
The Universal Gossip Fighter
Anastasiia Gorbunova, Rachid Guerraoui, Anne-Marie Kermarrec, Anastasiia Kucherenko, Rafael Pinot

École Polytechnique Fédérale de Lausanne

Abstract—The notion of adversary is a staple of distributed
computing. An adversary typically models “hostile” assumptions
about the underlying distributed environment, e.g., a network
that can drop messages, an operating system that can delay
processes or an attacker that can hack machines. So far, the
goal of distributed computing researchers has mainly been to
develop a distributed algorithm that can face a given adversary,
the abstraction characterizing worst-case scenarios.

This paper initiates the study of the somehow opposite
approach. Given a distributed algorithm, the adversary is the
abstraction we seek to implement. More specifically, we consider
the problem of controlling the spread of messages in a large-
scale system, conveying the practical motivation of limiting the
dissemination of fake news or viruses. Essentially, we assume a
general class of gossip protocols, called all-to-all gossip protocols,
and devise a practical method to hinder the dissemination.

We present the Universal Gossip Fighter (UGF). Just like
classical adversaries in distributed computing, UGF can observe
the status of a dissemination and decide to stop some processes
or delay some messages. The originality of UGF lies in the fact
that it is universal, i.e., it applies to any all-to-all gossip protocol.
We show that any gossip protocol attacked by UGF ends up
exhibiting a quadratic message complexity (in the total number
of processes) if it achieves sublinear time of dissemination.
We also show that if a gossip protocol aims to achieve a
message complexity α times smaller than quadratic, then the time
complexity rises exponentially in relation to α. We convey the
practical relevance of our theoretical findings by implementing
UGF and conducting a set of empirical experiments that confirm
some of our results.

Index Terms—Distributed Computing, Gossip Protocols, Adap-
tive Adversaries

I. INTRODUCTION

Gossip protocols (a.k.a. epidemic or rumor-spreading pro-
tocols) represent efficient means to disseminate information
in a large-scale distributed system and have been long used
to model the spread of infectious diseases [18] or rumors in
social networks [10], [15]. Gossip protocols have also led to
significant advances in the fields of distributed databases [9],
group communication systems [24], decentralized machine
learning [25] and optimization [8], [11].

The goal of researchers studying these protocols has mainly
been to design strategies to disseminate messages as efficiently
as possible to the entire network, despite failures of processes
or communication links [5], [23]. But when information travels
fast and without any control, the network becomes vulnerable
to the quick spread of poisoned messages such as fake news
in social networks or viruses in epidemic protocols. In this
paper, we open a line of research studying the exact opposite
approach. In other words, we ask the following question:

Can we hamper the spread of gossips?

We take a first step toward addressing this challenging ques-
tion by studying a general class of all-to-all gossip protocols.
In these protocols, every process starts with a unique gossip
(piece of information) that it seeks to communicate to all other
processes in the network. Clearly, every process could send
its gossip to all the other processes in only 1 communication
round. But this amounts to sending N2 messages, which is
extremely costly in a large-scale distributed system (large in
the number N of processes). An efficient gossip protocol
has to balance the number of communication rounds (time
complexity) and the total number of messages sent by the
processes (message complexity). This kind of protocols have
been widely studied in the distributed computing literature [3],
[4], [7], [13], [14]; hence they represent a good starting point
for our study.

In this paper, we explore strategies to delay the dissem-
ination of an all-to-all gossip protocol, either by directly
extending the communication rounds or by forcing processes
to send too many messages (i.e., by overloading them to the
point where they can no longer contribute to the dissemina-
tion). Essentially, we aim at designing an adversarial strategy
that forces any time-efficient gossip protocol to send Ω

(
N2
)

messages; making it therefore inefficient in terms of message
complexity.

To better understand our approach, it is useful to relate it to
a classical one in the theory of distributed computing: seeking
lower bounds and impossibility results, as in [14]. There in
particular, the goal is to show that for any all-to-all gossip
protocol, an adversary with the power of failing (some) pro-
cesses and delaying messages, can prevent the disseminating
of gossips in a time- and communication-efficient manner.
The key impossibility result of [14] basically says that, for
an asynchronous distributed system of N processes where
F processes can fail and for any all-to-all gossip protocol,
there exists an adaptive adversary (specific to the gossip
protocol being studied) that forces the time complexity of the
dissemination to be linear in F or the message complexity to
be quadratic in F .

However, that line of research only focuses on demon-
strating the existence of worst-case scenarios in which the
spread of gossips can be inefficient. It does not present any
evidence of whether these scenarios are probable or even
realizable in practice. Therefore, establishing whether adaptive
adversaries constitute a genuine point of vulnerability with
practical consequences or if they are simply a mathematical

artifact of gossip protocols was yet to be demonstrated. More
specifically, existing works did not provide any indication
on whether there existed a universal strategy that can be
used to slow information dissemination without having prior
knowledge about the underlying gossip.

Summary of our contributions

In this paper, we close this gap by showing that adaptive
adversaries are a genuine and concrete vulnerability of all-
to-all gossip protocols. More specifically, we construct an
adaptive adversary which we call the Universal Gossip Fighter
(UGF), and which we show can effectively slow down the
propagation of messages regardless of the underlying gossip
protocol and without any prior knowledge about it. To the
best of our knowledge, this is the first work presenting such
an adversary.

To ensure the universality of UGF, i.e., the ability to harm
any gossip protocol, we had to address a major technical
challenge. The gossip protocol can be itself adaptive: namely,
processes can change their behavior during the dissemination
to avoid ending up with high message or time complexities.
Intuitively, we had to design UGF in such a way that it hides
its strategy, at least for some time. One of the key element of
our technical contribution is to implant randomization schemes
in UGF to prevent adaptation on the protocol side, ensuring
thereby the universality of UGF.

By carefully analysing how randomization impacts the
universality of UGF, we induce some important results on
the strength of our adversary. Essentially, we show that if
a gossip protocol aims to achieve a message complexity α
times less than quadratic, then its time complexity increases
exponentially with respect to α. This not only matches the
worst-case scenario studied by previous works (when α = 1),
but also provides a more general result. This highlights a
fundamental trade-off between the time efficiency and message
efficiency of gossip protocols under adverse manipulation by
UGF, quantified by α.

We empirically validate our theoretical results with a set of
experiments demonstrating the disruptive power of UGF on
existing all-to-all gossip protocols.

Outline of the paper

In Section II, we present the model setting we consider and
introduce the main concepts we use in the paper. In Section III,
we present the adaptive adversary we designed: the Universal
Gossip Fighter. Sections IV and V present our main technical
contributions showing the universality and disruptive power
of UGF both theoretically and experimentally. Finally, we
discuss prior work and present some concluding remarks in
Section VI.

