzantine consensus problem. Specifically,
we prove that Algorithm 3 solves the accountable Byzantine con-
sensus problem, which implies that ABC indeed enables non-
synchronous Byzantine consensus protocols to obtain accountabil-
ity.

The following theorem proves that the ABC transformation (Al-
gorithm 3) is correct.

Theorem 3 (Correctness of ABC). Let bc be a non-synchronous t0-
resilient deterministic (resp., probabilistic) Byzantine consensus protocol,
where t0 ≤ �n/3� − 1. Let abc be a protocol obtained by applying ABC
(Algorithm 3) to bc. Then, abc is a non-synchronous t0-resilient deter-
ministic (resp., probabilistic) accountable Byzantine consensus protocol
which tolerates the same computationally-bounded adversary as bc.

Proof. Consider an execution where t ≤ t0. Let bc be a determin-
istic (resp., probabilistic) Byzantine consensus protocol. All correct
processes eventually decide (resp., decide with probability 1) the
same value v from Byzantine consensus at line 9 by deterministic
(resp., probabilistic) termination and agreement of Byzantine con-
sensus. Moreover, if all correct processes have proposed the same
value (line 7), then the proposed value is indeed v (ensured by
validity of Byzantine consensus). Terminating convergence of ac-
countable confirmer ensures that all correct processes eventually
confirm v (line 11) and decide from accountable Byzantine con-
sensus (line 12). Hence, Algorithm 3 satisfies deterministic (resp.,
probabilistic) termination, agreement and validity.

If correct processes disagree (i.e., decide different values at
line 12), then these processes have confirmed different values from
the accountable confirmer (line 11). Thus, every correct process
detects (and obtains proofs of culpability of) n − 2t0 processes at
line 13 (by the accountability property of the accountable con-
firmer). Finally, as Algorithm 2 solves the accountable confirmer
problem under any computationally-bounded adversary (by Theo-
rem 2), abc is safe under the same computationally-bounded ad-
versary as bc. �

Theorem 3 shows that Algorithm 3 is an (asynchronous) imple-
mentation of an accountable Byzantine consensus protocol. There-
fore, any Byzantine consensus protocol can be transformed into an
accountable one by “inserting” that protocol into the composition
presented by Algorithm 3 (line 5). Importantly, the upper bound
on tolerated Byzantine processes for deterministic and probabilis-
tic protocols is �n/3� − 1 [31,12], which implies that the ABC
transformation is applicable to Byzantine consensus protocols with
every possible resilience. Furthermore, we note that ABC provides
maximal resilience against disagreement: if ABC is applied to a
t0-resilient Byzantine consensus protocol, a disagreement in the
resulting protocol cannot occur with less than n − 2t0 faulty pro-
cesses.

P. Civit, S. Gilbert, V. Gramoli et al. Journal of Parallel and Distributed Computing 181 (2023) 104743

Algorithm 2 tac
0 -Resilient Accountable Confirmer: Code for process Pi .

1: Implements:
2: tac

0 -Resilient Accountable Confirmer, instance ac

3: Uses:
4: Best-Effort Broadcast [17], instance beb � Unreliable broadcast with no guarantees if the sender is faulty
5: (k, n)-Threshold Signature Scheme, where k = n − tac

0

6: Rules:
7: 1) Any submit message that is not properly signed is discarded.
8: 2) Rules at lines 26, 34 and 40 are activated at most once.

9: upon event 〈ac, Init〉 do
10: valuei ← ⊥
11: confirmedi ← false
12: fromi ← ∅
13: lightCertificatei ← ∅
14: fullCertificatei ← ∅
15: obtainedLightCertificatesi ← ∅
16: obtainedFullCertificatesi ← ∅
17: upon event 〈ac, Submit | v〉 do � Pi submits a value
18: valuei ← v
19: trigger 〈beb, Broadcast | [submit, v, ShareSigni(v)]σi 〉
20: upon event 〈beb, Deliver | P j , [submit, value, share]σ j 〉 do
21: if ShareVerify j(value, share) = 	 and value = valuei and P j /∈ fromi then
22: fromi ← fromi ∪ {P j}
23: lightCertificatei ← lightCertificatei ∪ {share}
24: fullCertificatei ← fullCertificatei ∪ {[submit, value, share]σ j }
25: end if
26: upon |fromi | ≥ n − tac

0 do
27: confirmedi ← true
28: trigger 〈ac, Confirm | valuei〉 � Pi confirms a value
29: trigger 〈beb, Broadcast | [light-certificate, valuei , Combine(lightCertificatei)]〉
30: upon event 〈beb, Deliver | P j , [light-certificate, value j , lightCertificate j]〉 do
31: if lightCertificate j is a valid light certificate for value j then
32: obtainedLightCertificatesi ← obtainedLightCertificatesi ∪ {[light-certificate, value j , lightCertificate j]}
33: end if
34: upon certificate1, certificate2 ∈ obtainedLightCertificatesi where certificate1 conflicts with certificate2

and confirmedi = true do
35: trigger 〈beb, Broadcast | [full-certificate, valuei , fullCertificatei]〉
36: upon event 〈beb, Deliver | P j , [full-certificate, value j , fullCertificate j]〉 do
37: if fullCertificate j is a valid full certificate for value j then
38: obtainedFullCertificatesi ← obtainedFullCertificatesi ∪ {fullCertificate j}
39: end if
40: upon certificate1, certificate2 ∈ obtainedFullCertificatesi where certificate1 conflicts with certificate2 do
41: proof = ∅
42: for each process Pi such that Pi ’s messages belong to both certificate1 and certificate2:
43: m1 ← the submit message signed by Pi which belongs to certificate1
44: m2 ← the submit message signed by Pi which belongs to certificate2
45: �i ← (m1, m2)

46: proof = proof ∪ {�i}
47: F ← the set of processes detected using proof
48: trigger 〈ac, Detect | F , proof 〉 � Pi detects faulty processes

Algorithm 3 ABC Transformation: Code for process Pi .
1: Implements:
2: t0-Resilient Accountable Byzantine Consensus, instance abc

3: Uses:
4: � Deterministic or probabilistic Byzantine consensus protocol to be transformed
5: t0-Resilient Byzantine Consensus, instance bc
6: t0-Resilient Accountable Confirmer implemented by Algorithm 2, instance ac

7: upon event 〈abc, Propose | proposal〉 do � Proposal
8: trigger 〈bc, Propose | proposal〉
9: upon event 〈bc, Decide | decision〉 do

10: trigger 〈ac, Submit | decision〉
11: upon event 〈ac, Confirm | confirmation〉 do
12: trigger 〈abc, Decide | confirmation〉 � Decision

13: upon event 〈ac, Detect | F , proof 〉 do
14: trigger 〈abc, Detect | F , proof 〉 � Detection
Next, we show that ABC does not worsen the communication
complexity in the common case of sup-quadratic Byzantine con-
sensus protocols and induces a cubic accountability complexity.

Theorem 4. Let bc be a t0-resilient deterministic (resp., probabilistic)
Byzantine consensus protocol, where t0 ≤ �n/3� − 1, with the worst-
case (resp., expected) communication complexity cc in the common case
7

(with up to t0 faults). Let abc be a protocol obtained by applying ABC to
bc. Then, abc has the worst-case (resp., expected) communication com-
plexity max

(
cc, O (n2)

)
in the common case and O (n3) accountability

complexity.

Proof. As the communication complexity of the accountable
confirmer is O (n2) in the common case (by Theorem 2), the

P. Civit, S. Gilbert, V. Gramoli et al. Journal of Parallel and Distributed Computing 181 (2023) 104743
worst-case (resp., expected) communication complexity of abc
is max

(
cc, O (n2)

)
in the common case. Moreover, as the only

accountability-specific messages sent by abc are the submit mes-
sages of the accountable confirmer and O (n3) submit messages
are sent by correct processes (by Theorem 2), the accountability
complexity is O (n3). �

Lastly, we remark that ABC does not worsen the communi-
cation complexity of any (1) deterministic Byzantine consensus
protocol, or (2) (possibly probabilistic) Byzantine consensus pro-
tocol safe under a strongly adaptive adversary. Namely, Dolev and
Reischuk [29] proved that any deterministic Byzantine consensus
protocol incurs a quadratic worst-case communication complex-
ity in the common case. Similarly, Abraham et al. [5] showed
that the quadratic lower bound for expected communication com-
plexity holds against an adaptive adversary. However, we under-
line that ABC worsens the communication complexity of partially
synchronous probabilistic Byzantine consensus protocols with sub-
quadratic expected complexity (e.g., [46]).5

3.3. Discussion

In this subsection, we discuss ABC ’s applicability to different
variants of the consensus problem, as well as some of ABC ’s lim-
itations.

ABC ’s applicability to different variants of Byzantine consensus The
(accountable) Byzantine consensus problem (as defined in § 1)
specifies the validity property, which ensures that, if all correct
processes propose the same value, then only that value could be
decided by a correct process. In the literature, this is not the only
variant of the validity property; the variant we use is traditionally
called strong validity. Other most notable variants of the validity
property include:

• Weak Validity: If all processes are correct and if a correct pro-
cess decides value v , then v is proposed by a (correct) pro-
cess [44,53,15].

• External Validity: A value decided by a correct process satisfies
a predefined valid predicate [18].

Importantly, the correctness of ABC does not depend on a spe-
cific variant of the validity property: the “connection” between
proposed values and the decided value is preserved by ABC . In
other words, an accountable Byzantine consensus protocol which
is a product of ABC satisfies the same validity property as the
original consensus protocol.

Limitations of ABC We now list a few limitations of ABC:

1. ABC is not optimized for the best-case scenarios: It is possi-
ble to devise Byzantine consensus protocols that exhibit o(n2)

communication in some favorable scenarios. For instance, Hot-
Stuff [53] achieves only linear communication if no faulty pro-
cesses exist and the execution is synchronous from the very
beginning. However, this linear communication is lost when
ABC is applied to HotStuff as processes “always” exchange the
submit messages, which leads to the inevitable O (n2) commu-
nication cost.

2. ABC (more precisely, our implementation of the account-
able confirmer) uses threshold signatures [41] to obtain O (n2)

communication complexity in the common case. As we have

5 We emphasize that [46] assumes a static adversary, thus allowing itself to cir-
cumvent the quadratic lower bound [5].
8

already mentioned in § 2, we do not need to assume a
trusted setup to obtain a threshold signature scheme: an asyn-
chronous distributed key generation (ADKG) protocol [2], exe-
cuted on top of a PKI setup, provides a threshold signature
scheme. Importantly, we are not aware of an ADKG proto-
col whose communication complexity is quadratic. Therefore,
ABC introduces a quadratic overhead only if (1) a trusted
setup is assumed, or (2) the communication cost of an ADKG
protocol is amortized. An alternative is to use compressed Σ
protocols [8], which allow us to obtain a transparent threshold
signature scheme (without trusted setup) with a logarithmic
overhead per threshold signature: communication overhead of
ABC would be O

(
n2 · log(n)

)
.

In practice, it is worth considering multi-signatures [30,10]
instead of the aforementioned threshold signatures. Multi-
signatures have an accompanying bit-mask of n bits. In sum-
mary, if κ denotes the size of a signature (usually, κ = 256),
the communication overhead of ABC would be:
• O (κ · n2 + n3) in the case of multi-signatures;
• O (κ · n2) in the case of threshold signatures (assuming a

trusted setup or a cost-amortized ADKG); and
• O (κ · n2 · log(n)) in the case of compressed Σ-protocols.
A formal treatment of all of the aforementioned cryptographic
primitives is available in Appendix B.

