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Abstract—This work evaluates the benefits of using a “smart”
network interface card (SmartNIC) as a compute accelerator
for the example of the MiniMD molecular dynamics proxy
application. The accelerator is NVIDIA’s BlueField-2 card, which
includes an 8-core Arm processor along with a small amount of
DRAM and storage. We test the networking and data move-
ment performance of these cards compared to a standard Intel
server host using microbenchmarks and MiniMD. In MiniMD,
we identify two distinct classes of computation, namely core
computation and maintenance computation, which are executed
in sequence. We restructure the algorithm and code to weaken
this dependence and increase task parallelism, thereby making it
possible to increase utilization of the BlueField-2 concurrently
with the host. We evaluate our implementation on a cluster
consisting of 16 dual-socket Intel Broadwell host nodes with one
BlueField-2 per host-node. Our results show that while the overall
compute performance of BlueField-2 is limited, using them with
a modified MiniMD algorithm allows for up to 20% speedup over
the host CPU baseline with no loss in simulation accuracy.

I. INTRODUCTION

SmartNICs are network interface cards with extended com-

putational capabilities (see Section II-A and the survey by

Grant et al. [1]). There is growing agreement that the ability

to do on-NIC compute will have a critical enabling role

in cloud and datacenter architectures, especially in tackling

functions such as networking control, storage management,

and security. On-NIC compute capabilities might take the form

of special-function ASICs or FPGAs, but in this paper, we

are especially interested in the case of embedded general-

purpose multicore processors and memories. We focus on the

NVIDIA (née Mellanox) BlueField SmartNIC designs, with

experiments conducted on the BlueField-2 implementation.

Having a flexible compute unit close to both the host CPU as

well as the network infrastructure raises a number of questions

about the role they can play in other classes of applications,

such as those in high-performance computing (HPC). While

exploratory work along these lines exists, especially at the

middleware layer (Section II-A), applications-level work re-

mains nascent. Thus, in this paper we investigate the potential

of SmartNICs as a de facto compute accelerator for HPC

applications. That is, are there other possible scenarios to use

SmartNICs besides previously assumed tasks like networking

control, storage management, or security?

We consider this question using the case study of MiniMD,

a molecular dynamics (MD) simulation benchmark. MiniMD

is simple enough to study in detail while also having chal-

lenging characteristics: the simulation behavior and its com-

munication to computation ratio can vary with different input

and configuration-parameter values, including problem size,

the number of processors, and the re-neighboring frequency,

among others, making it an excellent choice to examine the

new hardware in some detail.

There are three key challenges to porting MiniMD to

BlueField profitably. First, there is a sequential dependence

between the core parts of each iteration of MiniMD, mak-

ing it difficult to concurrently offload communication- or

computation-related routines to BlueField. Second, for larger

problem sizes, MiniMD’s communication time is small com-

pared to its computation time, making it nontrivial to extract

reasonable performance by hiding communication load. Third,

our experiments with the OSU MPI microbenchmark in Sec-

tion III show that BlueField does not actually outperform con-

ventional host-to-host communication in latency or bandwidth

due to its slow CPU.

To overcome these challenges, our strategy is to change

the algorithm. The original MiniMD algorithm relies on an

expert-tuned parameter-based heuristic to periodically rebuild

and maintain certain internal data structures, which suggests

alternative heuristics are possible. We develop one that can

relax the sequential dependence of certain operations in Min-

iMD. This change exposes additional task-parallelism that a

BlueField can then exploit. This approach is an instance of

how platform characteristics can inform a redesign of the

application’s algorithm and implementation.

We evaluate our method experimentally against the MiniMD

baseline on the Thor cluster at the HPC Advisory Council

(Table I). Our contributions are:

• We conduct performance analysis to understand the op-

portunities and limitations presented by the BlueField for

potential HPC applications.

• We evaluate strategies for partitioning communication-

and compute-oriented tasks for the MiniMD applica-

tion. The potential offloading scenarios considered are

1) communication-heavy routines offloaded to the Blue-

Field, and 2) computation-heavy routines offloaded to



BlueField. The former is “natural” while the latter would

be “unexpected” due to the relatively weak performance

of BlueField cores. Nevertheless, we show, surprisingly,

that the latter can outperform the former.

• Motivated to exploit the BlueField, we restructure the al-

gorithm to decouple an infrequent periodic-update heuris-

tic from the algorithm’s main loop, exposing more task

parallelism that the BlueField can be used to help execute.

• We evaluate the efficiency of our proposed offloading

method and show that the performance can be boosted

up to 20% above the original baseline. Moreover, it

appears that this increase in performance is possible

with only a modest increase in node-level power cost

(6% to 13% increase in power as a rough estimate).

We also construct performance models to estimate the

theoretical maximum performance improvement possible

by offloading all communication routines to BlueField to

explain our results.

Taken together, these findings constitute a positive result on

the potential of SmartNIC co-processing and pave the way

for future studies that consider other computational motifs in

HPC, as we suggest in Section VI.