II. MODEL SETTING

A. System model

We consider a set of N crash-prone processes denoted by Π.
The processes communicate within a fully-connected network:
each of them can communicate with any other one via sending

messages. Every process holds a unique gossip it aims to
propagate throughout the network. Assuming time proceeds
in discrete global steps, the execution model is as follows.

1) Local steps: The gossip protocol for each process pro-
ceeds in local steps. At the beginning of any local step, the
process verifies if any messages were received from other
processes and delivers them to its local memory. During the
rest of the local step, based on any information the process
has in memory, it decides on further messages to send. At the
end of each local step, the process can send a subset of the
gossips it holds or any additional information it gathered to an
arbitrary number of other processes. What messages are sent
and to whom, depends on the gossip protocol being applied.

2) Local step time: The length of local steps can vary
between different processes. We denote by δρ the duration
of the local steps (a.k.a., local step time) for any ρ ∈ Π, and
δ the maximal length of a local step for the whole system. δ
is calculated when all processes in the system have stopped
sending messages, i.e., δ := maxρ∈Π δρ.

3) Delivery time: After being sent by a process, a message
takes several global steps before reaching another process. This
delivery time may also depend on the process which sends the
message. We denote by dρ the delivery time of messages sent
by any ρ ∈ Π and d the maximal delivery time of the system,
i.e., d := maxρ∈Π dρ.

4) Partial synchrony: We consider a partially synchronous
system, i.e. the processes neither have access to the global
clock nor to d and δ. However, we always have d < ∞ and
δ <∞.

Remark 1. In general, the length of local steps and the
delivery times of a single process could vary in time. However,
for presentation simplicity, we proceed with a scenario where,
for each process, the local steps have a fixed length and the
delivery time do not change during the dissemination.

B. All-to-all gossip protocols

A gossip protocol is a predefined set of properties that
orchestrates the behavior of every process at each local step.
In this paper, we consider the general class of all-to-all gossip
protocols that respect the following criteria:

Definition II.1 (Rumor gathering). Every process that did
not crash during the dissemination (a.k.a. a correct process)
should receive the gossip of all the other correct processes.

Definition II.2 (Quiescence). For every process, there exists
a point in time when it either crashes, or it completes in the
sense that it stops sending messages forever.

More formally, let us consider an arbitrary gossip protocol
P . At any global step t, we denote by Pt the state of the
system at t, when running the protocol P . This characterizes
the information held by every process, the state of their local
computations, as well as the messages they send at global
step t and their destination. Then, an outcome of a gossip
protocol P can be characterized by a sequence (Pt)t∈[Tend],
where Tend < ∞ and PTend is such that all correct processes

completed and received all correct gossips. In the remaining,
we denote by O(P) the set of all outcomes for P . Finally,
note that our analysis also covers gossip protocols that can
be random and adaptive. To formalize this, we use the notion
of execution. The execution of a gossip protocol P , denoted
by EXE, is a random variable with values in O(P), where
the randomness might come from the protocol itself or any
random process that could influence the dissemination (e.g.,
an adversary). This random variable assigns probabilities to
each of the outcomes of the gossip protocol.

C. Communication complexities: message and time

Let P be a gossip protocol, EXE the random variable
characterizing the execution of P , and O ∈ O(P) an outcome
for P . We define the notions of message and time complexity
below (commonly denoted as communication complexities).

Definition II.3 (Message complexity).
1) Let ρ ∈ Π, the message complexity of O for process ρ,

denoted Mρ(O), is the total amount of messages sent by
ρ during O, without taking into account their size (i.e., a
message can include several gossips at once).

2) The overall message complexity of the outcome O, de-
noted M(O) is the sum of the message complexities for
every ρ ∈ Π, i.e., M(O) :=

∑
ρ∈ΠMρ(O).

3) Finally, we define the average message complexity of EXE
as the expectation of the message complexity over the set
of its possible outcomes, i.e., E [M(EXE)].

The idea behind time complexity is to measure the minimum
number of communication rounds that the outcome takes
before all correct processes complete. To compute it, we take
the number of global time steps that have passed during O and
normalize it by the maximum number of global steps that a
message can take to pass from one process to another. More
formally, we define time complexity as follows.

Definition II.4 (Time complexity). Let us denote by Tend(O)
the first global step at which all correct processes completed
during the outcome O.

1) We define time complexity of O as T (O) := Tend(O)
δ+d , where

d and δ respectively are the maximum delivery and local
step times of the system during O.

2) Similarly to message complexity, the average time com-
plexity of EXE is defined as E [T (EXE)].

D. Adaptive adversary

To reason about the communication complexities of a gossip
protocol in a crash-prone setting, the classical approach is to
consider the notion of adversary: this is an abstract notion that
models situations that can slow the diffusion of the message
by delaying communications or crashing processes. In this
work, we are particularly interested in the notion of adaptive
adversary, defined below.

Definition II.5 (Adaptive adversary). An adaptive adversary
can delay messages by modifying dρ and δρ for any ρ ∈ Π
and can crash up to F < N processes in an online fashion.

This means that at each global step t, the adversary has
access to the system state Pt and can decide accordingly which
processes to crash and which messages to delay.

In the distributed computing literature, the notion of adap-
tive adversary has been used to study the intrinsic efficiency
of gossip protocols in crash-prone asynchronous systems (see
e.g., [12], [14]). In this work, we take a new approach to this
notion by studying the universality of an adaptive adversary,
i.e., its ability to harm the effectiveness of any all-to-all gossip
protocol. To this end, we introduce a new adversary (the
Universal Gossip Fighter) and show that it can effectively slow
down the dissemination of gossips regardless of the protocol
it attacks.

III. THE UNIVERSAL GOSSIP FIGHTER

In this section, we design an adaptive adversary called
the Universal Gossip Fighter (UGF). UGF is a centralized
algorithm that can monitor the dissemination of the gossips in
an on-line fashion by observing the state of the system at every
step t. Using this information, UGF can modify the delivery
or local step times of processes and crash up to F ≤ N of
them. Before diving into the design of UGF let us first present
some intuitions of what would be a desirable outcome for such
an adversary.

A. Objective of the adversary

Essentially, the objective of our adversary is to render a
gossip protocol inefficient. The rationale of what we mean by
inefficiency in this paper, is illustrated in an example below.

Example 1. Consider the gossip protocol P where every
process sorts the other processes and sends its gossip to
one process per step during N − 1 steps (following the
order it created). For any outcome O of this protocol (which
is deterministic), we can show that M(O) = Θ

(
N2
)

and
T (O) = Θ (N).