4. Lower bound on accountability complexity

In this section, we prove that any non-synchronous t0-resilient
accountable Byzantine consensus protocol incurs cubic account-
ability complexity (when t0 ∈ �(n)). Throughout the entire sub-
section, we fix any non-synchronous t0-resilient (deterministic or
probabilistic) accountable Byzantine consensus protocol abc. With-
out loss of generality, we assume that n = 3t0 + 1.

We prove the lower bound by showing that the accountabil-
ity complexity of abc is �(n3). Specifically, we prove that there
exists an execution E such that correct processes send �(n3)

accountability-specific messages in E .

Execution 	 First, we construct a specific (finite) execution 	. We
fix three disjoint groups of processes: (1) group A = {a1, a2, ..., at0 },
where |A| = t0, (2) group B = {b1, b2, ..., bt0 , bt0+1}, where |B| =
t0 + 1 = n − 2t0, and (3) group C = {c1, c2, ..., ct0 }, where |C | = t0.
Throughout the entire subsection, we rely on the aforementioned
groups.

Since abc solves Byzantine consensus if there are up to t0 faults,
the following two infinite executions exist:

1. e1: All processes from the group C are faulty, and these pro-
cesses are silent throughout the entire execution (i.e., they
send no messages). Moreover, all processes from the A ∪ B set
propose the same value v . Since there are t0 faulty processes
(as |C | = t0), abc ensures that all processes from the A ∪ B set
eventually decide the same value v (by Byzantine consensus
solvability of abc) by some global time t1.

2. e2: All processes from the group A are faulty, and these pro-
cesses are silent throughout the entire execution. Moreover, all
processes from the B ∪C set propose the same value v ′ �= v . As
there are t0 faulty processes (since |A| = t0), abc ensures that
all processes from the B ∪ C set eventually decide the value
v ′ �= v by some global time t2.

The existence of the executions e1 and e2 allows us to devise
another infinite execution e, where:

• Processes from the group A and processes from the group C
are correct, whereas processes from the group B are faulty.

P. Civit, S. Gilbert, V. Gramoli et al. Journal of Parallel and Distributed Computing 181 (2023) 104743

Fig. 1. Intuition behind the execution ea .
Moreover, all processes from the group A propose v , and all
processes from the group C propose v ′ �= v .

• The processes from the group B behave towards the processes
from the group A as in execution e1, and the processes from
the group B behave towards the processes from the group C
as in e2. Moreover, if an event ε (e.g., reception of a message,
sending of a message, local computation) occurs at global time
tε in e1 or e2, then ε occurs at the same time tε in execution
e.

• All messages between processes from the group A and the
group C are delayed until after time T0 = max(t1, t2).

Importantly, execution e is indistinguishable from execution e1 to
processes from the group A, which implies that all processes from
the group A decide value v by time t1. Similarly, all processes from
the group C decide value v ′ �= v by time t2. Thus, correct processes
disagree in e.

We denote by 	 the prefix of execution e until time T0 =
max(t1, t2).6 Note that the following holds for 	:

• All processes from the group A decide v in 	.
• All processes from the group C decide v ′ �= v in 	.
• No message is exchanged between any two processes (a ∈

A, c ∈ C).

The first intermediate result we prove is that no correct process
p ∈ A ∪ C can obtain a proof of culpability of any process from
the messages it received in 	. Informally, the reason is that all
processes seem correct in the eyes of a correct process; recall that
the groups A and C do not communicate with each other in 	.

Lemma 1. Consider a process p ∈ A ∪ C. Given the messages p receives
in 	, p is unable to construct a proof of culpability of any process.

Proof. Without loss of generality, let p ∈ A. Recall that 	 is in-
distinguishable from e1 until time T0 to p. Assume that, by the
means of contradiction, p obtains a proof of culpability of some
process from the messages received in 	.

We now construct an infinite execution e∗
1 by relying on e1:

1. All processes are correct in e∗
1.

2. All messages sent by the processes from the group C to any
process from the groups A or B are delayed until after time
T0.

3. The execution e∗
1 unfolds in the exact same way as e1 until

time T0.

6 Recall that e is an infinite execution. On the other hand, 	 is a finite execution.
9

Due to the construction of e∗
1, p cannot distinguish e∗

1 (until time
T0) from 	. Thus, p obtains a proof of culpability of some process
in e∗

1. However, this is impossible as all processes are correct. �
Intuition Now that we have designed the finite execution 	, we
can present the intuition behind the construction of E . Let us fix
any process a ∈ A.

First, note that there exists a continuation e1
a of 	 in which (1)

only a and c1 ∈ C are correct, and (2) these two processes do not
receive messages from any other process after T0. Importantly, all
processes in A \ {a} are silent after T0; note that their behavior is
correct, except that sent messages which are not received by T0
are omitted (this will play an important role in the conclusion of
the proof intuition). As Lemma 1 proves, c1 is unable to build any
proof of culpability given the messages it has received in 	. As ac-
countability must be satisfied in e1

a , a must help c1 in obtaining (at
least) t0 + 1 proofs of culpability. Therefore, a must send (at least)
t0 + 1 = �(n) accountability-specific messages to c1. Let T1 denote
the time by which a sends �(n) accountability-specific messages
to c1.

However, if a receives a message from c2 ∈ C after T1, a
must help c2 in satisfying accountability. Indeed, a cannot rely
on c1 helping c2 as c1 might be faulty. Thus, a needs to send
�(n) accountability-specific messages to c2. Following the same
logic, we construct a finite execution ea in which a sends �(n)

accountability-specific messages to each process c ∈ C ; hence, a
sends �(n2) accountability-specific messages in ea . We denote by
Ta the time by which a sends �(n2) messages in ea . Fig. 1 gives a
visual depiction of the intuition behind the design of ea .

At this point, for every process a ∈ A, we have an execution ea

in which (1) a sends �(n2) accountability-specific messages, and
(2) all other processes from the group A are silent. Therefore, we
can “merge” all of these executions into E in the following man-
ner:

1. Only processes from the group A are correct. All other pro-
cesses (i.e., B ∪ C) are faulty.

2. Message between processes from the group A which are not
received by T0 (i.e., in) are delayed until after max(Ta1 , Ta2 ,

..., Tat0
).

3. Each process c ∈ C behaves towards each process a ∈ A as it
does in ea .

As no process a ∈ A can distinguish E from ea until Ta , a sends
�(n2) messages in E . Thus, �(n3) accountability-specific messages
are sent in E , which suffices for proving the lower bound.

Construction of E (part 1): In the first part of the construction, we
build an execution ea in which (1) only a fixed process a ∈ A is cor-
rect, and (2) a sends (at least) t0 + 1 ∈ �(n) accountability-specific
messages to each process from the group C . Thus, a sends a

P. Civit, S. Gilbert, V. Gramoli et al. Journal of Parallel and Distributed Computing 181 (2023) 104743
Fig. 2. Execution e1
a .

quadratic number of accountability-specific messages in ea . As con-
structing ea is non-trivial, we construct ea incrementally (through
a sequence of steps).

Step 1: Construction of an infinite execution e1
a in which a sends

�(n) accountability-specific messages to c1.
We construct e1

a by relying on the previously described execution
	. Specifically, we construct e1

a as follows:

1. Only processes a and c1 are correct.
2. We construct the prefix π1

a of e1
a until time T0 in the following

way:
(a) Let π1

a be 	.
(b) For every message m such that (1) m is sent by a process

s in π1
a with s �= a and s �= c1, and (2) m is not received in

π1
a (i.e.,), the sending event of m is removed from π1

a .
In other words, each message which is sent by a process
other than a and c1 and not received by T0 is removed
from π1

a . This step ensures that processes can only receive
messages from a and c1 after T0.

3. Each process p ∈ � \ {a, c1} is silent after time T0, i.e., it does
not send any message after time T0.

Fig. 2 depicts the devised execution e1
a .

Let us analyze e1
a (the summary of the analysis can be seen in

Fig. 2):

• No process receives any message from a process s after time
T0, where s �= a and s �= c1 (step 2b). In other words, if any
process receives a message after time T0, then the message
was sent either by a or c1.

• Until time T0, e1
a is indistinguishable from 	 to both a and

c1 (step 2a and step 2b). Thus, a decides v in e1
a , whereas c

decides v ′ �= v in e1
a . Moreover, c1 does not obtain any proof

of culpability until time T0 in e1
a (due to Lemma 1).

• For every process q ∈ (A ∪ C) \ {a, c1}, q does not behave cor-
rectly until time T0 solely because it omits some messages
(step 2b).

Finally, we prove that a sends (at least) t0 + 1 ∈ �(n) account-
ability-specific messages in e1

a . Intuitively, a does so to ensure that
10
c1 is able to obtain a proof of culpability of t0 + 1 = n − 2t0 pro-
cesses in e1

a (to satisfy accountability).

Lemma 2. Process a sends �(n) accountability-specific messages to c1
in e1

a .

Proof. Given the messages c1 receives until time T0 in e1
a , c1 is

not able to construct a proof of culpability of any process (by
Lemma 1). However, as abc satisfies accountability, c1 eventually
obtains proofs of culpability of t0 + 1 processes. Hence, c1 obtains
the proofs after time T0. As c1 only receives messages from a (and
itself) after time T0, c1 must have incorporated (at least) t0 + 1
messages sent by a into the obtained proofs of culpabilities; thus,
all of these messages are accountability-specific. Therefore, a sends
�(n) accountability-specific messages to c1 in e1

a . �
We denote by T1 the first time such that (1) T1 > T0, and (2)

a sends �(n) accountability-specific messages to c1 by time T1 in
e1

a .

Step 2: Construction of an infinite execution e2
a in which a sends

�(n) accountability-specific messages to both c1 and c2.
This step of the construction is purely demonstrative. Namely, we
show how to construct e2

a by relying on e1
a . In the next step of the

construction, we will generalize the construction from ei
a (in which

a sends �(n) accountability-specific messages to each process in
{a1, ..., ai}) to ei+1

a (in which a sends �(n) accountability-specific
messages to each process in {a1, ..., ai, ai+1}.

We construct e2
a in the following way:

1. Only processes a and c2 are correct.
2. We construct the prefix π2

a of e2
a until time T1 in the following

manner:
(a) Let π2

a be the prefix of e1
a until time T1.

(b) We correct the behavior of c2 until time T0 by inserting
all the messages omitted in e1

a (i.e., c2 behaves exactly as it
behaves in). After time T0, the behavior of c2 is correct
(as c2 is correct in e2

a).
(c) For every message m sent by c1 in π2

a such that (1) m is
sent to a process r with r �= a and r �= c1, and (2) m is not
received by time T0, the sending event of m is removed
from π2

a . In other words, only a (and c1) receive messages
from c1 after T0.

(d) For every message m sent by c1 in π2
a such that (1) m is

sent to a, and (2) m is not received by time T1, the sending
event of m is removed from π2

a . This step of the construc-
tion ensures that a only receives messages from c1 until
time T1; after T1, a receives no messages from c1.

3. Process c2 does not receive any message from any other pro-
cess between times T0 and T1.

4. Each process p ∈ � \ {a, c2} is silent after time T1, i.e., it does
not send any message after time T1. Recall that processes in
� \ {a, c1, c2} are silent after time T0 (due to the construction
of e1

a).

