
Engineering a Distributed-Memory
Triangle Counting Algorithm

Peter Sanders
Institute of Theoretical Informatics
Karlsruhe Institute of Technology

Karlsruhe, Germany
sanders@kit.edu

Tim Niklas Uhl
Institute of Theoretical Informatics
Karlsruhe Institute of Technology

Karlsruhe, Germany
uhl@kit.edu

Abstract—Counting triangles in a graph and incident to each
vertex is a fundamental and frequently considered task of graph
analysis. We consider how to efficiently do this for huge
graphs using massively parallel distributed-memory machines.
Unsurprisingly, the main issue is to reduce communication
between processors. We achieve this by counting locally whenever
possible and reducing the amount of information that needs to
be sent in order to handle (possible) nonlocal triangles. We
also achieve linear memory requirements despite superlinear
communication volume by introducing a new asynchronous sparse-
all-to-all operation. Furthermore, we dramatically reduce startup
overheads by allowing this communication to use indirect routing.
Our algorithms scale (at least) up to 32 768 cores and are up to
18 times faster than the previous state of the art.

Index Terms—triangle counting, graph analysis, clustering
coefficient, distributed-memory algorithm, MPI

I. INTRODUCTION

Graphs are a universally used abstraction to describe relations
between objects and thus a key to many applications of
computers. With the big-data aspect of the information age, it
is therefore clear that processing very large graphs quickly and
efficiently is an increasingly important problem. For example,
the largest social network, Facebook, had over 2.7 billion active
users in the fourth quarter of 2020 [2], and the Common Crawl
2012 web hyperlink graph [3] consists of over 100 billion edges
and requires 350GB of memory in uncompressed form. A
description of the neural connections of the human brain would
have about 10 billion vertices (neurons) and 100 trillion edges
(synapses). The need to use supercomputers for processing
such large networks is widely recognized as witnessed by the
popularity of the Graph 500 benchmark [4]. However, the
number of graph problems that can be handled efficiently with
many thousands of processing elements (PEs) is quite limited
so far. Graph 500 concentrates mostly on breadth-first search
(BFS) on a single kind of input that is very easy for BFS.1

This project has received funding from the Euro-
pean Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation
programme (grant agreement No. 882500).

1The static graph challenge [5] includes a triangle counting benchmark but
most entries so far do not look at the largest available machines. Similarly,
graph processing tools frequently benchmark triangle counting but currently
do not scale very well; see also Section III.

In this paper we want to improve this situation for one
of the most widely used graph-analysis problems – triangle
counting. Given an undirected graph G = (V,E), we are
looking for the number of sets {u, v, w} ⊆ V such that these
three vertices are mutually connected in E. Since triangles can
be very non-uniformly distributed over that graph, one often
also wants to know the number of triangles incident to each
vertex – normalized to the range [0, 1]. This is known as the
local clustering coefficient (LCC).

Triangles are the smallest non-trivial complete subgraph and
often indicative of dense regions of the graph. Therefore,
the problem has numerous applications in analyzing complex
networks such as social graphs [6] but is also applicable in
practice. Becchetti et al. [7] show that analyzing the distribution
of the local clustering coefficient may be used to detect spam
pages on the web, and Eckmann and Moses [8] identify
common topics of web pages using triangle counting. Other
applications include database query optimizations [9] and link
recommendation [10].

After introducing basic concepts in Section II, we discuss
previous approaches in Section III. Our algorithms are described
in Section IV and evaluated in Section V. Section VI
summarizes the results and outlines possible future work.

Contributions:

• All triangles that can be found locally are found locally.
• Only cut edges need to be communicated.
• Linear memory requirements using an asynchronous sparse

all-to-all algorithm.
• Fast and highly scalable MPI code.
• Better scalability by indirect communication.
• Extensive experiments with large real-world inputs and

massive generated graphs from several families of inputs.
• Comparison with state-of-the art competitors shows up to

18× better performance for large configurations.
• Generalization to exact and approximate computation of

local clustering coefficients.

II. PRELIMINARIES

In this section we introduce the basic concepts and notations
used in this work. We further provide details of the underlying
machine model.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works. Published version: 10.1109/IPDPS54959.2023.00076 [1].

ar
X

iv
:2

30
2.

11
44

3v
2

 [
cs

.D
C

]
 2

1
Ju

l 2
02

3

https://doi.org/10.1109/IPDPS54959.2023.00076

A. Basic Definitions

We consider undirected graphs G = (V,E) where V =
{0, . . . , n− 1} and E ⊆

(
V
2

)
are the sets of vertices and edges,

respectively. G has n = |V | vertices and m = |E| edges. For a
given vertex v ∈ V let Nv(G) = {u ∈ V | {u, v} ∈ E} denote
the neighborhood of v. The degree of v is dv := |Nv(G)|. If
the considered graph G is clear from the context, we simply
write Nv instead of Nv(G).

Two vertices u, v ∈ V are called adjacent if the edge
{u, v} ∈ E exists. An edge e ∈ E is incident to a vertex
v ∈ V if v ∈ e. The vertices incident to an edge are called
endpoints.

For V ′ ⊆ V we define the induced subgraph G(V ′) =
(V ′, E′) of G, where E′ := {{u, v} ∈ E | u ∈ V ′ ∧ v ∈ V ′}.
For a set of three distinct vertices u, v, w ∈ V , we call the
induced subgraph G({u, v, w}) a triangle if and only if it is
complete, i.e., each edge {u, v}, {v, w}, {w, u} exists.

Most triangle counting algorithms depend on orienting
undirected graphs, to prevent redundant counting of triangles.
This is accomplished by using a total ordering ≺ on the vertices.
Each edge is directed from the lower to higher ranked vertex.
With respect to a total ordering ≺, we define the outgoing neigh-
borhood of v ∈ V as N+

v (G) := {u ∈ V | {v, u} ∈ E∧v ≺ u}
and the incoming neighborhood as N−

v (G) := Nv(G)\N+
v (G).

We write a directed edge as an (ordered) tuple (u, v) if
u ≺ v. We define the out-degree d+v of a vertex v ∈ V
as d+v := d+v (G) := |N+

v (G)|. As before, we do not mention
the considered graph explicitly if it is clear from the context.
We call each pair of directed edges (v, u), (v, w) a wedge. A
naive triangle counting algorithm would be to enumerate all
wedges and check if a closing edge (u,w) or (w, u) exists.

B. Machine Model and Input Format

We consider a system consisting of p processing elements
(PEs) numbered P0, . . . , Pp−1, which are connected via a net-
work with full-duplex, single-ported communication. Sending a
message of length ℓ from one PE to another takes time α+ βℓ,
where α is the time required to initiate a connection and β the
subsequent transmission time for sending one machine word.
Let the communication volume denote the total number of
machine words sent between processors.