Note that, in the absence of an adversary, there exists a
deterministic gossip protocol working with O(log3N) time
complexity and sending O(N log4N) messages [7]. Hence,
the above protocol is arguably inefficient both in terms of
message and time complexity. Note also that there is no point
in aiming for more than quadratic message complexity, as it
can always be achieved by broadcasting gossips to everyone
at the first communication round, as explained in Section I.
Therefore, we hereafter consider quadratic message and linear
time complexities as a basis for inefficiency of a dissemination.
Specifically, we seek to design an adaptive adversary capable
of forcing any all-to-all gossip protocol to have either linear
time or quadratic message complexity.

B. Intuitions and algorithm design

The main challenge when designing UGF is to guarantee
the universality of the algorithm, i.e., its applicability to any
all-to-all gossip protocol. Since these protocols can be adap-
tive, they may change their behavior during the dissemination
to avoid ending up with too high message or time complexities.

Fig. 1: Illustration of UGF’s strategies.

To ensure the universality of our adversary even in this
context, we decompose it into several adversarial strategies
that we implement within a randomized scheme, illustrated in
Figure 2. This scheme not only prevents adaptation, but also
ensures success on average, as each implemented strategy is
only useful against a specific type of gossip protocols.

Fig. 2: Randomization scheme for UGF.

In short, UGF first divides Π into two disjoint sets: C and
Π\C, where C has cardinality Θ(F). This step is necessary
to separate processes over which UGF aims to have active
control (C) from those it will not actively disrupt (Π\C). Then
it implements three kind of strategies succinctly described
below and illustrated in Figure 1.
(a) Fig. 1 left: When processes in Π\C communicate slowly

(do not send a lot of messages per communication round).
It is then sufficient to crash the processes in C (Strategy
1) to obtain a high time complexity.

(b) Fig. 1 middle: When processes in C communicate slowly.
The adversary can then isolate a process in C by crashing
all the processes it tries to communicate with (Strategy
2.k.0 with k ≥ 1). If the algorithm succeeds in isolating
this process long enough, it forces a high time complexity.

(c) Fig. 1 right: When processes in C communicate quickly.
In this context, the adversary cannot simply crash mes-
sage receivers from C because it would quickly consume
its crash budget F . Instead, it can delay messages from
C in order to force the processes to send a large amount
of messages, thus achieving high message complexity
(Strategies 2.k.l, with k, l ≥ 1).

Algorithm 1: The Universal Gossip Fighter (UGF)
Require: Π {Set of processes}; F {Maximal number

of crashes}; q1, q2 {Probability parameters in
(0, 1)}; τ {Delay parameter in N∗}.

Correct ← Π; Crashcount ← 0;
C← a random sample of F/2 processes from Π;
for ρ ∈ Π do

dρ ← 1; δρ ← 1;

With prob. q1 do // Str. 1

for ρ ∈ C do
Crash(ρ);

Otherwise with prob. 1− q1 do
Sample k at random from N∗ with prob. 6

k2·π2 ;
for ρ ∈ C do // Choose k to apply Str. 2.k

δρ ← τk;

With prob. q2 do // Str. 2.k.0

Sample ρ̂ at random from C;
for ρ ∈ C \ρ̂ do

Crash(ρ);
Crashcount ← Crashcount + 1;

Correct ← (Π\C) ∪ ρ̂ ;
while (Crashcount < F) do

if (ρ̂ sends a message to ρ at global step t)
and (ρ ∈ Correct) then

Crash(ρ);
Crashcount ← Crashcount + 1;
Correct ← Correct\ ρ;

Otherwise with prob. 1− q2 do // Str.2.k.l,l>0

Sample l at random from N∗ with prob. 6
l2·π2 ;

for ρ ∈ C do
dρ ← τk · τ l;

The parameters q1, q2 define the probabilities of applying
strategies of type 1 (w.p. q1), 2.k.0 (w.p. (1 − q1)q2) or
2.k.l, l > 0 (w.p. (1 − q1)(1 − q2)). Note that, we show in
Section IV that UGF ensures disruption of the dissemination
with any choice of q1, q2. However, one may tune these
parameters to change the probability of applying some specific

strategies, e.g. if there is prior knowledge about the gossip
protocol to attack. Without prior knowledge, the safe choice is
to make all these strategies equiprobable, by taking q1 = 1/3
and q2 = 1/2, as we do in our experimental section.

The precise instantiating of these different strategies, as
well as the randomization scheme used by UGF are formally
described in Algorithm 1.

Remark 2. The probabilities { π
2

6k2 , k > 0} are used to
guarantee indistinguishability (see the next section for more
details) between the strategies {2.k.l, k ≥ 0, l ≥ 0}. In
fact, any other infinite sequence summing to 1 would provide
similar results.

IV. ANALYSIS

In this section, we present our main technical contributions.
We first introduce, in Section IV-A, a formal framework to
analyze how randomization can help hiding the changes that
UGF operates on the system. Then, we present in Section IV-B
our main result on the disruptive power of our adversary on
any all-to-all gossip protocol. Note that UGF depend on two
probability parameters (q1, q2) and a delay parameter τ . Here-
after, we refer to UGF without specifying these parameters
when providing intuitions about the method and only discuss
them explicitly when necessary.

A. Randomization prevents adaptation

As we previously mentioned in Section III-B, one of the
main building block of our algorithm is the use of random-
ization to prevent the gossip protocol from adapting; hence
guaranteeing the universality of the procedure. To formalize
this idea, we introduce below the notion of indistinguishability.

Definition IV.1 (Indistinguishability). Let us consider ρ ∈ Π,
P an all-to-all gossip protocol and EXE the execution of P
under attack by UGF.

1) Two events E and E′ are said to be indistinguishable to
ρ during a global time frame [t1, t2] if the actions of ρ
during this time frame are equally likely to be conditioned
on E or E′.

2) If two events are indistinguishable to every ρ in a group
during the same period of time, then we say that these
events are indistinguishable to this group.

The notion of indistinguishability is particularly useful,
especially to characterize the behavior of some processes when
they do not receive any messages from the rest of the system.
In this context, they can stop sending messages even if the
system has not completed yet. To formalize this notion, we
introduce below the concept of falling asleep.

Definition IV.2 (Falling asleep). A process falls asleep if
it stops sending messages until it delivers a message from
another process. If a sleeping process delivers a new message,
it can wake up and start gossiping again. Otherwise, the
moment it falls asleep is also the moment it completes.

We now present some technical lemmas demonstrating the
indistinguishability of several strategies applied by UGF.

These lemmas will essentially be used in the proof of our
main result to establish that in some specific time frames, the
gossip protocol will not be able to modify its dissemination
to counter UGF.