Fig. 3 depicts e2
a .

The following holds for e2
a (summarized in Fig. 3):

• After T0, only a and c1 receive messages from c1 (step 2c).
Moreover, even a stops receiving messages from c1 after time
T1 (step 2d).

• After time T0, c2 only receives messages from a and itself (step
2c). Furthermore, between T0 and T1, c2 only receives mes-
sages from itself (step 3).

• Until time T0, e2
a is indistinguishable from 	 to both a and c2

(step 2a). Thus, a decides v , whereas c2 decides v ′ �= v .

P. Civit, S. Gilbert, V. Gramoli et al. Journal of Parallel and Distributed Computing 181 (2023) 104743

Fig. 3. Execution e2
a . All modifications introduced to e1

a (in order to obtain e2
a) are noted in red.
• For every process q ∈ (A ∪ C) \ {a, c1, c2}, q does not behave
correctly until time T0 solely because it omits some messages.

We conclude this step of the construction of ea by proving that
a sends �(n) accountability-specific messages both to c1 and c2 in
e2

a .

Lemma 3. Process a sends �(n) accountability-specific messages both
to c1 and c2 in e2

a .

Proof. First, a sends �(n) accountability-specific messages to c1
in e2

a as (1) e2
a is indistinguishable from e1

a to a until time T1 (due
to the construction of e2

a), and (2) a sends �(n) accountability-
specific messages by T1 in e1

a (by Lemma 2). Hence, it is left to
prove that a sends �(n) accountability-specific messages to c2 in
e2

a , as well.
As already noted, a and c2 disagree in e2

a . Since abc satisfies ac-
countability, c2 eventually obtains proofs of culpability of (at least)
t0 + 1 processes. Moreover, due to Lemma 1, given the messages
c2 receives until time T0, c2 is unable to form a proof of culpa-
bility of any process. Therefore, c2 obtains the culpability proofs
after T0. Given that c2 only receives messages from a (and it-
self) after T0, c2 must have “used” �(n) messages received from
a to form the culpability proofs (in order to satisfy accountability).
Thus, a indeed sends �(n) accountability-specific messages to c2
in e2

a , which concludes the proof. �
We denote by T2 the first time such that (1) T2 > T1, and (2)

a sends �(n) accountability-specific messages to c2 by time T2 in
e2

a . Note that a sends �(n) messages to both c1 and c2 by T2 in e2
a

as T2 > T1.

Step 3: Construction of an infinite execution ei+1
a in which a

sends �(n) accountability-specific messages to each process in
{c1, c2, ..., ci, ci+1}, where i ∈ [1, t0 − 1].

We construct ei+1
a from ei

a . In order to do so, we describe the
execution ei

a:

• Property 1: Only processes a and ci are correct in ei
a .

• Property 2: Until time T0, ei
a is indistinguishable from 	 to

both a and ci .
11
Fig. 4. A summary of the execution ei
a .

• Property 3: For every process c ∈ {ci+1, ci+2, ..., ct0 }, c behaves
correctly in ei

a until time T0 except that some messages are
omitted.

• Property 4: For every process f ∈ � \ {a, c1, c2, ..., ci−1, ci}, no
process receives any message from f after T0.

• Property 5: For every process c ∈ {c1, c2, ..., ci−1}, only pro-
cesses a and c receive any message from c after T0.

• Property 6: There exists a time Ti > T0 such that a has sent
�(n) messages to each process c ∈ {c1, c2, ..., ci−1, ci}.

• Property 7: For every j ∈ [1, i − 1], there exists a time T j such
that, if a process a receives a message from c j after T0, the
reception happens between T j−1 and T j (T j > T j−1).

• Property 8: Process ci does not receive any message from an-
other process between T0 and Ti−1.

• Property 9: If process a receives a message from ci after T0, the
reception happens after Ti−1.

The execution ei
a is summarized in Fig. 4. Observe that e1

a and e2
a

satisfy the aforementioned properties.
Now, we construct ei+1

a from ei
a in the same way we con-

structed e2
a from e1

a :

P. Civit, S. Gilbert, V. Gramoli et al. Journal of Parallel and Distributed Computing 181 (2023) 104743

Fig. 5. Execution ei+1
a . All modifications introduced to ei

a (in order to obtain ei+1
a) are noted in red.
1. Only processes a and ci+1 are correct.
2. We construct the prefix π i+1

a of ei+1
a until time Ti in the fol-

lowing manner:
(a) Let π i+1

a be the prefix of ei
a until time Ti .

(b) We correct the behavior of ci+1 until time T0 by inserting
all the messages omitted in ei

a (i.e., ci+1 behaves exactly
as it behaves in). After time T0, the behavior of ci+1 is
correct (as ci+1 is correct in ei+1

a).
(c) For every message m sent by ci in π i

a such that (1) m is
sent to a process r with r �= a and r �= ci , and (2) m is not
received by time T0, the sending event of m is removed
from π i

a . In other words, only a (and ci) receive messages
from ci after T0.

(d) For every message m sent by ci in π i
a such that (1) m is

sent to a, and (2) m is not received by time Ti , the sending
event of m is removed from π i

a . This step of the construc-
tion ensures that a only receives messages from ci until
time Ti ; after Ti , a receives no messages from ci .

3. Process ci+1 does not receive any message from any other pro-
cess between times T0 and Ti .

4. Each process p ∈ � \ {a, ci+1} is silent after time Ti , i.e., it does
not send any message after time T1. Recall that processes in
� \ {a, c1, c2, ..., ci−1, ci, ci+1} are silent after time T0 (due to
the property 4 of ei

a).

Fig. 5 depicts ei+1
a .

First, let us prove that all nine introduced properties are pre-
served for ei+1

a :

• Property 1: Only processes a and ci+1 are correct by construc-
tion of ei+1

a .
• Property 2: For ci+1, this property is satisfied due to the con-

struction of ei+1
a (step 2b). For a, the property is satisfied as

(1) a cannot distinguish ei+1
a from ei

a until time Ti > T0, and
(2) a cannot distinguish ei

a from 	 until time T0.
• Property 3: This property is satisfied as it is satisfied for ei

a .
• Property 4: This property is satisfied as it is satisfied for ei

a .
• Property 5: For every process c ∈ {c1, c2, ..., ci−1}, the property

is satisfied as it is satisfied for ei
a . For ci , the property holds

due to the construction of ei+1
a (step 2c).

• Property 6: We prove the property by proving Lemma 4.
• Property 7: For every process c ∈ {c1, c2, ..., ci−1}, the property

holds as it holds for ei
a . For ci , if a receives a message from ci
12
after T0, that happens after Ti−1 (as ei+1
a is indistinguishable

from ei
a until Ti > Ti−1 to a and a receives messages from

ci only after Ti−1 due to the property 9 of ei
a). Moreover, a

receives no messages from ci after time Ti due to the con-
struction of ei+1

a (step 2d).
• Property 8: This property is ensured due to the step 3 of the

construction.
• Property 9: The property is ensured by construction. Namely, a

cannot distinguish ei+1
a from ei

a until time Ti and a does not
receive any message from ci+1 in ei

a (as the property 4 holds
for ei

a).

Finally, let us prove that a sends �(n) messages to each process
c ∈ {c1, c2, ..., ci, ci+1} in ei+1

a ; the following lemma ensures that
the property 6 is satisfied for ei+1

a .

Lemma 4. Process a sends �(n) accountability-specific messages to
each process c ∈ {c1, c2, ..., ci, ci+1} in ei+1

a .

Proof. First, a sends �(n) accountability-specific messages to each
process in the {c1, c2, ..., ci−1, ci} set in ei+1

a as (1) ei+1
a is indis-

tinguishable to a from ei
a until time Ti (due to the construction

of ei+1
a), and (2) a sends �(n) accountability-specific messages to

each process in {c1, c2, ..., ci} by Ti in ei
a (by the property 6 of ei

a).
Hence, it is left to prove that a sends �(n) accountability-specific
messages to ci+1 in ei+1

a , as well.
Processes a and ci+1 disagree in ei+1

a . Since abc satisfies ac-
countability, ci+1 eventually obtains proofs of culpability of (at
least) t0 + 1 processes. Moreover, due to Lemma 1, given the mes-
sages ci+1 receives until time T0, ci+1 is unable to form a proof
of culpability of any process. Therefore, ci+1 obtains the culpability
proofs after T0. Given that ci+1 only receives messages from a (and
itself) after T0 (due to the properties 4 and 5 of ei+1

a), ci+1 must
have “used” �(n) messages received from a to form the culpa-
bility proofs (to satisfy accountability). Thus, a indeed sends �(n)

accountability-specific messages to ci+1 in ei+1
a , as well. �

We denote by Ti+1 the first time such that (1) Ti+1 > Ti , and
(2) a sends �(n) accountability-specific messages to ci+1 by time
Ti+1 in ei+1

a . Note that a sends �(n) messages to each process in
the {c1, ..., ci, ci+1} set by Ti+1.

P. Civit, S. Gilbert, V. Gramoli et al. Journal of Parallel and Distributed Computing 181 (2023) 104743
Step 4: Construction of a finite execution ea in which (1) a sends
�(n2) accountability-specific messages, and (2) a is the only cor-
rect process.

We construct ea in the following manner:

1. Only process a is correct in ea .
2. We build the prefix πa of ea until time Tt0 in the follow-

ing manner, where Tt0 is the time specified explicitly in the
construction of et0

a (constructed by the generic transformation
introduced in the previous step):
(a) Let πa be the prefix of et0

a until time Tt0 .
(b) For every message m sent by ct0 in πa such that (1) m is

sent to a process r with r �= a and r �= ct0 , and (2) m is not
received by time T0, the sending event of m is removed
from πa . In other words, only a (and ct0) receive messages
from ct0 after T0.

(c) For every message m sent by ct0 in πa such that (1) m
is sent to a, and (2) m is not received by time Tt0 , the
sending event of m is removed from πa . This step of the
construction ensures that a only receives messages from
ct0 until time Tt0 ; after Tt0 , a receives no messages from
ct0 .

3. Each process p ∈ � \ {a} is silent after time Ti , i.e., it does
not send any message after time Tt0 . Recall that processes in
� \ {a, c1, c2, ..., ct0 } are silent after time T0.

Since a cannot distinguish et0
a from ea until time Tt0 , a sends �(n2)

accountability-specific messages in ea . Lastly, we associate ea with
Ta = Tt0 .

Construction of E (part 2): The first part of the proof was devoted
to constructing ea , an execution in which a fixed correct process
a ∈ A sends a quadratic number of accountability-specific mes-
sages. The second part “merges” all of these executions in order
to obtain an execution with a cubic number of sent accountability-
specific messages.

Theorem 5. The accountability complexity of abc, where abc is a t0-
resilient (deterministic or probabilistic) accountable Byzantine consen-
sus protocol and t0 ∈ �(n), is �(n3).

Proof. We prove the theorem by constructing an execution E with
a cubic number of accountability-specific messages. Recall that, for
each process a ∈ A, time Ta > T0 is associated with ea; a sends
�(n2) accountability-specific messages by Ta in ea .