II. BACKGROUND

Two pieces of background are helpful for understanding

our work: 1) a discussion of the BlueField and related work,

which helps to contextualize our study (Section II-A), and 2) a

basic description of how our benchmark application, MiniMD,

works (Section II-B).

A. BlueField Data Processing Units

The class of SmartNIC platforms we are targeting imple-

ment their on-board “smarts” using general-purpose multicore

processors and NIC-private memories. This class sometimes

goes by the moniker of data processing units, or DPUs. The

specific DPU of interest in our project is the NVIDIA (née

Mellanox) BlueField, which uses an Arm multicore processor.

DPUs are distinct from other SmartNIC platforms, which

might instead rely on packet-processing ASICs or FPGAs

[2]–[7]; for an explanation of these design choices, see the

excellent survey by Grant et al., which broadly catalogs the

challenges and opportunities for SmartNICs [1]. In our project,

we are asking what implications DPUs have for the implemen-

tation of high-performance scientific computing algorithms.

By way of contrast, another natural way to use SmartNICs is

to offload specific middleware operations. A compelling exam-

ple for BlueField is BluesMPI, which implements MPI’s all-

to-all exchange for BlueField [8]. The designers of BluesMPI

identify the most promising regime for acceleration as being

medium to large messages in a nonblocking all-to-all. They

show that their drop-in all-to-all replacement can reduce the

bottleneck of large three-dimensional fast Fourier transforms.

This demonstration shows a path of least resistance to acceler-

ating real HPC applications with minimal or no changes, since

any changes are isolated within the middleware layer.

For more general applications, there are two basic ap-

proaches to using the computational cores of a DPU: an

in-pipeline or “on-path” model, in which we inject custom

computation on message data between their receipt from the

network and delivery to the host, versus an asynchronous

or “off-path” model, in which we run arbitrary computation

concurrently with both communication and any on-host com-

putation. Earlier work in INCA [9] provides an example of a

hybrid approach by implementing asynchronous off-path style

compute operations onto on-path networking hardware.

Liu et al. observe that the latency of RDMA primitives

exposed in off-path SmartNICs can take twice as long as

that of native blocking DMA in on-path SmartNICs [10].

Furthermore, by fully utilizing PCIe bandwidth, non-blocking

DMA primitives of on-path SmartNICs perform even better

than blocking ones, regardless of message size. Liu et al. also

show that the hardware traffic manager in on-path SmartNICs

provides an additional performance advantage by reducing

the synchronization cost through a shared queue abstraction

when multiple cores need to pull incoming packets from

this queue. Based on these experimental observations, they

propose an actor-based framework for offloading distributed

applications onto SmartNICs, showing that it decreases host

CPU utilization and lowers application latency for on-path

SmartNICs.

Another recent study of on-path operations on BlueField

provides a detailed characterization of the potential to overlap

computation and communication [11]. One finding is that the

BlueField’s processor is weak enough that, unlike typical x86

host cores, using all BlueField cores cannot fully saturate

available link bandwidth in a 100 Gbps network, maxing out

instead at around 60%. And even at that level, only about 70%

or so of the processor’s compute capability is available for in-

pipeline operations. But a different finding is that the BlueField

cores can be competitive or better than x86 processors of

just one or two generations earlier. In particular, vectorizable

math operations perform well, opening an avenue to consider

scientific computing applications.

One such application is the PENNANT proxy app, which

Williams et al. study on both first and second generation

BlueField DPUs [12]. Their results are pessimistic, as they

were unable to achieve any appreciable speedups. However,

they also deliberately limit their code transformations to the

kind of incremental offloading one might expect in a first-

attempt to exploit DPU processing capabilities. They leave

open the possibility of more aggressive algorithmic and soft-

ware restructuring, which might yield better results. Our study

pursues such restructuring transformations for MiniMD.

Jain et al. explore BlueField offloading for different phases

of deep learning training, i.e., data augmentation, model

validation, or both [13]. Their proposed offloading schemes

can speed up training by up to 15%. However, they did not

find one offloading scheme that could optimally speed up

training all the different models in their study. Specifically,

the performance gain is sensitive to the amount of overlap in

computation that a given offloading scheme provides between

2





• communicate(), where the updated positions of atoms

in the boundary region are sent to the corresponding

processes. This information is similar to what border()

sends out to the adjacent processes. This routine is

invoked during the iterations where neighbor list is not

being updated.

A key observation about Fig. 1 is that when a neighbor-

building iteration occurs (middle of figure), it must precede

the next round of force computations (bottom). This serializa-

tion would, at first glance, appear to preclude computation-

communication overlap.

III. MOTIVATING EXPERIMENTS

We first evaluate the BlueField-2 using the OSU Mi-

crobenchmarks suite (OSU version: 5.7.0) [17] and the “off-

the-shelf” version of MiniMD. This evaluation seeks to un-

derstand the opportunities and limitations presented by the

BlueField DPU for the unmodified baseline. These findings

then inform our approach of Section IV.

