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Abstract—Finding the maximum cut of a graph
(MAXCUT) is a classic optimization problem that has
motivated parallel algorithm development. While ap-
proximate algorithms to MAXCUT offer attractive the-
oretical guarantees and demonstrate compelling empir-
ical performance, such approximation approaches can
shift the dominant computational cost to the stochastic
sampling operations. Neuromorphic computing, which
uses the organizing principles of the nervous system
to inspire new parallel computing architectures, offers
a possible solution. One ubiquitous feature of natural
brains is stochasticity: the individual elements of bio-
logical neural networks possess an intrinsic randomness
that serves as a resource enabling their unique compu-
tational capacities. By designing circuits and algorithms
that make use of randomness similarly to natural
brains, we hypothesize that the intrinsic randomness in
microelectronics devices could be turned into a valuable
component of a neuromorphic architecture enabling
more efficient computations. Here, we present neuro-
morphic circuits that transform the stochastic behavior
of a pool of random devices into useful correlations
that drive stochastic solutions to MAXCUT. We show
that these circuits perform favorably in comparison
to software solvers and argue that this neuromorphic
hardware implementation provides a path for scaling
advantages. This work demonstrates the utility of com-
bining neuromorphic principles with intrinsic random-
ness as a computational resource for new computational
architectures.

I. INTRODUCTION

Despite the heavy requirements for noise-free
operation placed on the components of conventional

computers, random numbers play a crucially important
role in many parallel computing problems arising in
different scientific domains. Because current random
number generation occurs largely in software, the
required randomness in these systems is plagued
by the same memory-processing bottlenecks that
limit ordinary computation. Current work in material
science and microelectronics is demonstrating the
feasibility of constructing stochastic microelectronic
devices with controllable statistics for probabilistic
neural computing [22]. These devices show scalability
properties that forecast the ability to generate ran-
dom numbers in-situ with the processing elements,
bypassing this bottleneck.

Stochasticity is an inherent property of physical
systems, both natural and artificial. Physical com-
puters are able to approximate ideal computations
because much effort has been expended in developing
electronic technology that minimizes the influence of
universal electronic “noise.” As microelectronics get
smaller and the scale of our computations get larger,
current computational paradigms require even more
stringent limits on the influence of this electronic
noise, and these limits become severe constraints on
the scalability of existing computational architectures.

In contrast, natural brains are examples of highly
parallel computational systems that achieve amazingly
efficient computational performance in the face of
ubiquitous noise. There are on the order of 1015
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synapses in a human brain, and each one is stochastic:
its probability of successfully transmitting a signal to a
downstream neuron ranges from 0.1 to 0.9 [20]. Each
synapse is activated about once per second on average,
so, the brain generates about 1015 random numbers
per second [22]. Compare this to the reliability of
transistor switching in conventional computers, where
the probability of failure is less than 10−14 [20]. It is
unknown precisely how brains deal with this stochas-
ticity, but its pervasiveness strongly suggests that the
brain uses its own randomness as a computational
resource rather than treating it as a defect that must be
eliminated. This suggests that a new class of parallel
computing architectures could emerge from combining
the computational principles of natural brains with
physical sources of intrinsic randomness. This would
allow the natural stochasticity of electronic devices
to play a part in large-scale parallel computations,
relieving the burden imposed by requiring absolute
reliability.

Realizing the potential of probabilistic neural com-
putation requires rethinking conventional parallel
algorithms to incorporate stochastic elements from the
bottom up. Additionally, techniques for controlling the
randomness must be developed so that useful random
numbers can be produced efficiently from the desired
distributions. In this work, we propose neuromorphic
circuits that demonstrate the capacity for intrinsic
randomness to solve parallel computing problems
and techniques for controlling device randomness to
produce useful random numbers.

MAXCUT is a well known, NP-complete problem
that has practical applications and serves as a model
problem and testbed for both classical and beyond-
Moore algorithm development [4], [9], [15], [19]. The
problem requires partitioning the vertices of a graph
into two disjoint classes such that the number of edges
that span classes is maximized. MAXCUT has several
stochastic approximation algorithms, which makes it
an ideal target for developing new architectures lever-
aging large-scale parallel stochastic circuit elements
for computational benefit.