We construct E in the following manner. First, we “merge” ex-
ecutions ea until time T0, for every a ∈ A. More formally, we build
a prefix ρ of E until time T0 using the following construction:

1. Let ρ be the prefix of ea1 until time T0, where a1 ∈ A.
2. For every process a ∈ A \ {a1}:

(a) If there exists a message m sent by a process p ∈ � in the
prefix of ea until time T0 such that m is not sent in ρ , add
m to be sent in ρ at the exact same time as in ea .

Intuitively, we create ρ as the “union” of the prefixes of ea until
time T0, for every a ∈ A. Observe that all processes from the group
A are correct in ρ .

After time T0, we do the following:

1. Processes from the C set behave towards a process a as they
do in ea , for every a ∈ A.

2. Processes from the group B are silent, i.e., they do not send
any messages.
13
3. Messages between processes from the group A that are
not received by time T0 are delayed until after time T ∗ =
max(Ta1 , Ta2 , ..., Tat0

).

Given that no process a ∈ A distinguishes E from ea until
time T ∗ > Ta , each process a ∈ A sends a quadratic number of
accountability-complexity messages in E . Since |A| = t0 ∈ �(n), the
overall accountability complexity of execution E is �(n3), which
concludes the proof. �
5. Generalized ABC transformation

We have shown that ABC enables Byzantine consensus pro-
tocols to obtain accountability. This section generalizes our ABC
transformation and defines its applicability. Namely, we specify a
class of distributed computing problems named easily-accountable
agreement tasks, and we prove that generalized ABC enables ac-
countability in such tasks.

We introduce agreement tasks in § 5.1. Then, we define the
class of easily-accountable agreement tasks (§ 5.2), and prove the
correctness of generalized ABC transformation applied to such
agreement tasks (§ 5.3).

5.1. Agreement tasks

Agreement tasks represent an abstraction of distributed input-
output problems performed in a Byzantine environment. Specifi-
cally, each process has its input value. We assume that “⊥” denotes
the special input value of a process that specifies that the input
value is non-existent. A process may eventually halt; if a process
halts, it produces its output value. The “⊥” output value of a pro-
cess means that the process has not yet halted (and produced its
output value). We denote by Ii (resp., O i) the input (resp., output)
value of process Pi . We note that some processes might never halt
if permitted by the definition of an agreement task. We provide
the formal explanation in the rest of the subsection.

An agreement task A is parametrized with the upper bound tA
on number of faulty processes that are tolerated. In other words,
the specification of an agreement task assumes that no more than
tA processes are faulty in any execution.

Any agreement task could be defined as a relation between
input and output values of processes. Since we assume that pro-
cesses might fail, we only care about input and output values of
correct processes. Hence, an agreement task could be defined as a
relation between input and output values of correct processes.

An input configuration of an agreement task A is νI = {(Pi, Ii)

with Pi is correct}, where |νI | ≥ n − tA: an input configuration
consists of input values of all correct processes. Similarly, an out-
put configuration of an agreement task is νO = {(Pi, O i) with Pi is
correct}, where |νO | ≥ n − tA: it contains output values of correct
processes. We denote by θ(νO) = |{O i | (Pi, O i) ∈ νO ∧ O i �= ⊥}| the
number of distinct non-⊥ values in the νO output configuration.

Finally, we define an agreement task A as tuple (I, O, �, tA),
where:

• I denotes the set of all input configurations of A.
• O denotes the set of all output configurations of A such that

θ(νO) ≤ 1, for every νO ∈O.
• � : I → 2O , where νO ∈ �(νI) if and only if the output con-

figuration νO ∈O is valid given the input configuration νI ∈ I .
• tA ≤ �n/3� − 1 denotes the maximum number of faulty pro-

cesses the task assumes.

As seen from the definition, correct processes that halt always
output the same value in agreement tasks. Moreover, we define
agreement tasks to tolerate less than n/3 faults. Without loss of

P. Civit, S. Gilbert, V. Gramoli et al. Journal of Parallel and Distributed Computing 181 (2023) 104743
generality, we assume that �(νI) �= ∅, for every input configura-
tion νI ∈ I . Moreover, for every νO ∈ O, there exists νI ∈ I such
that νO ∈ �(νI).

We note that some problems that are traditionally consid-
ered as “agreement” problems do not fall into our classification
of agreement tasks. For instance, Byzantine lattice agreement [50]
or k-set agreement [21] is not agreement tasks per our definition
since the number of distinct non-⊥ values that can be outputted
is greater than 1.

Solutions The following definitions specify solutions of agreement
tasks.

Definition 8 (Solution of an agreement task). A protocol �A deter-
ministically (resp., probabilistically) solves an agreement task A =
(I, O, �, tA) if and only if, in every execution with up to tA faults,
there exists (resp., exists with probability 1) an unknown time T D

such that νO ∈ �(νI), where νI ∈ I denotes the input configuration
that consists of input values of all correct processes and νO ∈ O
denotes the output configuration that (1) consists of output values
(potentially ⊥) of all correct processes, and (2) no correct process
Pi with O i = ⊥ updates its output value after T D .

Lastly, we define accountable solutions of agreement tasks.

Definition 9 (Accountable solution of an agreement task). A protocol
�Acc

A deterministically (resp., probabilistically) solves an agreement
task A = (I, O, �, tA) with accountability if and only if the follow-
ing holds:

• A-Solvability: �Acc
A deterministically (resp., probabilistically)

solves A.
• Accountability: If two correct processes output different values,

then every correct process eventually detects (at least) n −2tA
faulty processes and obtains a proof of culpability of each de-
tected process.

5.2. Easily-accountable agreement tasks

Fix an agreement task A = (I, O, �, tA). We say that A is an
easily-accountable agreement task if and only if one of the following
conditions is satisfied:

1. “All-or-None-Decidability”: There does not exist νO ∈ O such
that (Pi, O i �= ⊥) ∈ νO and (P j, O j = ⊥) ∈ νO ; or

2. “Partial-Decidability”: For every νI ∈ I such that there exists
νO ∈ �(νI), where (Pi, O i = v �= ⊥) ∈ νO and (P j, O j = ⊥) ∈
νO , the following holds:

for every c ∈ P ({Pi | (Pi, Ii) ∈ νI }),∃ν ′
O ∈ �(νI),where

∀Pi ∈ c : (Pi, O i = v) ∈ ν ′
O and

∀P j ∈ {Pk | (Pk, Ik) ∈ νI }
\ c : (P j, O j = ⊥) ∈ ν ′

O .

“All-or-None-Decidability” characterizes all the problems in
which either every process halts or none does. For instance, Byzan-
tine consensus [40] and Byzantine reliable broadcast [17] satisfy
“All-or-None-Decidability”.

On the other hand, some agreement tasks permit that some
processes halt, whereas others do not. We say that these tasks sat-
isfy “Partial-Decidability” if and only if it is allowed for any subset
of correct processes to halt (and output a value). Note that “Partial-
Decidability” covers the case where no correct process ever halts.
Byzantine consistent broadcast [17] is the only agreement task we
14
are aware of that satisfies “Partial-Decidability” (in the case of a
Byzantine sender). However, the significance of Byzantine consis-
tent broadcast (e.g., for implementing cryptocurrencies [35]) moti-
vated us to consider the “Partial-Decidability” property.

5.3. Correctness of generalized ABC transformation

We now prove the correctness of our generalized ABC trans-
formation (Algorithm 4). First, we show that Algorithm 4 solves an
easily-accountable agreement task A if A satisfies “All-or-None-
Decidability”.

Lemma 5. Let A = (I, O, �, tA) be an easily-accountable agreement
task that satisfies “All-or-None-Decidability”. Algorithm 4 deterministi-
cally (resp., probabilistically) solves A if �A (line 5) deterministically
(resp., probabilistically) solves A.

Proof. If no correct process ever outputs a value at line 9, then
no correct process confirms any value from accountable confirmer
(because no correct process submits any value to accountable con-
firmer at line 10). Hence, no correct process produces any output
at line 12, which concludes the proof in this scenario.

Otherwise, each correct process eventually outputs a value at
line 9. Moreover, all correct processes output the exact same value
v (since A is an agreement task). Therefore, all correct processes
submit the same value v to accountable confirmer (line 10). By
terminating convergence of accountable confirmer, all correct pro-
cesses eventually confirm value v (line 11) and output it (line 12).
Once this happens, the agreement task A is solved, which con-
cludes the lemma. �

Now, we prove that Algorithm 4 solves an easily-accountable
agreement task A if A satisfies “Partial-Decidability”.

Lemma 6. Let A = (I, O, �, tA) be an easily-accountable agreement
task that satisfies “Partial-Decidability”. Algorithm 4 deterministically
(resp., probabilistically) solves A if �A (line 5) deterministically (resp.,
probabilistically) solves A.

Proof. Let νI denote a specific input configuration of A. We con-
sider two cases:

• If no or all correct processes output a value at line 9, the proof
is identical to the proof of Lemma 5.

• Otherwise, there exists a correct process that outputs a value
v at line 9 and another correct process that does not output
any value at line 9. Since A is an agreement task, any cor-
rect process that outputs a value at line 9 outputs the value v .
Moreover, any correct process that outputs a value at line 12
outputs the value v (ensured by validity of accountable con-
firmer). Finally, once the system stabilizes at time T D (the
system stabilizes at time T D if and only if no correct process
Pi with O i = ⊥ updates its output value after T D), the fact
that any subset of correct processes could halt and that all
halted processes output v implies that Algorithm 4 solves A.

The lemma holds. �
Finally, we are ready to prove that Algorithm 4 solves A with

accountability, where A is an easily-accountable agreement task,
which means that generalized ABC is correct.

Theorem 6. Let A = (I, O, �, tA) be an easily-accountable agree-
ment task. Algorithm 4 deterministically (resp., probabilistically) solves
A with accountability if �A (line 5) deterministically (resp., probabilis-
tically) solves A.

P. Civit, S. Gilbert, V. Gramoli et al. Journal of Parallel and Distributed Computing 181 (2023) 104743

Algorithm 4 Generalized ABC Transformation - Code For Process Pi .
1: Implements:
2: Agreement Task A With Accountability, instance a −A
3: Uses:
4: � Protocol to be transformed
5: Protocol that (deterministically or probabilistically) solves agreement task A, instance �A
6: tA-Resilient Accountable Confirmer, where tA is the resilience of A, instance ac

7: upon event 〈a −A, Input | input〉 do � Input
8: trigger 〈�A, Input | input〉
9: upon event 〈�A, Output | output〉 do

10: trigger 〈ac, Submit | output〉
11: upon event 〈ac, Confirm | confirmation〉 do
12: trigger 〈a −A, Output | confirmation〉 � Output

13: upon event 〈ac, Detect | F , proof 〉 do
14: trigger 〈a −A, Detect | F , proof 〉 � Detection
Proof. Algorithm 4 satisfies A-solvability by Lemmas 5 and 6.
Finally, Algorithm 4 ensures accountability since the accountable
confirmer ensures detection of (at least) n − 2tA faulty processes
whenever a disagreement occurs. �
6. Concluding remarks

We presented ABC , a generic and simple transformation that
allows non-synchronous (deterministic or probabilistic) Byzantine
consensus protocols to obtain accountability. Besides its simplic-
ity, ABC is efficient: it introduces an additive overhead of only
two all-to-all communication rounds and O (n2) exchanged bits
of information in the common case. Furthermore, we show that
ABC can easily be generalized to other agreement problems (e.g.,
Byzantine reliable broadcast, Byzantine consistent broadcast). Fu-
ture work includes (1) designing similarly simple and efficient
transformations for problems not covered by the generalized ABC
transformation, like Byzantine lattice and k-set agreement prob-
lems, and (2) circumventing the cubic accountability complexity
bound using randomization techniques.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This work is supported in part by the Australian Research Coun-
cil Future Fellowship funding scheme (#180100496), the Ethereum
Foundation, and by Singapore MOE Grant MOE-T2EP20122-0014.