Lemma 1. Let P be an all-to-all gossip protocol, EXE the
execution of P under attack by UGF with delay parameter
τ > 1 and ρ a process in Π\C. Then, for any integers k ≥ 1
and l ≥ 0, the events E =“UGF applies Strategy 1” and
E′=“UGF applies Strategy 2.k.l” are indistinguishable to ρ
during the global time frame [1, τk].

Proof. First, regardless of whether we condition on E or E′,
no message from C can be delivered to ρ before the global
time step τk. In fact, C is either crashed (when conditioning to
E) or no message from C can be delivered before the global
step τk, i.e., before the end of the first local step for C (when
conditioning on E′).

Second, for both E and E′, the local step and delivery times
are equal to 1 for Π\C during [1, τk] and no communication
there is affected. Accordingly, E and E′ have identical impact
on Π\C and in particular on ρ during the global time frame
[1, τk]. Hence ρ’s actions during [1, τk] are equally likely to
be conditioned on E or E′.

Lemma 2. Let P be an all-to-all gossip protocol, EXE the
execution of P under attack by UGF with delay parameter
τ > 1 and ρ a process in Π\C. Then for any integers
k1 ≥ k2 ≥ 1 and i1, i2 ≥ 0, the events E =“UGF applies
Strategy 2.k1.i1” and E′=“UGF applies Strategy 2.k2.i2” are
indistinguishable to ρ during the global time frame [1, τk2].

Proof. Let us consider the event E∗ =“UGF applies Strategy
1”. From Lemma 1 we know that ρ’s actions during [1, τk1]
are equally likely to be conditioned on E or E∗. Still using
Lemma 1 we get the same conclusion for E′ or E∗ during
[1, τk2]. Finally, since [1, τk2] ⊂ [1, τk1] we obtain that E and
E′ are indistinguishable to ρ during [1, τk2].

Lemma 3. Let P be an all-to-all gossip protocol, EXE the
execution of P under attack by UGF with delay parameter
τ > 1 and ρ a process in C. For any integers k ≥ 1 and
l ≥ 1, let us define E =“UGF applies Strategy 2.k.0 on ρ”,
E′=“UGF applies Strategy 2.k.l” and E′′=“Π\C falls asleep
before global step τk”. Then E∩E′′ and E′∩E′′ are indistin-
guishable to ρ during global time frame [1,min{tF/2, τk+l}],
where tF/2 is the the first global step at which ρ sent in total
more than F

2 messages.

Proof. When conditioning to E ∩ E′′, no message from C
can be delivered before tF/2. Indeed, ρ is the only non-crashed
process from C and the receivers of its F/2 first messages are
crashed by UGF. Similarly, when conditioning to E′ ∩E′′ no
message from C can be delivered before τk ·τ l by construction
of Strategy 2.k.l. Therefore, both when conditioning to E∩E′′
and E′∩E′′, no process in Π delivers messages from C during
the global time frame [1,min{tF/2, τk · τ l}].

Now note that, thanks to Lemma 2, we know that messages
coming to ρ from Π\C are equally likely to be sent when

conditioning on E or E′ during the global time frame [1, τk].
Furthermore, in both E ∩ E′′ and E′ ∩ E′′, after global step
τk, processes in Π\C are asleep and do not wake up since no
message from C is delivered before [1,min{tF/2, τ l · τk}].

Accordingly, messages send by ρ during the global time
frame [1,min{tF/2, τ l · τk}] are equally likely to be delivered
when conditioning on E∩E′′ or E′∩E′′. Hence E∩E′′ and
E′∩E′′ are indistinguishable to ρ during this time frame.

To conclude this section, we compute the probability of
UGF applying a strategy of type 2.k or 2.k.l below. To do
so, and for the rest of the paper, we denote by Oi the set of
outcomes of P where UGF applies Strategy i.

Lemma 4. Let P be an all-to-all gossip protocol and EXE
the execution of P under attack by UGF with probability
parameters q1, q2 ∈ (0, 1) and delay parameter τ > 1. Then
for any integer j ≥ 0 and t > 1 with probability at least

(1−q1)·6
π2·dlogτ te

, UGF applies a strategy 2.k with τk ≥ t.

Proof. By construction of UGF, the probability that UGF
applies a strategy 2.k with τk ≥ t is∑

k≥1

P
[

O ∈ O2.k ∩ τk ≥ t
]

=
∑

k≥dlogτ te

(1− q1) · 6
π2 · k2

(1)

=
(1− q1) · 6

π2
·

∑
k≥dlogτ te

1

k2
. (2)

Furthermore, as k + 1 ≥ k we get∑
k≥1

P
[

O ∈ O2.k ∩ τk ≥ t
]

≥ (1− q1) · 6
π2

·

 ∑
k≥dlogτ te

1

k
· 1

k + 1

 (3)

=
(1− q1) · 6

π2
·

 ∑
k≥dlogτ te

(
1

k
− 1

k + 1

) . (4)

By developing the above telescopic sum, we obtain∑
k≥1

P[O ∈ O2.k ∩ τk ≥ t] ≥
(1− q1) · 6
π2 · dlogτ te

. (5)

Lemma 5. Let P be an all-to-all gossip protocol and EXE
the execution of P under attack by UGF with probability
parameters q1, q2 ∈ (0, 1) and delay parameter τ > 1. Then,
for any integers k ≥ 1 and t > 1, if we know that UGF
applies a strategy 2.k, then with probability at least (1−q2)·6

π2·dlogτ te
,

it applies a strategy 2.k.l with τ l ≥ t.

Proof. Similarly to the proof of Lemma 4 we can write this
probability as∑
l≥1

P
[

O ∈ O2.k.l ∩ τ l ≥ t| O ∈ O2.k

]
=

∑
l≥dlogτ te

(1− q2) · 6
π2 · l2

And by decomposing as in (2) to (5) we get∑
l≥1

P
[

O ∈ O2.k.l ∩ τ l ≥ t| O ∈ O2.k

]
≥ (1− q2) · 6
π2 · dlogτ te

.

B. The universal disruptive power of UGF

We now demonstrate our main result below. In a nutshell,
we show that, for any α and for any all-to-all gossip protocol,
UGF forces the average time complexity of the execution to
be in Ω (αF) or the average message complexity to be in
Ω
(
N + F 2

/log2
τ (αF)

)
. When F = Θ (N), τ = F , and α = 1

it means that no time-efficient protocol (sublinear in N) can
have message complexity less than quadratic in N .

Theorem 1. Let P be an all-to-all gossip protocol, and EXE
the execution of P under attack by UGF with probability
parameters q1, q2 ∈ (0, 1) and delay parameter τ > 1. Then
for any integer α ≥ 1, UGF can force either

E [T (EXE)] = Ω (αF) or E [M(EXE)] = Ω
(
N + F 2

/log2
τ (αF)

)
.