Stochastic approximation algorithms are compared
via their approximation ratio, which is the ratio of the
expected value of a stochastically generated solution
to the maximum possible value. The stochastic approx-
imation to MAXCUT with the largest known approxi-
mation ratio is the Goemans-Williamson algorithm [9].
The Goemans-Williamson algorithm provides the best
approximation ratio achievable by any polynomial-
time algorithm under the Unique Games Conjec-
ture [19]. To generate solutions, this algorithm requires
sampling from a Gaussian distribution with a specific
covariance matrix obtained by solving a semi-definite
program related to the adjacency matrix of the graph.
Our first neural circuit implements this sampling step

by using simple neuron models to transform uniform
device randomness into the required distribution. This
demonstrates the use of neuromorphic principles to
transform an intrinsic source of randomness into a
computationally useful distribution.

Another stochastic approximation for MAXCUT
is the Trevisan algorithm [27], [29]. Despite having
a worse theoretical approximation ratio, in practice
this algorithm generates solutions on par with the
Goemans-Williamson algorithm [21]. To generate
solutions, this algorithm requires computing the mini-
mum eigenvector of the normalized adjacency matrix.
Our second neuromorphic circuit implements this
algorithm using the same circuit motif as above to
generate random numbers with a specific correlation,
but instead of sampling cuts from this distribution,
we use these numbers to drive a synaptic plasticity
rule (Oja’s rule) inspired by the Hebbian principle in
neuroscience [24]. This learning rule can be shown
to converge to the desired eigenvector, from which
the solution can be sampled. This circuit solves the
MAXCUT problem entirely within the circuit, without
requiring any external preprocessing, demonstrating
the capacity of neuromorphic circuits driven by
intrinsic randomness to solve parallel computationally-
relevant problems.

Neuromorphic computing is having increasing im-
pacts on non-cognitive problems relevant for parallel
computing [1]. Unlike other hardware approaches
to MAXCUT, our contributions directly instantiate
state-of-the-art MAXCUT approximation algorithms
on arbitrary graphs without requiring costly recon-
figuration or conversion of the problem to an Ising
model with pairwise interactions [10], [11], [30].
Our use of hardware resources is scalable, requiring
one neuron and one random device per vertex, and
thus more efficient than parallel implementations of
MAXCUT using GPUs [8]. These properties make
our contributions valuable to the expanding field of
beyond-Moore parallel algorithms.

II. MAXCUT ALGORITHMS

A. The Goemans-Williamson MAXCUT Algorithm

Given an n-vertex, m-edge graph G = (V,E) with
vertex set V and edge set E, the MAXCUT problem
seeks a partition of the vertices into two disjoint
subsets, V = V−1 ∪V1 such that the number of edges
that cross between the two subsets is maximized. By
assigning either of the values {−1, 1} to each vertex,
the MAXCUT problem is equivalent to maximizing
the function

max
v

1

2

∑
ij∈V

Aij(1− vivj)

s.t. v ∈ {−1, 1}n.



Here, Aij is the adjacency matrix of the graph G. Let
OPT(G) be the maximum value of this function.

MAXCUT is known to be NP-complete [15].
Goemans and Williamson [9] described a relaxation
of the above integer programming problem that yields
an efficient approximation to MAXCUT with an
approximation ratio of 0.878. The relaxation replaces
the integer programming problem with a semidefinite
programming problem given by

max
w

1

2

∑
ij

Aij(1− wi · wj)

s.t. wi ∈ Sn−1,

where Sn−1 is the (n − 1)-dimensional unit sphere
in Rn. Let SDP(G) be value of the optimal solution
of this semidefinite programming problem. Note that
OPT(G) ≤ SDP(G).

The solution of this semidefinite programming
problem is a set of unit vectors wi, one for each
vertex in the graph. Given these vectors, a graph cut
is generated by taking a random hyperplane through
the origin and assigning the value +1 to vertices
with vectors above the plane and −1 to vertices with
vectors below the plane.

One can see that the Goemans-Williamson algo-
rithm has two steps: in the first step we solve an
SDP, and in the second we round each unit vector
wi to an integer zi ∈ {−1,+1}, where i ∈ V .
Bertsimas and Ye [6] observed that the rounding step
can be implemented by sampling dependent standard
normal random variables, with one variable per vertex.
Specifically, suppose for each vertex i we have a
random variable Xi following the standard normal
distribution, and furthermore for each pair of vertices
i and j the covariance between Xi and Xj is wi ·wj ,
where wi and wj are the unit vectors in the solution
to the SDP. One can show that such a set of dependent
random variables exists. Now define a (random) cut
by assigning +1 to vertices i where Xi is positive
and assigning −1 to vertices i where Xi is negative.
One can show that the resulting cut has the same
approximation guarantees as the cut returned by the
Goemans-Williamson algorithm. Hence in this paper
we will sometimes refer to the rounding step as the
sampling step.