Appendix A. Formal proof of Theorem 1

Theorem 1 (Unavoidable disagreement; restated). For any non-synchro-
nous t0-resilient (deterministic or probabilistic) Byzantine consensus
protocol among n processes, there exists an execution with t ≥ n − 2t0
faulty processes in which correct processes disagree (i.e., decide different
values).

Proof. As we need to have at least two correct processes (in order
for a disagreement to occur), t ≤ n − 2. Let B denote the group
of faulty processes; |B| = t ≥ n − 2t0. We denote by A a group of
any �n−t

2 � correct processes and by C the group of “other” �n−t
2 �

correct processes. Note that (1) A ∩ C = ∅, (2) A �= ∅ (as n − t ≥ 2),
and (3) C �= ∅ (as n − t ≥ 2).

Consider the following two executions:
15
• Execution e1: In this execution, processes in A ∪ B are correct,
whereas processes in C are faulty and silent (i.e., they do not
send any messages). All correct processes propose the same
value v . The number of faulty processes in e1 is |C | = �n−t

2 � ≤
t0. Due to the fact that the Byzantine consensus protocol is t0-
resilient and the number of faulty processes is ≤ t0, all correct
processes decide v by some time T1.

• Execution e2: In this execution, processes in B ∪ C are cor-
rect, whereas processes in A are faulty and silent. All correct
processes propose the same value v ′ . The number of faulty
processes in e1 is |A| ≤ t0. Hence, all correct processes decide
v ′ by some time T2.

Now, we build an execution e3:

1. Processes in A ∪ C are correct, whereas processes in B are
faulty.

2. Processes in A propose v , whereas processes in C propose v ′ .
3. Processes in B behave (1) towards processes in A as in e1, and

(2) towards processes in C as in e2. Moreover, all messages
between groups A and C are delayed until after max(T1, T2).

Until time T1, processes in A cannot distinguish e3 from e1; thus,
processes in A decide v in e3. Similarly, until time T2, processes in
C cannot distinguish e3 from e2; thus, processes in C decide v ′ in
e3. Therefore, a disagreement occurs in e3, and there are n − 2t0 ≤
t ≤ n − 2 faulty processes in e3, which concludes the proof. �
Appendix B. Cryptographic primitives: formal overview

This subsection recalls the formal definitions of the crypto-
graphic schemes we rely upon for constructing ABC .

A family of real numbers (xk)k∈N ∈ RN is said to belong to
poly(k) if there exists c ∈ N such that xk =

k→∞
O (kc). A family of

real numbers (xk)k∈N ∈ RN is said to be negligible, denoted by
(xk)k∈N ∈ neg(k), if for every c ∈ N , xk =

k→∞
o(1

kc). A probabilistic

Turing Machine is k-bounded for some k ∈ N if (1) it can be de-
scribed with k bits, assuming a standard bit-string representation,
and (2) it halts after k transitions.

The cryptographic schemes and their properties are defined
with respect to a security parameter κ ∈ N . A (local) protocol
is said to be efficient if its complexity belongs to poly(κ). A real
number x (which, traditionally, describes a probability) is said to
be negligible if it is parametrized with the security parameter κ
and x ∈ neg(κ). An adversary is said to be polynomially-bounded if
it is parametrized with the security parameter κ and is poly(κ)-
bounded. A property of a cryptographic scheme is said to hold if
it cannot be violated by a polynomially-bounded adversary with
more than a negligible probability.

P. Civit, S. Gilbert, V. Gramoli et al. Journal of Parallel and Distributed Computing 181 (2023) 104743
Throughout the section, we denote by String � {0, 1}∗ the set of
all strings.

B.1. Digital signatures

A digital signature scheme is a tuple of efficient local protocols
(Gen, Sign, Verify), with:

• Gen: a probabilistic algorithm that takes the security number
κ as the input, and randomly selects a pair (ski, pki) composed
of a secret (i.e., private) key ski and a public (i.e., verification)
key pki ; the bit-representations of ski and pki are of size of (at
most) κ bits.

• Sign(m, ski): a (potentially probabilistic) algorithm that takes
(1) a string m ∈ String, and (2) a private key ski as the input.
The algorithm outputs a signature σi whose bit-representation
has a size of (at most) κ bits.

• Verify(m, pk j, σ j): a (potentially probabilistic) algorithm that
takes (1) a string m ∈ String, (2) the public key pk j of a process
P j , and (3) a signature σ j as the input. The algorithm outputs
	 (true) or ⊥ (false) depending on whether σ j is deemed as
a valid signature.

The following properties hold:

• Correctness: If (ski, pki) ← Gen(κ), then Verify
(
m, pki,

Sign(m, ski)
)

returns 	.
• Unforgeability: If Verify(m, pk j, σ j) returns 	, then (1) σ j ←

Sign(m, sk j) has been executed by P j , or (2) P j is faulty.

This scheme is formalized by the functionality FSIG in the uni-
versally composable (UC) framework [19].

B.2. Public key infrastructure (PKI)

An ideal public key infrastructure is a tuple (Keys, Sign, Verify),
where Keys = (

(SK = (sk1, ..., skn), PK = (pk1, ..., pkn)
)
, with:

• PK: a vector of public (i.e., verification) keys stored by every
correct process; each public key pk j is associated with the pro-
cess P j .

• SK: a vector of secret (i.e., private) keys such that, for every
correct process Pi , Pi stores its secret key ski which corre-
sponds to its public key pki ; ski is hidden from the adversary
(i.e., the unforgeability property of digital signatures is satis-
fied; Appendix B.1).

• Sign(m, ski): a (potentially probabilistic) algorithm that takes
(1) a string m ∈ String, and (2) a private key ski as the input.
The algorithm outputs a signature σi .

• Verify(m, pk j, σ j): a deterministic algorithm that takes (1) a
string m ∈ String, (2) the public key pk j of a process P j , and
(3) a signature σ j as the input. The algorithm outputs 	 or ⊥
depending on whether σ j is deemed as a valid signature.

The following properties hold:

• Correctness: For every i ∈ [1, n], Verify
(
m, pki, Sign(m, ski)

)
re-

turns 	.
• Unforgeability: If Verify(m, pk j, σ j) returns 	, then (1) σ j ←

Sign(m, sk j) has been executed by P j , or (2) P j is faulty.

In our paper, we assume an established PKI, i.e., we are not con-
cerned with how such an infrastructure is obtained. We emphasize
that the definition above does not state how a verifier learns the
public (i.e., verification) key of another process. The associated
16
ideal functionality, formalized by FCA in the UC model [19], cor-
responds to a “rudimentary certification authority that registers
party identities together with public values provided by the reg-
istered party”. Traditionally, this functionality is emulated in the
following manner: a process publicly announces its public key us-
ing the Byzantine reliable broadcast primitive [13,17]. However,
without additional assumptions, the resiliency of Byzantine reli-
able broadcast is bounded by n/3 (without previously established
PKI), even in the synchronous setting [40], making it impossible
for implementation in overly corrupted systems.

Assuming that each party can solve cryptographic puzzles only
at a bounded rate, it is possible to (1) implement a setup phase to
establish an ideal PKI assuming a (potentially very large) bound �
on message delays [38,7], and then (2) run asynchronous protocols
on top of the established ideal PKI (in the main phase), without
facing the dilemma between safety and efficiency due to the choice
of �. (A small � would threat the safety, while a large � would
increase the latency.)

B.3. Threshold signature scheme

A non-interactive (k, n)-dual threshold signature scheme is a tu-
ple of efficient local protocols (Keys, ShareSign,ShareVerify, Verify,
Combine), where Keys = (

PK, SK = (sk1, ..., skn), VK = (vk1, ...,
vkn)

)
, with:

• PK: a public key store by correct process.
• VK: a vector of verification keys stored by every correct pro-

cess.
• SK: a vector of private key shares such that, for every correct

process Pi , Pi stores its private key share ski ; ski is hidden
from the adversary.

• ShareSign(m, ski): a (potentially probabilistic) algorithm that
takes (1) a string m ∈ String, and (2) a private key share ski as
the input. The algorithm outputs a partial signature σ P

i of (at
most) κ bits.

• ShareVerify(m, vk j, σ P
j): a deterministic algorithm that takes

(1) a string m ∈ String, (2) the verification key vk j of a process
P j , and (3) a partial signature σ P

j as the input. The algorithm
outputs 	 or ⊥ depending on whether σ P

j is deemed as a
valid partial signature.

• Combine(m, {σi}i∈S∧S⊂[1,n]∧|S|=k): an algorithm that takes (1)
a string m ∈ String, and (2) a subset S of size |S| = k of partial
signatures {σi}i∈S . The algorithm outputs a threshold signature
σ T .

• Verify(m, PK, σ T): a deterministic algorithm that takes (1) a
string m ∈ String, (2) the public key PK, and (3) a threshold
signature σ T . The algorithm outputs 	 or ⊥ depending on
whether σ T is deemed as a valid threshold signature.

The following properties hold:

• Correctness of partial signatures: For every i ∈ [1, n],
ShareVerify

(
m,vki, ShareSign(m, ski)

)
returns 	.

• Unforgeability of partial signatures: If ShareVerify(m, vk j, σ P
j) re-

turns 	, then (1) σ P
j ← ShareSign(m, sk j) has been executed

by P j , or (2) P j is faulty.
• Correctness of threshold signatures: Verify

(
m, PK,

Combine({ShareSign(m, sk j)} j∈ J∧ J⊂[1,n]∧| J |=k)
)

returns 	.
• Unforgeability of threshold signatures: If Verify(m, PK, σ T) re-

turns 	, then there exists a set J , | J | = k, of partial signatures
such that, for each σ P

j ∈ J , (1) σ P
j ← ShareSign(m, sk j) has

been executed by P j , or (2) P j is faulty.

P. Civit, S. Gilbert, V. Gramoli et al. Journal of Parallel and Distributed Computing 181 (2023) 104743
Importantly, there exist dual threshold signature schemes with
threshold signatures having κ bits (e.g., [49]). Note that, without
a trusted setup, a (k, n)-dual threshold signature scheme can be
obtained via a distributed key generation (DKG) protocol (e.g., [2])
if the number of faulty processes does not exceed n −k. Otherwise,
no guarantees exist. For example, if the number of faults exceeds
n − k, we can have an imperfect threshold signature scheme in
which the aforementioned properties would not hold (e.g., faulty
processes could forge the private key shares of correct processes
and use them to sign statements on their behalf).

B.4. Threshold signature scheme in a transparent setup (via
�-compressed protocols)

A transparent non-interactive (k, n)-dual threshold signature scheme
is a scheme whose specification is extremely similar to the spec-
ification presented in Appendix B.3. The only difference is that
a transparent scheme does not include a common public key,
which implies that a trusted setup nor a DKG protocol is neces-
sary. Hence, obtaining a transparent scheme is strictly easier (in
terms of necessary assumptions) than obtaining a non-transparent
scheme (Appendix B.3). For the completeness, the full specification
is given below.