Proof. In the following, we develop a case-based
reasoning that both depends on the strategy being
applied and on the local behavior of the processes. In
all cases, we either show that E [T (EXE)] = Ω (αF) or
E [M(EXE)] = Ω

(
N + F 2

/log2
τ (αF)

)
.

Part 1. For any outcome O, we denote by t∗O the first global
step at which all processes in Π\C fall asleep for the first
time. t∗O exists for every O, because otherwise the quiescence
property is violated. We also denote by

R1 := P [T (O) = Ω(αF)] ,

the probability that an outcome has time complexity in
Ω (αF). In this first part, we consider the following case.

Case (i). P [t∗O ≥ αF | O ∈ O1] ≥ 1/2.

Observation 1. Note that for any O ∈ O1, the set C is crashed
from the beginning; hence t∗O = Tend(O) is also the first global
step at which all processes completed. Furthermore, when
O ∈ O1, we have d = δ = 1; hence T (O) = t∗O/2.

Using Observation 1 and the Bayes rule we get:

R1 ≥P [T (O) = Ω(αF) ∩ O ∈ O1]

≥P [t∗O = Ω(αF) ∩ O ∈ O1]

≥P [t∗O ≥ αF | O ∈ O1] · P [O ∈ O1] .

Finally, by construction of UGF, we have P [O ∈ O1] = q1,
hence using the definition of Case (i) we get R1 ≥ 1/2 · q1.

Conclusion of part 1. In the Case (i), the average time
complexity of EXE is greater than 1/2 · q1 · αF which is in
Ω(αF) because q1 is a fixed constant.

Part 2. We now consider the case where (i) does not hold
true, i.e., we consider the following:

Case (ii). P [t∗O < αF | O ∈ O1] ≥ 1/2.

When considering Case (ii), we focus on the outcomes
where Π\C fall asleep before the end of the first local step
of C. This enable us to conclude that, during a given time-
frame, no messages from Π\C arrives to C; hence simplifying
the analysis. To do so, for any integers l ≥ 0 and k ≥ 1 we
define the event

Ek.l = {t∗O < τk ∩ O ∈ O2.k.l ∩ τk ≥ αF}.

We can compute the probability of such an event for any l ≥ 0
and k ≥ 1 as follows:

P [Ek.l] = P
[
t∗O < τk| O ∈ O2.k.l ∩ τk ≥ αF

]
·

· P [O ∈ O2.k.l | O ∈ O2.k] · P
[

O ∈ O2.k ∩ τk ≥ αF
]

(6)

≥ P
[
t∗O < αF | O ∈ O2.k.l ∩τk ≥ αF

]
· P [O ∈ O2.k.l | O ∈ O2.k] · P

[
O ∈ O2.k ∩ τk ≥ αF

]
Finally, by using Lemma 1 we get

P [Ek.l] ≥ P [t∗O < αF | O ∈ O1]

· P [O ∈ O2.k.l | O ∈ O2.k] · P
[

O ∈ O2.k ∩ τk ≥ αF
]
.

Furthermore, note that by construction of UGF, the prob-
ability P [O ∈ O2.k.l | O ∈ O2.k] does not depend on k. Then
using the definition of Case (ii) and Lemma 4 we can lower
bound the sum of these events, as follows∑
k≥1

P [Ek.l] ≥
(1− q1) · 3

π2 · dlogτ αF e
· P [O ∈ O2.k.l | O ∈ O2.k] . (7)

Now, for any ρ ∈ C, k ≥ 1 and O ∈ O2.k, we denote by
tF/2(ρ, O) the first global step at which ρ sent more than F/2
messages during O.

Observation 2. Note that for any ρ ∈ C, k ≥ 1 and
O ∈ O2.k.0, if tF/2(ρ, O) is bigger than αF dlogτ (αF)e · τk,
then no process will receive the gossip of ρ before the global
step αF · dlogτ (αF)e · τk. Hence we have Tend(O) ≥ αF ·
dlogτ (αF)e · τk. Furthermore, when O ∈ O2.k.0, we have
δ = τk and d = 1; hence we get T (O) = Tend(O)/(τk+1) ∈
Ω (αF · dlogτ (αF)e).

To quantify the probability of tF/2 being as described in
Observation 2, we introduce the following probability:

Rρ,k := P
[
tF/2(ρ, O) ≥ αF · dlogτ αF e · τk|Ek.0 ∩ ρ̂ = ρ

]
.

We also denote by G be the group of processes that spread
their messages slowly under attack by a strategy 2.k.0, i.e,

G :=

ρ s.t.
∑
k≥1

Rρ,k · P [Ek.0] ≥ 1/2 ·
∑
k≥1

P [Ek.0]

 .

Part 2.a. We first study the sub-case where G represents
more than one half of C.

Sub-case (ii.a). |G| ≥ |C|/2.

This means that for any integer k ≥ 1 the probability of
sampling ρ from G when applying Strategy 2.k.0 is at least
1/2. Let us now compute a lower bound on the probability

R2 := P [T (O) = Ω(αF · dlogτ (αF)e)] .

Thanks to Observation 2 we can lower bound R2 by∑
k≥1

P
[
tF/2(ρ̂, O) ≥ αF · dlogτ (αF)e · τk ∩ Ek.0 ∩ ρ̂ ∈ G

]
.

Using the Bayes rule, we also get

R2 ≥
∑
k≥1

(
P[tF/2(ρ̂, O) ≥ αF · dlogτ (αF)e · τk|Ek.0 ∩ ρ̂ ∈ G]

· P[Ek.0] · P[ρ̂ ∈ G]
)

≥
∑
k≥1

Rρ,k · P[Ek.0] · P[ρ̂ ∈ G] ≥ 1

4

∑
k≥1

P[Ek.0].

Finally, by instantiating (7) with l = 0 we get

R2 ≥
3/4 · (1− q1) · q2

π2 · dlogτ αF e
.

Conclusion of part 2.a. In the conjunction of Cases (ii)
and (ii.a) the average time complexity of EXE is greater than
3/4·(1−q1)·q2
π2·dlogτ αFe

· αF · dlogτ (αF)e which is in Ω (αF) because
q1 and q2 are fixed constants.

Part 2.b. We now study the sub-case where G represents
less than one half of C.

Sub-case (ii.b). |G| < |C|/2.