B. The Trevisan (Simple Spectral) Algorithm

The Trevisan algorithm is another random approxi-
mation algorithm for MAXCUT [29]. Though it has a
worse theoretical approximation ratio (0.631) [27] than
the Goemans-Williamson algorithm, in practice it can
perform just as well and has speed advantages [21].
Here we consider a slight modification of the full
Trevisan algorithm we refer to as the Trevisan Simple
Spectral algorithm [21].

Given a graph G = (V,E) with adjacency matrix
A and diagonal degree matrix D, we compute the
normalized adjacency matrix A = D−1/2AD1/2.
Next, the eigenvector corresponding to the minimum
eigenvalue of the matrix I + A is computed. The
graph cut is obtained by thresholding the values of this
eigenvector by sign. If u is the minimum eigenvector
of A, then the graph cut is given by

vi =

{
−1 ui ≤ 0

1 ui > 0

III. NEUROMORPHIC CONCEPTS

A. Stochastic Devices

Physical microelectronics display intrinsic stochas-
ticity due the physics behind their operation. Typically
this stochasticity is observed as random switching be-
tween two or more states. While normally a nuisance,
the details of this stochastic behavior are under active
research to develop devices with tunable statistics for
probabilistic computing applications [5], [22], [25]. In
our work, we idealize stochastic devices as analogous
to “coin flips” such that at any given time, the device
can be in one of two states (“heads” or “tails”; “0”
or “1”) with a specific probability. In our circuits, we
assume random devices behave as fair coins. That is,
each state has a probability of 0.5. Thus, a random
device is modeled as a source for a random bit stream
with equal probabilities of 0 or 1. Magnetic tunnel
junctions [18], [25] and tunnel diodes [5] are examples
of two classes of devices actively being developed to
meet these requirements.

B. Leaky Integrate and Fire Neurons

The leaky integrate and fire (LIF) neuron is a
simplified model of biological neurons, readily imple-
mented in hardware [14], that captures a biological
neuron’s capacity for temporal integration of synaptic
inputs along with discontinuous spiking. The model
integrates synaptic currents with a membrane capaci-
tance into a membrane potential that is continuously
discharged by a leak conductance. When the integrated
membrane potential reaches some threshold, a spike is
emitted and the membrane potential is reset to some
defined value. In between spike events, the membrane
potential evolves according to the differential equation

C
dV

dt
= −V

R
+ Itot.

Here, V is the membrane potential, C and R are the
membrane capacitance and leak resistance, respec-
tively, and Itot is the total synaptic input current.

When a single LIF neuron receives large numbers
of stochastic input currents, the membrane potential
approximates a one-dimensional random walk [20].



The leak conductance stabilizes this walk around an
analytically computable mean

〈V 〉 = R〈Itot〉

and variance

Var(V ) =
R

C
Var(Itot).

C. LIF Covariances

For a population of n LIF neurons integrating
random binary inputs generated by r random devices,
the expression for the membrane potential dynamics
of a single LIF neuron becomes

C
dVi
dt

= −Vi
R

+
∑
α

Wiαsα.

Here Wiα is the real-valued connection weight be-
tween device α and LIF neuron i. The variable sα is
the state of device α and takes the values {0, 1}.

Shared or inverted input between two LIF neu-
rons induces correlations or anticorrelations in their
membrane potentials, respectively. The expression for
the covariance between the membrane potentials of
neurons i and j is

Cov(Vi, Vj) =
R

C

∑
αβ

WiαWjβCov(sα, sβ).

In other words, the LIF membrane covariances are a
linear transformation of the covariances of the random
device pool. The device covariance matrix defines an
inner product on the space of weight vectors for each
LIF neuron. If the devices are independent, then the
device covariance matrix is diagonal. Thus, the LIF
neuron population transforms the device randomness
into a set of Gaussian processes with covariance
proportional to the Gram matrix of the weight vectors.
In what follows, choosing the weights appropriately
allows this circuit motif to supply random samples
with the appropriate covariances for the stochastic
MAXCUT approximation algorithms.