We assume that input graphs are stored in the adjacency
array format, which stores the set of neighbors Nv for each
vertex v using two arrays in a compressed form. We use 1D
partitioning, which means that each Pi is assigned a vertex
set Vi, where all sets Vi are disjoint and V =

⋃p−1
i=0 Vi. Pi

stores the neighborhoods for a subsequence Vi of the vertices
{0, . . . , n− 1}. A vertex is called local to Pi if it lies in Vi.
For a vertex v the rank is defined as rank(v) = i :⇔ v ∈ Vi.
We assume that processor Pi only has access to vertices in Vi

and their neighborhoods.
In addition to that we assume that the vertices are globally

ordered among the processors by vertex ID. This means that if
rank(v) < rank(w) for vertices v ∈ Vi, w ∈ Vj , i ̸= j then w
has a higher ID than v.

Pi

Pj

local

ghost

ghost

local / interface
cut edges

Figure 1. Example of the various vertex types for the local graph view from
Pi. The edges and vertices colored in gray are not visible to Pi.

Vertices u which are contained in a neighborhood Nv for a
vertex v ∈ Vi, but are not local to Pi are called ghost vertices.
Local vertices which are adjacent to at least one ghost vertex
are called interface vertices. An edge connecting two vertices
v ∈ Vi, w ∈ Vj , i ̸= j is called cut edge. We define the cut
graph ∂G as the graph only consisting of cut edges, i.e., ∂G :=
(V,E′), where E′ := {u, v ∈ E | u ∈ Vi, v ∈ Vj , i ̸= j}. For
processor Pi let Vi := Vi∪

⋃
v∈Vi

Nv denote the set of all local
vertices and ghost vertices and let ∂Vi := Vi \ Vi denote the
set of ghost vertices.

An example of the terminology used is given in Fig. 1.

III. RELATED WORK

With growing size of real world input instances, there was
a correspondingly rising need for efficient triangle counting
algorithms. A large variety of approaches has been proposed,
tailored to different models of computation. As for sequential
algorithms, Schank’s Ph.D. thesis [11] and a more recent work
by Ortmann and Brandes [12] give an extensive overview.

Almost all triangle counting algorithms derive from a
single sequential base algorithm, which is often referred to as
EDGEITERATOR. It iterates over all edges {u, v} in the graph
and intersects the neighborhoods of both endpoints. This counts
each triangle three times, once from each contained edge. A
practical formulation called COMPACT-FORWARD which avoids
redundant counting is attributed to Latapy [13]. The algorithm
orients the undirected input graph using a degree-based (total)
ordering defined as follows: For u, v ∈ V

u ≺ v ⇔

{
du < dv if du ̸= dv

u < v if du = dv .

By only considering outgoing neighborhoods, this avoids finding
duplicate triangles and also reduces the overall work, because
the out-degree of high-degree vertices is reduced. Pseudocode
is given in Algorithm 1.

Algorithm 1: EDGEITERATOR

1 T ← 0
2 for v ∈ V do
3 for u ∈ N+

v do
4 T ← T + |N+

v ∩N+
u |

The set intersection relies on the neighborhoods being sorted.
It is implemented using a procedure similar to the merge phase
of merge sort.

A. Parallel Algorithms

Even carefully tuned sequential algorithms are not enough for
today’s massive problem instances. To deal with large inputs,
one has to exploit processor and memory parallelism.

1) Shared Memory: On a shared memory machine, EDGEIT-
ERATOR may be easily parallelized. As all set intersections
in line 4 are independent of each other they may be carried
out in parallel and lock-free, as each thread has random access
to the whole graph and does not modify it. Shun and Tang-
wongsan [14] propose a parallel version of EDGEITERATOR,
where the loops in lines 2-3 over vertices v ∈ V and vertices
u ∈ N+

v are executed in parallel. Dhulipala, Shun and
Blelloch [15] extend this approach to work on large compressed
graphs. They also parallelize the set intersection.

Other shared memory implementations [16], [17] share the
same main idea with Shun and Tangwongsan’s algorithm: They
are based on variants of EDGEITERATOR and execute the two
outer loops of the algorithms in parallel.

Green et al. [18] use a different approach. Instead of
parallelizing on node level, they iterate over all local edges in
parallel and intersect the neighborhoods of the endpoints. They
estimate the work required per edge and statically partition
the edge list into chunks of equal work. They report that if
not taking the partitioning step into account, this approach
outperforms the node-centric parallelization strategy.

2) Distributed Memory: While triangle counting is easily
parallelized on shared memory machines, the availability of
systems with high number of processors and sufficient amount
of memory for large graphs is still limited today. Distributed
memory machines provide us with a large total amount of
memory and abundant parallelism. Under the assumption
that the graph is 1D partitioned as described in Section II-B,
EDGEITERATOR can be adapted to this distributed setting as
shown in Algorithm 2. When processing a local edge (v, u)
the local neighborhoods are intersected as before, but when a
cut edge is encountered, the neighborhood N+

v of v is sent to
the local rank Pj of u, which then performs the set intersection
upon receiving the message. The total number of triangles in the
graph is then obtained by reducing over the local triangle counts.
Firstly, consider that Pi processes two edges (v, u), (v, u′) with
rank(u) = rank(u′) ̸= rank(v). Then N+

v would be sent to
PE rank(u) twice. Arifuzzaman et. al [19] address this issue
and ensure that each neighborhood is only sent to each PE
once by exploiting the sortedness of vertex neighborhoods and
require only O(|Vi|) additional memory per PE.

Still, their approach sends many small messages, which may
lead to high startup overheads. Ghosh et al. [20] address this
by aggregating messages and then finally perform a single
all-to-all collective operation. Because they only use a single
communication step and never empty the buffer, it may require
memory superlinear in the input size.

Algorithm 2: Distributed-memory EDGEITERATOR

1 Ti ← 0
2 for v ∈ Vi do
3 for u ∈ N+

v do
4 if u ∈ Vi then Ti ← Ti + |N+

v ∩N+
u |

5 else send ((v, u), N+
v) to Prank(u)

6 on receive ((v, u), N+
v) do

7 Ti ← Ti + |N+
v ∩N+

u |
8 T ← Reduce(Ti, SUM)

There also exist distributed algorithms based on matrix
multiplication on the adjacency matrix, but it is shown that they
only scale up to a couple of hundred PEs [21], [22].

Suri and Vassilvitskii [23] describe two distributed algorithms
using the popular MapReduce framework [24] which are both
based on EDGEITERATOR. Park et al. [25] further improve
this algorithm, but all algorithms produce large amounts of
intermediate data by replicating the input graph and in turn
require a lot of communication during the shuffle phase, which
hinders scalability [25], [26].

Pearce et al. [27]–[29] present a triangle counting algorithm
using their distributed vertex-centric framework HavoqGT.
On the degree-oriented graph they generate all open wedges
(u, v, w) for each vertex v ∈ V , i.e., all pairs of outgoing
neighbors {u,w} ∈

(
N+

v
2

)
, and create new vertex visitor for

these neighbors, which then check for a closing edge (u,w) or
(w, u). They partition the neighborhoods of high-degree vertices
among multiple PEs and also employ message aggregation. To
reduce the number of messages, they first aggregate messages
at node level and then reroute them to other compute nodes.

There exist algorithms which avoid communication entirely
during the counting phase by replicating complete neighbor-
hoods of ghost vertices during preprocessing [30], [31]. This
basically offloads the communication done by other approaches
to the preprocessing phase and requires superlinear memory
to store the replicated vertex neighborhoods. This limits the
overall scalability for large inputs [19].