Then for any ρ in C \G we have∑
k≥1

(
P
[
tF/2(ρ, O) < αF · dlogτ (α · F)e · τk|Ek.0 ∩ ρ̂ = ρ

]
· P[Ek.0]

)
=
∑
k≥1

(1− Rρ,k) · P[Ek.0] ≥ 1

2
·
∑
k≥1

P[Ek.0]. (8)

Using Lemma 3 and the fact that for any integers k ≥ 1
and l ≥ 0 the event “Π\C fall asleep before global step τk”
is included in Ek.l, we conclude that for any ρ the events
Ek.0 and Ek.l are indistinguishable during the time frame
[1,min{tF/2(ρ, O), τk+l}]. Therefore

P
[
tF/2(ρ, O) < τk+l | Ek.l ∩ τ l ≥ αF · dlogτ (αF)e

]
≥P[tF/2(ρ, O) < αF · dlogτ (α · F)e · τk|

Ek.l ∩ τ l ≥ αF · dlogτ (αF)e]
≥P

[
tF/2(ρ, O) < αF · dlogτ (α · F)e · τk|Ek.0 ∩ ρ̂ = ρ

]
.
(9)

Furthermore, thanks to (6) and by construction of UGF, we
know that for any integer l ≥ 1, the ratio P[Ek.l]/P[Ek.0] =
P[O∈O2.k.l | O∈O2.k]/P[O∈O2.k.0 | O∈O2.k] does not depend on k.

Hence, combining (8) and (9) we get the following for any
ρ in C \G:∑
k≥1

(
P
[
tF/2(ρ, O) < τk+l | Ek.l ∩ τ l > αF · dlogτ (αF)e

]
· P[Ek.l]

)
≥ 1

2

∑
k≥1

P[Ek.l]. (10)

Thanks to (10) we can now compute a lower bound on
the average message complexity of EXE under Cases (ii) and
(ii.b). We first note that, by definition of message complexity
we have

E [M(EXE)] =
∑
ρ∈Π

E [Mρ(EXE)] ≥
∑

ρ∈C \G

E [Mρ(EXE)] .

Furthermore, we also have

E [M(EXE)] ≥
∑

ρ∈C \G
k,l≥1

F

2
· P [Mρ(O) ≥ F/2 ∩ O ∈ O2.k.l] .

By definition of tF/2, if tF/2(ρ, O) ≤ ∞, then Mρ(O) ≥ F/2.
Furthermore, note that the event O ∈ O2.k.l is included in Ek.l.
Hence E [M(EXE)] is lower bounded by the following

F

2
·
∑

ρ∈C \G
k,l≥1

P
[
tF/2(ρ, O) < τk+l ∩ Ek.l ∩ τ l ≥ αF · dlogτ (αF)e

]
Using Bayes rule and decomposing the sum gives the follow-
ing lower bound for E [M(EXE)]:

F

2
·
∑

ρ∈C \G
l≥1

(
P
[
τ l > αF · dlogτ (αF)e

]
·
∑
k≥1

(
P[Ek.l]

· P
[
tF/2(ρ, O) < τk+l | Ek.l ∩ τ l > αF · dlogτ (αF)e

]))
Using (10) and the fact that | C\G |> |C|

2 > F
4 , we get

≥ F 2

8
·
∑
l≥1

P
[
τ l > αF · dlogτ (αF)

]
· 1

2

∑
k≥1

P[Ek.l]


Finally, using (7) and Lemma 5 we get

E [M(EXE)]

≥ F 2

8
· (1− q1) · 3
π2 · dlogτ αF e

· (1− q2) · 6
π2 · dlogτ (αF · dlogτ (αF)e)e

≥ F 2

8
· 9 · (1− q1) · (1− q2)

π4dlogτ (αF)e2
.

Conclusion of part 2.b In the conjunction of Cases (ii)
and (ii.b), the average message complexity of EXE is in
Ω
(
F 2
/log2

τ (αF)
)

because q1 and q2 are fixed constants. Note
also that at least N messages need to be send in order to
achieve rumor gathering. Therefore, the average message
complexity of EXE is also in Ω(N). Combining this two
lower bounds we get E [M(EXE)] = Ω

(
N + F 2

/log2
τ (αF)

)
.

Conclusion of the proof To conclude, as EXE always has
to satisfy either Cases (i), (ii)∩(ii.a) or (ii)∩(ii.b), UGF can
always force either E [T (EXE)] = Ω (αF) or E [M(EXE)] =
Ω
(
N + F 2

/log2
τ (αF)

)
.

Theorem 1 not only demonstrates the disruptive power
of UGF, but also provides a more general intuition on the
impact of our algorithm. Indeed, it presents an interesting
interplay between time- and message-efficiency of all-to-all
gossip protocols under adversarial manipulation by UGF.
Essentially, if the protocol aims for message complexity α
times lower than quadratic, then its time complexity rises
exponentially in α.

V. EXPERIMENTAL RESULTS

We report here on our empirical evaluation of UGF and
experimentally convey the theoretical results presented in Sec-
tion IV-B. For reproducibility purposes, our implementation is
accessible online1

A. Experimental setup

To test whether our theoretical results are applicable in
practice, we evaluate the impact of UGF on the time and
message complexities of several gossip protocols in various
system configurations.

1) System configurations: In order to show that UGF is
able to enforce large communication complexities even when
the network is small, we vary the total number of processes
N in {10, 20, 30, 50, 70, 100, 200, 300, 400, 500}. We also
vary F in {0.1N, 0.2N, 0.3N, 0.4N, 0.5N} (smaller F seems
irrelevant as we start at N = 10). As expected, the higher
F , the stronger the adversary, i.e., the higher communication
complexities. However, the main takeaway of the experiments
is consistent across all the values of F ; hence below we only
present results for F = 0.3N .

2) Gossip protocols: For all system configurations, we
consider three type of all-to-all gossip protocols described
below, namely Push-Pull, EARS and SEARS. To the best of our
knowledge, these protocols are the only currently existing all-
to-all gossip protocols functioning in partial synchrony even
with process crashes and communication delays.
(a) Push-Pull This protocol, inspired by [19], proceeds

as follows. At each local step, each process randomly
chooses another one in the set of processes for which it
does not yet know the gossip and sends it a pull request.
Upon receiving a pull request, a process sends all the
gossips it knows to the process that made the request. In
addition, each process chooses at random another process
to whom it did not send its gossip yet and sends (pushes)
all the gossips it knows to this process. Finally, a process
ρ falls asleep if it either made a pull request to or already
knows the gossip of every other process.