D. Synaptic Plasticity: Oja’s Rule

In neuroscience, the guiding principle of synaptic
plasticity is captured by the adage “neurons that fire
together, wire together.” This is the Hebbian learning
principle [13]. If w is the weight vector between
presynaptic neuron activity x and postsynaptic neuron
activity y, the simplest instantiation of this principle
is given the formula

∆w = yx

As stated, this rule is unstable. Oja presented a
modification to this plasticity rule that preserved the
Hebbian principle but enforced weight stability [23].
Oja’s rule is given by the formula

∆w = y(x− yw)

Figure 1. LIF-Goemans-Williamson circuit implementing the
sampling stage of the Goemans-Williamson algorithm. Spikes from
the LIF population correspond to binary labels on the vertices of
the graph, defining the cut. The covariances of the LIF membrane
potentials are determined by the weight matrix from the random
devices (left) to the LIF population. Each LIF neuron’s weight vector
is set proportional to a vector determined through the solution to
the Goemans-Williamson SDP.

Oja proved that under mild assumptions this rule
forces the weight vector to converge to the first
principle component of the covariance matrix of the
inputs, or equivalently the eigenvector corresponding
the the largest eigenvalue.

By considering anti-Hebbian plasticity, Oja derived
a related, stabilized learning rule that converges to the
minimum eigenvector of the covariance matrix [24]

∆w = −yx + (y2 + 1− wTw)w

By providing inputs with covariance proportional
to the adjacency matrix of the graph as used in
Trevisan’s algorithm, Oja’s anti-Hebbian rule can find
the minimum eigenvector of this matrix, yielding an
approximate solution to MAXCUT.

IV. CIRCUITS

A. LIF-Goemans-Williamson

Figure 1 shows a neural circuit that implements the
sampling step of the Goemans-Williamson algorithm.
The requirement is to generate binarized samples
from a Gaussian distribution with specified covariance
matrix C. We refer to this circuit with the abbreviation
LIF-GW.

For a graph G, the Goemans-Williamson SDP is
solved to yield a set of n unit vectors in r dimensions,
where r is the rank of the solution and n is the number
of vertices. These vectors can be combined into the
n by r dimensional matrix WGW .

The circuit consists of a pool of r random devices
connected to n LIF neurons. The synaptic weights
between the devices and the neurons are chosen
proportional to the corresponding entries in WGW .
The precise magnitudes of these weights are not
critical; what matter are their relative values, as



these ratios determine the LIF covariances. This
allows the circuit to be adapted to specific hardware
implementations imposing constraints on the range of
available weights. For our tests, we used a fixed rank
of 4 for all graphs.

Choosing the weights proportional to the solution to
the SDP yields membrane covariances proportional to
those required by the Goemans-Williamson algorithm.
The spiking threshold of the LIF neurons implements
a rounding and sampling operation that we map to
graph cuts. Neurons that spike together on a given
timestep map to vertices on one side of the cut, and
neurons that are silent on a given timestep map to
vertices on the other side of the cut.

B. LIF-Trevisan

The second neural circuit (Figure 2) implements the
simple spectral modification of Trevisan’s algorithm
[21], [29] and we refer to it as either LIF-Trevisan
or LIF-TR. Like the LIF-GW circuit, the first stage
consists of a population of LIF neurons, one for each
vertex in the graph, driven by a pool of random devices.
Next, the output of the LIF population is fed onto a
single LIF neuron. The output of this Stage-2 neuron is
discarded; what matters is the weight vector w linking
the Stage-1 LIF population to Stage-2. This weight
vector is controlled by Oja’s anti-Hebbian plasticity
rule. This forces the weight vector w to converge
onto the minimum eigenvector of the LIF covariance
matrix.

The LIF covariance matrix is determined by the
connection weights between the random devices and
the LIF population. These are set proportional to the
Trevisan matrix, which is the sum I+D−1/2AD−1/2

of the identity plus the normalized adjacency matrix
of the graph. In this way, the LIF-Trevisan circuit
does not require solving an SDP offline.

V. RESULTS

We simulated these circuits and quantified their
ability to generate graph cuts. Following [21] we eval-
uated the circuits on Erdős-Rényi random graphs with
a number of vertices n in {50, 100, 200, 350, 500} and
a connection probability p in {0.1, 0.25, 0.5, 0.75}.
We generated 10 distinct random graphs per (n, p)
combination, yielding 200 total graphs. We generated
220 graph cuts per circuit, per graph. We compared the
circuit-generated cut weights to cut weights generated
by a generic SDP solver (PyManOpt [28]) and cut
weights generated by a purely random assignment of
vertices to sides of a cut. As described, circuits were
driven by a simulated pool of random devices. Each
device was assumed to have two states, and have a
probability of 0.5 of being in any given state at each
time step.