B. Approximative Algorithms

For many applications it suffices to only approximate the
number of triangles instead of determining the exact result.
Approximation algorithms may reduce both the time and
memory requirements of triangle counting when an exact result
is not required. Tsourakakis et al. [32] introduce DOULION,
an edge-sampling-based approximation algorithm that reduces
the input size. Instead of sampling edges independently, Pagh
and Tsourakakis [33] achieve better approximations by coloring
vertices independently and only considering the graph of edges
where both endpoints have the same color. Both approaches
require a (distributed) triangle counting algorithm as a black
box to count the triangles in the reduced graph and scale the
result accordingly to obtain an approximation. There also exist

semi-streaming algorithms for approximating triangle counts [9],
[34].

C. Miscellaneous

For a broader overview on various other specialized al-
gorithms, we refer the reader to the survey by Al Hasan
and Dave [35]. While we focus on message passing based
approaches for distributed-memory machines there has also
been a lot of work using other models of computation. GPU
algorithms [30], [36]–[38] focus on parallelizing the set
intersection operation using binary search based approaches,
which are more suitable to be implemented on GPUs than
merge-based approaches. The external memory algorithm by
Chu and Cheng [39] uses a locality aware contraction technique
which is similar to ours. They use it to load chunks of the input
graph from disk, count local triangles, remove internal edges
and write the contracted graph chunk back to disk. This is
repeated until the whole contracted graph fits into main memory.
The advances in GPU and external settings are orthogonal to
our approach, because they may be used to count local triangles
if each PE is equipped with a GPU or the main memory is
limited. Our proposed communication reduction techniques
may still be employed.

IV. OUR ALGORITHMS

We identify reducing communication as one of the key
challenges for designing a scalable distributed memory triangle
counting algorithm. Recall that sending a single message
of length ℓ takes time α + βℓ in the full-duplex model of
communication.

We can therefore reduce communication by addressing two
parts of this communication model: By limiting the number of
messages and reducing the total startup overhead or by reducing
the total communication volume. In this section we present
two algorithms which address both.

DITRIC (Distributed Triangle Counting) employs message
aggregation with linear memory requirements and introduces a
network agnostic indirect communication protocol.

CETRIC (the communication-efficient variant of DITRIC)
builds upon this, exploits locality and uses graph contraction
such that the communication volume is only dependent on the
structure of the cut graph. In section IV-E we show how we
can reduce communication even more when an approximation
of the triangle count is acceptable.

A. Message Aggregation

As already mentioned in Section III-A2, a direct adaptation of
EDGEITERATOR to a distributed system leads to a high number
of messages between PEs. To reduce the startup overhead
required for sending a message it is feasible to aggregate
multiple small messages designated for the same receiver into
a single one.

An example how message aggregation improves on scalability
is shown in Fig. 2, where we compare the running time
of distributed EDGEITERATOR with and without message
aggregation enabled on the friendster graph.

211 213 215

cores

50

100

tim
e

(s
)

friendster

buffering
no buffering

Figure 2. Running time of the basic distributed algorithm on friendster with
and without message aggregation.

A challenge for distributed triangle counting is that the total
communication volume is superlinear in the input size, because
each neighborhood may be sent to multiple other PEs. This is
a particular issue when using message aggregation since local
buffers can already overflow when just one PE needs to send
too many messages.

Our algorithm DITRIC uses a dynamically buffered message
queue to solve this problem. Let δ be the threshold upon which
the buffer should be emptied. Each PE maintains a hash-map of
buffers Bj as a dynamic array for each communication partner
Pj . If a send operation of the neighborhood of a vertex v to PE
Pj is issued, we append the neighborhood to the buffer Bj . If
this operation results in the overall buffer size B =

∑p−1
j=0 |Bj |

to become greater than the threshold δ, we send all Bj to
their corresponding receiver PEs. We do this by using double
buffering: We replace each Bj with an empty buffer and pass
the full buffer to the MPI runtime by issuing a non-blocking
send operation. While the send operation is carried out, we can
continue writing messages to the now empty buffer Bj and only
block in the unlikely event that the second buffer overflows
while the first buffer has not been completely sent yet.

Each PE continuously polls for incoming messages and
processes them.

By setting δ ∈ O(|Ei|) we ensure that the memory required
per PE never exceeds the local input size.

B. Indirect Message Delivery

Message aggregation helps to reduce the startup overhead
when a PE sends many small neighborhoods to another
communication partner. If a PE owns a high-degree vertex, it has
to send and receive many small vertex neighborhoods from/to

Pi,j

Pk,l

Pi,l

Pi′,j′

Pi′,j′

Figure 3. Grid-based indirect message delivery in CETRIC.

different communication partners. We propose a simple grid-
based indirection scheme, which, combined with aggregation,
allows to reduce the communication load.

We therefore arrange the PEs in a logical two-dimensional
grid as shown in Fig. 3, and call the PE located in row i and
column j Pi,j . When this PE wants to send a message to Pk,l,
it first sends it along the processor row to the so called proxy
PE, Pi,l. The proxy then forwards the message to Pk,l along
the processor column.

To give an intuition on how this improves message flow,
consider the extreme case that all PEs want to send a message
of size 1 to a single destination PE. Without message indirection,
this PE has to receive p messages, therefore requiring time
p(α + β). If indirection is employed, we double the overall
communication volume, but each PE only has

√
p peers. This

results in a overall communication time of O(√p(α+β))+pβ.
This especially comes into play for large values of p.

Since each PE maintains a message queue, all messages from
a processor row designated to Pk,l get aggregated at the proxy.
Using a threshold on the message queue as described before,
we can still guarantee that each PE only requires O(|Ei|) space
for aggregating messages.

If the number of PEs p is not a square number, we arrange
the PEs in a rectangular grid with ⌊√p + 1

2⌋ columns (i.e.,
we round to the nearest integer). The last row may not be
completely filled. Suppose that Pi′,j′ wants to send a message
to Pk,l as depicted in Fig. 3. Then the logical proxy does
not exist. We therefore transpose the last row and append it
as a column to the right side of the grid and then choose the
proxy along the row as described before. Note that this is only
necessary when sending from Pi′,j′ to Pk,l and not in the other
direction.

While this is somewhat similar to the indirect communication
approach used in [29], our grid-based redirection scheme is
network-topology agnostic.

C. Exploiting Locality

We now propose a variant of DITRIC called CETRIC, a
contraction based two-phase algorithm which counts triangles
locally without using communication whenever possible. The
total communication volume of our algorithm is proportional to
the size of the contracted graph consisting only of cut edges.

We observe that each triangle {u, v, w} in the input graph
falls into one of the following categories: If all vertices are
local to a single processor Pi, , i.e., if u, v, w ∈ Vi, we call it
a type 1 triangle. If any vertex u ∈ Vj , j ̸= i and both other
vertices v, w ∈ Vi, we call it a type 2 triangle. If each vertex
in the triangle is local to a distinct processor, we call it a type
3 triangle. The different triangle types are depicted in Fig. 4a).