A transparent non-interactive (k, n)-dual threshold signature
scheme is tuple of efficient local protocols (Keys, ShareSign,

ShareVerify, Verify, Aggregate), where Keys = (
SK = (sk1, ..., skn),

VK = (vk1, ..., vkn)
)
, with:

• VK: a vector of verification keys stored by every correct pro-
cess.

• SK: a vector of private key shares such that, for every correct
process Pi , Pi stores its private key share ski ; ski is hidden
from the adversary.

• ShareSign(m, ski): a (potentially probabilistic) algorithm that
takes (1) a string m ∈ String, and (2) a private key share ski as
the input. The algorithm outputs a signature share σ S

i of (at
most) κ bits.

• ShareVerify(m, vk j, σ S
j): a deterministic algorithm that takes

(1) a string m ∈ String, (2) the verification key vk j of a process
P j , and (3) a signature share σ S

j as the input. The algorithm
outputs 	 or ⊥ depending on whether σ S

j is deemed as a
valid signature.

• Aggregate(m, {σi}i∈S∧S⊂[1,n]∧|S|=k): an algorithm that takes (1)
a string m ∈ String, and (2) a subset S of size |S| = k of signa-
ture shares {σi}i∈S . The algorithm outputs an aggregate signa-
ture σ A .

• Verify(m, σ A): a deterministic algorithm that takes (1) a string
m ∈ String, and (2) an aggregate signature σ A . The algorithm
outputs 	 or ⊥ depending on whether σ A is deemed as a
valid aggregate signature.

The following properties hold:

• Correctness of signature shares: For every i∈[1, n], ShareVerify
(
m,

vki, ShareSign(m, ski)
)

returns 	.
• Unforgeability of signature shares: If ShareVerify(m, vk j, σ S

j) re-

turns 	, then (1) σ S
j ← ShareSign(m, sk j) has been executed

by P j , or (2) P j is faulty.
• Correctness of aggregate signatures: Verify

(
m,

Aggregate({ShareSign(m, sk j)} j∈ J∧ J⊂[1,n]∧| J |=k)
)

returns 	.
• Unforgeability of aggregate signatures: If Verify(m, σ A) returns 	,

then there exists a set J , | J | = k, of share signatures such that,
for each σ S

j ∈ J , (1) σ S
j ← ShareSign(m, sk j) has been exe-

cuted by P j , or (2) P j is faulty.
17
Importantly, there exist transparent threshold signature schemes
such that the aggregate signatures have a size of O (κ log(n)) bits
(e.g., [8]). Thus, proving that a group of a linear number of pro-
cesses signed a certain message requires O (κ log(n)) bits to be
transmitted rather than O (κ) bits for the non-transparent thresh-
old signature schemes (Appendix B.3).

B.5. Aggregate signatures

A non-interactive n-aggregate signature scheme is a tuple of
efficient (local) protocols (Keys, ShareSign,ShareVerify, Verify,
Aggregate), where Keys = (

SK = (sk1, ..., skn), VK = (vk1, ..., vkn)
)
,

with:

• VK: a vector of verification keys stored by every correct pro-
cess.

• SK: a vector of private key shares such that, for every correct
process Pi , Pi stores its private key share ski ; ski is hidden
from the adversary.

• ShareSign(m, ski): a (potentially probabilistic) algorithm that
takes (1) a string m ∈ String, and (2) a private key share ski as
the input. The algorithm outputs a signature share σ S

i of (at
most) κ bits.

• ShareVerify(m, vk j, σ S
j): a deterministic algorithm that takes

(1) a string m ∈ String, (2) the verification key vk j of a process
P j , and (3) a signature share σ S

j as the input. The algorithm
outputs 	 or ⊥ depending on whether σ S

j is deemed as a
valid signature.

• Aggregate(m, {σi}i∈S∧S⊆[1,n]): an algorithm that takes (1) a
string m ∈ String, and (2) a subset S of any size of signature
shares {σi}i∈S . The algorithm outputs an aggregate signature
σ A .

• Verify(m, σ A, B): a deterministic algorithm that takes (1) a
string m ∈ String, (2) an aggregate signature σ A , and (3) a bit
bask B ∈ {0, 1}n . The algorithm outputs 	 or ⊥ depending on
whether σ A is deemed as a valid aggregate signature with ref-
erence to B .

The following properties hold:

• Correctness of signature shares: For every i∈[1, n], ShareVerify
(
m,

vki, ShareSign(m, ski)
)

returns 	.
• Unforgeability of signature shares: If ShareVerify(m, vk j, σ S

j) re-

turns 	, then (1) σ S
j ← ShareSign(m, sk j) has been executed

by P j , or (2) P j is faulty.
• Correctness of aggregate signatures: Consider any string m ∈

String and any bit-mask B ∈ {0, 1}n . The following holds:
Verify

(
m, Aggregate({ShareSign(m, sk j)}B[j]=1), B

)
returns 	.

• Unforgeability of aggregate signatures: If Verify(m, σ A, B) returns
	, then, for every j ∈ [1, n] such that B[j] = 1, (1) σ S

j ←
ShareSign(m, sk j) has been executed by P j , or (2) P j is faulty.

There exist transparent aggregate signature schemes such that
the aggregate signatures have a size of O (κ) bits (e.g., [11]). The
interface of an aggregate signature scheme is similar to the in-
terface of the non-transparent threshold signature schemes (Ap-
pendix B.3). We emphasize two differences:

• (Complexity) An aggregate signature σ A has to be associ-
ated with a bit-mask B of n bits (representing the subset of
signers). Indeed, this bit-mask is an argument of the associ-
ated Verify protocol. Thus, proving that a group of a linear
number of processes have signed a certain message requires
O (κ + n) bits to be transmitted instead of O (κ) bits for the
non-transparent threshold signature schemes (Appendix B.3).

P. Civit, S. Gilbert, V. Gramoli et al. Journal of Parallel and Distributed Computing 181 (2023) 104743
• (Transparency) This scheme requires weaker assumptions for
the setup (the same ones as the transparent threshold signa-
ture schemes defined in Appendix B.4). Indeed, the secret keys
can be generated independently, and the correct processes
have to agree on the associated verification keys (exactly as
in a PKI).

References

[1] M. Abd-El-Malek, G.R. Ganger, G.R. Goodson, M.K. Reiter, J.J. Wylie, Fault-
scalable Byzantine fault-tolerant services, in: A. Herbert, K.P. Birman (Eds.),
Proceedings of the 20th ACM Symposium on Operating Systems Principles
2005, SOSP 2005, Brighton, UK, October 23-26, 2005, ACM, 2005, pp. 59–74.

[2] I. Abraham, P. Jovanovic, M. Maller, S. Meiklejohn, G. Stern, A. Tomescu, Reach-
ing consensus for asynchronous distributed key generation, in: Proceedings of
the ACM Symposium on Principles of Distributed Computing (PODC), 2021,
pp. 363–373.

[3] I. Abraham, D. Malkhi, K. Nayak, L. Ren, A. Spiegelman, Solida: a blockchain
protocol based on reconfigurable Byzantine consensus, in: J. Aspnes, A. Bessani,
P. Felber, J. Leitão (Eds.), 21st International Conference on Principles of Dis-
tributed Systems, OPODIS 2017, Lisbon, Portugal, December 18-20, 2017,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017, 25.

[4] I. Abraham, D. Malkhi, A. Spiegelman, Asymptotically optimal validated asyn-
chronous Byzantine agreement, in: Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing (PODC), 2019, pp. 337–346.

[5] I. Abraham, T.-H.H. Chan, D. Dolev, K. Nayak, R. Pass, L. Ren, E. Shi, Com-
munication complexity of Byzantine agreement, revisited, in: P. Robinson, F.
Ellen (Eds.), Proceedings of the 2019 ACM Symposium on Principles of Dis-
tributed Computing, PODC 2019, Toronto, ON, Canada, ACM, New York, 2019,
pp. 317–326.

[6] Y. Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane, C. Nita-Rotaru, J. Olsen, D.
Zage, Steward: scaling Byzantine fault-tolerant replication to wide area net-
works, IEEE Trans. Dependable Secure Comput. 7 (2010) 80–93, https://doi .org /
10 .1109 /TDSC .2008 .53.

[7] M. Andrychowicz, S. Dziembowski, Pow-based distributed cryptography with
no trusted setup, in: R. Gennaro, M. Robshaw (Eds.), Advances in Cryptology
- CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2015, Proceedings, Part II, Springer, 2015, pp. 379–399.

[8] T. Attema, R. Cramer, M. Rambaud, Compressed $\varSigma $-protocols for
bilinear group arithmetic circuits and application to logarithmic transparent
threshold signatures, in: M. Tibouchi, H. Wang (Eds.), Advances in Cryptology
- ASIACRYPT 2021 - 27th International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Singapore, December 6-10, 2021,
Proceedings, Part IV, Springer, 2021, pp. 526–556.

[9] M. Ben-Or, S. Goldwasser, A. Wigderson, Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract), in: J.
Simon (Ed.), Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, Chicago, Illinois, USA, May 2-4, 1988, ACM, 1988, pp. 1–10.

[10] D. Boneh, M. Drijvers, G. Neven, Compact multi-signatures for smaller
blockchains, in: Advances in Cryptology - ASIACRYPT 2018 - 24th International
Conference on the Theory and Application of Cryptology and Information Se-
curity, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part II, 2018,
pp. 435–464.

[11] D. Boneh, C. Gentry, B. Lynn, H. Shacham, Aggregate and verifiably encrypted
signatures from bilinear maps, in: E. Biham (Ed.), Advances in Cryptology -
EUROCRYPT 2003, International Conference on the Theory and Applications
of Cryptographic Techniques, Warsaw, Poland, May 4-8, 2003, Proceedings,
Springer, 2003, pp. 416–432.

[12] G. Bracha, An asynchronous [(n-1)/3]-resilient consensus protocol, in: T.
Kameda, J. Misra, J.G. Peters, N. Santoro (Eds.), Proceedings of the Third An-
nual ACM Symposium on Principles of Distributed Computing, Vancouver, B.
C., Canada, August 27-29, 1984, ACM, 1984, pp. 154–162.

[13] G. Bracha, Asynchronous Byzantine agreement protocols, Inf. Comput. 75
(1987) 130–143, https://doi .org /10 .1016 /0890 -5401(87)90054 -X.

[14] E. Buchman, Tendermint: Byzantine Fault Tolerance in the Age of Blockchains,
Ph.D. thesis, 2016.

[15] E. Buchman, J. Kwon, Z. Milosevic, The latest gossip on BFT consensus, Techni-
cal Report, arXiv:1807.04938, 2018.

[16] V. Buterin, V. Griffith, Casper the friendly finality gadget, arXiv preprint, arXiv:
1710 .09437, 2017.

[17] C. Cachin, R. Guerraoui, L. Rodrigues, Introduction to Reliable and Secure Dis-
tributed Programming, Springer Science & Business Media, 2011.

[18] C. Cachin, K. Kursawe, F. Petzold, V. Shoup, Secure and efficient asynchronous
broadcast protocols, in: Proceedings of the Annual International Cryptology
Conference (CRYPTO), Springer, 2001, pp. 524–541.