Figure 3 shows that, as expected, the LIF-GW
circuit matches the performance of the generic solver.

Figure 2. LIF-Trevisan circuit implementing a stochastic approxi-
mation to MAXCUT by combining hardware randomness with anti-
Hebbian synaptic plasticity. The connection weights between the
random device pool (left) and the LIF neurons are set proportional
to the adjacency matrix of the graph. The activity of the LIF
neurons drives synaptic plasticity on the weight vector onto an
output neuron. The solution is sampled by thresholding this weight
vector by sign: excitatory, positive weights correspond to one side
of the cut and inhibitory, negative weights correspond to the other
side. The output of the output neuron is ignored.

This also validates the proposed circuit motif using
LIF neurons to translate hardware randomness into
Gaussian processes with desired covariances. The LIF-
Trevisan circuit shows performance that increases over
time, approaching the performance of the solver, due
to the on-line learning of the solution through Oja’s
rule. In all cases, the LIF-Trevisan circuit eventually
outperforms the random algorithm. The trajectory of
the LIF-Trevisan circuit’s performance suggests that
the rate of convergence of the plasticity depends on
the graph parameters, but there is no indication that
the performance of this circuit is saturated within the
number of samples considered here.

We next evaluated our circuits on empirical graphs
taken from the Network Repository [26]. We picked
the same graphs tested in [21]. Figure 4 shows
the performance of our circuits compared to SDP-
solver and random cuts. Consistent with out results
on Erdős-Rényi graphs, we found that the LIF-GW
sampling circuit matched the performance of the
software solver. We found that the LIF-Trevisan circuit
was able to outperform randomly-generated cuts and,
occasionally, exactly match the solver-generated cuts,
after evolving the circuit with synaptic plasticity for
sufficiently many samples. This is consistent with
the results of [21], who found that in some cases
the simplified approximation algorithms to MAXCUT
matched or outperformed cuts generated by the full
Goemans-Williamson algorithm on empirical graphs,
even though the simplified algorithms have worse
approximation guarantees. The maximum cut values



Figure 3. Maximum cut weight relative to software Goemans-Williamson solver (green triangle curve) as a function of the number of
samples for Erdős-Rényi random graphs. Rows correspond to fixed numbers of vertices n and columns correspond to fixed connection
probabilities p. Panel title gives graph parameters G(n, p). Error bars correspond to standard error of the mean over 10 independently
generated graphs from each graph class. Blue circles: LIF-GW circuit; orange squares: LIF-TR circuit; green triangles: software solver;
red X’s: random graph cuts. Blue and green curves overlap.

for each circuit for each graph are presented in Table
I, which are in agreement with the maximum cut sizes
found in [21] (rightmost column).

VI. DISCUSSION

We have presented two neuromorphic circuits that
transform the activity of a pool of random devices
into useful distributions that solve a computational
problem, in this case, MAXCUT. Our approach
combines insights from theoretical computer science,
neuroscience, and materials science to show that
probabilistic neural computing is a viable path to
new computational architectures. Our circuits display

competitive performance with traditional software
solvers. Consistent with prior work [21], we find that
the simple spectral Trevisan algorithm performs in
practice nearly as well as the gold-standard Goemans-
Williamson algorithm. Our results for the Trevisan
circuit suggest that its performance can be expected
to improve beyond the 220 samples considered here.
While in this work we considered only a single
example problem, MAXCUT is a special case of
a larger class of problems known as constraint
satisfaction problems, which include problems like
maximum directed cut (MAXDICUT) and maximum
2-satisfiability (MAX2SAT). As such, our circuits



Figure 4. Maximum cut relative to solver as a function of the number of samples for empirical graphs taken from the Network Repository.
Each panel represents a single graph, thus there are no error bars. Panel title identifies the graph dataset. Blue circles: LIF-GW circuit;
orange squares: LIF-TR circuit; green triangles: software solver; red X’s: random graph cuts. Blue and green curves overlap.

may extend to more general probabilistic neural
approaches for solving discrete optimization problems.
For instance, using results due to Goemans and
Williamson [9], our LIF-GW circuit can implement
sampling steps for algorithms for MAXDICUT and
MAX2SAT that yield approximation ratios of 0.796
and 0.878, respectively.