Note that any type 1 triangle may always be found without
communication, as all edges of the triangle are “known” to a
single PE. While this is also true for type 2 triangles, the basic
distributed edge iterator algorithm introduced in section III-A2
does not leverage this due to the orientation of the edges.
Consider the type 2 triangle {v, w, x} in Fig. 4b). When PE
Pi examines edges (v, w) the triangle is not found, because the

u

v

w

x

y u

v

w

x

y
(a) (c)(b)

Pi

Pj

Pk

u

v

w

x

y

Pi

Pj

Pk

Pi

Pj

Pk

Figure 4. The main idea behind CETRIC. (a) shows the different triangle types,
{u, v, w} is a type 1 triangle, {v, w, x} a type 2 triangle and {w, x, y} a
type 3 triangle. (b) The edges are oriented towards high degree vertices. (c)
After the local phase, all non cut edges can be removed from the graph.

algorithm only intersects outgoing neighborhoods. The triangle
is only found by Pj after N+

v has been sent by Pi. While this
could be fixed by including the in- and outgoing neighborhoods
of interface vertices in the set intersection, this would undo the
effects of degree orientation, which reduces the out-degree of
high-degree vertices.

We propose a two-phase algorithm which finds all type 1 and
type 2 triangles using only locally available information while
preserving degree orientation. We give a high level description
of this approach in Algorithm 3.

Our algorithm leverages this observation by using two phases.
In the local phase our algorithm works on the expanded local
graph which consists of the set vertex set Vi = Vi ∪ ∂Vi, i.e.,
all local vertices and ghosts, and all edges which have at least
one endpoint in Vi. Note that constructing this graph requires
no communication, as it only consists of edges incident to local
vertices. It is easy to see that running any sequential triangle
counting algorithm on the expanded graphs yields all type 1
and type 2 triangles.

After the local phase we apply a contraction step, which
removes all non-cut edges from the graph as depicted in Fig. 4c).

In the global phase, we can then use DITRIC or any other
distributed algorithm on the contracted cut graph to count the
remaining type 3 triangles.

The following Lemma shows that removing all non-cut edges
ensures that the global phase only finds type 3 triangles and
that our algorithm is correct.

Lemma 1: The vertex set {u, v, w} ⊆ V induces a triangle
in the cut graph ∂G if and only if it is a type 3 triangle in G.

Proof:
⇒ Assume that {u, v, w} induces a triangle in G that is not a

type 3 triangle. Then there exist at least two endpoints of
the triangle which belong to the same processor. W.l.o.g
assume that these vertices are u and v. Therefore, the edge
{u, v} connects two local vertices and is not contained in
∂G. This implies that at least one edge of the triangle
from G is missing in ∂G and the triangle will not be
counted.

⇐ Let {u, v, w} be a type 3 triangle in G. Then each
edge of the triangle connects vertices located on different
processors. Therefore, each edge of the triangle is a cut
edge and also contained in ∂G.

Algorithm 3: High-level overview CETRIC. i is the
rank of the PE.
// Preprocessing (see sec. IV-D)

1 exchange_ghost_degree()
2 Ti ← 0
3 foreach v ∈ Vi do A(v)← {x ∈ Nv | x ≻ v}
4 foreach v ∈ ∂Vi do

A(v)← {x ∈ Nv | x ≻ v ∧ x ∈ Vi}
// Local Phase

5 foreach v ∈ Vi ∪ ∂Vi do
6 foreach u ∈ A(v) do
7 Ti ← Ti + |A(v) ∩A(u)|

// Contraction
8 foreach v ∈ Vi do A(v)← {x ∈ Nv | x ≻ v} \ Vi

// Global Phase
9 foreach v ∈ Vi with A(v) ̸= ∅ do

10 foreach u ∈ A(v) do
11 j ← rank(u)
12 if A(v) not sent to Pj yet then
13 send (v,A(v)) to Pj

14 on receive (v,A(v)) do
15 for u ∈ A(v) such that u ∈ Vi do
16 Ti ← Ti + |A(v) ∩A(u)|

17 T ← Reduce(Ti, SUM)

Due to the contraction, the communication volume of CETRIC
is only dependent on the structure of the cut graph, while
previous algorithms always send the complete neighborhood of
vertices to other PEs.

This can be combined with hybrid parallelism (i.e., using
thread parallelism at the compute node level) to achieve higher
locality. We discuss this further in section IV-D.

D. Implementation Details

In this section we discuss additional aspects of our imple-
mentation.

Preprocessing: The preprocessing phase of our algorithms
is responsible for applying the degree-based orientation and
sorting vertex neighborhoods. Orienting the edges from low
to high-degree vertices requires each PE to retrieve the degree
of its ghost vertices. This is denoted by the procedure in
exchange_ghost_degree in Algorithm 3. This requires
an all-to-all message exchange. If the number of communication
partners is relatively low, this can benefit from using a sparse
all-to-all operation [40], which only sends direct messages to
all its communication partners in a non-blocking way while
continuously polling for incoming messages. Preliminary
experiments have shown that if the input has a skewed degree
distribution, this may perform worse than a dense degree
exchange. While one could use the indirect communication
protocol proposed in section IV-B, we use a simple dense all-
to-all operation in our evaluation, because the performance

gains from using indirect communication for the initial degree
exchanges are often small in the grand scheme.

Once the ghost degrees have been exchanged, we can easily
construct the degree oriented graph. For CETRIC we also need
to expand the adjacency array structure for storing the local
neighborhoods of ghost vertices. This requires no additional
memory, because it simply means rewiring incoming cut edges
to their corresponding ghost vertex.

Avoiding redundant messages: As stated before, extra
care has to be taken to avoid sending the neighborhood of a
vertex to the same PE multiple times. We use the surrogate
approach introduced by Arrifuzzaman et al. [19], which relies
on the global sortedness of vertex IDs and neighborhoods. For
each local vertex they keep track of the last PE the vertex’s
neighborhood has been sent to. When examining a cut edge
(v, u) in line 12 in Algorithm 3 we only check if the last PE
A(v) has been sent to is not equal to ranku. If this is the case,
we encountered a new neighbor PE and enqueue the message
for sending.

Load Balancing: Arifuzzaman et al. [19] performed an
extensive evaluation of load balancing for distributed triangle
counting. They evaluate several degree-based cost functions
which estimate the amount of work required to process each node
and use a prefix-sum based redistribution of vertices among the
PEs. When a new vertex distribution has been computed, they
reload the graph from disk and do not account for this reloading
step in the overall running time. We conducted preliminary
experiments using their approach and adapted it to redistribute
the graph using message passing, but observed that the overhead
of rebalancing does not pay off.

Hybrid parallelism: We are currently working on extend-
ing our algorithms to a hybrid approach which uses multiple
threads per MPI rank. Recall that our distributed-memory
algorithm uses a 1D partitioning of the vertices of the input
graph. If a graph has a skewed degree distribution and therefore
high-degree vertices, this may lead to work imbalances. To
reduce the effects of this, we use an adaptive approach on
the thread level. Instead of partitioning the local subgraph
based on vertices, we partition the edge list consisting of local
edges during the local phase. For each directed edge (u, v) we
perform the intersection in Line 7 in Algorithm 3 in parallel.