[19] R. Canetti, Universally composable signature, certification, and authentication,
in: 17th IEEE Computer Security Foundations Workshop, CSFW-17 2004, Pacific
Grove, CA, USA, 28-30 June 2004, IEEE Computer Society, 2004, p. 219.
18
[20] M. Castro, B. Liskov, Practical Byzantine fault tolerance, in: Proceedings of the
Third Symposium on Operating Systems Design and Implementation (OSDI),
1999, pp. 173–186.

[21] S. Chaudhuri, More choices allow more faults: set consensus problems in to-
tally asynchronous systems, Inf. Comput. 105 (1993) 132–158.

[22] P. Civit, M.A. Dzulfikar, S. Gilbert, V. Gramoli, R. Guerraoui, J. Komatovic, M.
Vidigueira, Byzantine consensus is �(n2): the Dolev-Reischuk bound is tight
even in partial synchrony!, in: C. Scheideler (Ed.), 36th International Sym-
posium on Distributed Computing, DISC 2022, Augusta, Georgia, USA, Octo-
ber 25-27, 2022, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022,
14.

[23] P. Civit, S. Gilbert, V. Gramoli, Brief announcement: polygraph: accountable
Byzantine agreement, in: Proceedings of the 34th International Symposium on
Distributed Computing (DISC), 2020, 45.

[24] P. Civit, S. Gilbert, V. Gramoli, Polygraph: accountable Byzantine agreement,
in: Proceedings of the IEEE 41st International Conference on Distributed
Computing Systems (ICDCS), 2021, pp. 403–413.

[25] P. Civit, S. Gilbert, V. Gramoli, R. Guerraoui, J. Komatovic, Z. Milosevic,
A. Serendinschi, Crime and punishment in distributed Byzantine decision
tasks, in: 42nd IEEE International Conference on Distributed Computing
Systems, ICDCS 2022, Bologna, Italy, July 11-13, 2022, IEEE, 2022, https://
eprint .iacr.org /2022 /121.

[26] T. Crain, V. Gramoli, M. Larrea, M. Raynal, DBFT: efficient leaderless Byzan-
tine consensus and its application to blockchains, in: Proceedings of the IEEE
17th International Symposium on Network Computing and Applications (NCA),
2018, pp. 1–8.

[27] T. Crain, C. Natoli, V. Gramoli, Red belly: a secure, fair and scalable open
blockchain, in: Proceedings of the 42nd IEEE Symposium on Security and
Privacy (SP), 2021, pp. 466–483.

[28] S. Das, T. Yurek, Z. Xiang, A.K. Miller, L. Kokoris-Kogias, L. Ren, Practical asyn-
chronous distributed key generation, in: 43rd IEEE Symposium on Security
and Privacy, SP 2022, San Francisco, CA, USA, May 22-26, 2022, IEEE, 2022,
pp. 2518–2534.

[29] D. Dolev, R. Reischuk, Bounds on information exchange for Byzantine agree-
ment, J. ACM 32 (1985) 191–204.

[30] M. Drijvers, S. Gorbunov, G. Neven, H. Wee, Pixel: multi-signatures for consen-
sus, in: S. Capkun, F. Roesner (Eds.), 29th USENIX Security Symposium, USENIX
Security 2020, August 12-14, 2020, USENIX Association, 2020, pp. 2093–2110,
https://www.usenix .org /conference /usenixsecurity20 /presentation /drijvers.

[31] C. Dwork, N. Lynch, L. Stockmeyer, Consensus in the presence of partial
synchrony, J. ACM 35 (1988) 288–323.

[32] M.J. Fischer, N.A. Lynch, M. Paterson, Impossibility of distributed con-
sensus with one faulty process, J. ACM 32 (1985) 374–382, https://
doi .org /10 .1145 /3149 .214121.

[33] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, N. Zeldovich, Algorand: scaling Byzan-
tine agreements for cryptocurrencies, in: Proceedings of the 26th Symposium
on Operating Systems Principles, Shanghai, China, October 28-31, 2017, ACM,
2017, pp. 51–68.

[34] O. Goldreich, S. Micali, A. Wigderson, How to play any mental game or a
completeness theorem for protocols with honest majority, in: A.V. Aho (Ed.),
Proceedings of the 19th Annual ACM Symposium on Theory of Computing,
1987, New York, New York, USA, ACM, 1987, pp. 218–229.

[35] R. Guerraoui, P. Kuznetsov, M. Monti, M. Pavlovič, D.A. Seredinschi, The consen-
sus number of a cryptocurrency, in: Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing (PODC), 2019, pp. 307–316.

[36] A. Haeberlen, P. Kouznetsov, P. Druschel, PeerReview: practical accountabil-
ity for distributed systems, in: Proceedings of the 21st ACM Symposium on
Operating Systems Principles (SOSP), ACM, 2007, pp. 175–188.

[37] A. Haeberlen, P. Kuznetsov, The fault detection problem, in: Proceedings of the
13th International Conference on Principles of Distributed Systems (OPODIS),
Springer, 2009, pp. 99–114.

[38] J. Katz, A. Miller, E. Shi, Pseudonymous secure computation from time-lock
puzzles, IACR Cryptol. ePrint Arch., 857, http://eprint .iacr.org /2014 /857, 2014.

[39] R. Küsters, M. Tuengerthal, D. Rausch, The IITM model: a simple and ex-
pressive model for universal composability, J. Cryptol. 33 (2020) 1461–1584,
https://doi .org /10 .1007 /s00145 -020 -09352 -1.

[40] L. Lamport, R. Shostak, M. Pease, The Byzantine generals problem, in: Concur-
rency: the Works of Leslie Lamport, 2019, pp. 203–226.

[41] B. Libert, M. Joye, M. Yung, Born and raised distributively: fully distributed
non-interactive adaptively-secure threshold signatures with short shares,
Theor. Comput. Sci. 645 (2016) 1–24, https://doi .org /10 .1016 /j .tcs .2016 .02 .031.

[42] D. Malkhi, K. Nayak, L. Ren, Flexible Byzantine fault tolerance, in: L. Cavallaro,
J. Kinder, X. Wang, J. Katz (Eds.), Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS 2019, London, UK,
November 11-15, 2019, ACM, 2019, pp. 1041–1053.

[43] U.M. Maurer, Modelling a public-key infrastructure, in: E. Bertino, H. Kurth, G.
Martella, E. Montolivo (Eds.), Computer Security - ESORICS 96, 4th European
Symposium on Research in Computer Security, Rome, Italy, September 25–27,
1996, Proceedings, Springer, 1996, pp. 325–350.

http://refhub.elsevier.com/S0743-7315(23)00113-2/bib2024A17D2FA1CB5743ED4FC933C407D5s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib2024A17D2FA1CB5743ED4FC933C407D5s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib2024A17D2FA1CB5743ED4FC933C407D5s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib2024A17D2FA1CB5743ED4FC933C407D5s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibF5E955E1AABBBFB22B42DDE7EBB2F169s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibF5E955E1AABBBFB22B42DDE7EBB2F169s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibF5E955E1AABBBFB22B42DDE7EBB2F169s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibF5E955E1AABBBFB22B42DDE7EBB2F169s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib90F5F878F4A23183DBAB0EF61F38DC0Es1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib90F5F878F4A23183DBAB0EF61F38DC0Es1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib90F5F878F4A23183DBAB0EF61F38DC0Es1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib90F5F878F4A23183DBAB0EF61F38DC0Es1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib90F5F878F4A23183DBAB0EF61F38DC0Es1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibAF1C45D39BA045D9FBD75A4469072F7As1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibAF1C45D39BA045D9FBD75A4469072F7As1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibAF1C45D39BA045D9FBD75A4469072F7As1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibA405803B4F35188E9497065B6C2478A7s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibA405803B4F35188E9497065B6C2478A7s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibA405803B4F35188E9497065B6C2478A7s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibA405803B4F35188E9497065B6C2478A7s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibA405803B4F35188E9497065B6C2478A7s1
https://doi.org/10.1109/TDSC.2008.53
https://doi.org/10.1109/TDSC.2008.53
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibE3129C84772B99299312D9EBE48B6E69s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibE3129C84772B99299312D9EBE48B6E69s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibE3129C84772B99299312D9EBE48B6E69s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibE3129C84772B99299312D9EBE48B6E69s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibA6254D219CA99AC2C2101EB95577E32Es1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibA6254D219CA99AC2C2101EB95577E32Es1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibA6254D219CA99AC2C2101EB95577E32Es1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibA6254D219CA99AC2C2101EB95577E32Es1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibA6254D219CA99AC2C2101EB95577E32Es1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibA6254D219CA99AC2C2101EB95577E32Es1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibD7D6AACF8B3FF8C6C390CF0E0BBFDF3Cs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibD7D6AACF8B3FF8C6C390CF0E0BBFDF3Cs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibD7D6AACF8B3FF8C6C390CF0E0BBFDF3Cs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibD7D6AACF8B3FF8C6C390CF0E0BBFDF3Cs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibF369AB4435CA9B91D5F00BF5322E69A6s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibF369AB4435CA9B91D5F00BF5322E69A6s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibF369AB4435CA9B91D5F00BF5322E69A6s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibF369AB4435CA9B91D5F00BF5322E69A6s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibF369AB4435CA9B91D5F00BF5322E69A6s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib7092C50E9B2FE29DB56807D59DADBACEs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib7092C50E9B2FE29DB56807D59DADBACEs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib7092C50E9B2FE29DB56807D59DADBACEs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib7092C50E9B2FE29DB56807D59DADBACEs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib7092C50E9B2FE29DB56807D59DADBACEs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibFF6EDAEBE5B9DDC21C6243411F29C636s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibFF6EDAEBE5B9DDC21C6243411F29C636s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibFF6EDAEBE5B9DDC21C6243411F29C636s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibFF6EDAEBE5B9DDC21C6243411F29C636s1
https://doi.org/10.1016/0890-5401(87)90054-X
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibE21A1586D67BB4E18C86C3CE873CFFC1s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibE21A1586D67BB4E18C86C3CE873CFFC1s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib66D66324975AA4F5A5D5B5CF80A3BD15s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib66D66324975AA4F5A5D5B5CF80A3BD15s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib4C0C939CD988F5E0D6799C3B994EC465s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib4C0C939CD988F5E0D6799C3B994EC465s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib3D0BB8ACF5C1E5F6133A64FF67F0F1F5s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib3D0BB8ACF5C1E5F6133A64FF67F0F1F5s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib92FE27B3E91CF88FCA3684898B248EF2s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib92FE27B3E91CF88FCA3684898B248EF2s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib92FE27B3E91CF88FCA3684898B248EF2s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibC55050BC0292AABE330B96F85E18FCCAs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibC55050BC0292AABE330B96F85E18FCCAs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibC55050BC0292AABE330B96F85E18FCCAs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib89E723FA802F4F2E1A02D1114D8C1F7Ds1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib89E723FA802F4F2E1A02D1114D8C1F7Ds1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib89E723FA802F4F2E1A02D1114D8C1F7Ds1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibE073774B70B61B9E720961B7A619AA98s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibE073774B70B61B9E720961B7A619AA98s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibB64A6C3957AC4D9A7625DA03BB334903s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibB64A6C3957AC4D9A7625DA03BB334903s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibB64A6C3957AC4D9A7625DA03BB334903s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibB64A6C3957AC4D9A7625DA03BB334903s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibB64A6C3957AC4D9A7625DA03BB334903s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibB64A6C3957AC4D9A7625DA03BB334903s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib84F0B600C21B8988607ABEE312C0F2B3s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib84F0B600C21B8988607ABEE312C0F2B3s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib84F0B600C21B8988607ABEE312C0F2B3s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib95EC23908DF2E496800E6C2ABEA69C3Cs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib95EC23908DF2E496800E6C2ABEA69C3Cs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib95EC23908DF2E496800E6C2ABEA69C3Cs1
https://eprint.iacr.org/2022/121
https://eprint.iacr.org/2022/121
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib0F11F176F1225135FD44383FC1FFBC3Bs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib0F11F176F1225135FD44383FC1FFBC3Bs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib0F11F176F1225135FD44383FC1FFBC3Bs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib0F11F176F1225135FD44383FC1FFBC3Bs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib9A45BD8BC079E68782E7426132037ABCs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib9A45BD8BC079E68782E7426132037ABCs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib9A45BD8BC079E68782E7426132037ABCs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib953E4AA4E46C35074A97A4329CF8CD83s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib953E4AA4E46C35074A97A4329CF8CD83s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib953E4AA4E46C35074A97A4329CF8CD83s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib953E4AA4E46C35074A97A4329CF8CD83s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibE8CEAFABF5D9204A4F2C1305132B757Bs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibE8CEAFABF5D9204A4F2C1305132B757Bs1
https://www.usenix.org/conference/usenixsecurity20/presentation/drijvers
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib0E7073C6210BB459263C87E49AF89EFAs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib0E7073C6210BB459263C87E49AF89EFAs1
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib59ECF2B271E8D13A50B1F5A7B4F572B9s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib59ECF2B271E8D13A50B1F5A7B4F572B9s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib59ECF2B271E8D13A50B1F5A7B4F572B9s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib59ECF2B271E8D13A50B1F5A7B4F572B9s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib260DB2C825DD87E4349399952FAC5F30s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib260DB2C825DD87E4349399952FAC5F30s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib260DB2C825DD87E4349399952FAC5F30s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib260DB2C825DD87E4349399952FAC5F30s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib2EEAF02E4A371FA9645192F75581F6FEs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib2EEAF02E4A371FA9645192F75581F6FEs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib2EEAF02E4A371FA9645192F75581F6FEs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib58AC1E86EA54152FE671D79D5F2A46CDs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib58AC1E86EA54152FE671D79D5F2A46CDs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib58AC1E86EA54152FE671D79D5F2A46CDs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib5CAA66C9BAC782D88C7B93F744414FBEs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib5CAA66C9BAC782D88C7B93F744414FBEs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib5CAA66C9BAC782D88C7B93F744414FBEs1
http://eprint.iacr.org/2014/857
https://doi.org/10.1007/s00145-020-09352-1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib94D52EB93720136DD8D7AF6AE6DC763Es1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib94D52EB93720136DD8D7AF6AE6DC763Es1
https://doi.org/10.1016/j.tcs.2016.02.031
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib3F561D8ED7FE1885679773B60B8BEAF1s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib3F561D8ED7FE1885679773B60B8BEAF1s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib3F561D8ED7FE1885679773B60B8BEAF1s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib3F561D8ED7FE1885679773B60B8BEAF1s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib61CAC59CECDCFF0CEE00DEED6D4CF63Cs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib61CAC59CECDCFF0CEE00DEED6D4CF63Cs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib61CAC59CECDCFF0CEE00DEED6D4CF63Cs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib61CAC59CECDCFF0CEE00DEED6D4CF63Cs1