1https://gitlab.epfl.ch/kucheren/the-universal-
gossip-fighter/-/tree/main

(a) (b)

(c) (d) (e)

Fig. 3: Communication complexities of Push-Pull, EARS and SEARS (1) with no adversarial influence, (2) under attack by
UGF, and (3) under attack by the strategy that have the most impact for each particular protocol (max UGF). For time
complexity, Str. 1 is maximal for Push-Pull (see 3a) and Str. 2.1.0 for EARS (see 3b). For message complexity, Str. 2.1.1 has
the most impact for all three protocols (see 3c, 3d, and 3e). The reported results represent a median over 50 runs. The dotted
lines defining the shaded area around each curve represent the first and third quartiles observed during the runs.

(b) Epidemic Asynchronous Rumor Spreading (EARS).
This protocol, first presented in [14], operates as follows.
Each process ρ stores both a set of known gossips G(ρ)
and a set I(ρ) = {(ρ′, g) : Process ρ′ knows gossip g}.
At each step, each process sends a message containing
both these sets to another process chosen at random. In
turn, the receiver updates its sets G and I . A process
ρ completes after not receiving any new message during
N

N−F logN local steps and if there is no pair (ρ′, g) such
that g ∈ G(ρ) and (ρ′, g) /∈ I(ρ) (i.e., for every gossip
ρ knows, it should also know that all other processes
received it).

(c) Spamming EARS (SEARS). This is an adaptation of
EARS also from [14]. Its objective is to ensure constant
time complexity of the gossip dissemination. Similarly
to EARS, each process in SEARS shares and updates
sets G(ρ) and I(ρ). But processes do not only send
one message per step. Instead, they share their sets to
c · nε log n processes chosen at random. We set c to 1
and ε to 0.5 in our experiments.2

3) Implementation of UGF: We implemented UGF by
applying Strategy 1, Strategy 2.k.0 (aiming for high time
complexity) and Strategy 2.k.l (aiming for high message
complexity), each of them with probability 1/3 (i.e. q1 = 1/3

2SEARS works for any value of ε ∈ [0, 1] and c ∈ N as explained in [14]

and q2 = 1/2). For the sake of simplicity we set k and l to 1
and τ = F .

4) Baseline: In order to measure the harm caused by UGF,
we evaluate the time and message complexity when there is
no adversary, i.e. when local step and delivery times are equal
to 1 and no processes are crashed.

B. Results

Our experimental results are presented in Figure 3. It
compares the average time and message complexity of the
Push-Pull, EARS, and SEARS gossip protocols without attack
(no adversary) and under attack by UGF. Besides, we also
present the strategy that causes the most damage in terms of
time or message complexity (max UGF). This illustrates which
strategy is the most efficient one for each protocol.

1) Main takeaway: From Figure 3, we clearly observe that,
in all protocols, UGF forces either linear time complexity, or
quadratic message complexity, thus dramatically hampering
the success of the dissemination. Moreover, while we have
shown in Section IV that either time complexity or message
complexity should be high, in practice UGF has a significant
impact on both communication complexities simultaneously.

2) Comparison to the baseline: Our experimental results
confirm that the impact of UGF on the communication
complexities is extremely important when compared to the
baseline (no-adversary). While the time complexity of the

baseline is logarithmic in the Push-Pull and EARS protocols
(see Figures 3a and 3b), it becomes linear under attack by
UGF. We observe similar results for the message complexity,
as UGF makes it quadratic in all protocols; hence matching
our theoretical findings.

3) Interesting remark on SEARS: By construction, SEARS
aims to achieve constant time complexity. Therefore, an
adversary can only influence the message complexity of
SEARS. For this reason, we only report this complexity
in our experiments for SEARS. Moreover, we observe that
even without attack, SEARS’ message complexity is already
quadratic in N , thus reaching the trivial logical limit on the
message complexity of an all-to-all gossip protocol. In this
sense, SEARS always sacrifices message complexity for time
efficiency; hence automatically placing itself at one end of the
interplay between time and message complexity under attack.

VI. CONCLUDING REMARKS AND RELATED WORKS

This paper initiates a new line of research in distributed
computing consisting of studying the power and universality
of adaptive adversaries. We introduce a new adversary called
the Universal Gossip Fighter (UGF) and prove that UGF can
force any all-to-all gossip protocol to have either a linear time
or a quadratic message complexity on average.

The notion of adversary is central to the literature on
distributed computing and has been studied in several contexts
before. In particular, several papers studied gossip dissem-
ination on a dynamic network with an adaptive adversary
that can also affect the topology of the network according
to its knowledge about the current location of the different
gossips [1], [16], [17], [22]. In this work, we consider a fixed
network and therefore it cannot be altered by the adversary.
Another research line [2], [7], [13], have been studying gossips
that propagate in a fixed network but in a synchronous manner:
the adversary is only able to crash processes. We consider
the more challenging setting where communication is partially
synchronous and the adversary can change message delays.

The closest result to our work is the one presented in [14],
considering a fixed network with partially synchronous com-
munications. Two kinds of adversaries are compared: the
oblivious and the adaptive adversary [2], [6], [16]. It is shown
that while oblivious adversaries are not sufficiently powerful to
harm the dissemination, for any gossip protocol, there exists an
adaptive adversary such that, the dissemination has Ω(N+F 2)
message complexity or Ω(F) time complexity on average. Our
work however significantly differs from this one in two ways.

First, [14] only states a worst-case result. In short, it
says that ”for any gossip protocol, we can design a specific
adversary that harms the execution on average”. We present
a much stronger result by demonstrating that ”there is an
adaptive adversary that, on average, hinders the execution
of any gossip protocol”. This first difference is fundamental
because it means that we can design and implement a universal
adversary that can be applied independently of context, and
without prior knowledge of the protocol it attacks. To the best
of our knowledge, we are the first to present such an adversary.

Second, our work also generalizes the impossibility result
of [14]. Indeed, we show that, for any α, UGF can force
either Ω(N+F 2

/log2
τ (αF)) message complexity or Ω(αF) time

complexity on average. When α = 1 and τ = F , we retrieve
the same findings as in [14], but our result says much more
than that. We highlight a trade-off between the time and the
message complexity under attack by showing that achieving a
message complexity α times smaller than quadratic, forces a
time complexity that increases exponentially with respect to α.
To our knowledge, this analysis is also new to the community.

VII. THE FUTURE WORK

A question of further interest would be to evaluate whether
some realistic additional information about the gossip could
improve the performance of our algorithm. It would also
be worth studying stronger adversaries, e.g. that can omit
messages instead of simply delaying them [21] - would this
kind of adversary harm the dissemination even more?

Another interesting future direction is the use of UGF
for studying practical vulnerabilities of distributed systems.
Our work could pave the way to new research fields in
adversarial machine learning where all-to-all communication is
important. For example, in collaborative learning, UGF could
model an adversarial system provider that fights against the
design of personalized machine learning models by slowing
the network communications. Finally, we would like to study
whether if UGF or a variant of it could be applied to other
problems in partial synchrony model, for instant a related Do-
All problem [20].