Previously, Green et al. [18] reported good load balancing
using this edge-centric parallelization strategy, but also noted
that the preprocessing for distributing work evenly is slower
than for a vertex-centric approach. By using work stealing, this
can be omitted.

We were already able to achieve good speedups by paral-
lelizing the local phase of CETRIC and notice a communication
reduction by up to factor of 6 with 48 threads due to improved
locality.

The hybridization of the global phase is realized using task
stealing with Intel’s Thread Building Blocks library [41]. Due
to the limited scalability of current MPI implementations in full
multi-threaded environments, we restrict communication to one
thread at a time per MPI rank (using MPI’s funneled mode). A
pool of worker threads is responsible for handling tasks which

write outgoing messages to the message buffer. An additional
thread continuously polls for incoming messages and creates
set intersections tasks from them which are pushed to the task
queue of the workers. They prioritize these tasks over writing
additional data.

Preliminary experiments indicate that the communication
thread becomes a bottleneck, making the hybrid implementation
slower than the plain MPI variant, even though the local phase
is faster and the communication volume is lower when using the
same number of compute nodes but using fewer MPI rank with
multi-threading enabled. The results are show in the Appendix.

E. Extensions

So far we have only explained global triangle counting. Since
each triangle is found exactly once, this can be easily generalized
to the case of triangle enumeration.

We next explain how to determine the number of triangles
∆(v) incident to each vertex v. In turn, this allows us to com-
pute the local clustering coefficient of v as LCC(v) = ∆(v)

dv(dv−1) .
Our algorithms find a triangle {v, u, w} when iterating from
exactly one incident vertex. Then ∆(v), ∆(u), and ∆(w) have
to be incremented. This is trivial for local triangles (type 1). To
make this also work for the distributed case, we also define ∆(v)
for ghost vertices where it counts the triangles incident to v that
were found on that PE. As a postprocessing phase, we need
to aggregate the ∆-values of a vertex, including all its ghosts.
This can be implemented with an all-to-all exchange analogous
to the initial degree exchange described in Section IV-D.

CETRIC can also be made even more communication efficient
at the cost of computing only an approximation of the triangle
count as follows: Type 1 and 2 triangles are counted exactly.
For type 3 triangles, rather than sending a neighborhood A(v) of
a node, we only approximate it as A′(v) using an approximate
membership query data structure (AMQ)2 A set intersection
A(u)∩A(v) is then approximated by querying all members of
A(u) in the AMQ A′(v) counting the positive queries. Since
AMQs have a certain likelihood of yielding a false-positive
result, this will slightly overestimate the number of triangles. If
desired, we can correct for this by subtracting the expectation of
the number of false-positives from the count, yielding a truthful
estimator. This new approach to approximate triangle counting
is particularly interesting when we want to approximate local
clustering coefficients as the (faster) methods mentioned in
Section III-B are only applicable to global triangle counting.

V. EVALUATION

A. Experimental Setup

We implemented our algorithm variants in C++. Our imple-
mentation is available at https://github.com/niklas-uhl/katric.
We conduct our experiments using the thin nodes of the
SuperMUC-NG supercomputer at the Leibniz Supercomputing
Center. The thin nodes consist of islands and a total of 6336
nodes, resulting in a total of 304 128 cores. Each node is

2A typical implementation would be a Bloom Filter. We mention however,
that a compressed single shot Bloom filter [42] might be a more appropriate
implementation here since it requires less communication volume.

equipped with an Intel Skylake Xeon Platinum 8174 processor
with 48 cores. The available memory per node is limited to
96GB. Each node runs the SUSE Linux Enterprise Server
(SLES) operating system. The internal interconnect is a fast
OmniPath network with 100Gbit/s.

Our code is compiled with g++-11.2.0 and Intel MPI 2021
using optimization level -O3.

B. Methodology

We analyze the scalability of our algorithm in terms of strong
and weak scaling. For strong scaling experiments we choose
an input instance with fixed size and measure the running
time over all processors with increasing number of processors.
Weak scaling measures the variation of running time for a fixed
problem size per PE, i.e., we scale the problem size proportional
to the number of processors.

We evaluate several variants of our algorithms: DITRIC
and CETRIC denote the simple distributed algorithm using
our dynamic message aggregation technique, without and with
contraction, respectively. The variants DITRIC2 and CETRIC2

additionally use indirect messaging.
We compare our algorithm against the two latest champions

of the Static Graph Challenge [5]. HavoqGT [29] uses a
vertex-centric approach. They use a topology dependent routing
protocol: To reduce the number of messages, they first aggregate
messages at node level and then reroute them to other compute
nodes. They also employ neighborhood partitioning of high
degree vertices among multiple PEs. TriC [20] uses static
message aggregation and does not orient the input graph.

If not stated otherwise, we report the total running time of
each algorithm excluding the time for reading the input graph
and building the graph data structure. For our algorithms,
we still include the time for orienting edges and sorting
neighborhoods. Due to limitations of the used graph generators,
we only use core numbers which are a power of 2. For HavoqGT
we only use (and count) 32 cores per compute node instead of
48, because it requires an equal amount of MPI ranks per node.
Since restricting all our experiments to 32 cores per node would
have resulted in many unused computing resources, we only
conducted preliminary experiments restricting our algorithms
to 32 cores per node. They indicate that this does not affect
scalability in the grand scheme.

C. Datasets

We consider a variety of real-world and synthetic instances
from different graph families which are among the largest
publicly available. All instances are listed in Table I.

We use live-journal and orkut from the SNAP dataset [43],
a complete snapshot of follower relationships of the twitter
network [44]3 and friendster from the KONECT collection [45]4.
We further include large web graphs from the Laboratory for
Web Algorithmics dataset collection (LAW), namely uk-2007-05
and webbase-2001 [46], [47]5. Graph uk-2007-05 has a size of

3available for download at http://an.kaist.ac.kr/traces/WWW2010.html
4available for download at http://konect.cc
5available for download at http://law.di.unimi.it/datasets.php

https://github.com/niklas-uhl/katric
http://an.kaist.ac.kr/traces/WWW2010.html
http://konect.cc
http://law.di.unimi.it/datasets.php

Table I
REAL-WORLD GRAPH INSTANCES USED IN OUR EXPERIMENTS.

instance n m wedges triangles

so
ci

al

live-journal 5M 43M 681M 286M
orkut 3M 117M 4040M 628M
twitter 42M 1203M 150 508M 34 825M
friendster 68M 1812M 82 286M 4177M

w
eb uk-2007-05 106M 3302M 389 061M 286 701M

webbase-2001 118M 855M 15 393M 12 262M

ro
ad europe 18M 22M 8M 697 519

usa 24M 29M 11M 438 804

50 GB and has over 3 billion edges and is the largest real-world
graph used in our experiments. It is the result of a crawl of
the .uk domain. webbase-2001 has been originally obtained
from the 2001 crawl performed by the WebBase crawler. While
having more vertices than uk-2007-05, it only has around 855
million edges. We use road networks of Europe and USA made
available during the DIMACS challenge on shortest paths [48].
Road networks typically have low average degree and a uniform
degree distribution. Whenever the graphs are directed, we
interpret each edge as undirected. We remove vertices with no
neighbors from the input.