A. Experimental setup

Our experimental platform is the Thor cluster within

the HPC-AI Advisory Council Testbed, which contains

MBF2H516A-EENOT Full-Height Half-Length (FHHL)

DPUs.1 Thor is a 32-node cluster containing dual-socket

Intel Xeon 16-core Broadwell-class CPUs running at

2.60 GHz (Host) and a BlueField data processing unit. Each

DPU combines the ConnectX-6 Dx HDR100 100 Gbps

InfiniBand/VPI adapters with 8 ARMv8 A72 cores operating

at 2.5 GHz. Additional configuration details appear in Table I.

We use NVIDIA’s HPC-X Rev 2.8.1 Software Toolkit,

including OpenMPI version 4.1.2a1 to build and run the

codes on hosts and BlueField devices [18]. For many of

the motivating experiments of this section, unless otherwise

specified, we assign one MPI process to an entire node. This

configuration is in contrast to assigning each core to a different

MPI process or enabling multithreading within a node, which

we do consider in Sections III-D and V.

All performance metrics are collected using MiniMD’s

default configuration, which employs the Lennard-Jones po-

tential. In our experiments, we vary the number of atoms and

re-neighboring frequency. Each experiment is run for 1,000

iterations.

B. OSU Microbenchmarks

We ran microbenchmarks designed to assess the perfor-

mance of the elements of MPI-based applications that occur

in MiniMD:

• Point-to-point latency (osu_latency).

• Point-to-point bandwidth (osu_bw).

• Point-to-point multi-pair bandwidth and message rate

(osu_mbw_mr).

• Collective allgather latency (osu_allgather).

1See: https://www.hpcadvisorycouncil.com/cluster_center.php

For the first three tests, we compare the network perfor-

mance for three different arrangements: internode communi-

cation between hosts (Host-to-Host), internode communication

between BlueFields (BF-to-BF), and internode communication

between a host and its corresponding BlueField (Host-to-BF).

For collective and multi-pair tests, we compare the Host-to-

Host and BF-to-BF arrangements. For all tests, we report the

normalized results with respect to Host-to-Host performance.

Figure 3 shows the results from the OSU microbenchmark

latency and bandwidth tests. They indicate that the latency

between two BlueFields is higher for smaller message sizes

than the latency between two hosts, but there is a clear transi-

tion point (16 KiB) beyond which the BF-to-BF performance

improves. This transition is due to the shift from eager to

rendezvous protocol at message sizes above 16 KiB. Unlike

the rendezvous protocol, the eager protocol directly copies the

data, which significantly affects BF point-to-point performance

due to its slow CPUs. For the same reason, we observe

a similar trend for multi-pair bandwidth and message rate

tests (Section III-B) and collective allgather latency (Fig. 5).

The multi-pair bandwidth and message rate test is performed

between 8 pairs of processes with a window size of 64. The

collective allgather test is run over 16 nodes.

Contrary to our expectations, we observe degraded per-

formance with the BlueField despite being “near-network,”

especially for smaller message sizes. These observations sug-

gest that only offloading communication load to BlueField

is unlikely to improve performance, suggesting alternative

strategies like off-path co-processing.

C. Experimental Analysis of MiniMD

To gain more insight into the performance of the BlueField,

we compare the performance of parallel MiniMD on host

CPUs and BlueField Arm CPUs. Figure 6 shows the slowdown

of MiniMD on BlueField compared to the corresponding host-

only run. It shows that the observed slowdown is between 1.64

and 2.53. The magnitude of slowdown depends on the ratio of

computation to communication. In particular, we can see that

the slowdown is more pronounced for larger problem sizes

and smaller numbers of processors. In MiniMD, as the size of

the problem increases or the number of processors decreases,

the size of the spatial box allocated to each processor be-

comes much greater than the cutoff distance. Consequently,

each processor spends more time running computations on

its atoms while communicating a relatively small amount

of data with adjacent processors [19]. These trends indicate

that the increased share of computation causes a measurable

performance degradation.

Figure 6 also shows that increasing the re-neighboring

interval causes further slowdown on BlueField compared to the

host-only run. This performance degradation is because of the

added share of computation load relative to communication in

each re-neighboring iteration. This relative difference in com-

munication and computation becomes even more prominent

for larger problem sizes.
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possible, too. For instance, some of the computation that we

had assumed would be most profitable to offload onto the

BlueField in our new off-path algorithm, like sorting and

basic analysis or near-communication data structure reorga-

nization, was severely limited by the low core-performance

of the embedded Arm cores. But the aggregate efficiency of

BlueFields in standalone mode was also strong when matching

the host on peak performance (Section III-D). So, another

possible architecture could rebalance the ratio of lightweight

BlueField processing elements and more heavyweight cores,

with BlueField nodes running easily parallelized and NEON-

vectorized operations and “offloading” irregular computations

onto the heavyweight cores, similar to early suggestions about

GPGPUs.

Thinking more broadly, understanding these opportunities

and limitations fully will require additional work, to include

more case studies, performance modeling, and programming

model improvements. Performance modeling would help iden-

tify when offload is profitable or what hardware parameters

would need improvement to deliver a benefit. Programming

model are needed to improve productivity; in our case, we

had to “hack” the code in an ugly way to construct the

separate control paths for force computation and neighbor list

updates. New programming models that simplify how offload

is implemented would facilitate future experiments.
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