ACKNOWLEDGMENTS

Rafael Pinot has been supported in part by Ecocloud, an
EPFL research center (Postdoctoral Research Award).

REFERENCES

[1] AHMADI, M., KUHN, F., KUTTEN, S., MOLLA, A. R., AND PAN-
DURANGAN, G. The communication cost of information spreading in
dynamic networks. In 2019 IEEE 39th International Conference on
Distributed Computing Systems (ICDCS) (2019), pp. 368–378.

[2] ALISTARH, D., GILBERT, S., GUERRAOUI, R., AND ZADIMOGHAD-
DAM, M. How efficient can gossip be? (on the cost of resilient infor-
mation exchange). In Proceedings of the 37th International Colloquium
Conference on Automata, Languages and Programming: Part II (Berlin,
Heidelberg, 2010), ICALP’10, Springer-Verlag, p. 115–126.

[3] ASPNES, J., AND HURWOOD, W. Spreading rumors rapidly despite an
adversary. Journal of Algorithms 26, 2 (1998), 386–411.

[4] AUGUSTINE, J., AVIN, C., LIAEE, M., PANDURANGAN, G., AND
RAJARAMAN, R. Information spreading in dynamic networks under
oblivious adversaries, 2016.

[5] BIRMAN, K. P., HAYDEN, M., OZKASAP, O., XIAO, Z., BUDIU, M.,
AND MINSKY, Y. Bimodal multicast. ACM Trans. Comput. Syst. 17, 2
(May 1999), 41–88.

[6] CHLEBUS, B. S., AND KOWALSKI, D. R. Robust gossiping with an
application to consensus. Journal of Computer and System Sciences 72,
8 (2006), 1262–1281.

[7] CHLEBUS, B. S., AND KOWALSKI, D. R. Time and communication
efficient consensus for crash failures. In Distributed Computing (Berlin,
Heidelberg, 2006), S. Dolev, Ed., Springer Berlin Heidelberg, pp. 314–
328.

[8] COLIN, I., BELLET, A., SALMON, J., AND CLÉMENÇON, S. Gossip
dual averaging for decentralized optimization of pairwise functions. In
International Conference on Machine Learning (2016).

[9] DEMERS, A., GREENE, D., HAUSER, C., IRISH, W., LARSON, J.,
SHENKER, S., STURGIS, H., SWINEHART, D., AND TERRY., D. Epi-
demic algorithms for replicated database maintenance. Proceedings of
the 6th Annual ACM Symposium on Principles of Distributed Computing
8 (1987), 1–12.

[10] DOERR, B., FOUZ, M., AND FRIEDRICH, T. Social networks spread
rumors in sublogarithmic time. In Proceedings of the forty-third annual
ACM symposium on Theory of computing (2011), pp. 21–30.

[11] DUCHI, J. C., AGARWAL, A., AND WAINWRIGHT, M. J. Dual aver-
aging for distributed optimization: Convergence analysis and network
scaling. IEEE Transactions on Automatic control 57, 3 (2011), 592–
606.

[12] DWORK, C., LYNCH, N., AND STOCKMEYER, L. Consensus in the
presence of partial synchrony. Journal of the ACM (JACM) 35, 2 (1988),
288–323.

[13] EVEN, S., AND MONIEN, B. On the number of rounds necessary to
disseminate information. In Proceedings of the First Annual ACM Sym-
posium on Parallel Algorithms and Architectures (New York, NY, USA,
1989), SPAA ’89, Association for Computing Machinery, p. 318–327.

[14] GEORGIOU, C., GILBERT, S., GUERRAOUI, R., AND KOWALSKI, D. R.
On the complexity of asynchronous gossip. In Proceedings of the
Twenty-Seventh ACM Symposium on Principles of Distributed Comput-
ing (New York, NY, USA, 2008), PODC ’08, Association for Computing
Machinery, p. 135–144.

[15] GIAKKOUPIS, G., GUERRAOUI, R., JÉGOU, A., KERMARREC, A.-M.,
AND MITTAL, N. Privacy-conscious information diffusion in social
networks. In International Symposium on Distributed Computing (2015),
Springer, pp. 480–496.

[16] GIAKKOUPIS, G., SAUERWALD, T., AND STAUFFER, A. Randomized
rumor spreading in dynamic graphs. In Automata, Languages, and
Programming (Berlin, Heidelberg, 2014), J. Esparza, P. Fraigniaud,
T. Husfeldt, and E. Koutsoupias, Eds., Springer Berlin Heidelberg,
pp. 495–507.

[17] HAEUPLER, B., AND KUHN, F. Lower bounds on information dis-
semination in dynamic networks. In Proceedings of the 26th Interna-
tional Conference on Distributed Computing (Berlin, Heidelberg, 2012),
DISC’12, Springer-Verlag, p. 166–180.

[18] HETHCOTE, H. W. The mathematics of infectious diseases. SIAM review
42, 4 (2000), 599–653.

[19] KARP, R., SCHINDELHAUER, C., SHENKER, S., AND VOCKING, B.
Randomized rumor spreading. In 41st Annual Symposium on Founda-
tions of Computer Science (2000), IEEE, pp. 565–574.

[20] KOWALSKI, D. R., AND SHVARTSMAN, A. A. Performing work with
asynchronous processors: Message-delay-sensitive bounds. Inf. Comput.
203, 2 (2005), 181–210.

[21] KOWALSKI, D. R., AND STROJNOWSKI, M. Gossiping by processors
prone to omission failures. Inf. Process. Lett. 109, 6 (2009), 308–314.

[22] KUHN, F., LYNCH, N., AND OSHMAN, R. Distributed computation in
dynamic networks. In Proceedings of the Forty-Second ACM Symposium
on Theory of Computing (New York, NY, USA, 2010), STOC ’10,
Association for Computing Machinery, p. 513–522.

[23] MALKHI, D., MANSOUR, Y., AND REITER, M. K. On diffusing
updates in a byzantine environment. In Proceedings of the 18th IEEE
Symposium on Reliable Distributed Systems (USA, 1999), SRDS ’99,
IEEE Computer Society, p. 134.

[24] VAN RENESSE, R., BIRMAN, K., AND VOGELS., W. Astrolabe: A
robust and scalable technology for distributed systems monitoring,
management, and data mining. Proceedings of the 6th Annual ACM
ACM Transactions on Computer Systems 821(3) (2003).

[25] VANHAESEBROUCK, P., BELLET, A., AND TOMMASI, M. Decentral-
ized collaborative learning of personalized models over networks. In
Artificial Intelligence and Statistics (2017), pp. 509–517.