For our weak scaling experiments we generate synthetic
graph instances using KAGEN [49], [50]. This allows us to
generate very large graphs in a controllable way and without
the need to load them from the file system which is quite
expensive on a supercomputer. Particularly, we use 2D random
geometric graphs (RGG2D), random hyperbolic graphs (RHG),
Erdős–Rényi graphs using the G(n,m) model (GNM) and
R-MAT graphs.

For all random graph models we generate 16 times more
edges than vertices (on expectation), which is the default used in
the Graph 500 benchmark [4]. The 2D random geometric graph
model places n vertices at uniform random locations in the unit
square. Two vertices are adjacent if their euclidean distance is
less than a given radius r. We choose r such that the expected
number of edges is 16n. RHG graphs are generated by placing
vertices on a disk with fixed radius R, which is dependent on the
desired average degree and the power-law exponent γ, which
also affects the concentration of points around the center of the
disk. For our experiments we choose a power-law exponent of
γ = 2.8. In the G(n,m) model, graphs are chosen uniformly
at random from the set of all possible graphs with n vertices
and m edges. The recursive matrix graph model (R-MAT) is
used in the popular Graph 500 benchmark [4]. It recursively
subdivides the adjacency array into four equally sized sectors
with associated probabilities and recursively descends into one
of the sectors. We use the default probabilities from the Graph
500 benchmark.

D. Weak Scaling Experiments

In Fig. 5 we show the results of our weak scaling experiments.
We report the total running time of all algorithms without
the time for reading the input. We also report the maximum
number of outgoing messages over all PEs and the bottleneck

communication volume for our algorithms. For RGG2D we set
the input size per PE to n

p = 218 vertices. We see that all our
algorithms clearly outperform TriC and HavoqGT and that they
all show similar scaling behavior. TriC fails to scale beyond
214 cores. We only report results for HavoqGT up to 214 cores,
because its preprocessing time exceeded 900 s. TriC only works
on RGG2D and GNM. For the other instances it crashes due
to high memory consumption. Perhaps this happens because it
allocates the complete message buffer upfront and performs a
single irregular all-to-all operation. Since the communication
volume may be superlinear in the input size, this may exhaust
a single PE’s memory.

For random hyperbolic graphs, we choose the same input
size as before. We again outperform HavoqGT by an order
of magnitude. We also see that both variants of DITRIC
slightly outperform CETRIC, but still show the same scaling
behavior. This comes as a surprise, because usually one expects
communication volume to be the bottleneck of a distributed
memory computation on large complex networks. Further
investigation on real-world instances in the following section
indicates that this is not always the case on supercomputers with
high-performance network interconnects. While our contraction
based algorithm CETRIC reduces the bottleneck communication
volume by up to a factor of 4, it also requires a constant
factor more local work, to also process cut edges. On these
large graph instances, the local work clearly dominates the
overall running time. We still expect CETRIC to outperform
DITRIC on communication networks with higher latency and
lower bandwidth. From 212 cores onward, we also see that the
indirect communication approach employed DITRIC2 is makes
it on average 10% faster than plain DITRIC. The spike in
running time for 215 PEs is caused by an increased time for the
degree exchange as a result of the skewed degree distribution.

For GNM we choose n
p = 216 vertices per core. Up to 211

PEs DITRIC is the fastest algorithm. We see that the variants of
CETRIC are up to 50% slower than DITRIC. This comes at no
surprise, because random graphs have no locality. We therefore
achieve almost no reduction of communication volume, but
require additional local work, which does not pay off. From
211 cores onward, HavoqGT needs up to 30% less time than
our algorithms.

Since the skewed degree distribution leads to high running
times, we conducted experiments for RMAT graphs only using
smaller scale inputs and lower processor configurations. Our
algorithms are an order of magnitude faster than HavoqGT, but
all algorithms show worse scaling behavior on RMAT than on
the other synthetic graph families. Again, the additional local
work for contraction does not pay off.

E. Strong Scaling Experiments

We present the results of the strong scaling experiments in
Fig. 6 on a variety of real world graph instances, and Fig. 7
shows a detailed break-down of the algorithm phases for selected
instances. We allowed to run each algorithm for 300 seconds
on each instance, including I/O and preprocessing. Note that

101

102

tim
e

(s
)

RGG2D(218, 222)

101

RHG(218, 222, 2.8)

101

GNM(216, 220)

102

103

RMAT(216, 220)

100

101

se
nt

m
es

sa
ge

s

101

102

105

106

104

105

106

211 214
104

105

vo
lu

m
e

211 214

106

107

211 214
107

108

26 29

108

109

cores

DITRIC

DITRIC2

CETRIC

CETRIC2

HAVOQGT
TRIC

Figure 5. Weak scaling of our algorithms compared to the competitors using up to 215 cores. We report total running time, the maximum number of outgoing
messages over all PEs and bottleneck communication volume.

we integrated our I/O routines into the competitors for better
comparison.

On the social networks of friendster and twitter, we see that
DITRIC is up to 8 times faster than HavoqGT. While our
algorithm variants with indirect communication are slower than
those using direct messages up to 213 PEs, they show better
scalability for large configurations. The effects of indirect
communication become especially visible on friendster. Note
that we only were able to run TriC using 214 and 215 PEs on
friendster, where it is 80 times slower than our best algorithm.
On other configurations we failed to execute TriC, because it
ran out of memory. As stated before, we attribute this to the
static buffering. Examining Fig. 7 we see that on friendster,
CETRIC requires additional preprocessing time to build the
expanded graph, but does not achieve to reduce communication
by a large order of magnitude. We assume that this is due to
the missing locality in the input graphs, which is exploited by
CETRIC.

On live-journal we are up to two orders of magnitude
faster than TriC, and 2 times faster than HavoqGT with our
fastest configuration. For more than 211 PEs HavoqGT’s
preprocessing took more than 300 seconds, which is why
we do not report results. From 212 PEs onward, indirect
communication improves the scalability. Taking a closer look
at the differences between DITRIC and CETRIC in Fig. 7, we
see that CETRIC halves the time required in the global phase
due to the reduced communication volume. Unfortunately, to
achieve this, it also requires additional preprocessing and local
work, which ultimately does not pay off. We still expect our
contraction-based algorithm variant to outperform DITRIC on

a system with slower networks interconnects. This may for
example be the case in large cloud computing environments.
We observe similar results for orkut.

On webbase-2001 we see that the variants of CETRIC are
faster than DITRIC up to 211 PEs. In Fig. 7 wee observe
that while requiring additional local work, the communication
reduction by almost a factor of 2 pays off, but only up to a
certain number of processors. With increasing number of PEs
the cut of the graphs grows bigger, allowing the removal of
fewer edges during contraction. From 212 PEs onward, we see
that almost no reduction of the global phase is visible.

On road networks TriC is initially faster than our variants.
The graphs have small average degree and cut size, which leads
to a small communication volume. This profits from TriC’s
single batch communication, but fails to scale beyond 211 cores.
From there on DITRIC slightly outperforms HavoqGT. This
experiment may seem like using a sledgehammer to crack a
nut, because counting triangles on europe takes already less
than a second using 4 cores, but it shows that our algorithms
do not hit a scaling wall, even on small inputs.