P. Civit, S. Gilbert, V. Gramoli et al. Journal of Parallel and Distributed Computing 181 (2023) 104743
[44] Z. Milosevic, M. Hutle, A. Schiper, Unifying Byzantine consensus algorithms
with weak interactive consistency, in: International Conference on Principles
of Distributed Systems (OPODIS), Springer, 2009, pp. 300–314.

[45] A. Momose, L. Ren, Multi-threshold Byzantine fault tolerance, in: Y. Kim, J. Kim,
G. Vigna, E. Shi (Eds.), CCS ’21: 2021 ACM SIGSAC Conference on Computer
and Communications Security, Virtual Event, Republic of Korea, November 15
- 19, 2021, ACM, 2021, pp. 1686–1699.

[46] O. Naor, I. Keidar, Expected linear round synchronization: the missing link for
linear byzantine SMR, in: 34th International Symposium on Distributed Com-
puting, DISC 2020, October 12-16, 2020, Virtual Conference, Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2020, 26.

[47] A.R. Pedrosa, V. Gramoli, Trap: the bait of rational players to solve Byzantine
consensus, in: Proceedings of the 17th ACM Asia Conference on Computer and
Communications Security (ASIACCS), 2022.

[48] P. Sheng, G. Wang, K. Nayak, S. Kannan, P. Viswanath, BFT protocol forensics,
in: Computer and Communication Security (CCS), 2021.

[49] V. Shoup, Practical threshold signatures, in: B. Preneel (Ed.), Advances in
Cryptology - EUROCRYPT 2000, International Conference on the Theory and
Application of Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000,
Proceeding, Springer, 2000, pp. 207–220.

[50] L.F. de Souza, P. Kuznetsov, T. Rieutord, S. Tucci Piergiovanni, Accountability and
reconfiguration: self-healing lattice agreement, in: Proceedings of the 25th In-
ternational Conference on Principles of Distributed Systems (OPODIS), 2021, 25.

[51] A. Spiegelman, In search for an optimal authenticated Byzantine agreement, in:
Proceedings of the 35th International Symposium on Distributed Computing
(DISC), 2021, 38.

[52] G.S. Veronese, M. Correia, A.N. Bessani, L.C. Lung, P. Veríssimo, Efficient
Byzantine fault-tolerance, IEEE Trans. Comput. 62 (2013) 16–30, https://
doi .org /10 .1109 /TC .2011.221.

[53] M. Yin, D. Malkhi, M.K. Reiter, G. Golan-Gueta, I. Abraham, HotStuff: BFT
consensus with linearity and responsiveness, in: Proceedings of the 2019
ACM Symposium on Principles of Distributed Computing (PODC), 2019,
pp. 347–356.

Pierre Civit received the M.S. in Aerospace Engi-
neering from the ISAE-Supaéro in 2019, and a Ph.D.
in Computer Science from the Sorbonne University,
France, in 2022. He has been visiting scholar at Geor-
gia Tech, at the University of Sydney and at EPFL. His
current research interests include distributed comput-
ing, secure multi-party computation, automata theory
and formal verification.

Seth Gilbert is a Dean’s Chair Associate Profes-
sor at the National University of Singapore. He re-
ceived his PhD from MIT, and spent several years
as a postdoc at EPFL. His work includes research on
backoff protocols, dynamic graph algorithms, wire-
less networks, robust scheduling, and the occasional
blockchain. In fact, Seth’s research focuses on algo-
rithmic issues of robustness and scalability, wherever
they may arise.

Vincent Gramoli is the Founder of Redbelly Net-
work and the head of the Concurrent Systems Re-
search Group at the University of Sydney. In the past,
Gramoli has been affiliated with INRIA, Cornell, CSIRO
and EPFL. He received a Future Fellowship from the
Australian Research Council, his PhD from Université
de Rennes and his Habilitation from Sorbonne Univer-
sity. His expertise is in distributed computing and se-
curity, his book, Blockchain Scalability and its Founda-

tions in Distributed Systems, is published by Springer and his blockchain
scalability course is followed by more than five thousand students.

Rachid Guerraoui is professor in Computer Sci-
ence at EPFL where he leads the Distributed Comput-
ing Laboratory. He worked in the past with École des
Mines de Paris, CEA Saclay, HP Labs in Palo Alto and
MIT. He has been elected ACM Fellow and Professor of
the College de France. He was awarded a Senior ERC
Grant and a Google Focused Award.

Jovan Komatovic is a PhD student in computer
science at École Polytechnique Fédérale de Lausanne
(EPFL), Switzerland. Previously, he obtained his Bache-
lor’s and Master’s degrees from University of Belgrade,
Serbia. His scientific interests lie in theoretical dis-
tributed computing with a particular focus on Byzan-
tine fault tolerance.
19

http://refhub.elsevier.com/S0743-7315(23)00113-2/bib1D0049111F4D3AC187B96AC9DFF27E83s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib1D0049111F4D3AC187B96AC9DFF27E83s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib1D0049111F4D3AC187B96AC9DFF27E83s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibEDBA51D860B130ADFF85E39C5D998AE7s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibEDBA51D860B130ADFF85E39C5D998AE7s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibEDBA51D860B130ADFF85E39C5D998AE7s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibEDBA51D860B130ADFF85E39C5D998AE7s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib7E850FCA6B6DC25D7F2280F0DFE351E9s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib7E850FCA6B6DC25D7F2280F0DFE351E9s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib7E850FCA6B6DC25D7F2280F0DFE351E9s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib7E850FCA6B6DC25D7F2280F0DFE351E9s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib047C5361BB33EA91547269B937F92021s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib047C5361BB33EA91547269B937F92021s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib047C5361BB33EA91547269B937F92021s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib6D90DA5083F5B1755FF7E30B2953D073s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib6D90DA5083F5B1755FF7E30B2953D073s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib3F22FCDB6749EE665CE4AF0F45A39BD8s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib3F22FCDB6749EE665CE4AF0F45A39BD8s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib3F22FCDB6749EE665CE4AF0F45A39BD8s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib3F22FCDB6749EE665CE4AF0F45A39BD8s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibF4E855051443B275812E582E38B75856s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibF4E855051443B275812E582E38B75856s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibF4E855051443B275812E582E38B75856s1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibA7A5F5A8036AB821B83AF005247A197Fs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibA7A5F5A8036AB821B83AF005247A197Fs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bibA7A5F5A8036AB821B83AF005247A197Fs1
https://doi.org/10.1109/TC.2011.221
https://doi.org/10.1109/TC.2011.221
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib957151D456B66BB91CD8343B0E2DEC8Fs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib957151D456B66BB91CD8343B0E2DEC8Fs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib957151D456B66BB91CD8343B0E2DEC8Fs1
http://refhub.elsevier.com/S0743-7315(23)00113-2/bib957151D456B66BB91CD8343B0E2DEC8Fs1

	As easy as ABC: Optimal (A)ccountable (B)yzantine (C)onsensus is easy!
	1 Introduction
	1.1 Contributions
	1.2 Related work

	2 Preliminaries
	3 ABC transformation
	3.1 Accountable confirmer
	3.2 ABC: Byzantine consensus + accountable confirmer = accountable Byzantine consensus
	3.3 Discussion

	4 Lower bound on accountability complexity
	5 Generalized ABC transformation
	5.1 Agreement tasks
	5.2 Easily-accountable agreement tasks
	5.3 Correctness of generalized ABC transformation

	6 Concluding remarks
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A Formal proof of Theorem 1
	Appendix B Cryptographic primitives: formal overview
	B.1 Digital signatures
	B.2 Public key infrastructure (PKI)
	B.3 Threshold signature scheme
	B.4 Threshold signature scheme in a transparent setup (via Σ-compressed protocols)
	B.5 Aggregate signatures

	References