Our circuits present a trade-off in neuromorphic
implementations of combinatorial optimization. The
LIF-GW circuit requires fewer random devices and
delivers superb solutions rapidly, but requires a sub-
stantial commitment of offline resources (i.e. solving
a semi-definite program) to initialize. Conversely,
the LIF-Trevisan circuit requires as many random

devices as vertices in the graph, and takes many more
samples to reach comparable performance. However,
this circuit avoids offline computations, which are
a significant fraction of the running time of these
algorithms [21]. This prior work also used far fewer
samples (100) to compare the algorithms than our
220. While the number of samples required suggests
a disadvantage, at the speed of hardware, the greater
number of samples required will likely be a trivial
increase in the running time compared to a software
implementation. Current hardware implementations
of LIF neurons operate with time constants on the
order of 1 nanosecond [7], [12]. Using this value as
a reference time step for a hardware implementation



Table I
MAXIMUM CUT VALUES FOR THE DIFFERENT NEUROMORPHIC CIRCUITS APPLIED TO EMPIRICAL GRAPHS FROM THE NETWORK

REPOSITORY [26].

Graph LIF-GW LIF-TR Solver Random [21]

hamming6-2 992 972 992 957 992
soc-dolphins 122 122 122 107 121
inf-USAir97 107 97 107 89 107

road-chesapeake 126 125 126 120 125
johnson16-2-4 3036 2987 3036 2858 3036

p-hat700-1 33350 31369 33351 31002 33050
ia-infect-dublin 1751 1600 1750 1494 1664
ca-netscience 635 579 634 522 611

dwt-209 554 534 554 441 540
dwt-503 1937 1740 1937 1493 1921

ia-infect-hyper 1277 1262 1277 1182 1233
email-enron-only 425 394 425 367 413

Erdos991 1027 920 1027 791 934
eco-stmarks 1765 1764 1765 1747 1190

DD687 1786 1625 1783 1411 1680
ENZYMES8 126 124 126 95 126

of these circuits, the circuits could generate millions
of samples in the time required for a software simple
spectral computation (∼ 10ms), or billions of samples
in the time required to solve and sample the Goemans-
Williams SDP [21]. The convergence rate of the
synaptic plasticity in our LIF-TR circuit depends
on both the circuit parameters and graph structure
in complicated ways, but this dependence could be
formalized or optimized in future work. Furthermore,
the requirement for greater numbers of random devices
is likely not a limitation, as the current trajectory for
implementing the stochastic devices required for these
circuits shows promising scaling advantages [22].

Our simulations model random devices as perfectly
fair coins generating random, independent bit streams.
These assumptions are necessarily approximations
to the true behavior of a random device, which
may display the statistics of an unfair coin, show
internal or external correlations, or display statistics
that drift over time. These imperfections might have
an impact on the performance of the circuits presented.
The key circuit motif in each circuit implements
the central limit theorem through the integration of
large numbers of random devices. Thus, we expect
robustness to deviations of individual devices from the
idealized perfect coin as the number of devices grows.
While there is a growing realization that stochastic
devices can provide robust random bit streams [25],
there currently are few standards for what makes a
good true random number generator for randomized
algorithms. For this reason, the circuits described
here provide a much needed benchmark for device
physicists to incorporate physically-detailed device
models to assess the impact of device variability.

Neuromorphic computing is having a growing
impact on graph algorithms [1]. Previous work has
found neuromorphic solutions to graph problems
such as max flow [17], cycle detection [17], shortest
paths [2], [3], [16], and spanning trees [16]. This
prior work has exploited connections between the
graph structure of neural networks and the corre-
sponding graph problems. In contrast, our work
uses the statistical behavior of neural circuits and
learning through synaptic plasticity to solve a new
class of graph problems. Incorporating learning into
neuromorphic circuits to solve specific computational
problems is comparatively under-explored, and thus
our work expands the neuromorphic acceleration of
graph algorithms in a new direction.

Our approach presents a different strategy for incor-
porating neuroscientific insight into parallel computa-
tion. The most successful application of neuroscience
principles to date occurs in the field of deep learning,
which is based on connectionist principles inherited
from early neuroanatomical studies. In contrast, our
circuits use the integrative, statistical properties of
neurons to achieve different kinds of computations.
This was informed by early theoretical developments,
like Oja’s rule for synaptic plasticity [23], [24]. These
developments have been well-known for decades, but
have not had as strong an influence on computation.
Similar to how backpropagation was known for many
years before physical implementations achieved the
scale necessary to reveal its utility, we expect that re-
cent advances in stochastic devices and neuromorphic
hardware will reveal the utility of probabilistic neural
computation.
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