VI. CONCLUSION AND FUTURE WORK

We have engineered triangle counting codes that scale to
many thousands of cores and are sufficiently communication
efficient that the local computations dominate when using a
high performance network. We achieved this by employing
message aggregation and reducing the communication volume
by exploiting locality.

101

102

friendster

101

102

twitter

102

uk-2007-05

101

webbase-2001

100

101

live-journal

100

101

102

orkut

211 214

cores

10−1

100

101

usa

211 214

cores

10−1

100

101

europe

tim
e

(s
)

DITRIC

DITRIC2

CETRIC

CETRIC2

HAVOQGT
TRIC

Figure 6. Strong scaling on real world instances using 29 to 215 cores.

29 212 215
0

20

40

tim
e

(s
)

friendster

29 212 215

cores

0

10

20

webbase-2001

29 212 215
0.0

0.5

1.0

live-journal

preprocessing
local phase

contraction
global phase

Figure 7. Running time distribution of our algorithms on selected real world
instances. The left bar reports the running times for the best variant of DITRIC,
the right bar for the best variant of CETRIC.

We think it makes sense to use algorithms with superlinear
communication volume such as triangle counting as additional
standard benchmarks for high performance graph processing.

Both locality and scalability could be further enhanced by
improving the shared-memory part of the code such that it
scales to all threads available in a compute node. It would
also be interesting to develop a low-overhead load balancing
algorithm that allows provable performance guarantees. Further

performance could be gained by using GPU-acceleration for
local computations. On the software side, it now seems
important to achieve a similar level of performance in graph-
processing tools that make it easier for non-HPC-experts to
implement a variety of graph analysis tasks.

ACKNOWLEDGMENT

The authors gratefully acknowledge the Gauss Centre for
Supercomputing e.V. (www.gauss-centre.eu) for funding this
project by providing computing time on the GCS Supercomputer
SuperMUC-NG at Leibniz Supercomputing Centre (www.lrz.
de).

APPENDIX
EVALUATION OF HYBRID PARALLELISM

In Fig. 8 we show a preliminary evaluation of the hybridiza-
tion of our approach described in Section IV-D. We report
results for DITRIC with message indirection on orkut. We fix
the number of physical cores used, but vary the number of
threads, such that cores = threads×MPI ranks.

We achieve a speedup of up to 1.67 during the local phase
with 12 threads over the single threaded variant using the same
number of PEs and reduce the communication volume by up to
84%, but the hybridization of the global phase of our algorithm
becomes a bottleneck which limits the overall scalability.

210 211 212

10−1

lo
ca

l
tim

e
(s

)

orkut

210 211 212

1010

co
m

m
.

vo
l.

100

101

tim
e

(s
)

cores = MPI ranks × threads

threads
1 3 6 12 24 48

Figure 8. Local phase time, total time and communication volume for the
hybrid variant of DITRIC2 using up to 6144 cores.

REFERENCES

[1] P. Sanders and T. N. Uhl, “Engineering a distributed-memory triangle
counting algorithm,” in 2023 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2023, pp. 702–712.

[2] Statista, “Number of monthly active facebook users worldwide
as of 4th quarter 2020,” https://www.statista.com/statistics/264810/
number-of-monthly-active-facebook-users-worldwide/, Jan. 2021.

[3] R. Meusel, O. Lehmberg, C. Bizer, and S. Vigna, “Web data com-
mons - hyperlink graph,” http://km.aifb.kit.edu/sites/webdatacommons/
hyperlinkgraph/index.html.

[4] The Graph 500 steering commitee, “The Graph 500 benchmark,” https:
//graph500.org.

[5] S. Samsi, V. Gadepally, M. Hurley, M. Jones, E. Kao, S. Mohindra,
P. Monticciolo, A. Reuther, S. Smith, W. Song, D. Staheli, and J. Kepner,
“Static Graph Challenge: Subgraph Isomorphism,” IEEE High Performance
Extreme Computing Conf. (HPEC), pp. 1–6, 2017.

www.gauss-centre.eu
www.lrz.de
www.lrz.de
https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
http://km.aifb.kit.edu/sites/webdatacommons/hyperlinkgraph/index.html
http://km.aifb.kit.edu/sites/webdatacommons/hyperlinkgraph/index.html
https://graph500.org
https://graph500.org

[6] M. E. J. Newman, “The structure and function of complex networks,”
SIAM review, vol. 45, no. 2, pp. 167–256, 2003.

[7] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis, “Efficient semi-
streaming algorithms for local triangle counting in massive graphs,” in
19th ACM Conf. on Knowledge Discovery and Data Mining, 2008, pp.
16–24.

[8] J.-P. Eckmann and E. Moses, “Curvature of co-links uncovers hidden
thematic layers in the world wide web,” Proc. of the National Academy
of Sciences, vol. 99, no. 9, pp. 5825–5829, 2002.

[9] Z. Bar-Yossef, R. Kumar, and D. Sivakumar, “Reductions in streaming
algorithms, with an application to counting triangles in graphs,” in
Symposium on Discrete Algorithms (SODA), vol. 2, 2002, pp. 623–632.

[10] C. E. Tsourakakis, P. Drineas, E. Michelakis, I. Koutis, and C. Faloutsos,
“Spectral counting of triangles via element-wise sparsification and triangle-
based link recommendation,” Social Network Analysis and Mining, vol. 1,
no. 2, pp. 75–81, 2011.

[11] T. Schank, “Algorithmic aspects of triangle-based network analysis,” Ph.D.
dissertation, University Karlsruhe (TH), 2007.

[12] M. Ortmann and U. Brandes, “Triangle listing algorithms: Back from
the diversion,” in SIAM Symposium on Algorithm Engineering and
Experiments (ALENEX), 2014, pp. 1–8.

[13] M. Latapy, “Main-memory triangle computations for very large (sparse
(power-law)) graphs,” Theoretical computer science, vol. 407, no. 1-3,
pp. 458–473, 2008.

[14] J. Shun and K. Tangwongsan, “Multicore triangle computations without
tuning,” in IEEE 31st Conf. on Data Engineering, 2015, pp. 149–160.

[15] L. Dhulipala, G. E. Blelloch, and J. Shun, “Theoretically Efficient
Parallel Graph Algorithms Can Be Fast and Scalable,” ACM Transactions
on Parallel Computing, vol. 8, pp. 4:1–4:70, 2021.

[16] A. S. Tom, N. Sundaram, N. K. Ahmed, S. Smith, S. Eyerman,
M. Kodiyath, I. Hur, F. Petrini, and G. Karypis, “Exploring optimizations
on shared-memory platforms for parallel triangle counting algorithms,”
in IEEE High Performance Extreme Computing Conf. (HPEC), 2017, pp.
1–7.

[17] M. Rahman and M. Al Hasan, “Approximate triangle counting algorithms
on multi-cores,” in IEEE Conf. on Big Data, 2013, pp. 127–133.

[18] O. Green, L.-M. Munguı́a, and D. A. Bader, “Load balanced clustering
coefficients,” in Proc. 1st workshop on Parallel Programming for Analytics
Applications, 2014, pp. 3–10.

[19] S. Arifuzzaman, M. Khan, and M. Marathe, “A space-efficient parallel
algorithm for counting exact triangles in massive networks,” in IEEE
17th Intl. Conf. on High Performance Computing and Communications,
2015, pp. 527–534.

[20] S. Ghosh and M. Halappanavar, “TriC: Distributed-memory triangle
counting by exploiting the graph structure,” in IEEE High Performance
Extreme Computing Conf. (HPEC), 2020, pp. 1–6.

[21] A. S. Tom and G. Karypis, “A 2D parallel triangle counting algorithm
for distributed-memory architectures,” in 48th ACM Conf. on Parallel
Processing, 2019.

[22] A. Azad, A. Buluç, and J. Gilbert, “Parallel triangle counting and
enumeration using matrix algebra,” in IEEE Parallel and Distributed
Processing Symposium Workshop, 2015, pp. 804–811.

[23] S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the last
reducer,” in 20th Conf. on World Wide Web, 2011, pp. 607–614.

[24] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,” in 6th Symposium on Operating Systems Design and
Implementation, 2004.

[25] H.-M. Park, F. Silvestri, U. Kang, and R. Pagh, “Mapreduce triangle
enumeration with guarantees,” in 23rd ACM Conf. on Information and
Knowledge Management, 2014, pp. 1739–1748.

[26] F. N. Afrati, A. D. Sarma, S. Salihoglu, and J. D. Ullman, “Upper and
lower bounds on the cost of a map-reduce computation,” arXiv preprint
arXiv:1206.4377, 2012.

[27] R. Pearce, M. Gokhale, and N. M. Amato, “Faster parallel traversal of
scale free graphs at extreme scale with vertex delegates,” in IEEE Conf.
for High Performance Computing, Networking, Storage and Analysis,
2014, pp. 549–559.

[28] R. Pearce, “Triangle counting for scale-free graphs at scale in distributed
memory,” in IEEE High Performance Extreme Computing Conf. (HPEC),
2017, pp. 1–4.

[29] R. Pearce, T. Steil, B. W. Priest, and G. Sanders, “One Quadrillion
Triangles Queried on One Million Processors,” in IEEE High Performance
Extreme Computing Conf. (HPEC), 2019, pp. 1–5.

[30] L. Hoang, V. Jatala, X. Chen, U. Agarwal, R. Dathathri, G. Gill, and
K. Pingali, “DistTC: High Performance Distributed Triangle Counting,”
in IEEE High Performance Extreme Computing Conf. (HPEC), 2019, pp.
1–7.

[31] S. Arifuzzaman, M. Khan, and M. Marathe, “PATRIC: A parallel
algorithm for counting triangles in massive networks,” in Proceedings
of the 22nd ACM international conference on Information & Knowledge
Management, 2013, pp. 529–538.

[32] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos, “Doulion:
counting triangles in massive graphs with a coin,” in 15th ACM Conf. on
Knowledge Discovery and Data Mining, 2009, pp. 837–846.

[33] R. Pagh and C. E. Tsourakakis, “Colorful triangle counting and a
mapreduce implementation,” Information Processing Letters, vol. 112,
no. 7, pp. 277–281, 2012.

[34] M. Jha, C. Seshadhri, and A. Pinar, “A space efficient streaming algorithm
for triangle counting using the birthday paradox,” in 19th ACM Conf. on
Knowledge Discovery and Data Mining, 2013, pp. 589–597.

[35] M. Al Hasan and V. S. Dave, “Triangle counting in large networks: a
review,” WIREs Data Mining and Knowledge Discovery, vol. 8, no. 2,
2018.

[36] O. Green, P. Yalamanchili, and L.-M. Munguı́a, “Fast triangle counting on
the GPU,” in Proc. 4th Workshop on Irregular Applications: Architectures
and Algorithms, 2014, pp. 1–8.

[37] Y. Hu, H. Liu, and H. H. Huang, “TriCore: Parallel Triangle Counting
on GPUs,” in Intl. Conf. for High Performance Computing, Networking,
Storage and Analysis, 2018, pp. 171–182.

[38] S. Pandey, X. S. Li, A. Buluc, J. Xu, and H. Liu, “H-INDEX:
Hash-Indexing for Parallel Triangle Counting on GPUs,” in IEEE High
Performance Extreme Computing Conf. (HPEC), 2019, pp. 1–7.

[39] S. Chu and J. Cheng, “Triangle listing in massive networks and its
applications,” in 17th ACM Conf. on Knowledge Discovery and Data
Mining, 2011, pp. 672–680.

[40] T. Hoefler and J. L. Traff, “Sparse collective operations for MPI,” in
IEEE Intl. Symposium on Parallel Distributed Processing, 2009, pp. 1–8.

[41] “Intel oneAPI Threading Building Blocks.” [Online]. Available:
https://github.com/oneapi-src/oneTBB

[42] F. Putze, P. Sanders, and J. Singler, “Cache-, hash-, and space-efficient
bloom filters,” ACM Journal of Experimental Algorithmics, vol. 14, 2009.

[43] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, 2014.

[44] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a social
network or a news media?” in 19th Conf. on World Wide Web, 2010, pp.
591–600.

[45] J. Kunegis, “KONECT – The Koblenz Network Collection,” in Proc. Intl.
Conf. on World Wide Web Companion, 2013, pp. 1343–1350.

[46] P. Boldi and S. Vigna, “The webgraph framework I: compression
techniques,” in Intl. World Wide Web Conference (WWW), 2004, pp.
595–602.

[47] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered label propagation: A
multiresolution coordinate-free ordering for compressing social networks,”
in 20th Conf. on World Wide Web, 2011, pp. 587–596.

[48] C. Demetrescu, A. V. Goldberg, and D. S. Johnson, The Shortest Path
Problem: Ninth DIMACS Implementation Challenge, ser. Dimacs Series
in Discrete Mathematics and Theoretical Computer Science, 2009, vol. 74.

[49] D. Funke, S. Lamm, U. Meyer, M. Penschuck, P. Sanders, C. Schulz,
D. Strash, and M. von Looz, “Communication-free massively distributed
graph generation,” Journal of Parallel and Distributed Computing, vol.
131, pp. 200–217, 2019.

[50] L. Hübschle-Schneider and P. Sanders, “Linear work generation of R-MAT
graphs,” Network Science, vol. 8, no. 4, pp. 543–550, 2020.

https://github.com/oneapi-src/oneTBB
http://snap.stanford.edu/data

	Introduction
	Preliminaries
	Basic Definitions
	Machine Model and Input Format

	Related Work
	Parallel Algorithms
	Shared Memory
	Distributed Memory

	Approximative Algorithms
	Miscellaneous

	Our Algorithms
	Message Aggregation
	Indirect Message Delivery
	Exploiting Locality
	Implementation Details
	Extensions

	Evaluation
	Experimental Setup
	Methodology
	Datasets
	Weak Scaling Experiments
	Strong Scaling Experiments

	Conclusion and Future Work
	Appendix: Evaluation of Hybrid Parallelism
	References

